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1 The Cyclotomic Zp-extension of Q
1.1 Galois Theory

Fix a prime p.

1.1.1 Odd Primes

If p is odd then for each k ≥ 0, Gal(Q(ζpk+1)/Q) is cyclic of order (p− 1)pk. By the Galois correspondence,
there is a unique subfield Bk ⊆ Q(ζpk+1) such that Gal(Bk/Q) is cyclic of order pk. If k ≥ 1 then by the
Galois correspondence, there is a unique subfield of Bk whose Galois group over Q is cyclic of order pk−1.
This must be Bk−1. Thus, Bk−1 is contained in Bk. We obtain a chain

Q = B0 ⊆ B1 ⊆ B2 ⊆ · · ·

where Gal(Bk/Q) ∼= Z/pkZ and Bk ⊆ Q(ζpk+1).

1.1.2 Even Primes

If p = 2 then let
Bk = Q(cos(π/2k+1)) = Q(ζ2k+2 + ζ−1

2k+2) ⊆ Q(ζ2k+2)

for k ≥ 0. Note that Bk is a subfield of R, so it is a proper subfield of Q(ζ2k+2). Then the polynomial relation

ζ22k+2 − (ζ2k+2 + ζ−1
2k+2)ζ2k+2 + 1 = 0.

shows that [Q(ζ2k+2) : Bk] = 2, which forces Bk to be the fixed field of Q(ζ2k+2) under complex conjugation.
There are two consequences of this. Firstly, Bk−1 is contained in Bk for k ≥ 1. Secondly,

Gal(Bk/Q) ∼=
(Z/2k+2Z)×

{±1}
∼= Z/2kZ.

We obtain a chain
Q = B0 ⊆ B1 ⊆ B2 ⊆ · · ·

where Gal(Bk/Q) ∼= Z/2kZ and Bk ⊆ Q(ζ2k+2). We summarize these results in the following theorem.

Theorem 1. There is a chain
Q = B0 ⊆ B1 ⊆ B2 ⊆ · · ·

where Gal(Bk/Q) ∼= Z/pkZ. If p is odd then Bk ⊆ Q(ζpk+1). If p = 2 then Bk ⊆ Q(ζ2k+2).
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1.2 Ramification Theory

It is known that the extension Q(ζpn)/Q is totally ramified at the prime p and unramified at every other
prime. From this we can deduce the ramification of the extensions Bk/Q.

Lemma 2. The extension Bk/Q is totally ramified at the prime p and unramified at every other prime.

Combining Lemma 2 with the following proposition will allow us to deduce that the class number of Bk
is indivisible by p. The proof of the following proposition is adapted from the proof of Theorem 10.4 in
Washington’s Introduction to Cyclotomic Fields.

Proposition 3. Let K be a number field. Assume that K/Q is Galois and that Gal(K/Q) is a p-group.
Also assume that at most one prime of Q ramifies in K/Q. Then the class number of K is indivisible by p.

Proof. By class field theory, there exists a number field H (the p-Hilbert class field of K) such that:

(a) H is Galois over Q,

(b) K is contained in H,

(c) The extension H/K is unramified,

(d) The degree [H : K] equals the power of p dividing the class number of K.

Let G = Gal(H/Q). Let q be the prime of Q that ramifies in K/Q. If no such prime exists then let q be any
prime of Q. Let r be a prime of H lying over q. Let Ir/q ≤ G be the inertia subgroup.

Now assume that the class number of K is divisible by p. Then (d) implies that the extension H/K is
nontrivial. Then (c) implies that q is not totally ramified in H/Q. In particular, Ir/q � G. By the theory of
p-groups, Ir/q is contained in a proper normal subgroup N of G. Then the fixed field F of N is a nontrivial
Galois extension of Q. Let r0 be the prime of F lying under r. Since Ir/q is contained in N , we know that
er0/q = 1. Since F/Q is Galois, q is unramified in F/Q. Since all other primes of Q are unramified in H/Q,
F/Q is unramified. This is a contradiction since Q has no nontrivial unramified extensions.

Theorem 4. The class number of Bk is indivisible by p.

Proof. By Theorem 1 and Lemma 2, Bk satisfies the conditions of Proposition 3.

1.3 Ideal Class Groups

Let L/K be an extension of number fields.

• Let FK and FL denote the groups of fractional ideals of K and L.

• Let PK and PL denote the groups of principal fractional ideals of K and L.

• Let ClK and ClL denote the ideal class groups of K and L.

1.3.1 The Upward Map

There is a homomorphism JL/K : FK → FL defined by JL/K(I) = IOL. Then JL/K(αOK) = αOL, which
shows that JL/K(PK) ⊆ PL. In particular, JL/K : FK → FL induces a map JL/K : ClK → ClL.

1.3.2 The Downward Map

There is a homomorphism NL/K : FL → FK defined by NL/K(q) = pf(q/p) and extending multiplicatively.
It is a fact of algebraic number theory that NL/K(αOL) = NL

K(α)OK , which shows that NL/K(PL) ⊆ PK .
In particular, NL/K : FL → FK induces a map NL/K : ClL → ClK .
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1.3.3 Compatibility I

Lemma 5. The composition NL/K ◦ JL/K : ClK → ClK is the [L : K]th power map.

Proof. Let p be a prime of K and let pOL = qe11 · · · q
eg
g . Then

NL/K(JL/K(p)) = NL/K(qe11 · · · qegg )

= NL/K(q1)e1 · · · NL/K(qg)
eg

= (pf1)e1 · · · (pfg )eg

= pe1f1+···+egfg

= p[L:K].

The result follows from extending multiplicatively and passing to the quotient.

Proposition 6. If |ClK | is coprime to [L : K] then JL/K : ClK → ClL is injective and NL/K : ClL → ClK
is surjective.

Proof. Lemma 5 states that NL/K ◦ JL/K : ClK → ClK is the [L : K]th power map. If [L : K] is coprime to
|ClK | then this is an isomorphism. In particular, JL/K is injective and NL/K is surjective.

By Theorem 1 and Theorem 4, the extensions Bk/Bk−1 satisfy the conditions of Proposition 6. We obtain
inclusions and surjections

ClQ ClB0
ClB1

ClB2
· · · .

1.3.4 Compatibility II

Lemma 7. If L/K is Galois then the composition JL/K ◦NL/K : ClL → ClL is given by

c 7→
∏

σ∈Gal(L/K)

σ(c).

Proof. Let q be a prime of L, let p be the prime of K lying under q, and let q1, . . . , qg be the primes of L
lying over p. Since Gal(L/K) acts transitively on the primes of L lying over p, we have∏

σ∈Gal(L/K)

σ(q) = q
n/g
1 · · · qn/gg = (qe1 · · · qeg)f = JL/K(pf ) = JL/K(NL/K(q)).

The result follows from extending multiplicatively and passing to the quotient.

Let σ generate Gal(Bk/Q). Then σ gives a permutation of ClBk
. Since σp

k

= 1, we know that each cycle
of this permutation has order a power of p. We can use Lemma 7 to say more.

Theorem 8. If ClBk−1
is trivial then every nonidentity cycle of σ on ClBk

has order pk.

Proof. Let c ∈ ClBk
and suppose that σp

k−1

(c) = c. By Lemma 7 and our assumption that ClBk−1
is trivial,

cp = (c)
(
σp

k−1

(c)
)(

σ2·pk−1

(c)
)
· · ·
(
σ(p−1)pk−1

(c)
)

= JBk/Bk−1
(NBk/Bk−1

(c)) = JBk/Bk−1
(1) = 1.

By Theorem 4, c = 1. Thus, if c 6= 1 then σp
k−1

(c) 6= c.

Theorem 8 can also be stated in terms of fixed-point-free automorphism groups. An action of a group G
on a group H is said to be fixed-point-free if g · h = h implies that g = 1 or h = 1.

Corollary 9. If ClBk−1
is trivial then the action of Gal(Bk/Q) on ClBk

is fixed-point-free.
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1.4 The Hilbert Class Field

It is natural to consider the semidirect product G = ClBk
o Gal(Bk/Q). Corollary 9 can be rephrased as

saying that if ClBk−1
is trivial then G is a “Frobenius group”. Since Gal(Bk/Q) is a quotient of G, one might

wonder if G is a secretly isomorphic Gal(H/Q) for some number field H containing Bk.
By class field theory, there exists a number field H (the Hilbert class field of Bk) such that:

(a) H is Galois over Q,

(b) Bk is contained in H,

(c) The extension H/Bk is unramified,

(d) The Galois group Gal(H/Bk) is isomorphic to ClBk
.

(e) The action of Gal(Bk/Q) on Gal(H/Bk) agrees with the action of Gal(Bk/Q) on ClBk
.

There is a short exact sequence of groups

1 Gal(H/Bk) Gal(H/Q) Gal(Bk/Q) 1π

where Gal(H/Bk) ∼= ClBk
and Gal(Bk/Q) ∼= Z/pkZ. By Theorem 4, Gal(H/Bk) ∼= ClBk

has order indivisible
by p. Then pk is the largest power of p dividing Gal(H/Q).

Lemma 10. The above short exact sequence splits (in the semidirect product sense).

Proof. As before, let σ generate Gal(Bk/Q). Then σ = π(τ) for some τ ∈ Gal(H/Q). In particular, τ has
order divisible by pk. Since pk is the largest power of p dividing Gal(H/Q), τ has order pkm where p - m.
Then τm has order pk. Furthermore, π(τm) = σm is a generator of Gal(Bk/Q) since p - m. Then σm 7→ τm

defines a right-inverse to π.

Lemma 10 gives an isomorphism

Gal(H/Q) ∼= Gal(H/Bk)oGal(Bk/Q) ∼= ClBk
oGal(Bk/Q) ∼= G,

where the middle isomorphism implicitly uses (e). Let F denote the fixed field of a Sylow p-subgroup of
Gal(H/Q). Then we have the diagram of fields

Q

BkF

H

Not
Galois

Galois
Z/pkZ

Galois
Z/pkZ

Totally ramified at p
Unramified at every other prime

Galois
ClBk

Unramified at every prime

Note that F/Q is unramified at every prime other than p, but must be ramified at p since F/Q has no
unramified extensions. Moreover, the ramification indices of p must be powers of p. However, [F : Q] is not
divisible by p, so at least one prime of F lying over p is inert.
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1.5 The Conjecture

I must confess that I’ve buried the lede. The following conjecture is wide open, but likely to be true.

Conjecture 11. Bk has class number 1 for all k ≥ 0 (and all primes p).

It is important to keep in mind that we currently don’t even know whether there are infinitely many
number fields of class number 1. It is interesting to contrast Conjecture 11 with the conjecture that infinitely
many real quadratic number fields have class number 1. One thing that makes the latter conjecture hard
is that the real quadratic number fields of class number 1 are distributed unpredictably, so we don’t know
which specific real quadratic number fields to look at. In the case of Conjecture 11, however, we know exactly
which number fields to look at, but we still can’t prove it!

1.6 Explicit Computation

We will now use the notation Bp,k. We will prove Conjecture 11 for B2,1, B3,1, and B2,2. In each of these
cases, the field in question is the maximal real subfield of a cyclotomic field:

B2,1 = Q(ζ8 + ζ−18 ),

B3,1 = Q(ζ9 + ζ−19 ),

B2,2 = Q(ζ16 + ζ−116 ).

In general, the maximal real subfield of Q(ζn) is Q(ζn + ζ−1n ), and its ring of integers is Z[ζn + ζ−1n ].

• The minimal polynomial of ζ8 + ζ−18 is x2 − 2. Its discriminant is 8.

• The minimal polynomial of ζ9 + ζ−19 is x3 − 3x+ 1. Its discriminant is 81.

• The minimal polynomial of ζ16 + ζ−116 is x4 − 4x2 + 2. Its discriminant is 2048.

We can now compute the Minkowski bounds, using the fact that Q(ζn + ζ−1n ) has no complex embeddings.

• The Minkowski bound for B2,1 is
√

2, so ClB2,1
is automatically trivial.

• The Minkowski bound for B3,1 is 2. Thus, ClB3,1
is generated by the primes of B3,1 lying over 2. The

polynomial x3 − 3x + 1 is irreducible modulo 2, which shows that (2) is the only prime of B3,1 lying
over 2.

• The Minkowski bound for B2,2 is 3
√

2. Thus, ClB2,2 is generated by the primes lying over 2 and 3. The
polynomial x4 − 4x2 + 2 is irreducible modulo 3, which shows that (3) is the only prime of B2,2 lying

over 3. As for 2, note that α = ζ16 + ζ−116 =
√

2 +
√

2. Then

2 = ((α2 − 2)2 − α2)2 = (α2 − α− 2)2(α2 + α− 2)2.

In fact, the ideals (α2 − α− 2) and (α2 + α− 2) are equal since

(α2 − α− 2)(−2α2 − 2α+ 3) = −2α4 + 9α2 + α− 6 = α2 + α− 2

and
(α2 + α− 2)(−2α2 + 2α+ 3) = −2α4 + 9α2 − α− 6 = α2 − α− 2

where
(−2α2 − 2α+ 3)(−2α2 + 2α+ 3) = 4α4 − 16α2 + 9 = 1.

This shows that (α2 − α− 2) = (α2 + α− 2) is the only prime of B2,2 lying over 2.

This proves Conjecture 11 for B2,1, B3,1, and B2,2.
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