Outline

Fundamentals

- Linear independence, bases, dimension
- Rank-Nullity
- Eigenvalues/diagonalizability
- Inner products and spectral theorem

Determinants

- Cofactor expansion
- Multilinear/alternating
- Triangular case

Characteristic and Minimal Polynomial

- Cayley-Hamilton
- Trace and determinant from characteristic polynomial

Problems

7.1.1 Let p, q, r, s be polynomials of degree at most 3 . Which, if any, of the following two conditions is sufficient for the conclusion that the polynomials are linearly dependent?

1. At 1 , each of the polynomials has value 0 .
2. At 0 each of the polynomials has value 1 .
7.2.7. Let T be a real symmetric $n \times n$ matrix with upper and lower diagonal having entries b_{1}, \ldots, b_{n-1}, and diagonal entries a_{1}, \ldots, a_{n}, all other entries zero (it is a tridiagonal matrix). Assume $b_{j} \neq 0$ for all j. Show
3. The rank of T is $\geq n-1$ and
4. T has n distinct eigenvalues.
7.2.11. Let $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over the real field \mathbb{R} in the n variables x_{1}, \ldots, x_{n}. Let the matrix A be the $n \times n$ matrix whose i th row is $\left(1, x_{i}, x_{i}^{2}, \ldots, x_{i}^{n-1}\right), i=1, \ldots, n$. Show that

$$
\operatorname{det}(A)=\Pi_{i>j}\left(x_{i}-x_{j}\right)
$$

7.2.12. Consider an $(n+1) \times(n+1)$ matrix such that the i th row is $\left(1, a_{i}, a_{i}^{2}, \ldots, a_{i}^{n}\right)$, $i=0, \ldots, n$ where the a_{i} are complex numbers .

1. Prove that this matrix is invertible if the a_{i} are all different. (Do not use 7.2.11).
2. In this case, prove that for any n complex numbers b_{0}, \ldots, b_{n}, there exists a unique complex polynomial f of degree n such that $f\left(a_{i}\right)=b_{i}$ for $i=0, \ldots, n$.
7.5.13. Let F be a field, n and m positive integers, and A and $n \times n$ matrix with entries in F such that $A^{m}=0$. Prove that $A^{n}=0$.
7.6.5. Compute A^{10} for the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

