
Week 0: The definition of a ring and examples

Let R be a ring with identity.

Practice Problems

1. Let X be a nonempty set. Define addition and multiplication operations on the power set P(X) by
A+B = (A \B)∪ (B \A) and A×B = A∩B. Show that P(X) is a commutative ring with identity.

2. Show that Z(R) = {x ∈ R : xy = yx for all y ∈ R} is a subring of R containing the identity. Show
that if R is a division ring then Z(R) is a field.

3. Let α ∈ C be such that α2 ∈ Z. Show that O = {x+yα : x, y ∈ Z} is a commutative ring with identity.

Presentation Problems

1. (a) Show that 12 = 1 and (−1)2 = 1.

(b) Show that if R has no zero divisors and if x ∈ R satisfies x2 = 1 then x = ±1.

2. Suppose that R is commutative. An element x ∈ R is called nilpotent if xm = 0 for some m.

(a) Show that if x, y ∈ R are nilpotent then x+ y is nilpotent.

(b) Show that if x ∈ R is nilpotent and y ∈ R is a unit then x+ y is a unit.

3. An element x is called idempotent if x2 = x. A Boolean ring is a ring whose elements are all idempotent.

(a) Show that every Boolean ring is commutative.

(b) Classify the Boolean rings that are integral domains.

(c) Classify the finite Boolean rings.

4. Let R be an integral domain. In this problem, we look at the most efficient way to turn R into a field.
Our motivating example will be the construction of Q from Z in terms of fractions.

Consider the set S = R× (R \ {0}) of pairs of elements of R whose second component is nonzero. We
would like to think of a pair (r, s) ∈ S as a fraction r

s , which why we restrict s to be nonzero. There
are two steps that we need to take in order to construct our field:

• Identify fractions that are the same (if R = Z then (6, 3) and (4, 2) both represent 2
1 ∈ Q).

• Define addition and multiplication on S in a way that respects this identification.

Recall that when working with rational numbers, a
b = c

d is the same as saying ad = bc. This relation,
ad = bc, is purely a statement about arithmetic in Z.

In analogy to this, we will define a relation ∼ on S by setting (r1, s1) ∼ (r2, s2) whenever r1s2 = r2s1.

(a) Show that ∼ is an equivalence relation on S.

Now let F be the set of equivalence classes of S. We write an equivalence class [(r, s)]∼ ∈ F as r
s .

(b) Define a ring structure on F . Hint : How do you add and multiply fractions?

(c) Check carefully that your definitions of addition and multiplication on F preserve ∼.

(d) Show that F is a field.

(e) Define an injective ring homomorphism ι : R→ F .

Why did we require R to be an integral domain? What do we get if R = R[x]?

This construction will come up again when we get to Gauss’ lemma in section 9.3.
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Module Theory Problem

1. Suppose that R is commutative. Read the definition of an R-module and an R-module homomorphism.
Convince yourself that R-modules form a category R-Mod. Convince yourself that Z-modules are the
same as abelian groups.

(a) Show that the collection HomR(M,N) of R-module homomorphisms M → N forms an R-module.

(b) Show that ϕ : N → N ′ induces an R-module homomorphism ϕ∗ : HomR(M,N)→ HomR(M,N ′).

(c) Show that ϕ : M →M ′ induces anR-module homomorphism ϕ∗ : HomR(M ′, N)→ HomR(M,N).

Tricky Problems

1. Suppose that R is commutative and let p(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x].

(a) Show that p(x) is nilpotent if and only if aj is nilpotent for each 0 ≤ j ≤ n.

(b) Show that p(x) is a unit if and only if a0 is a unit and aj is nilpotent for each 1 ≤ j ≤ n.

(c) Show that p(x) is a zero divisor if and only if bp(x) = 0 for some nonzero b ∈ R.

Let R[[x]] denote the ring of formal power series with coefficients in R. Addition is defined by( ∞∑
n=0

anx
n

)
+

( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(an + bn)xn

and multiplication is defined by( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.

Let q(x) = a0 + a1x+ · · · ∈ R[[x]].

(d) Show that q(x) is a unit if and only if a0 is a unit.

(e) Show that if q(x) is nilpotent then aj is nilpotent for each j ≥ 0.

2. Suppose that R is finite and has no zero divisors.

(a) Show that R \ {0} forms a group under multiplication.

(b) Show that there exists a prime number p such that px = x+ x+ · · ·+ x = 0 for all x ∈ R.

(c) Use the classification of finite abelian groups to show that (R,+) ∼= (Z/pZ)× · · · × (Z/pZ).

Now suppose that |R| = p2 and that R is not commutative.

(d) Show that Z(R) = {x ∈ R : xy = yx for all y ∈ R} has order p.

(e) Let x ∈ R \ Z(R). Show that CR(x) = {y ∈ R : xy = yx} contains both x and Z(R).

(f) Show that CR(x) = R and derive a contradiction.
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