Week 7: Composition series and solvability

Practice Problems

- 1. Find composition series for the dihedral groups of orders 8 and 10. Are there any other composition series for these groups? What are the composition factors of these groups?
- 2. Find the derived series of the quaternion group.
- 3. Suppose that G is a finite group with G = G'. Show that the order of G is divisible by the order of some nonabelian finite simple group.

Presentation Problems

- 1. Let G be a group.
 - (a) Let N and K be normal subgroups of G with $N \cap K = \{1\}$. Prove that N and K commute, meaning that nk = kn for all $n \in N$ and $k \in K$. Show that $NK \cong N \times K$.
 - (b) Suppose that G is finite and let N_1, N_2, \ldots, N_m be normal subgroups of G such that $|G| = \prod_j |N_j|$ and such that $N_i \cap N_j = \{1\}$ for all $i \neq j$. Show that $G \cong N_1 \times N_2 \times \cdots \times N_m$.
- 2. Show that the following are equivalent:
 - (a) Every finite group of odd order is solvable.
 - (b) Every nonabelian finite simple group has even order.
 - (c) There is no nonabelian finite simple group of odd order with all proper subgroups solvable.
- 3. Let G be a finite solvable group and let N be a minimal normal subgroup of G.
 - (a) Suppose that H is a characteristic subgroup of N, meaning that $\varphi(H) = H$ for all $\varphi \in \operatorname{Aut}(N)$. Show that H = 1 or H = N.
 - (b) Show that [N, N] is a characteristic subgroup of N. Deduce that N is abelian.
 - (c) Show that if p is a prime dividing the order of N then the kernel and image of the pth power map are characteristic subgroups of N. Deduce that $g^p = 1$ for all $g \in N$.
 - (d) Show that N is elementary abelian, meaning that $N \cong C_p \times \ldots \times C_p$ for some prime p.
- 4. If h and k are elements of G then we define the commutator $[h,k] = hkh^{-1}k^{-1}$. If H and K are subgroups of G then we define the commutator subgroup [H,K] as the subgroup of G generated by elements of the form [h,k] for $h \in H$ and $k \in K$.
 - (a) Show that [H, K] = [K, H].
 - (b) Show that [G, H] = 1 if and only if H is a central subgroup of G.

For elements x, y, z of G we define [x, y, z] = [[x, y], z] and $x^y = yxy^{-1}$. For subgroups X, Y, Z of G we define [X, Y, Z] = [[X, Y], Z]. Let H be a subgroup of G.

- (c) Show that $[z^{-1}, x, y]^z [y^{-1}, z, x]^y [x^{-1}, y, z]^x = 1$.
- (d) Show that if [X, Y, Z] = 1 and [Y, Z, X] = 1 then [Z, X, Y] = 1.
- (e) Show that if [G, G] = G and if [G, H, G] = 1 then H is a central subgroup of G.
- (f) Show that if [G, G] = G then Z(G/Z(G)) = 1.

This shows that if the derived series of G stabilizes at the first step then the "upper central series" of G stabilizes by the second step. The upper central series of G is related to G being nilpotent (see tricky problem 1). The "binary icosahedral group" is an example of a finite group G with [G, G] = G and $Z(G) \neq 1$.

Tricky Problems

- 1. Let G be a finite group.
 - (a) Show that the following conditions on G are equivalent:
 - H is a proper subgroup of $N_G(H)$ for every proper subgroup H of G.
 - Every maximal subgroup of G is a normal subgroup of G.
 - Every Sylow subgroup of G is a normal subgroup of G.
 - G is isomorphic to a direct product of p-groups.
 - G has a normal subgroup of order d for every divisor d of |G|.

A finite group satisfying these conditions is called *nilpotent*.

- (b) Show that G is nilpotent if and only if G/Z(G) is nilpotent.
- (c) Show that if Aut(G) is nilpotent then G is nilpotent.
- (d) Show that the intersection of all maximal subgroups of G is nilpotent. This subgroup is called the Frattini subgroup of G, or $\Phi(G)$.
- (e) Show that if G has a unique maximal subgroup then G is nilpotent.
- (f) Show that if G has a unique maximal subgroup then G is cyclic.
- 2. Let π be a collection of primes. A Hall π -subgroup is a subgroup whose order is a product of primes in π and whose index is not divisible by any prime in π . Let G be a minimal counterexample to the statement "Every finite solvable group has a Hall π -subgroup."
 - (a) Let N be a minimal normal subgroup of G. Show that N is a p-group for some $p \notin \pi$.
 - (b) Show that $|G| = p^k m$ where $|N| = p^k$ and where m is a product of primes in π (so that any Hall π -subgroup of G would have order m).
 - (c) Let M/N be a minimal normal subgroup of G/N. Show that M/N is a q-group for some $q \in \pi$.
 - (d) Let Q be a Sylow q-subgroup of M. Show that Q is not a normal subgroup of G.
 - (e) Show that $N_G(Q)$ contains a Hall π -subgroup of G.

This proves Hall's theorem that finite solvable groups have Hall π -subgroups for all collections of primes π . Here is an application of this result:

- (f) Let G be a finite group such that every proper subgroup of G is nilpotent. By considering a maximal intersection of maximal subgroups of G, show that G is solvable.
- (g) Use Hall's theorem to show that if |G| is divisible by three distinct primes then G is nilpotent.