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Abstract

The aim of this article is threefold. First, we use the FBI transform to set up a cal-
culus for partial differential operators with non-smooth coefficients. Next, this calculus
allows us to prove Strichartz type estimates for the wave equation with nonsmooth co-
efficients. Finally, we use these Strichartz estimates to improve the local theory for
second order nonlinear hyperbolic equations.

1 Introduction

The FBI transform is, in a way, similar to the complex Fourier transform, in that for each

function in Rn it provides a representation as a holomorphic function in R2n. However, in

the case of the FBI transform we can identify naturally R2n with the phase space T ∗Rn.

For a pseudodifferential operator with smooth symbol acting on functions in Rn one can

produce by conjugation a corresponding formal series acting on functions in R2n, for which

the first term is exactly the multiplication by the symbol. This series converges and has a

nice representation in the Weyl calculus provided that the symbol of the operator is analytic.

This is how the FBI transform has been used in the study of partial differential operators

with analytic coefficients; see [12], [13], where this machinery is developed.
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Here, in a way, we do the opposite: we look at operators with nonsmooth coefficients,

approximate the conjugated operator by a partial sum of the formal series, and then we

prove error estimates. In the simplest case the approximate conjugate operator is exactly

the multiplication by the symbol. This is also related to the Cordoba-Fefferman wave-packet

transform in [3].

In the third section we use the error estimates to reduce the Strichartz estimates for

second order hyperbolic operators with nonsmooth coefficients to weighted Lp(Lq) → L2

estimates for the FBI transform. These, in turn can be proved in the usual fashion, using

appropriate oscillatory integral estimates.

In the last part of the article we explain how one can use the new Strichartz type estimates

to improve the local theory for nonlinear hyperbolic equations beyond the classical setup.

These results are not sharp and will be improved in subsequent articles.

2 A calculus for operators with nonsmooth coefficients

The calculus we develop is dependent on the frequency; thus, in order to use it for general

pseudodifferential operators one needs to start with a Paley-Littlewood decomposition and

then use the calculus for each dyadic piece separately. The parameter λ below represents

the size of the frequency.

The FBI transform of a temperate distribution f is a holomorphic function in Cn defined

as

(Tλf)(z) = λ
3n
4 2−

n
2 π−

3n
4

∫
e−

λ
2
(z−y)2f(y) dy (2.1)

To understand better how the FBI transform works, consider the L2 normalized function

fx0,ξ0(y) = λ
n
4 π−

n
4 e−

λ
2
(y−x0)2eiλ(y−x0)

which is localized in a λ−
1
2 neighborhood of x0 and frequency localized in a λ

1
2 neighborhood

of λξ0. Due to the uncertainty principle this is the best one can do when trying to localize

in both space and frequency. Then

(Tλf)(z) = λ−
n
4 π

n
4 e

λ
4
(z−x0+iξ0)2−λ

2
(z−x0)2 = λ−

n
4 π

n
4 e−

λ
4
|z−x0+iξ0|2e

λ
2
|=z|2e−i λ

2
(<z−x0)(=z−ξ0)

Modulo the common factor e
λ
2
|=z|2 this is localized in a λ−

1
2 neighborhood of x0− iξ0. Hence,

it is natural to introduce the notation

z = x− iξ.
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Like the Fourier transform, the FBI transform has good L2 properties. Set

Φ(z) = e−λξ2

Then the operator Tλ is an isometry from L2(Rn) onto the closed subspace of holomorphic

functions in L2
Φ(Cn). One inversion formula is provided by the adjoint operator:

f(y) = λ
3n
4 2−

n
2 π−

3n
4

∫
Φ(z)e−

λ
2
(z̄−y)2(Tλf)(z) dxdξ

This is of course not the only possible inversion formula since the range of Tλ consists only

of holomorphic functions.

Let a(x, ξ) be a compactly supported symbol. Then

aλ(x, ξ) = a(x,
ξ

λ
)

is a symbol supported at frequency λ.

What we want is to determine the conjugate Ãλ of Aλ(y, D) with respect to Fλ,

TλAλ(y, D) ≈ ÃλTλ

modulo a small remainder. Start with some simple symbols. For the conjugate of x compute

Tλ(yf)(z) = (x +
1

−iλ
(∂ξ − λξ))Tλf

The conjugate of D
λ

is of course Dx

λ
, but we shall write it as

Tλ(
D

λ
f)(z) = (ξ +

1

λ
(
1

i
∂x − λξ))Tλf

Based on this, we get the formal asymptotics

TλAλ(x, D) ≈
∑
α,β

(∂ξ − λξ)α
∂α

x ∂β
ξ a(x, ξ)

α!β!(−iλ)|α|λ|β|
(
1

i
∂x − λξ)βTλ

Now we want to make these asymptotics rigorous. Given s > 0 define the partial sum

ãs
λ =

∑
|α|+|β|<s

(∂ξ − λξ)α
∂α

x ∂β
ξ a(x, ξ)

α!β!(−iλ)|α|λ|β|
(
1

i
∂x − λξ)β

For instance

ãs
λ = a s ≤ 1 (2.2)
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If 1 < s ≤ 2 then

ãs
λ = a +

1

−iλ
ax(∂ξ − λξ) +

1

λ
aξ(

1

i
∂x − λξ)

Since we only consider this operator on holomorphic functions, we can also rewrite it in a

complex fashion as

ãs
λ = a +

2

λ
(∂̄a)(∂ − iλξ), 1 < s ≤ 2 (2.3)

Define the remainder

Rs
λ,a = TλAλ − ãs

λTλ

Then our main result is

Theorem 1 Assume that a ∈ Cs
x(C

∞
0 ). Then

‖Rs
λ,a‖L2→L2

φ
≤ cλ−

s
2 (2.4)

In other words, this theorem shows that the order s approximation is precise up to s/2

derivatives.

Proof: We start with a preliminary result, which in particular shows that the α term

in the sum is of the order of λ−
α
2 :

Lemma 2.1 If u ∈ L2
φ is holomorphic then

‖(∂ξ − λξ)αu‖L2
Φ

= cαλ
|α|
2 ‖u‖L2

Φ

‖(∂x − iλξ)αu‖L2
Φ

= cαλ
|α|
2 ‖u‖L2

Φ

Proof: Represent u as u = Tλf with f ∈ L2. Then

(∂ξ − λξ)αu = λ
3n
4 2−

n
2 π−

3n
4

∫
(x− y)αe−

λ
2
(z−y)2f(y)dy

Hence

‖(∂ξ − λξ)αu‖2
L2

Φ
=

= λ
3n
2 2−nπ−

3n
2

∫
(x− y)αe−

λ
2
(z−y)2f(y)(x− w)αe−

λ
2
(z̄−w)2f(w)e−λξ2

dxdξdydw

= λ
3n
2 2−nπ−

3n
2

∫
e−

λ
2
[(x−y)2+(x−w)2](x− y)αf(y)(x− w)αf(w)eiλξ(y−w) dxdξdydw

= λ
n
2 π−

n
2

∫
(x− y)2αe−λ(y−x)2|f(y)|2dydx

= cαλ|α|‖f‖2
L2 = cαλ|α|‖u‖2

L2
Φ
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For the second part we express Tλf in terms of the Fourier transform of f ,

Tλf(z) = λ
n
4 2−

n
2 π−

3n
4

∫
e−

1
2λ

η2

eizηf̂(η)dη

= λ
5n
4 2−

n
2 π−

3n
4

∫
e−

λ
2
η2

eiλzηf̂(λη)dη

therefore

Tλf(z) = λ
5n
4 2−

n
2 π−

3n
4 e

λ
2
ξ2

∫
e−

λ
2
(η−ξ)2eiλxηf̂(λη)dη (2.5)

Then

‖(1
i
∂x − λξ)αu‖2

L2
Φ
=

= λ
5n
2 2−nπ−

3n
2

∫
(η − ξ)α(µ− ξ)αe−

λ
2
[(η−ξ)2+(µ−ξ)]2eiλx(η−µ)f̂(λη)f̂(λµ)dηdµdxdξ

= λ
3n
2 π−

n
2

∫
(η − ξ)2αe−λ(η−ξ)2|f̂(λη)|2dηdξ

= cαλα‖f‖2
L2 = cαλ|α|‖u‖2

L2
Φ

q.e.d.

To prove the theorem, observe that it suffices to prove it for symbols of the form b(x)c(ξ)

with b ∈ Cs and c smooth. This reduction can be achieved for instance if we replace a

with its Fourier series in ξ with respect to a larger set containing the support of a and then

truncate the functions in the series near the support of a in ξ (see also [20], pp 37).

For b we can make the same computation as in Lemma 2.1 to get

(Rs
λ,bTλf)(z) = λ

3n
4 2−

n
2 π−

3n
4

∫
k(x, y)e−

λ
2
(z−y)2f(y)dy

where

k(x, y) = b(y)−
∑
|α|<s

b(α)(x)

α!
(x− y)α

Then

|k(x, y)| ≤ c|x− y|s (2.6)

therefore, computing as in Lemma 2.1 we get

‖Rs
λ,bTλf‖2

L2
Φ

= λ
n
2 π

−n
2

∫
k2(x, y)e−λ(x−y)2f 2(y)dxdy

By (2.6) the integral in x is of the order of λ−
n
2
−s therefore

‖Rs
λ,b‖L2→L2

φ
≤ cλ−

s
2 (2.7)
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To prove the result for c observe that, as in the second part of Lemma 2.1,

(Rs
λ,cf)(z) = λ

5n
4 2

n
2 π−

3n
4 e

λ
2
ξ2

∫
h(ξ, η)e−

λ
2
(η−ξ)2eiλxηf̂(λη)dη (2.8)

where

h(η, ξ) = c(η)−
∑
|α|<s

c(α)(ξ)

α!
(η − ξ)α

Hence

|h(ξ, η)| ≤ c|ξ − η|s (2.9)

Computing as in Lemma 2.1 we get

‖Rs
λ,cf‖2

L2
Φ

= λ
3n
2 π−

n
2

∫
h2(ξ, η)e−

λ
2
(ξ−η)2 f̂ 2(λη)dξdη

The integral in ξ is of the order of λ−
n
2
−s therefore

‖Rs
λ,c‖L2→L2

φ
≤ cλ−

s
2

Before moving on to a(x, ξ) = b(x)c(ξ) we need to prove a stronger version of the above

estimate, namely that

‖(∂ξ − λξ)α

λα
Rs

λ,c‖L2→L2
Φ
≤ λ−

s+|α|
2 |α| < s (2.10)

From (2.8) we get

(∂ξ − λξ)α

λα
Rs

λ,cf = λ
3n
4 2−

n
2 π−

3n
4 e

λ
2
ξ2

∫
k(ξ, η)e−

λ
2
(η−ξ)2eiλxηf̂(λη)dη

where

k(ξ, η) = (λ−1∂ξ − (ξ − η))αh(ξ, η).

Then

|k(ξ, η)| ≤ |ξ − η||α|+s + λ−
|α|+s

2

therefore (2.10) follows in the same manner as (2.7).

Now prove the result for a = b(x)c(ξ). We have

TλAλ = TλbCλ

= b̃s
λTλCλ + Rs

λ,bCλ

= b̃s
λc̃

s
λTλ + b̃s

λR
s
λ,c + Rs

λ,bCλ
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The last two terms are O(λ−
s
2 ) due to (2.10), respectively (2.7). The difference ãs

λ − b̃s
λc̃

s
λ,

on the other hand, consists of terms which contain at least s factors of the form

λ−1(∂ξ − λξ), λ−1(
1

i
∂x − λξ)

But these operators are equal on holomorphic functions and commuting them yields a λ−1

factor, therefore the difference can be estimated using Lemma 2.1.

Remark 2.2 In a similar manner one can prove the following analogue of (2.10),

‖(∂ξ − λξ)α

λα
Rs

λ,b‖L2→L2
Φ
≤ λ−

s+|α|
2 |α| < s (2.11)

Combined with (2.10) this yields a generalization of (2.4), namely

‖(∂ξ − λξ)α

λα
Rs

λ,a‖L2→L2
Φ
≤ cαλ−

s+|α|
2 |α| < s (2.12)

For the study of nonlinear hyperbolic equations it is useful to produce a version of the

above results which corresponds to partial differential operators with coefficients in mixed Lp

spaces. Denote by x = (x0, x
′) the coordinates in R×Rn. In the sequel we use the notation

Lp(Lq) for Lp
x0

(Lq
x′). For simplicity we prove exactly the estimate we shall use later on. The

reader can easily repeat the same argument for a different choice of spaces. Set X = L2(L∞)

and

X1 = {u ∈ X; ∇u ∈ X}

Then

Theorem 2 Assume that a ∈ X1(C∞
0 ). Then

‖TλAλ − aTλ‖L∞(L2)→L2
Φ
≤ cλ−

1
2

Proof: As before the problem reduces to the case when a(x, ξ) = b(x)c(ξ) with b ∈ X1

and c ∈ C∞
0 . The L2 estimate for c is already proved. Let us prove the estimate for b.

Arguing as in the previous theorem,

R1
λ,bf(z) = λ

3n
4 2−

n
2 π−

3n
2

∫
(b(x)− b(y))e−

λ
2
(z−y)2f(y)dy

therefore

‖R1
λ,bf‖2

L2
Φ

= λ
n
2 π−

n
2

∫
|b(x)− b(y)|2e−

λ
2
(x−y)2f 2(y)dxdy
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Since f is in L∞(L2), we need to obtain an L1(L∞) bound for the multiplier

K(y) = λ
n
2

∫
|b(x)− b(y)|2e−λ(x−y)2dx

Rewrite it as

K(y) =
∫ 1

0

∫ 1

0
λ

n
2

∫
< ∇b(y + hx), x >< ∇b(y + kx), x > e−λx2

dxdhdk.

Since ∇b ∈ L2(L∞), this implies that

‖K‖L1(L∞) ≤ cλ−1‖b‖2
X1

which leads to the remainder bound

‖R1
λ,b‖L∞(L2)→L2

Φ
≤ λ−

1
2

Then we can compute

R1
λ,a = R1

λ,cb + cR1
λ,b + Tλ[b, C(

D

λ
)]

The first two right hand side terms have an L∞(L2) → L2
Φ norm of O(λ−

1
2 ) due to the error

estimates for b and c. Since ∇b ∈ L2(L∞), the commutator [b, C(D
λ
)] has an O(λ−1) norm:

Lemma 2.3 Let b ∈ X1 and c ∈ C∞
0 . Then the following commutator estimate holds:

‖[b, Cλ]‖L∞(L2)→L2 ≤ cλ−1 (2.13)

Proof: The kernel of [b, Cλ] is

K(x, y) =
∫

(b(x)− b(y))c(
ξ

λ
)ei(x−y)ξdξ

= λn(b(x)− b(y))ĉ(λ(x− y))

= λn
∫ 1

0
< ∇b(x + t(y − x)), y − x > ĉ(λ(x− y))dt

Then

[b, Cλ]f(x) = λn
∫ ∫ 1

0
< ∇b(x + t(y − x)), y − x > ĉ(λ(x− y))f(y)dtdy

= λn
∫ ∫ 1

0
< ∇b(x + tw), w > ĉ(λw)f(x + w)dtdw

therefore

‖[b, Cλ]f‖L2 ≤ c
∫

λn|w||ĉ(λw)|dw‖f‖L∞(L2)‖∇b‖L2(L∞)

≤ cλ−1‖∇b‖L2(L∞)

q.e.d.
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3 Strichartz estimates for the wave equation with non-

smooth coefficients

The Strichartz estimates are Lp(Lq) estimates for solutions to the wave equation. These

estimates have been very useful in the study of semilinear hyperbolic equations. One form

of the estimates applies to solutions to the homogeneous wave equation,

2u = 0, u(0) = u0, ut(0) = u1

Then

‖u‖Lp(Lq) ≤ c‖u0‖Hρ + ‖u1‖Hρ−1 (3.14)

provided that 2 ≤ p ≤ ∞, 2 ≤ q ≤ ∞ and

1

p
+

n

q
=

n

2
− ρ,

2

p
+

n− 1

q
≤ n− 1

2
(3.15)

with the sole exception of the pair (1, 2,∞) in dimension n = 3.

In the sequel, call Strichartz pairs all the triplets (ρ, p, q) satisfying the above relations

except for the forbidden endpoint (1, 2,∞) in dimension n = 3. If the equality holds in the

second relation,
1

p
+

n

q
=

n

2
− ρ,

2

p
+

n− 1

q
=

n− 1

2
, (3.16)

then we call (ρ, p, q) a sharp Strichartz pair. The estimates for any Strichartz pair follow by

Sobolev embeddings from the estimates for sharp Strichartz pairs.

A special role is played in dimension n ≥ 4 by the sharp Strichartz pair ( n+1
2(n−1)

, 2, 2(n−1)
n−3

)

which we call the endpoint. Then all Strichartz estimates can be recovered from the endpoint

estimate and the energy estimate (which corresponds to (0,∞, 2)) by interpolation and

Sobolev embeddings. The 3-dimensional correspondent is the forbidden endpoint (1, 2,∞).

The second form of the estimates applies to solutions to the inhomogeneous wave equa-

tion,

2u = f, u(0) = 0, ut(0) = 0

Then

‖D1−ρ−ρ1u‖Lp(Lq) ≤ ‖f‖
L

p′
1 (L

q′
1 )

(3.17)

for all Strichartz pairs (ρ, p, q), (ρ1, p1, q1).

Estimates of this type were first obtained in [2], [17]. Further references can be found in

a more recent expository article [4]. The endpoint estimate was only recently proved in [7]

(n ≥ 4).
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Consider now a variable coefficient second order hyperbolic equation

P (x, D)u = 0, u(0) = u0, ut(0) = u1 (3.18)

where

P (x, D) = −∂ig
ij(x)∂j

If the coefficients gij are smooth then the estimates hold locally, see [11] (except for the

endpoint). For time independent C1,1 coefficients, in dimension n = 2, 3, the estimates are

proved in [14]. Furthermore, in [15] they are shown to fail for Cs coefficients, s < 2.

Here we prove that some weaker Strichartz estimates hold if the coefficients are Cs,

0 < s ≤ 1. Of course, if s < 1 then the hyperbolic problem is not necessarily L2 well-posed,

therefore our estimates are just a-priori bounds. In the sequel we assume that the matrix of

the coefficients gij and its inverse gij are uniformly bounded,

∑
i,j

|gij|+ |gij| ≤ C

Theorem 3 Assume that P is in divergence form and has Cs coefficients, 0 ≤ s ≤ 1. Let

(ρ, p, q) be a Strichartz pair. Then

‖D1−ρ+ s−2
4 u‖Lp(Lq) ≤ (1 + ‖g‖Cs)‖u‖H1 + ‖Pu‖

H
s−2
2

(3.19)

whenever the right hand side is finite and u is supported in a fixed compact set.

Thus, compared to the sharp estimates in (3.14), there is a loss of (s− 2)/4 derivatives.

This is consistent with the earlier results which suggest that the sharp estimates should hold

for operators with C2 coefficients. In effect this result is what one would get by formally in-

terpolating a sharp estimate for C2 coefficients, with Sobolev embeddings for C0 coefficients.

The case 1 < s ≤ 2 is considered in a forthcoming paper of the author [19].

Proof: Let s(ξ) be a smooth symbol supported in 1
2
≤ |ξ| ≤ 2 so that

∑
j

s(2−jξ) = 1

Let a(ξ) be a smooth, compactly supported cutoff function which is 1 in the region

U = {1

4
≤ |ξ| ≤ 4}

and is supported away from 0.
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Given λ > 1 define

Sλ = S(
D

λ
), Aλ = A(

D

λ
)

Now we do a Paley-Littlewood decomposition and reduce (3.19) to corresponding dyadic

estimates for Sλu,

λ1−ρ+ s−2
4 ‖Sλu‖Lp(Lq) ≤ λ(1 + ‖g‖Cs)‖Sλu‖L2 + λ

s−2
2 ‖AλPSλu‖L2 (3.20)

To get (3.19) from (3.20) it suffices to sum the square of (3.20) and get a good L2 estimate

for the difference

AλPSλ − SλPλ = Aλ[P, Sλ]

We claim that

λ
s−2
2 ‖Aλ[P, Sλ]u‖L2 ≤ λ−

s
2‖g‖Cs‖u‖H1

which is more than sufficient for the summation. Since P is in divergence form, this follows

from the corresponding commutator estimate for the coefficients,

‖[g, Sλ]‖L2→L2 ≤ λ−s (3.21)

Indeed, the kernel of [g, Sλ] is

H(x, y) = λn(g(x)− g(y))ŝ(λ(x− y))

Then

H(x, y) ≤ λn−s(1 + λ|x− y|)−N

and the L2 bound (3.21) follows.

Now use the FBI transform and set

vλ = TλSλu

Observe first that vλ is concentrated in the region U defined before. Indeed, outside this

region we have

‖vλ‖L2
Φ(Uc) ≤ e−cλ‖Sλu‖L2

which is a straightforward consequence of the representation formula (2.5).

It remains to estimate vλ inside this region. Let a(ξ) be a smooth, compactly supported

cutoff function which is 1 in U and is supported away from 0. Then write

AλPSλ = λ2Aλ
Di

λ
gij(x)

Dj

λ
AλSλ
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If we apply Theorem 1 succesively for the operators Aλ
Di

λ
and gij(x)Dj

λ
Aλ then we obtain

‖TλAλPSλu− λ2a2(ξ)p(x, ξ)TλSλu‖L2
Φ
≤ λ2− s

2‖g‖Cs‖Sλu‖L2

and further

λ
s+2
2 ‖a2(ξ)p(x, ξ)vλ‖L2

Φ
≤ λ

s−2
2 ‖AλPSλu‖L2 + λ‖g‖Cs‖Sλu‖L2

On the other hand we have the trivial L2 estimate,

λ‖vλ‖L2 = λ‖Sλu‖L2

Since Sλu = T ∗
λvλ, the last two estimates show that (3.20) would follow from the following

inequality:

λ1−ρ+ s−2
4 ‖T ∗

λvλ‖Lp(Lq) ≤ λ‖vλ‖L2 + λ
s+2
2 ‖p(x, ξ)vλ‖L2

for vλ supported in U .

Note that from this point further we no longer use the regularity of the coefficients.

All that matters is that the coefficients are bounded and that the quadratic form p(x, ξ) is

non-degenerate uniformly in x.

The last inequality is equivalent to a uniform bound for

Uλ = λ−
1
2
−ρT ∗

λ

a(ξ)

λ−
s
4 + λ

s
4 |p(x, ξ)|

: L2
φ → Lp(Lq)

and further to the corresponding bound for UλΦU∗
λ ,

λ−1−2ρT ∗
λ

a2(ξ)Φ(ξ)

(λ−
s
4 + λ

s
4 |p(x, ξ)|)2

Tλ : Lp′(Lq′) → Lp(Lq)

The weight inside is integrable across the level sets of p. Hence, foliating with respect to the

level sets of p this reduces to

λ−1−2ρT ∗
λa2(ξ)Φ(ξ)δp(x,ξ)=0Tλ : Lp′(Lq′) → Lp(Lq)

(One should in effect work with all level sets and use δp(x,ξ)=0, but this makes no difference).

Thus, if we set

Vλ = T ∗
λa2(ξ)Φ(ξ)δp(x,ξ)=0Tλ

then we need to prove the uniform estimate

‖Vλ‖Lp′ (Lq′ )→Lp(Lq) ≤ λ1+2ρ (3.22)
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We prove this when

(i) (ρ, p, q) = (0,∞, 2) (the energy estimate).

(ii) (ρ, p, q) is a sharp Strichartz pair with 2 < p ≤ q.

(iii) (ρ, p, q) = ( n+1
2(n−1)

, 2, 2(n−1)
n−3

), n ≥ 4 (the endpoint estimate).

The other cases will follow by interpolation and Sobolev embeddings.

Remark 3.1 Observe that Vλ can also be expressed in the form Vλ = WλΦW ∗
λ , where

Wλf = Tλfδp(x,ξ)=0, WλΦ : L2
Φδp(x,ξ)=0

→ Lp(Lq)

Then the estimate(3.22) is equivalent to the corresponding bound for Wλ,

‖WλΦ‖L2
Φδp(x,ξ)=0

→Lp(Lq) ≤ λ
1
2
+ρ (3.23)

and to the dual bound,

‖W ∗
λ‖Lp′ (Lq′ )→L2

Φδp(x,ξ)=0

≤ λ
1
2
+ρ

(i) The “energy” estimate. In the case when (ρ, p, q) = (0,∞, 2) we can factor out

the FBI transform with respect to the y′ variable. The remaining operator is

λ−1T ∗
λ,0a

2(ξ)Φ(ξ0)δp(x,ξ)=0Tλ,0

where Tλ,0 is the FBI transform with respect to x0. This is a multiplication operator with

respect to the (x′, ξ′) variables. To prove that it is bounded from L1(L2) into L∞(L2) we

only need to verify that its kernel K(y0, ỹ0, x
′, ξ′) with respect to the y0 variable is bounded.

We have

K(y0, ỹ0, x
′, ξ′) = λ−1λ

3
2

∫
e−

λ
2
(x0−y0)2e−

λ
2
(x0−ỹ0)2eiλξ0(y0−ỹ0)δp(x,ξ)=0a

2(ξ)dx0dξ0

Because of the hyperbolicity condition , pξ0 6= 0 on p = 0. Hence the integral with respect

to ξ0 is bounded and the conclusion easily follows.

(ii) The non-endpoint estimate. To prove (3.22) in the case when 2 < p ≤ q we use

interpolation. Consider the analytic family of operators

V θ
λ = λ−θ(2ρ+1)(θ − 1)eθ2

T ∗
λa2(ξ)Φ(ξ)p−θ(x, ξ)Tλ

so that λ−1−2ρVλ = V 1
λ . Then our estimate follows by interpolation from the following:

V θ
λ : L2 → L2 <θ = 0

13



V θ
λ : Lp′1(L1) → Lp1(L∞) <θ = θ1

where p1, θ1 are chosen so that the points

(
1

2
,
1

2
, 0), (

1

p
,
1

q
, 1), (

1

p1

, 0, θ1) (3.24)

are collinear.

The L2 bound follows from the L2 boundedness of the FBI transform. For the remaining

Lp′1(L1) → Lp1(L∞) bound we estimate the kernel Kθ of V θ
λ , which is given by

Kθ(y, ỹ) = λ
3(n+1)

2
−θ(2ρ+1)

∫
eiλ(y−ỹ)ξe−

λ
2
(y−x)2e−

λ
2
(ỹ−x)2Γ(−θ)eθ2

p−θ(x, ξ)a2(ξ)dxdξ (3.25)

First we estimate the integral with respect to ξ in (3.25) using the standard oscillatory

integral estimates ∫
eiyξa(ξ)p(ξ)−θdξ ≤ c(1 + |y|)(<θ−1)−n−1

2 (3.26)

where p is a non-degenerate quadratic form and a ∈ C∞
0 is a smooth function supported away

from 0. What is important in these estimates is that the characteristic cone K = {p = 0}
has n− 1 nonvanishing curvatures (see e.g.Stein [16] 8.3.1 and 9.1.2).

If we use (3.26) to estimate the ξ integral in (3.25) then for <θ = θ1 we obtain

|Kθ(y, ỹ)| ≤
∫

λ
3(n+1)

2
−<θ(2ρ+1)(1 + λ|y − ỹ|)(<θ−1)−n−1

2 e−
λ
2
(y−x)2e−

λ
2
(ỹ−x)2dx

≤ λn+1−<θ(2ρ+1)(1 + λ|y − ỹ|)(<θ−1)−n−1
2 e−

λ
4
(y−ỹ)2

If we bound the remaining Gaussian by 1 to get

|Kθ(y, ỹ)| ≤ λn+1−<θ(2ρ+1)(1 + λ|y − ỹ|)<θ−n+1
2 (3.27)

Now set <θ = θ1 and observe that the following relations hold

θ1 −
n + 1

2
= − 2

p1

, n + 1− θ1(2ρ + 1) =
2

p1

This follows from the relations

θ − n + 1

2
= −2

p
− n− 1

q
, n + 1− θ(2ρ + 1) =

2

p
+

2n

q

which, by (3.16), hold for the first two points in (3.24), therefore they must also hold for the

third.

Hence we obtain the kernel bound

|Kθ(y, ỹ)| ≤ c|y − ỹ|−
2

p1 <θ = θ1 (3.28)
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which, by the Hardy-Littlewood-Sobolev inequality, gives the Lp′1(L1) → Lp1(L∞) bound for

p1 > 2.

(iii) The endpoint estimate. To prove (3.22) in this case we adapt Keel and Tao’s

argument in [7] to our context. For later use it is useful to summarize the argument in the

following

Theorem 4 Let V be an integral operator satisfying the following two conditions:

i) For al non-endpoint sharp Strichartz pairs (ρ, p, q) we have

‖V ‖Lp′ (Lq′ )→L∞(L2) ≤ cλ1+ρ (3.29)

and

‖V ‖L1(L2)→Lp(Lq) ≤ cλ1+ρ (3.30)

(ii) The kernel H(y, ỹ) of V satisfies

|H(y, ỹ)| ≤ λn+1(1 + λ|y − ỹ|)−
n−1

2 (3.31)

Then for the end-point Strichartz pair (ρ(r), 2, r) we have

‖V ‖L2(Lr′ )→L2(Lr) ≤ cλ1+2ρ(r) (3.32)

In our case we apply the theorem to V = Vλ. Then part (i) follows from Remark 3.1, while

the kernel bound in (ii) follows from (3.27) for θ = 1 since

H(y, ỹ) = K1(y, ỹ)λ1+2ρ

Proof: First we decompose the operator V into

V =
∑

V j

whose kernels are supported in the region |y − ỹ| ≈ 2j. To achieve this we partition Rn+1 ×
Rn+1 into dyadic cubes whose size is proportional to the distance to the diagonal.

More precisely, consider the set Q of all closed cubes which have size 2j and vertices in

2jZ2(n+1) for some j ∈ Z, and which do not intersect the diagonal. Q is ordered by inclusion,

and two cubes in Q are either (almost) disjoint or included one in another. Denote by R
the maximal cubes in Q. Then it is easy to see that, modulo sets of measure 0,

Rn+1 ×Rn+1 =
⋃

Q∈R
Q
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y

y~

Figure 1: The dyadic decomposition for R×R

is a disjoint partition of Rn+1 × Rn+1. In one dimension this decomposition is shown in

Figure 1.

We label the cubes in R by their size,

R = {Qα
j × Q̃α

j | j ∈ Z, α ∈ I}

where for each α, j, the n + 1 dimensional cubes Qα
j , Q̃α

j have size 2j. Then we have the

partition of unit into characteristic functions

1 =
∑
j∈Z

∑
α

χQα
j
χQ̃α

j

Correspondingly, set

V j =
∑
α

χQα
j
VλχQ̃α

j
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The kernel of V j is supported at distance 2j from the diagonal. In our case, the interesting

scales are those for which λ
1
2 ≤ 2−j ≤ λ. For larger j the Gaussians take over and provide

exponential decay, while for smaller j nothing happens since our operator acts roughly at

frequency λ.

The key estimate, which is the analogue of Lemma 4.1 in [7], is:

Lemma 3.2 The following estimate holds for (q, q̃) in a neighbourhood of r = 2(n−1)
n−3

:

‖V j‖L2(Lq′ )→L2(Lq̃) ≤ λ1+ρ(q)+ρ(q̃)2−jβ(q,q̃) (3.33)

Here

β(q, q̃) =
n− 3

2
− n− 1

2
(
1

q
+

1

q̃
)

and

ρ(q) =
n + 1

2
(
1

2
− 1

q
)

which corresponds to choosing ρ as in (3.16).

Since β(r, r) = 0, if we set directly q = q̃ = r in the Lemma then we get an uniform bound

for the operators V j
λ but we cannot sum up with respect to j. However, this summation can

be fixed by using the same bilinear real interpolation argument as in [7]. It remains to prove

the Lemma.

Proof of Lemma 3.2: Observe first that, by orthogonality with respect to cubes of

size 2j, it suffices to prove the estimate for a fixed cube,

‖χQα
j
V χQ̃α

j
‖L2(Lq′ )→L2(Lq̃) ≤ λ1+ρ(q)+ρ(q̃)2−jβ(q,q̃) (3.34)

We show that this happens in two cases:

(a) If q = q̃ = ∞
(b) If q̃ = 2, 2 ≤ q < r and the dual range q = 2, 2 ≤ q̃ < r.

Then (3.34) follows by interpolation.

(a) If we use (3.31) then

‖χQα
j
V χQ̃α

j
v‖L2(L∞) ≤ 2

j
2‖χQα

j
V χQ̃α

j
v‖L∞

≤ 2
j
2‖χQα

j
(y)H(y, ỹ)χQ̃α

j
(ỹ)‖L∞‖χQ̃α

j
v‖L1

≤ 2
j
2 λ

n+3
2 2−j n−1

2 ‖χQ̃α
j
v‖L1

≤ 2jλ
n+3

2 2−j n−1
2 ‖v‖L2(L1)
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On the third line we use the bound on the kernel H, together with the fact that |y− ỹ| ≈ 2j

for y ∈ Qα
j , ỹ ∈ Q̃α

j . Then the conclusion (3.34) follows from the obvious equalities

n + 3

2
= 1 + ρ(∞) + ρ(∞) 1− n− 1

2
= β(∞,∞)

(b) For 2 ≤ q < r choose p as in (3.16) so that (ρ(q), p, q) is a non-endpoint sharp

Strichartz pair. Then use (3.29) to estimate

‖χQα
j
V χQ̃α

j
v‖L2 ≤ 2

j
2‖V χQ̃α

j
v‖L∞(L2)

≤ 2
j
2 λ1+ρ(2)+ρ(q)‖χQ̃α

j
v‖Lp(Lq)

≤ 2j(1− 1
p
)λ1+ρ(2)+ρ(q)‖v‖L2(Lq)

On the first and the last line we have used the fact that the cubes Qα
j , Q̃α

j have size 2j;

however, in these estimates it does not matter that the two cubes are at distance 2j. To

conclude it remains to verify that

−1 +
1

p
= β(2, q)

which follows easily from the second part of (3.16). The second part of (b) follows in a

similar manner from (3.30).

Observe that the above estimates are not the best ones to use for nonlinear equations

since there we have additional Lp information about the regularity of the gradient of the

coefficients. Following we present the one estimate based on this idea which is used later on

for the study of quasilinear hyperbolic equations. The reader should then be easily able to

produce other versions of it.

Theorem 5 Assume that P is in divergence form and the coefficients satisfy ∇g ∈ L2(L∞).

Let (ρ, p, q) be a Strichartz pair. Then the following estimate holds locally:

‖D1−ρ− γ
2p u‖Lp(Lq) ≤ (1 + ‖∇g‖L2(L∞))‖∇u‖L∞(L2) + ‖Pu‖

H
− γ

p
(3.35)

for

γ = 1 n ≥ 4

γ > 1 n = 3

γ = 2 n = 2

whenever the right hand side is finite.
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Proof: For (ρ, p, q) = (0,∞, 2) this is the straightforward energy estimate. To get the

remaining estimates we interpolate this with

‖D1−ρ− 1
4 u‖Lp(Lq) ≤ (1 + ‖∇g‖L2(L∞))‖∇u‖L∞(L2) + ‖Pu‖

H− 1
2

(3.36)

The above value of γ follows from the choice of p above. To get the best result one would

like to take p as small as possible. If n = 2 the best p is 4, if n = 3 then p > 2 and if n > 3

then we can take p = 2.

The proof of (3.36) is almost identical to the previous proof for s = 1 but uses instead

Theorem 2 for the error estimates.

Remark 3.3 Our argument fails for n = 3 and γ = 1 because we cannot use the forbidden

endpoint (0, 2,∞) in the interpolation. However, it is conceivable that the estimate (3.35) is

still true.

4 Quasilinear hyperbolic equations

Consider a quasilinear second order hyperbolic equation in Rn ×R,

∂ig
ij(u)∂ju = N(u, ∂u) (4.37)

with Cauchy data

u(0) = u0, ut(0) = u1 (4.38)

Then the classical theory (see [5], and also [20] and references therein) says that this problem

is locally well-posed in Hs ×Hs−1 for s > n
2

+ 1. This condition insures that the coefficients

of the principal part are C1 and that ∇u is bounded.

Our goal is to use the new Strichartz estimates to obtain the same result for a lower s.

Of course, we cannot do this for a general nonlinearity, for this would essentially require ∇u

to be bounded. Hence, we shall confine ourselves to a quadratic nonlinearity of the form

N(u, u) = G(u)Q(∇u,∇u) (4.39)

With this special type of nonlinearity the equation has some scaling, which corresponds to

the function u being dimensionless, and to s = n
2
. To avoid distracting technicalities we

assume that the functions G, gij are smooth, bounded and have bounded derivatives up to

a sufficiently high order. Also we assume that the coefficients gij are uniformly hyperbolic

in time. Then our main result is
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Theorem 6 The quasilinear problem (4.37)-(4.38) is locally well-posed in Hs ×Hs−1 for

s ≥ n

2
+

7

8
, n = 2

s >
n

2
+

3

4
, n ≥ 3

This is the first result to go below the classical (L2) theory. After obtaining these results

we have learned that similar results were independently proved by H. Bahouri and J-Y.

Chemin [1], using a different method.

It is useful to compare this with the similar results for the corresponding semilinear

equation

2u = |∇u|2 (4.40)

for which the local theory is well-understood. This is summarized in the following table,

which indicates the threshold above which local well-posedness holds. The numbers in brack-

ets represent the results we conjecture to be true.

The semilinear problem (4.40) The quasilinear problem (4.37)

n
using only Strichartz

estimates
best result

using only Strichartz
estimates

best result

2
n

2
+

3

4

n

2
+

3

4

n

2
+

7

8
(
n

2
+

7

8
)

3
n

2
+

1

2

n

2
+

1

2

n

2
+

3

4
(
n

2
+

3

4
)

4
n

2
+

1

2

n

2
+

1

4

1
n

2
+

3

4
(
n

2
+

5

8
)

5+
n

2
+

1

2

n

2

2
n

2
+

3

4
(
n

2
+

1

2
)

One should note, though, that at this point the counterexamples for the quasilinear

equation are no better than those for the semilinear equation, see [9], [10].

Better results can be obtained in the semilinear case when the right hand side of the equa-

tion contains special quadratic forms Q(∇u,∇u) which exhibit certain cancellation properties

and are called null forms. A similar improvement seems reasonable in the quasilinear case.

1This can be easily proved in the framework of the Xs,θ spaces
2see [18]
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However, the definition of the ”null condition” in this context is more delicate than in the

semilinear case, and beyond the purpose of this article.

The same method can be used for second order hyperbolic equations of the form

gij(u,∇u)∂i∂ju = N(u,∇u) (4.41)

Differentiating once we obtain equations which are essentially of the form (4.37), therefore

Theorem 7 The quasilinear problem (4.41)-(4.38) is locally well-posed in Hs ×Hs−1 for

s ≥ n + 2

2
+

7

8
, n = 2

s >
n + 2

2
+

3

4
, n ≥ 3

Proof of Theorem 6:

A simple but useful first step is to reduce the problem to the case when the initial data

is small. This can be achieved by rescaling; the equation is invariant with respect to the

rescaling

u(t, x) → u(εt, εx)

Thus the problem is reduced to the case when the initial data is small but only in the

homogeneous space Ḣs × Ḣs−1. Next take advantage of the finite speed of propagation to

localize the initial data to a bounded set, say B = B(0, 1). Then we need to argue that the

initial data is small in Hs(B)×Hs−1(B). Since we already know that the homogeneous norms

are small, it suffices to verify that the L2 × L2 norms of the initial data are small. Assume

without any restriction in generality that n
2

< s < n
2

+ 1. Due to the Sobolev embeddings,

Ḣs−1 ⊂ Lp for some p > 2 and the L2 smallness for u1 in B follows. This argument has to

be modified for u0 ∈ Ḣs as the corresponding embedding Ḣs ⊂ Cγ no longer guarantees L2

smallness in B. To achieve this we first need to subtract the constants, i.e. replace u0 by,

say, u0 − u0(0) which is small in B. To conclude the reduction, it remains to observe that

subtracting constants which are in a bounded set does not significantly change the problem.

Since we already know that local well-posedness holds for more regular data, our strategy

is as follows:

(i) Prove a-priori Hs bounds for classical solutions.

(ii) Prove uniformly continuous L2 dependence of the solutions on Hs initial data.
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(iii) For any Hs initial data produce a local solution as an L2 limit of classical solutions.

Then the continuous dependence result extends to Hs solutions and gives uniqueness.

(i) Energy estimates. Define the elliptic operator 〈D〉 with symbol (1 + |ξ|2) 1
2 . The

crucial ingredient in the energy estimates is the commutator estimate

‖[P (x, u, D), 〈D〉s−1]u‖L2
x
≤ c‖∇u‖L∞‖∇u‖Hs−1 , s ≥ 1 (4.42)

Indeed, we have

[P (x, D, u), 〈D〉s−1]u = [〈D〉s−1, g]Dx∇u

= [Dx〈D〉s−1, g]∇u− 〈D〉s−1(Dxg)∇u

(To avoid dealing with two time derivatives in the commutator we can rewrite the equation

so that g00 = −1). The Kato-Ponce estimate in [6] implies that

‖[Dx〈D〉s−1, g]∇u‖L2 ≤ c‖g‖Lip‖∇u‖Hs + ‖g‖Hs‖∇u‖L∞

with

‖g(u)‖Hs ≤ c‖u‖Hs

from the Moser estimates (In general the constant c would depend on |u|L∞ , but here we

assume global bounds on g and sufficiently many of its derivatives). Hence (4.42) follows.

Given a function v we define

E(v) =
1

2

∫
−g00(u)|vt|2 +

n∑
i,j=1

gijvxi
vxj

dx

Then
d

dt
E(v) =< P (x, u, D)v, vt > +

∫
h(x, u)ut|∇v|2dx

Apply this to v = 〈D〉s−1u. Since

P (x, u, D)v = [〈D〉s−1, P (x, u, D)]u + 〈D〉s−1G(u)(Du)2,

we get

d

dt
E(v) ≤ c(‖vt‖L2(‖[〈D〉s−1, P ]u‖L2 + ‖G(u)(∇u)2‖Hs) + ‖ut‖L∞E(v))

Now use (4.42) for the first term and the Moser estimates for the second term to obtain the

classical energy estimates for the quasilinear wave equation,
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d

dt
E(v) ≤ c‖Du‖L∞E(v)

Hence,

‖(∇u)(T )‖Hs ≤ ‖(∇u)(0)‖Hsec
∫ T

0
‖∇u(t)‖∞dt (4.43)

which shows that for s > n
2

+ 1 the solution u can be continued in Hs+1 ×Hs as long as

∫ T

0
‖∇u(t)‖L∞ < ∞

The energy estimate (4.43) was first proved by Klainerman [8] for integer s. Later the Kato-

Ponce estimates in [6] allowed the extension of this result for non-integer s, see [20] and

references therein.

L2(L∞) estimates for Du. Now we prove that Du stays in L2(L∞) for a time that

depends only on the Hs norm of the initial data, s > n
2

+ 3
4
.

Lemma 4.1 There exist ε, T0 > 0 so that any solution u in [0, T ] to (4.37) with smooth

initial data so that

‖u0‖Hs + ‖u1‖Hs−1 ≤ ε

satisfies

‖∇u‖L2(0,T ;L∞) ≤ 1

if T ≤ T0.

Given the energy estimates in (4.43), this shows in effect that the solution exists and is

smooth for a time at least equal to T0.

Proof: The Strichartz estimates in Theorem 5 applied to 〈D〉s−2∇u give

‖〈D〉s−θ−2∇u‖L2(Lp) ≤ c(1 + ‖∇g‖L2(L∞))‖〈D〉s−2∇2u‖L∞(L2) + ‖P (x, u, D)〈D〉s−2∇u‖
H− 1

2
,

for some p, θ satisfying
1

2
− 1

p
=

θ + 5
4

n

which by the Sobolev embeddings and the commutator estimates (4.42) yield

‖∇u‖L2(L∞) ≤ c(1 + ‖∇u‖L2(L∞))‖∇u‖L∞(Hs−1)
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Note that in dimension n = 3 this should be replaced by an L2+ε(Lp) estimate, while in

dimension n = 2 this should be an L4(L∞) estimate. Using the energy estimate (4.43) we

get

‖∇u‖L2(L∞) ≤ c(1 + ‖∇u‖L2(L∞))‖∇u(0)‖L∞(Hs−1)e
c
√

T‖∇u‖L2(L∞)

Hence if we choose ε and T0 sufficiently small then we get

8‖∇u‖L2(L∞) ≤ (1 + ‖∇u‖L2(L∞))e
‖∇u‖L2(L∞)

But this is false if ‖∇u‖L2(0,T ;L∞) = 1. Since this norm depends continuously on T and is 0

when T = 0, it follows that

‖∇u‖L2(0,T ;L∞) < 1, T ≤ T0

q.e.d.

This concludes the proof of the a-priori estimates. As a consequence of the a-priori

estimates, we get a lower bound on the lifespan of classical solutions which depends only on

the Hs ×Hs−1 norm of the initial data.

(ii) The next step is to establish some continuous dependence on the data. More precisely,

we shall prove the following

Lemma 4.2 Let u, v be smooth solutions to (4.37) in [0, T ]. Then

‖∇(u− v)‖L∞(0,T ;L2) ≤ c(‖u|Hs , ‖v‖Hs , ‖∇u‖L2(L∞), ‖∇v‖L2(L∞))‖∇(u− v)(0)‖L2 (4.44)

Proof: The function w = u− v solves the linear equation

P (x, u, D)w = A0w + A1∇w (4.45)

where

A0 = g(u, v)(Dx∇v) + G(u, v)(∇u,∇v)2, A1 = G(u, v)(∇u,∇v)

The conclusion follows if we prove that (4.45) is well-posed in H1 × L2, with a right hand

side which is in L2.

On one hand we estimate the coefficients A0, A1. For A1 we easily get A1 ∈ L2(L∞).

For A2 we use interpolation to bound the Dx∇v term. We know that ∇v ∈ L2(L∞) and

〈D〉s−1∇v ∈ L∞(L2). Hence if we choose p1, q1 so that the following points are collinear:

(0 1
2

0)

(1 1
p1

1
q1

)

(s− 1 0 1
2
)
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then we get Dx∇v ∈ Lp1(Lq1). The (∇u,∇v)2 term is easier to estimate in the same space,

therefore in the end we obtain A1 ∈ Lp1(Lq1).

On the other hand, consider the equation

P (x, u, D)w = f ∈ L2, w(0) = w0 ∈ H1, wt(0) = w1 ∈ L2

Due to the energy estimates we get ∇w ∈ L∞(L2), while from the Strichartz estimates in

Theorem 5 it follows that w satisfies

D2−sw ∈ L2(L∞)

Hence, if we choose (p2, q2) so that the following points are collinear

(1 0 1
2
)

(0 1
p2

1
q2

)

(2− s 1
2

0)

then we get u ∈ Lp2(Lq2).

Matching the two pairs of collinear points it is easy to see that

1

p1

+
1

p2

=
1

q1

+
1

q2

=
1

2

Hence a simple fixed point argument shows that the equation (4.45) is L2 well-posed and

the right hand side is in L2, q.e.d.

Remark 4.3 For n = 2 the above argument has to be modified when s < 2, since then Dx∇v

can only be estimated in negative Sobolev spaces. Thus, the best result one can obtain in a

similar manner is a stability estimate in H
7
8 ×H− 1

8 .

(iii) Now we construct the solutions for data (u0, u1) ∈ Hs × Hs−1. Let (un
0 , u

n
1 ) ∈

HN+1 ×HN so that

(un
0 , u

n
1 ) → (u0, u1) in Hs ×Hs−1

Then the corresponding solutions un exist for some time T independent of n and ∇un are

uniformly bounded in L∞(Hs−1) and L2(L∞).

Due to the stability estimate (4.44) the sequence un is L2 convergent in [0, T ] to some

function u. Then ∇un converges to ∇u weakly in L∞(Hs−1) and L2(L∞) but this suffices
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to insure that u solves the equation in the sense of distributions. Hence we can now use the

energy estimates to conclude that the Hs norm of the solution, ‖∇u(t)‖Hs , is continuous.

Since ∇u is weakly continuous in t, this insures that it is also strongly continuous in t, q.e.d.
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