Similarity: V a finite dimensional vector space. A basis $v_1, ..., v_n$ for V induces an isomorphism

$$V \rightarrow F^n$$

$$v_i \rightarrow e_i$$

So, if $T : V \rightarrow V$ a linear map, a basis B for V induces a linear map $T_B : F^n \rightarrow F^n$.

If Z is a different basis, how does T_Z compare to T_B? A: There exists an isomorphism $P : F^n \rightarrow F^n$ s.t.

$$T_Z = P^{-1} T_B P$$

Defn Two square matrices A and B are called similar if there is an invertible matrix P s.t.

$$B = P^{-1} A P$$

Diagonalizable means similar to a diagonal matrix.

Rational Canonical Form Let R be a PID.
There is a classification of finitely generated R-modules M:

Thm 1) $M \cong R^r \oplus R/(a_1) \oplus \ldots \oplus R/(a_m)$

$r \geq 0, a_1, \ldots, a_m \in R$ non units s.t. $a_1 \mid \ldots \mid a_m$

2) r, a_1, \ldots, a_m unique up to units.

Now, R is a UFD, so can write $a \in R$ as

$a = u p_1^{r_1} \ldots p_s^{r_s}$

where u is a unit, p_1, \ldots, p_s prime.

Then by Chinese remainder theorem

$R/(a) \cong R/(p_1^{r_1}) \oplus \ldots \oplus R/(p_s^{r_s})$

Thm If M a fin gen R-module

$M \cong R^r \oplus R/(p_1^{r_1}) \oplus \ldots \oplus R/(p_s^{r_s})$

$r \geq 0, p_1^{r_1}, \ldots, p_s^{r_s}$ powers of possibly nondistinct primes, also unique up to units.
Now, if $T: V \to V$ a linear map, we can turn V into an $F[x]$-module by having x act by T, i.e.,

$$(anx^n + \ldots + a_1x + a_0)v = a_nTv + \ldots + a_1Tv + a_0v$$

V is finite dimensional so this is a finitely generated $F[x]$-module so

$$V = \frac{F[x]}{(a_1(x))} \oplus \frac{F[x]}{(a_2(x))} \oplus \cdots \oplus \frac{F[x]}{(a_m(x))}$$

$a_1(x), \ldots, a_m(x)$ unique if require the a_i to be monic.

Note: a_m is the minimal polynomial.

If $a(x) = x^k + b_{k-1}x^{k-1} + \ldots + b_1x + b_0$, then $1, x, \ldots, x^{k-1}$ is a basis for the F-vector space $\frac{F[x]}{(a(x))}$.

On this basis multiplication acts by

$1 \mapsto x$,

$x \mapsto x^2$,

\vdots
\[
x^{k-2} \mapsto x^{k-1}
\]
\[
x^{k-1} \mapsto -b_0 - b_1 x - \ldots - b_{k-1} x^{k-1}
\]

which has matrix representation

\[
C_a := \begin{pmatrix}
0 & 0 & \cdots & -b_0 \\
0 & 0 & \cdots & -b_1 \\
0 & 0 & \cdots & \ddots \\
0 & 0 & \cdots & 1 - b_{k-1}
\end{pmatrix}
\]

Thus there is a basis of \(V \) s.t. \(T \) becomes

\[
\begin{pmatrix}
C_a_1 \\
C_a_2 \\
\vdots \\
C_a_m
\end{pmatrix}
\]

This is the rational canonical form of \(T \).

This is the canonical form of \(T \). Two matrices over \(F \) are similar \(\iff \) they have the same rational canonical form.

Note the characteristic polynomial of \(C_a \) is \(\pm a \), thus the characteristic polynomial of \(T \) is \(\pm a_1 \ldots a_m \) which proves
Cayley Hamilton and that the characteristic poly and minimal polynomial have the same factors.

Eg. \(A = \begin{pmatrix} 2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2 \end{pmatrix} \) Char poly is \((x-2)^2(x-3)\)

minimal poly is \((x-2)(x-3)\)

Thus \(a_1 = (x-2) \), \(a_2 = (x-2)(x-3) = x^2 - 5x + 6 \)

so rational canonical form is

\[
\begin{pmatrix}
2 & 0 & 0 \\
0 & 0 & -6 \\
0 & 1 & 5
\end{pmatrix}
\]

7.2.10 Let \(R_A, R_B \) the rational canonical forms of \(A \) and \(B \) respectively. Since \(A \) and \(B \) are real, the rational canonical forms over \(C \) are the same as over \(\mathbb{R} \). Then \(R_A = R_B \) since we assumed \(A, B \) similar over \(C \), thus they are also similar over \(\mathbb{R} \).

\(\checkmark \)

Jordan Canonical Form

Let \(T: V \rightarrow V \) linear. Assume minimal polynomial factors into linear terms (always true over \(C \)). Then
Factoring a... gives

\[V = \frac{F[x]}{(x-\alpha)} \oplus \cdots \oplus \frac{F[x]}{(x-\beta)^k} \]

\(\alpha \) may be repeated but they are each roots of the minimal polynomial (i.e., eigenvalues) with respect to the basis \((x-\alpha)^{k-1}, \ldots, x-\alpha, 1\)

\(x \) acts on \(\frac{F[x]}{(x-\beta)^k} \) as

\[
\begin{pmatrix}
2 & 1 \\
2 & 1 \\
& & \ddots \\
& & & \ddots \\
& & & 2 & 1
\end{pmatrix}
\]

This is a Jordan block of size \(k \) with eigenvalue \(\beta \)

Such a Jordan block has minimal polynomial \((x-\beta)^k\).

It has only \(\beta \) as an eigenvalue w/ \(\dim \) of eigenspace 1.
T can be represented as a matrix

\[
\begin{pmatrix}
\bar{\delta}_i & \cdot & 0 \\
\cdot & \cdot & \cdot \\
0 & \cdot & \bar{\delta}_i
\end{pmatrix}
\]

where \(\bar{\delta}_i \) is a Jordan block of size \(k_i \) with eigenvalue \(\lambda_i \). This is the Jordan canonical form unique up to permutation. Note the minimal polynomial of \(T \) is the least common multiple of the \((x-\lambda_i)^{k_i} \).

7.6.24 The char poly of \(A \) is \(-\lambda^3 \). The eigenvalues are just 1. The eigenvectors are \(x \) s.t.

\[
(A - I) x = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} x = 0
\]

These are vectors of the form

\[
\begin{pmatrix}
-x_1 - x_2 \\
x_2 \\
x_3
\end{pmatrix} = x_2 \begin{pmatrix}
-1 \\
1 \\
0
\end{pmatrix} + x_3 \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
\]

basis for eigenspace
Minimal poly divides char poly so it's \((x-1), (x-1)^2\) or \((x-1)^3\).

\[
(A - I)^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}^2 = 0
\]

so minimal poly is \((x-1)^2\). There is then a Jordan block of size 2 so

\[
\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

is the Jordan canonical form.

7.6.30 Triangular so char poly is \((x-1)^4\).

Minimal poly is then a power of \((x-1)\). Direct calculation gives

\[
(A - I)^2 \neq 0, \quad (A - I)^3 = 0
\]

so minimal poly is \((x-1)^3\). Thus there is a 3x3 block.
To determine the rest, find eigenspace of 1: Solve $Ax = x$

i.e.

\[
\begin{align*}
 x_1 &= x_1 \\
 x_1 + x_2 &= x_2 \\
 x_1 + x_2 + x_3 &= x_3 \\
 x_1 + x_2 + x_3 + x_4 &= x_4 \\
 x_1 + x_2 + x_3 + x_4 + x_5 &= x_5 \\
\end{align*}
\]

$\Rightarrow x_1 = 0$, $x_2 + x_3 + x_4 + x_5 = 0$, x_6 undetermined

so 4 degrees of freedom. Thus 3 1×1 blocks

and 1 3×3 block, all eigenvalue 1

7.7.6 By assumption they both satisfy $x(x-1)$.

Possible minimal poly's are

\[
\begin{align*}
 x, & \quad x-1, & \quad x(x-1) \\
\end{align*}
\]

\[
\begin{align*}
 \uparrow & \quad \uparrow \\
 \text{O matrix} & \quad \text{Identity} \\
\end{align*}
\]

Since minimal poly is least common multiple of minimal poly of Jordan blocks, each Jordan block is 1×1.

Then if they have the same rank, they have the same Jordan canonical forms, so they're similar.
The Jordan Canonical Form gives

Thm \(A \in M_{n \times n}(F) \) is diagonalizable \(\iff \) \(m_A \) factors into linear terms in \(F \) with no repeated roots

Thm \(A \in M_{n \times n}(F) \) triangularizable \(\iff \) \(m_A \) (equivalently \(p_A \)) factors into linear terms over \(F \).

All complex matrices are triangularizable and have an eigenvector.

7.5.7 \(M_{n \times n}(C) \) is fin dim and matrices commuting with a fixed matrix \(A \in M_{n \times n}(C) \) is a subspace. Thus can assume \(S \) is finite.

Go by induction. Suppose \(A_1, \ldots, A_n \) commuting and \(A_1, \ldots, A_{n-1} \) have a common eigenvector.

Let \(E \) be the space of all such common eigenvectors.

Let \(v \in E \). Then \(A_i A_{n+1} v = A_{n+1} A_i v = 2 \xi A_{n+1} v \) for all \(i \) so \(A_i v \in E \). Then can view \(A_{n+1} \) as
a map \[E \to E \]
since \(A \) is complex, it has an eigenvector in \(E \).

\[\checkmark \]

7.6.17 Changing basis we can write
\(T \) as a matrix
\[
\begin{pmatrix}
A & C \\
0 & B
\end{pmatrix}
\]
where \(A \) is the matrix of \(T|_W : W \to W \)
Want to show \(m_A \) factors into linear terms w/ none repeated. The matrix of \(T^k \) is
\[
\begin{pmatrix}
A^k & \text{something} \\
0 & B^k
\end{pmatrix}
\]
so any polynomial satisfied by \(T \) is also satisfied by \(A \). Thus \(m_A | m_T \) and must
also factor into linear terms since \(M_T \) does.

Inner/Hermition Products

Last time we covered inner products on real vector spaces, the spectral theorem was:

\[
T: V \to V \text{ a linear endomorphism of a real inner product space } V, \text{ then } \\
T^* = T
\]

\(\iff \)

\(T \) has an orthonormal basis of eigenvectors

\(\iff \)

There is a matrix \(U \) s.t. \(U^T = U^{-1} \) and diagonal

\[D = U^T A U \]

Where \(A \) is a representation of \(T \) in an orthonormal basis.

If \(V \) is a complex vector space then there is no bilinear (over \(\mathbb{C} \)), symmetric, positive definite form on \(V \). Instead define **Hermition inner product**
\[\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C} \]

to be s.t.

i) \[\langle av_1 + bv_2, w \rangle = a \langle v_1, w \rangle + b \langle v_2, w \rangle \]
\[\langle v, aw_1 + bw_2 \rangle = \bar{a} \langle v, w_1 \rangle + \bar{b} \langle v, w_2 \rangle \]

ii) \[\langle v, w \rangle = \overline{\langle w, v \rangle} \]

iii) \[\langle v, v \rangle \geq 0 \quad \text{equality} \iff v = 0 \]

\(\mathbb{C}^n \) has a standard hermitian inner product

\[\langle z, w \rangle = \sum_{i=1}^{n} z_i \overline{w_i} = z_1 \overline{w_1} + \cdots + z_n \overline{w_n} \]

Then if \(T : \mathbb{C}^n \to \mathbb{C}^n \) linear, its Hermitian adjoint is \(T^* : \mathbb{C}^n \to \mathbb{C}^n \) defined by

\[\langle Tv, w \rangle = \langle v, T^* w \rangle \]

If \(A \) is the matrix of \(T \), then the matrix of \(T^* \) is \(A^T = \overline{A} \).
Theorem (Spectral Theorem over \mathbb{C}) $T: \mathbb{C}^n \to \mathbb{C}^m$ is normal i.e. $TT^* = T^*T \iff T$ has an orthonormal basis of eigenvectors.

Note that Hermitian maps (i.e. T s.t. $T = T^*$) are normal.

Gram-Schmidt: From a basis v_1, \ldots, v_n we can obtain an orthonormal basis e_1, \ldots, e_n by the procedure:

$$e_1 = \frac{v_1}{\|v_1\|}$$

$$e_2 = \frac{v_2 - \langle v_2, e_1 \rangle}{\|v_2 - \langle v_2, e_1 \rangle\|}$$

$$\vdots$$

$$e_n = \frac{v_n - \langle v_n, e_1 \rangle - \cdots - \langle v_n, e_{n-1} \rangle}{\|v_n - \langle v_n, e_1 \rangle - \cdots - \langle v_n, e_{n-1} \rangle\|}$$