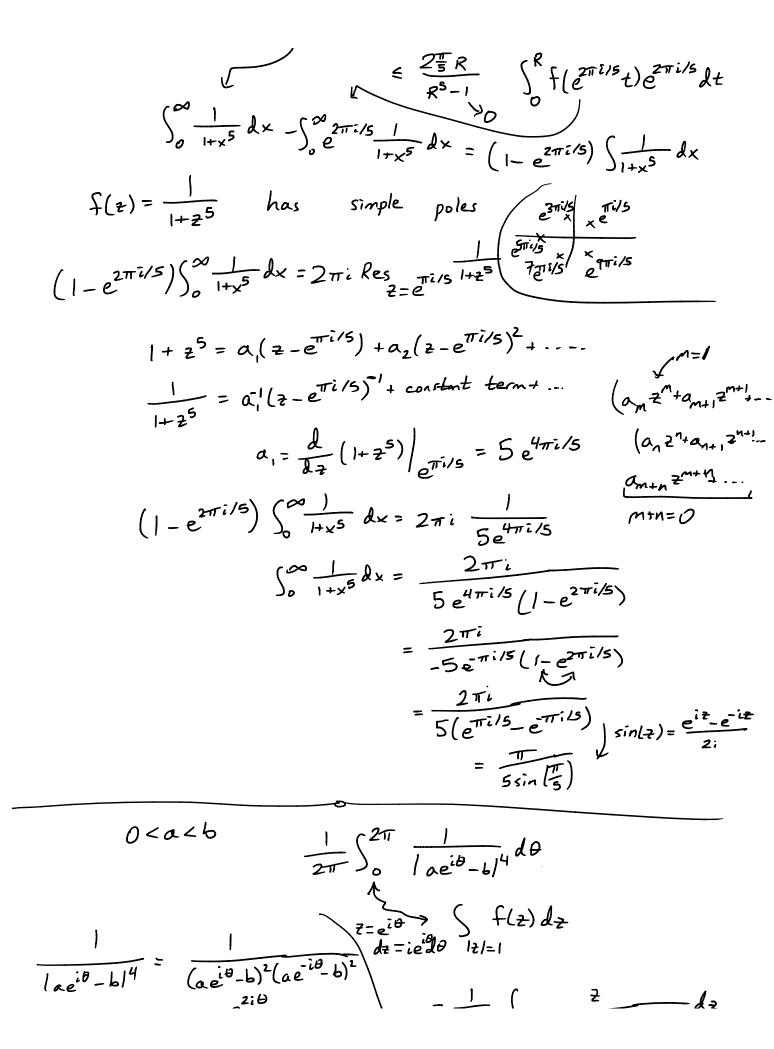


Rouché's Theorem: If |f|<|g| on 252, then g and f+g have the same number of zeros in SZ (counting multiplicity). $E_x: z^5 + z^3 + 5z^2 + 2$ how many roots in 1<12/2 If |z|=1, $|5z^2|=5 > 4 \geq |z^5+z^3+2|) \Rightarrow 2$ zeros in $|z| \leq 1$ If |z|=1, |3z| triangle inequality If |z|=2 $|z^5|=32>30 \ge |z^3+5z^2+2|$ $\Rightarrow 5$ zeros in Number of zeros = 5-2=3 Residue Theoren: $\int_{\partial \Omega} f(z)dz = 2\pi i \int_{\mathbb{R}} \operatorname{Res}_{z=z} f(z)$ Resz=zif(z)=a_1 coefficient of the x 52 modernia Laurent exponsion San(z-zi) 500 1 dx $f(z) = \frac{1}{1+25}$ $\int_{\Gamma} f(z) dz = \int_{\Gamma} f(z) dz + \int_{R} f(z) dz + \int_{R} f(z) dz$ as Raco SR flet dt Length $\sim R$ Max $\sim R^{-5}$ $\leq \frac{2\pi R}{5} \left(\frac{R}{f(e^{2\pi i/5}t)} e^{2\pi i/5} dt \right)$



$$\frac{1}{|ae^{i\theta}-b|^{4}} = \frac{(ae^{i\theta}-b)^{2}(ae^{-i\theta}-b)^{2}}{(ae^{i\theta}-b)^{2}(a-be^{i\theta})^{2}} = \frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \frac{1}{(az-b)^{2}(a-bz)^{2}} dz$$

$$= Res_{z=\frac{a}{b}} = \frac{1}{(az-b)^{2}(a-bz)^{2}} dz$$

$$f(z) = a_{2}(z-\frac{a}{b})^{-2} + a_{-1}(z-\frac{a}{b})^{-1} + \cdots \qquad A \text{ lot of algebra.}$$

$$\frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \frac{1}{(az-b)^{2}(a-bz)^{2}} dz$$

$$= Res_{z=\frac{a}{b}} = \frac{1}{(az-b)^{2}(a-bz)^{2}} dz$$

$$\frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \int_{|z|=1}^{2\pi i} dz$$

$$\frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} dz$$

$$\frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \int_{|z|=$$

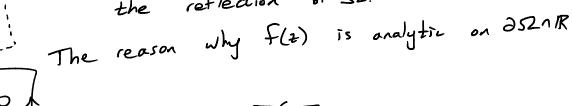
Schworz reflection.

Key idea: If f(z) analytic, then so is $\overline{f(\overline{z})}$ If f(z) analytic in $SL \subseteq H$, and extends

continuously to $\partial \Omega nR$ with real values

then f(z) extends analytically to

the reflection of Ω .



uniform continuity

If f(z) analytic on |z|>1, and real on $(1,\infty)$, then f(z) real on $(-\infty,-1)$

$$\overline{f(\overline{z})}$$
 agrees with $f(\overline{z})$
on $(1,\infty)$.

Identity theorem (if f(z), g(z) agree on a set with an accumulation point inside the domain, then f=g)

The solution point is the domain, then f=g) $\Rightarrow f(z) = f(\overline{z})$ the domain, then f=g) $\Rightarrow f(z)$ is real on the real axis.

If f(z) analytic on |z-a| < r extends continuously on |z-a| < r, then does f(z) extend analytically to $|z-a| < r+\delta$?

No: $f(z) = \sqrt{z}$ $f(z) = \sqrt{z}$ $f(z) = \sqrt{z}$ $f(z) = \sqrt{z}$ $f(z) = \sqrt{z}$