Outline

Canonical Forms

- Similarity.
- Finitely-generated modules over a PID.
- Rational and Jordan canonical forms, uniqueness.

More on Diagonalizability

- $A \in M_{n}(F)$ diagonalizable if and only if minimal polynomial splits in F with no repeated roots.
- $A \in M_{n}(F)$ is triangularizable over F if and only if minimal polynomial splits in F.
- Commuting matrices.

More on Inner Products

- Spectral theorems (real and complex case).
- Gram-Schmidt.

Problems

7.7.10. Let A and B be two real $n \times n$ matrices. Suppose there is a complex invertible $n \times n$ matrix U such that $A=U B U^{-1}$. Show that there is a real invertible $n \times n$ matrix V such that $A=V B V^{-1}$. (In other words, if two real matrices are similar over \mathbb{C}, then they are similar over \mathbb{R}).
7.6.24 Find the eigenvalues, eigenvectors, and the Jordan canonical form of

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

considered as a matrix in $\mathbb{Z} / 3 \mathbb{Z}$.
7.6.30. Find the Jordan canonical form of the matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

7.7.6. Let A and B be $n \times n$ matrices over a field F such that $A^{2}=A$ and $B^{2}=B$. Suppose that A and B have the same rank. Prove that A and B are similar.
7.5.17. Let S be a nonempty commuting set of $n \times n$ complex matrices $(n \geq 1)$. Prove that the members of S have a common eigenvector. (Sidenote: As an exercise use this fact to prove the important fact that if A and B are diagonalizable matrices such that $A B=B A$, then there is an invertible matrix T such that $T A T^{-1}$ and $T B T^{-1}$ are both diagonal)
7.6.17. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ a diagonalizable linear transformation. Let $W \subset V$ be a linear subspace which is mapped to itself by T. Show that the restriction of T to W is diagonalizable.

