Outline

Explicit solutions

- Linear ODEs
- Particular and homogeneous solutions, superposition, initial conditions
- Second order constant coefficient linear ODEs
- First order systems of linear ODEs
- Separation of variables
- Integrating factors

Local existence and uniqueness

- Picard-Lindelof
- Inverse and implicit function theorems

Global behavior

- Blowup
- Gronwall's inequality

Problems

Spring 2008 4A Find the solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-y=e^{-x}
$$

satisfying $y(0)=y^{\prime}(0)=0$.
Fall 2021 6A Solve the initial value problem

$$
y^{\prime}=A y=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right), y(0)=y_{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Fall 2021 1A

- a) Find a particular solution $y_{1}(t)$ of

$$
y^{\prime}=y^{2}-t y+1
$$

- b) Find the general solution. (The solution may be expressed using a definite integral)
3.1.3 - Fall 199314 Let n be an integer larger than 1. Is there a differentiable function on $[0, \infty)$ whose derivative equals its nth power and whose value at the origin is positive?
3.1.10 - Fall 19821 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous nowhere vanishing function, and consider the differential equation

$$
\frac{d y}{d x}=f(y)
$$

1. For each real number c, sow that this equation has a unique continuously differentiable solution $y=y(x)$ on a neighborhood of 0 which satisfies the initial condition $y(0)=c$.
2. Deduce the conditions on f under which the solution y exists for all $x \in \mathbb{R}$, for every initial value c.

Summer 19826 Suppose f is a differentiable function from the reals into the reals. Suppose $f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$, and $f\left(x_{0}\right)=0$. Prove that $f(x)>0$ for all $x>x_{0}$.

