Outline

Fundamentals

- Linear independence, bases, dimension
- Rank-Nullity
- Eigenvalues/diagonalizability
- Inner products and spectral theorem

Determinants

- Cofactor expansion
- Multilinear/alternating
- Triangular case

Characteristic and Minimal Polynomial

- Cayley-Hamilton
- Trace and determinant from characteristic polynomial

Problems

- **7.1.1** Let p, q, r, s be polynomials of degree at most 3. Which, if any, of the following two conditions is sufficient for the conclusion that the polynomials are linearly dependent?
 - 1. At 1, each of the polynomials has value 0.
 - 2. At 0 each of the polynomials has value 1.
- **7.2.7.** Let T be a real symmetric $n \times n$ matrix with upper and lower diagonal having entries $b_1, ..., b_{n-1}$, and diagonal entries $a_1, ..., a_n$, all other entries zero (it is a *tridiagonal matrix*). Assume $b_j \neq 0$ for all j. Show
 - 1. The rank of T is $\geq n-1$ and
 - 2. T has n distinct eigenvalues.
- **7.2.11.** Let $\mathbb{R}[x_1,...,x_n]$ be the polynomial ring over the real field \mathbb{R} in the n variables $x_1,...,x_n$. Let the matrix A be the $n \times n$ matrix whose ith row is $(1,x_i,x_i^2,...,x_i^{n-1})$, i=1,...,n. Show that

$$det(A) = \prod_{i>j} (x_i - x_j)$$

7.2.12. Consider an $(n+1) \times (n+1)$ matrix such that the *i*th row is $(1, a_i, a_i^2, ..., a_i^n)$, i = 0, ..., n where the a_i are complex numbers.

- 1. Prove that this matrix is invertible if the a_i are all different. (Do not use 7.2.11).
- 2. In this case, prove that for any n complex numbers $b_0, ..., b_n$, there exists a unique complex polynomial f of degree n such that $f(a_i) = b_i$ for i = 0, ..., n.

7.5.13. Let F be a field, n and m positive integers, and A and $n \times n$ matrix with entries in F such that $A^m = 0$. Prove that $A^n = 0$.

7.6.5. Compute A^{10} for the matrix

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{array}\right)$$