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Let G be a group and let H be a subgroup of G. For each g ∈ NG(H), we have the conjugation
automorphism of H given by h 7→ g−1hg. This gives a homomorphism NG(H) → Aut(H) with kernel
CG(H). By the first isomorphism theorem for groups, NG(H)/CG(H) embeds as a subgroup of Aut(H). In
the case that H = G, this states that G/Z(G) embeds as a subgroup of Aut(G).

Theorem 1. Let G be a finite group. If Aut(G) is cyclic then G is cyclic.

Proof. This proof will repeatedly use the fact that a subgroup of a cyclic group is cyclic. First note that
G/Z(G) is cyclic. If x ∈ G is a representative for a coset of Z(G) that generates G/Z(G) then every element
of G is of the form xkz for some integer k and some z ∈ Z(G). However, all elements of this form commute.
This shows that G is abelian. If p ≥ 3 is a prime dividing G and if the direct product decomposition of
G contains a factor isomorphic to Cpa × Cpb then Aut(G) contains Aut(Cpa) × Aut(Cpb) which contains
Cp−1 × Cp−1 which is not cyclic. If the direct product decomposition of G contains a factor isomorphic to
C2k then Aut(G) contains Aut(C2k) which is not cyclic for k ≥ 3. If the direct product decomposition of G
contains a factor isomorphic to C2 × C2 or to C2 × C4 or to C4 × C4 then Aut(G) contains Aut(C2 × C2)
or Aut(C2 × C4) or Aut(C4 × C4), none of which are cyclic. We have shown that for each prime p, the
direct product decomposition of G contains at most one factor isomorphic to Cpk for some k. Then the
classification of finite abelian groups gives that G is cyclic.

Burnside’s normal p-complement states that if G is a finite group and if P is a Sylow p-subgroup of G
and if CG(P ) = NG(P ) then G contains a normal p-complement (a normal subgroup of order |G|/|P |).

Theorem 2. Let G be a finite group, let p be the smallest prime divisor of the order of G, and suppose that
Sylow p-subgroups of G are cyclic. Then G contains a normal p-complement.

Proof. Let P be a Sylow p-subgroup of G. Note that the order of Aut(P ) is given by p− 1 times a power of
p. In particular, |NG(P )/CG(P )| divides p− 1 times a power of p. However, the minimality of p gives that
|NG(P )/CG(P )| is coprime to p− 1. Also, the fact that P is abelian gives that |NG(P )/CG(P )| is coprime
to p. Then |NG(P )/CG(P )| = 1 and Burnside’s normal p-complement theorem applies.

A slight refinement of the proof of theorem 1 gives the following result.

Theorem 3. Let G be a finite group, let p be the smallest prime divisor of the order of G, suppose that p3

does not divide the order of G, and suppose that G does not have a normal p-complement. Then 12 divides
the order of G and all involutions of G are conjugate.

Proof. Let P be a Sylow p-subgroup of G. By theorem 1, P is not cyclic so we must have that P ∼= Cp×Cp.
Then Aut(P ) ∼= GL2(Fp) so |Aut(P )| = p(p − 1)2(p + 1). The same argument as in the proof of theorem
1 gives that |NG(P )/CG(P )| is coprime to p − 1 and to p. Also, if p 6= 2 then p + 1 is composite and
factors as a product of primes less than p in which case |NG(P )/CG(P )| would also be coprime to p+ 1. By
Burnside’s normal p-complement theorem, we must have that p = 2 and that |NG(P )/CG(P )| = 3. Note
that Aut(P ) ∼= S3 is the permutation group on the three involutions of P . The image of NG(P )/CG(P ) in
Aut(P ) has order 3 so NG(P ) acts transitively on the three involutions of P . Then Sylow’s theorems give
that G acts transitively on the involutions of G.
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If G is a finite simple group then theorem 3 states that either the smallest prime divisor of the order
of G divides the order of G to the third power or that 12 divides the order of G. When combined with
Burnside’s paqb theorem, this implies that 60 and 84 are the only potential orders less than 120 for a finite
simple group. However, Sylow’s theorems show that a group of order 84 has a normal Sylow 7-subgroup.

There are other results that involve the smallest prime dividing the order of a finite group.

Theorem 4. Let G be a finite group and let p be the smallest prime divisor of the order of G. Every normal
subgroup of G of order p is central and every subgroup of G of index p is normal.

Proof. Let H be a normal subgroup of G of order p. For each h ∈ H, the order of the conjugacy class
of h is strictly smaller than p but is a divisor of G. Then for each h ∈ H, the conjugacy class of h has
order 1 so h ∈ Z(G). Now let H be a subgroup of G of index p. Letting G act on the left cosets of H by
left-multiplication gives a homomorphism G → Sp with kernel K contained in H. The first isomorphism
theorem for groups gives that G/K embeds as a subgroup of Sp. In particular [G : K] divides both p! and
G. By the minimality of p, [G : K] divides p. However, [G : K] = [G : H][H : K] so [H : K] = 1. Then
H = K which shows that H is a normal subgroup of G.

Similar results hold even when G is not finite.

Theorem 5. Let G be a group. Every subgroup of G of index 2 is normal. If G contains no subgroup of
index 2 then every subgroup of index 3 is normal. If G contains a subgroup of index 4 then G contains a
subgroup of index 2 or of index 3.

Proof. Let H be a subgroup of G of index 2. Then gH = H = Hg if g ∈ H and gH = (G \ H) = Hg
if g 6∈ H. This shows that H is a normal subgroup of G. Now let H be a subgroup of G of index 3 and
suppose that G contains no subgroup of index 2. As in the proof of theorem 4, we obtain a homomorphism
G → S3 with kernel K contained in H. The composition G → S3 → {±1} must be trivial so we obtain a
homomorphism G→ A3 with kernel K contained in H. Then [G : K] divides 3 so the same argument as in
the proof of theorem 4 gives that H is a normal subgroup of G. Now let H be a subgroup of G of index 4
and suppose that G contains no subgroup of index 2 or of index 3. As in the proof of theorem 4, we obtain
a homomorphism G→ S4 with kernel K contained in H. The composition G→ S4 → {±1} must be trivial
so we obtain a homomorphism G → A4 with kernel K contained in H. The composition G → A4 → C3

must also be trivial so we obtain a homomorphism G → C2 × C2 with kernel K contained in H. Then
[G : K] divides 4 so the same argument as in the proof of theorem 4 gives that H is a normal subgroup of
G. However, then the correspondence theorem gives that G contains a subgroup of index 2.
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