Week 1: The definition of a group and examples

Practice Problems

1. In the group of invertible 2×2 real matrices, consider the elements

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

Verify that |g| = 4, |h| = 3, and $|gh| = \infty$.

2. For a finite group G with identity element e, the multiplication table of G is the table

•	e		g	•••	h	•••
e	e	• • •	g	• • •	h	• • •
÷	:	·	••••		•	
g	g		g^2	• • •	$g \bullet h$	
÷	:		••••	·		
h	h	• • •	$h \bullet g$	• • •	h^2	• • •
÷	:		•		•	·

Of course, the multiplication table of G depends on the ordering of the nonidentity elements of G.

- (a) Show that every row and every column of the multiplication table of G contains all elements of the group exactly once (like a Sudoku).
- (b) Show that G is abelian if and only if the multiplication table of G is symmetric about the diagonal.
- 3. (a) Prove that for $n \in \{1, 2, 3\}$, there is only one multiplication table for a group with n elements.
 - (b) Prove that there are two possible multiplication tables for a group with 4 elements.
 - (c) Show that every group of order at most 4 is abelian.

The noncyclic group of order 4 is called the *Klein four-group*.

Presentation Problems

An *involution* is an element of order 2.

- 1. Let G be a group such that $g^2 = 1$ for all $g \in G$ (or equivalently, that every nonidentity element of G is an involution). Show that G is abelian.
- 2. Let G be a finite abelian group.
 - (a) Show that the product $\prod_{q \in G} g$ is well-defined.
 - (b) Show that if G contains exactly one involution f then $\prod_{g \in G} g = f$.
 - (c) Apply the previous part to a well-chosen group to show that p divides (p-1)! + 1.

This last result is known as Wilson's theorem (1/4).

- 3. Let G be a finite group and let m be the number of involutions in G. Show that |G| m is odd. Deduce that if |G| is even then G contains at least one involution.
- 4. Let G be a group and let $g, h \in G$. Show that

$$|gh| = |hg| = |g^{-1}h^{-1}| = |h^{-1}g^{-1}|.$$

Tricky Problems

- 1. Let G be a finite group, let $g \in G$, and let k be an integer with gcd(k, |G|) = 1.
 - (a) By partitioning G into subsets of cardinality |g|, show that |g| divides |G|.
 - (b) Show that $g^{|G|} = 1$.
 - (c) Show that ak = b|G| + 1 for some integers a and b.
 - (d) Show that $g^{ak} = g$.
 - (e) Show that the kth power map $x \mapsto x^k$ is injective.
 - (f) Deduce that the kth power map $x \mapsto x^k$ is surjective.
- 2. Let G be a finite group. Suppose that $gh \neq hg$ for all distinct involutions $g, h \in G$. Show that |gh| is odd for all involutions $g, h \in G$.