Complex I Differentiable: $f'(z) = \lim_{h \to 0} f(z+h) - f(z)$ exists Tuesday, August 8, 2023 Holomorphic: Derivative exists and is continuous

Holomorphic: Derivative exists and is continuous

Analytic: Locally, f(z) agrees with a power series

Cauchy/
Cauchy/Goursat/: \int \(\frac{1}{2} \) = 0

Morera

Morera Cauchy-Riemann: f(x+iy)=u(x,y)+iv(x,y), $u_x=v_y$ and $u_y=-v_x$ Holomorphic: Derivative exists and is continuous (Only need to check $\int_{\text{triangles}} f(z) = 0$ or $\int_{\text{squares}} f(z) = 0$) 7: [a,b] -> 6 Syf(z) dz = 5°f(Y(t))Y'(4)dt Prove that a uniform limit of complex analytic functions is complex analytic. (fn >f unif means YE Inst. |fn-f|<E for all nano) We must show that $S_{P}f(z)dz=0$ $\int_{\Gamma} f(z) dz = \int_{\Gamma} \lim_{n \to \infty} f_n(z) dz = \lim_{n \to \infty} \int_{\Gamma} f_n(z) dz$ $= \lim_{n \to \infty} 0 = 0$ | Snf(z) dz - Snfn(z) dz| $\leq length(\Gamma) \cdot sup |f_n - f| \rightarrow 0$ conformal map f: U-V is a bijective holomorphic function \Rightarrow $f'(z) \neq 0$, angle preserving Riemann Mapping Theorem no holes
Riemann Mapping Theorem no holes
ond open,

Riemann Mapping Theorem no holes Riemann Mapping Theorem no holes Alexander Simply connected and open, Then U is conformally equivalent to then U is conformally equivalent to
Mobius tronsforms/Linear Fractional transformations The az+b . A - A = Curania
$0 \mapsto \frac{a}{c}$ $-\frac{d}{c} \mapsto \infty$ $0 \mapsto \frac{a}{c}$
a take circles/Isnes to circles/line Mobius transformations are determined by 2, +>W,
$Ex \qquad H \rightarrow D$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
f analytic on H, f <1, f(i)=0
How large can $f(2i)$ be? Actually, $f(2i)$ by the open mapping theorem to $i\frac{2i-i}{2i+i}=i\frac{1}{3i}$ D
-c c 11- m-n

to 121-1=131 3 D > H - > U New equivalent question: If f analytic $D \rightarrow D$, f(0) = 0, how large can $f(\frac{1}{3})$ be? f'(2)Schwartz lemma: If $f:D\rightarrow D$, f(0)=0, then $|f(z)|\leq |z|$, achieved by $f(z) = \lambda z$ with $|\lambda| = 1$. Answer: $|f(\frac{1}{3})| \leq \frac{1}{3}$ Classification of conformal outomorphisms D >D $e^{i\theta} = \frac{z-a}{1-a\tau}$ for $a \in \mathbb{D}$ Classification just 02+6 (a=0) just $\frac{az+b}{cz+d}$ with $ad-bc\neq 0$. Any holomorphic C -> C is rational. Singularities: f has an isolated singularity at to if f is holomorphic on B_E(to) \{to} · F has a Lowert series $\sum_{\alpha_{k}(z-z_{0})}^{\infty}$. I has a removable singularity when a =0 for all kro. a pole when ax=0 for k sufficiently negative . I has (i.e., only finitely many negative terms) (same as $f(z) \rightarrow \infty$ as $z \rightarrow \overline{z_0}$) · f has an essential singularity when ax=0 for infinitely many K<0. (Casorati-Weierstrass: the image of BE(Zo) {20} under S is dense in ()

(Casorati-Weierstrass: the image of BELZO) LEG under & is dense in ()
Show no conformal equivalence between $\{0 < 7 < 1\}$ and $\{1 < 7 < 2\}$
Suppose f. \{0\lambda 2 < 1\} \rightarrow \{1\lambda 1\rightarrow 2\} \\ \text{Thas an isolated singularity at 0.} \\ \text{Thage of f is bounded} \rightarrow \text{Remarable} \\ (Riemann's theorem on singularity open mappy open
Liouville's Theoren: A bounded entire function analytic on all of C
Ex: If f,g entire, $Re(f) \le k Re(g)$, then $f=ag+b$.
Pf: $ e^{z} = e^{Re(z)}$ Re(f) $\leq k$ Re(g) $e^{Re(f)} \leq e^{Re(kg)}$

So f-kg=cSo f=kg+c.