Outline

Holomorphic functions

- Cauchy-Goursat theorem
- Morera's theorem
- Holomorphic vs. real analytic functions

Conformal maps

- Riemann mapping theorem
- Important examples: disc to upper half-plane and vice versa, upper halfplane to a sector, Schwarz-Christoffel integral
- Automorphisms of the disk; Schwarz lemma, Blaschke factors

The extended/compactified complex plane
Classification of singularities

- Removable singularities
- Poles
- Essential singularities; Casorati-Weierstrass

Local and global behavior of holomorphic functions

- Open mapping theorem
- Maximum modulus principle
- Liouville's theorem

Problems

5.2.16 - Spring 197812 Prove that the uniform limit of a sequence of complex analytic functions is complex analytic. Is the analogous theorem true for real analytic functions?
5.4.13 - Fall 199013 Suppose that f is analytic on the open upper half-plane and satisfies $|f(z)| \leq 1$ for all $z, f(i)=0$. How large can $|f(2 i)|$ be under these conditions?
5.4.7 - Spring 2003 7B Let $f(z)$ be a function that is analytic in the unit disk $\mathbb{D}=\{|z|<$ $1\}$. Suppose that $|f(z)| \leq 1$ in \mathbb{D}. Prove that if $f(z)$ has at least two fixed points z_{1} and z_{2}, then $f(z)=z$ for all $z \in \mathbb{D}$.
5.3.8 - Spring 199518 Prove that there is no one-to-one conformal map of the punctured disk $G=\{z \in \mathbb{C}: 0<|z|<1\}$ onto the annulus $A=\{z \in \mathbb{C}: 1<|z|<2\}$.
5.5.3 - Fall 19994 Let the rational function f in the complex plane have no poles for
$\operatorname{Im}(z) \geq 0$. Prove that

$$
\sup \{|f(z)|: \operatorname{Im}(z) \geq 0\}=\sup \{|f(z)|: \operatorname{Im}(z)=0\}
$$

5.5.8 - Spring 19974 Let f and g be two entire functions such that, for all $z \in \mathbb{C}$, $\operatorname{Re}(f(z)) \leq k \operatorname{Re}(g(z))$ for some real constant k (independent of z). Show that there are constants a, b such that

$$
f(z)=a g(z)+b .
$$

5.6.29 - Spring 198715 Prove or disprove: If the function f is analytic in the entire complex plane, and if f maps every unbounded sequence to an unbounded sequence, then f is a polynomial.

