
Week 0: Sets, Functions, and Quotients

Locate and understand an explanation of Russell’s Paradox and Cantor’s Diagonalization argument.

Practice Problems

1. Identify the error in each of the following proofs and give a counterexample to its statement.

Claim. Let X be a set and let R be a symmetric and transitive relation on X. Then R is reflexive.

Proof. For any x, y ∈ X, xRy implies yRx by symmetry, and then xRx follows from transitivity. Thus,
xRx for any x ∈ X which shows that R is reflexive.

Claim. For any nonempty finite set S of horses, all of the horses in S have the same color.

Proof. We will prove the claim by induction on |S|. The base case of |S| = 1 is trivially true, since
any single horse has the same color as itself. Now suppose that the result holds when |S| is one less.
Then in the picture below, all of the horses in the left circle have the same color, and all of the horses
in the right circle have the same color.

By transitivity of “same color”, all horses in S have the same color.

2. (a) Define the relation ∼ on R by x ∼ y if x−y is an integer. Prove that ∼ is an equivalence relation.
What are the equivalence classes of ∼?

(b) Let f : R→ R2 be the function f(t) = (cos(2πt), sin(2πt)). Describe all sets and functions in the
canonical decomposition of f , and interpret the set R/∼f geometrically (where x ∼f y if and only
if f(x) = f(y)).

3. Suppose that ∼ is an equivalence relation on a set X, and let π : X → X/∼ be the natural projection.
When is there a function f : X/∼ → X such that f ◦ π = idX?

Presentation Problems

1. Let X and Y be sets and let f : X → Y be a function. Let S, S′ be subsets of X and let T, T ′ be
subsets of Y . For each of the following statements, either prove the equality or find a counterexample.
If you find a counterexample, prove that one of the two sets in contained in the other.

(a) f(S ∪ S′) = f(S) ∪ f(S′).

(b) f(S ∩ S′) = f(S) ∩ f(S′).

(c) f−1(T ∪ T ′) = f−1(T ) ∪ f−1(T ′).

(d) f−1(T ∩ T ′) = f−1(T ) ∩ f−1(T ′).

(e) f−1(f(S)) = S.

(f) f(f−1(T )) = T .
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2. Let X be a set.

(a) Given an equivalence relation ∼ on X, construct a partition of X.

(b) Given a partition P of X, construct an equivalence relation on X.

(c) Parts (a) and (b) still aren’t enough to tell us that there is a one-to-one correspondence between
partitions of X and equivalence relations on X. What more needs to be checked?

(d) Conclude that there is a bijection between the sets {R ⊆ X×X : R is an equivalence relation on X}
and {P ⊆ 2X : P is a partition of X} (the set 2X is the powerset of X, the set of subsets of X).

3. Suppose that f : X → Y is a surjection. Prove that there is a function g : Y → X such that f ◦g = idY .

Note: If you know what the axiom of choice is, you may assume it and you should prove that this
problem is equivalent to the axiom of choice. If you don’t know what the axiom of choice is, don’t
worry about it.

4. Let A and B be finite sets. What is the cardinality of AB? You must prove your answer correct.

Tricky Problems

1. Let X and Y be arbitrary sets and let f : X → Y and g : Y → X be injective functions.

(a) Show that the function h : X → Y given by

h(x) =

{
(f ◦ g)n(a) if x = g((f ◦ g)n(a)) for some n ∈ N and a ∈ Y \ im f

f(x) otherwise

is well defined.

Note: The term “well defined” is context dependent. In this case, the worry is that for a fixed
x, there might be multiple possible choices for n and a, potentially resulting in multiple possible
values for h(x).

Note: Given a set X and a function p : X → X, the notation pn denotes the function which
applies p to its input n times. For example, p3(x) = p(p(p(x))). In general, p0(x) = x and
pn+1(x) = p(pn(x)).

(b) Show that h is bijective.

This is known as the Cantor-Schröder-Bernstein Theorem.

2. Let X be a countable set and let S be a subset of 2X (the power set of X) such that for any two
distinct elements A,B ∈ S, the intersection A ∩ B is finite. Is S necessarily countable? Give a proof
or a counterexample.
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