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Abstract

A Hodge-theoretic study of augmentation varieties associated to Legendrian knots/tangles
by
Tao Su
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Vivek Shende, Co-chair
Professor Richard E.Borcherds, Co-chair

In this article, we give a tangle approach in the study of Legendrian knots in the standard
contact three-space. On the one hand, we define and construct Legenrian isotopy invariants
including ruling polynomials and Legendrian contact homology differential graded algebras
(LCH DGAs) for Legendrian tangles, generalizing those of Legendrian knots. Ruling poly-
nomials are the Legendrian analogues of Jones polynomials in topological knot theory, in the
sense that they satisfy the composition axiom.

On the other hand, we study certain aspects of the Hodge theory of the “representation
varieties (of rank 1)” of the LCH DGAs, called augmentation varieties, associated to Legen-
drian tangles. The augmentation variety (with fixed boundary conditions), hence its mixed
Hodge structure on the compactly supported cohomology, is a Legendrian isotopy invariant
up to a normalization. This gives a generalization of ruling polynomials in the following
sense: the point-counting/weight (or E-) polynomial of the variety, up to a normalized fac-
tor, is the ruling polynomial. This tangle approach in particular provides a generalization
and a more natural proof to the previous known results of M.Henry and D.Rutherford. It
also leads naturally to a ruling decomposition of this variety, which then induces a spectral
sequence converging to the MHS. As some applications, we show that the variety is of Hodge-
Tate type, show a vanishing result on its cohomology, and provide an example-computation
of the MHSs.
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Chapter 0O

Introduction

Similar to smooth knot theory, there’s a parallel study of Legendrian knots in contact three
manifolds. The fundamental case is the Legendrian knots in the standard contact three
space. The classical Legendrian invariants are the topological knot type, the Thurston-
Bennequin number and the rotation number. They determine a complete set of invariants
for some Legendrian knots, including the unknots, torus knots and the figure eight knots [9,
10]. However, in general they do not determine a complete Legendrian knot invariant, as
shown by the Chekanov pairs [4]. They have the same classical invariants, but are distin-
guished by a stronger invariant, the Chekanov-Eliashberg differential graded algebra. The
Chekanov-Eliashberg DGAs are special cases of Legendrian contact homology differential
graded algebras (LCH DGAs). Morally, associate to any pair (V,A) of a Legendrian sub-
manifold A contained in a contact manifold V' the LCH DGAs (A(V, A),0) are defined via
Floer theory [7, 8]. The generators are indexed by the Reeb chords of A. The differential
counts holomorphic disks in the symplectization Rx V', with boundaries along the Lagrangian
cylinder R x A, and meeting the Reeb chords at positive or negative infinity. The LCH DGAs
are Legendrian isotopy invariants, up to homotopy equivalence. In the case of Legendrian
knots A in the standard contact three space, the LCH DGA (A(A), ) can also be defined
purely combinatorially [4] 11].

To extract some numerical invariants from the LCH DGAs, one fundamental idea in [4]
is to consider the functor of points of (A(A), d):

commutative ring r — {DGA morphisms (A4, 9) — r}/DGA homotopy

and count the points appropriately over a finite field. One way to do so is as follows. Let
r be the ged of the rotation numbers of the connected components of A, which ensures the
existence of a Z/2r-valued Maslov potential u, the DGA A(A) associated to (A, p) is then
naturally Z/2r-graded. Start with a nonnegative integer m dividing 2r, we consider the
space of Z/m-graded augmentations (“m-graded points”) valued in any finite field k. This
defines an algebraic variety Aug,, (A, k), called the augmentation variety. Now, a normalized
count of the points of Aug,,(A,F,) over a finite field F, gives the augmentation number
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augm(A, q) = g dmeAwAO|Ayg(A,F,)|. These define Legendrian isotopy invariants |15,
Thm.3.2] and in fact distinguish the Chekanov pairs.

More recently, some categorical Legendrian isotopy invariants, the augmentation cate-
gories Aug, (A, k), Aug_(A, k), and also some of their equivalent versions or generalizations
are constructed [31, 2, 26]. The augmentation categories are A,, categories, and up to
Aso-equivalence, are invariants under Legendrian isotopy of A. They can be viewed as the
categorical refinement of augmentation varieties, in the sense that augmentation varieties
only encodes the 0-th order information (points) of the LCH DGA A(A), while the augmen-
tation categories also encode the higher order information (tangent spaces with additional
structures). It’s expected that, a refined counting of points using the augmentation category
(homotopy cardinality) may give a more natural way to count augmentations (See [27]). It’s
likely that the tangle approach studied in this article may also provide a natural approach
to such a problem.

On the other hand, similar to knot projections in smooth knot theory, the Legendrian
knots admit and are determined by the front projections. By considering the types of the
decomposition of the front diagrams, one leads to the notion of normal rulings [3, |13]. In [3],
for each m > 0 as above, it’s shown that a weighed count of the (m-graded) normal rulings
of the front diagram for A, gives a Legendrian isotopy invariant R}'(z), called the m-graded
ruling polynomials. It turns out, the ruling polynomials can also be used to distinguish the
Chekanov pairs. Ruling polynomials are the analogue of Jones polynomials in smooth knot
theory, in the sense that they can also be characterized by skein relations |29, [22].

Moreover, the ruling polynomials also admit a contact geometry interpretation in terms
of augmentation numbers:

Proposition 0.0.1 (|15, Thm.1.1]). The augmentation numbers and the ruling polynomials
of A determine each other by

vl g
aug(A,q) = ¢~ % 2'R(2)

where z = q% — q_%, d is the mazimal degree in z of the Laurent polynomial R} (z), and l is
the number of connected components of A.

Regarding the structure of the augmentation variety Aug,,(A, k), the following is known:

Proposition 0.0.2 ([15, Thm.3.4]). Suppose A has the nearly plat front diagram m,,(\)
(see Section[1.1]), with a fized Maslov potential p and I base points such that each connected
component has a single base point. Then there’s a decomposition of the augmentation variety
Aug,,(T; k) into subvarieties

Aug, (T k) = U,Aug! (T k)
where p runs over all m-graded normal rulings of m,.(A), and

Augh, (T5 ) 2 (1) X0 )
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where x(p) = cr — $(p), cr is the number of right cusps in m.,(\) and s(p) is the number
of switches of p (See Definition [2.1.4)). Finally, r(p) is the number of m-graded returns if
m # 1 and the number of m-graded returns and right cusps if m = 1.

Main results

In this article, we will firstly give a tangle approach in the study of Legendrian knots, and
generalize the previous results to Legendrian tanglesﬂ Legendrian tangles are (special) Leg-
endrian submanifolds in J'U C R} transverse to the boundary dJU, for some open
interval U in R,. Similar to Legendrian knots, one can consider the types of the decom-
positions of Legendrian tangle fronts. As a generalization, this leads to normal rulings and
ruling polynomials for Legendrian tangles. In this case, the boundaries (some set of labeled
endpoints) of the tangles are also invariant during a Legendrian isotopy. Hence one can
in fact define ruling polynomials < pr|R}(2)|pr > with fixed boundary conditions, for a
Legendrian tangle 7' with a Maslov potential p (see Section 2.1)). Here p;, (resp. pg) is a
given m-graded normal ruling on the left (resp. right) piece (= parallel strands) T}, (resp.
Tgr) of T. As the first result, we show the Legendrian invariance and composition axiom for
ruling polynomials:

Theorem 0.0.3 (See Theorem [2.1.10)). The m-graded ruling polynomials < pr|Rf(z)|pr >
are Legendrian isotopy invariants for (T, ).
Moreover, suppose T =T} o Ty is the composition of two Legendrian tangles T, T5, that is,
(T)r = (Iy)r and T = T\ Upy), Ta, then the composition axiom for ruling polynomials
holds:

< pulBF(2)lpr >=>_ < pul R, (2)lpr >< pi| RE.(2)|oR >

PI

where p; runs over all the m-graded normal rulings of (T1)g = (Ts) 1.

On the other hand, generalizing the LCH DGAs for Legendrian knots, one can construct
a (bordered) LCH DGA A(T, p1, %1, ..., *p), associated to any Legendrian tangle (T, u) with
base points %1, ..., *p. For example, see [32] and [26, Section.6] in the case when T" has the
simple front diagram. As usual, one obtains the homotopy invariance of the DGAs. Hence,
by a similar procedure as in the case of Legendrian knots, one can consider the associated
augmentation varieties Aug,,(7,€,,,pr; k) and augmentation numbers aug,,(7T, pr, pr; q),

with fixed boundary conditions (pr,pr) as above (see Definition [3.1.10} [3.1.11)). These

augmentation numbers are again Legendrian isotopy invariants. Moreover, generalizing the

previous Proposition [15, Thm.1.1], we show that:

Theorem 0.0.4 (See Theorem [3.2.7). Let T be a Legendrian tangle equipped with a Z/2r-
valued Maslov potential pn and B base points so that each connected component containing

I'Throughout the context, Legendrian tangles are assumed to be oriented.
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a right cusp has at least one base point. Fix a nonnegative integer m dividing 2r and m-
graded normal rulings pp,pr of Ty, Tr respectively, then the augmentation numbers and
ruling polynomials of (T, pu) are related by

_d+B m
aug,, (T, pr, priq) = 4~ 2 2" < pL|R7(2)|pr >

where q 1is the order of a finite field Fy, z = q% — q_%, d is the mazximal degree in z of
< pr|Ry (2)|pr >

Remark 0.0.5. When T is a Legendrian lmoﬂ with B =1 base points placed on T so that
each connected component of T contains a single base point. The left and right pieces of T
are empty tangles, hence the boundary conditions become trivial and the theorem reduces to

the previous proposition m This gives a new proof of Proposition m /15, Thm.1.1].

More generally, one can consider the augmentation varieties Aug,,(T,€,,,pr; k) with
boundary conditions (e, pr), where €, is any m-graded augmentation defining p;, of T}, (all
such augmentations form an orbit O,,(p; k) of the canonical one ¢, , see Remark [3.1.7).
Similar to Proposition [15, Thm.3.4], we have the following structure theorem for the
augmentation varieties Aug,, (7 €,,, pr; k), but with a more natural proof:

Theorem 0.0.6 (See Theorem [3.3.10)). Let (T, p) be any Legendrian tangle, with B base
points placed on T so that each right cusp is marked. Fiz m-graded normal rulings pr, pr
of Ty, Tg respectively. Fix e, € O, (pr; k). Then there’s a decomposition of augmentation
varieties into disjoint union of subvarieties

Augm(Ta €L, PR; k:) = I_IpAugﬁl(T, €L, PR; k:)
where p runs over all m-graded normal rulings of T' such that p|r, = pr, plr, = pr. Moreover,
Al (T, er, prs k) = (k) <08 5 70

In addition, we pursue a study of the mixed Hodge struture on the (compactly sup-
ported) cohomology of the augmentation varieties. For any Legendrian tangle 7" in the
1-jet bundle J'U — J'R,, with U < R an open interval, the LCH DGAs A(T|y) sat-
isfy a co-sheaf/van-Kampen property over open V < U, hence behave like ‘fundamental
groups’. The invariance of the DGAs A(T') up to homotopy equivalence ensures we obtain
Legendrian isotopy invariants by studying the Hodge theory of their ‘representation vari-
eties’ (called augmentation varieties). In particular, the study of the augmentation varieties
is like that of character varieties, for example, as in |14]. In the case of Legendrian tangles
T, the natural objects to consider are augmentation varieties with fixed boundary conditions
Aug,, (T, pr, pr; k), which differ from Aug, (T, €y, pr; k) only by a specific normalized factor
[33]. From the Hodge-theoretic point of view, the previous result (Theorem concerning

2Throughout the context, we make no distinction between ‘Legendrian knot’ and ‘Legendrian link’.
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point-counting over finite fields, by [14, Katz’s appendix|, simply says, the weight (or E-,
or virtual Poincaré) polynomials of the augmentation varieties Aug,, (T, pr, pr; C) over C,
recover the ruling polynomials < pp|R7'(2)|pr >. Concerning the MHS, the ruling decom-
position (Theorem , Remark naturally induces a spectral sequence converging
to the mixed Hodge structure on Aug,, (7, pr, pr; C):

Lemma 0.0.7 (See Definition/Proposition [4.1.3] Lemma {4.1.4). The ruling decomposition
for Augn, (T, pL, pr; k) induces a finite filtration

Augm(T, PL, PR, k) =Ap DAp_ 1D ...DA DA = 0

by closed subvarieties, such that, each A; — A;_1 is a disjoint union of the connected com-
ponents of the form k** x k. Moreover, it induces a spectral sequence converging to the
compactly supported cohomology of the variety Ap, respecting the mized Hodge structures

(MHS):
EP? = HIM(Ap \ Ap1) = HI™(Ap).
As some immediate applications, we obtain:

Proposition 0.0.8 (See Proposition [4.2.4] [£.2.5). The MHS on H}(Aug,, (T, pr, pr;C)) is
of Hodge-Tate type.

Moreover, H:(Aug,, (T, pr,pr;C)) = 0 for i < C, where C = C(T,pr,pr) = (—x(p) +
B +n}) +2(r(p) + Alpr)) (Remark[3.3.11) is a constant depending only on T, pr,, pr. In
particular, the cohomology H}(Aug,, (T, pr, pr; C)) vanishes in the lower-half degrees.

In the end, we conclude the article with one example-computation of the MHSs of the
augmentation varieties, via this tangle approach.

Organization

In Chapter [1} we review the basic backgrounds in Legendrian knot theory.

In Chapter [2, we give a tangle approach in the study of Legendrian knots. In Section [2.1] we
discuss the basics of Legendrian tangles, define the normal rulings and ruling polynomials
for Legendrian tangles. Then we prove that the ruling polynomials are Legendrian isotopy
invariants and satisfy the composition axiom, the key axiom of a TQFT (Theorem .
In Section , we discuss the LCH DGAs for any Legendrian tangles (not necessarily with
nearly plat fronts) via the front projection and resolution construction.

In Chapter [3| we define and study the point-counting of the augmentation varieties. In
Section [3.1] we define augmentation varieties and augmentation numbers for Legendrian
tangles (with fixed boundary conditions). In Section , we prove an algorithm to compute
the augmentation numbers. The invariance of augmentation numbers and the main Theorem
then follow quickly. The key ingredients of the algorithm are the structures of the
augmentation varieties associated to the trivial Legendrian tangle of n parallel strands and
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elementary Legendrian tangles. The former is a result about the Barannikov normal forms
(Lemma [3.1.5). The latter (Lemma is dealt with in Section [3.3] where we also prove a
stronger result, which leads to a structure theorem (Theorem [3.3.10]) for the augmentation
varieties associated to any Legendrian tangles.

In Chapter [4] we pursue a study of the mixed Hodge structure on the (compactly supported)
cohomology of the augmentation varieties X = Aug,, (T, pr., pr; C). In Section[d.1] we use the
ruling decomposition (Theorem to derive a spectral sequence converging to the mixed
Hodge structure on X (Lemma . In Section , we use the spectral sequence to show
that the augmentation variety is of Hodge-Tate type (Proposition [4.2.4), and H}(X) = 0
if ¥ < C where C is a constant depending only 7" and the boundary conditions (pr, pr)
(Proposition . In Section we give an example-computation for the mixed Hodge
structures of the augmentation varieties.




Chapter 1

Background

This chapter collects some background materials concerning Legendrian knot theory.

1.1 Legendrian knot basics

Contact basics

Take the standard contact three-space Riy,z = J(R,) = T*R, x R, with contact form
a = dz — ydz. The Reeb vector field of « is then R, = 0,. We consider a (one-dimensional)
Legendrian submanifold (termed as knot or link) A in this three space R3. The front and
Lagrangian projections of A are m,,(A) and m,, (A) respectively, with the obvious projections
Ter 1 R3S, — ]R%Z and 7., : R3  — Ri’y.

T,Y,2 Z,Y,%2

Front diagrams

We will always assume the Legendrian link A C R? is in a generic position inside its Leg-
endrian isotopy class. So, the front projection m,.(A) gives a front diagram (i.e. an im-
mersion of a finite union of circles into R2_ away from finitely many points (cusps) having
no vertical tangent, which is also an embedding away from finitely many points (cusps and
transversal crossings)). The significance of front diagrams is that, any Legendrian link is
uniquely determined by its front projection. That is, the y-coordinate can be recovered from
the x and z-coordinates of the front projection as the slope, via the Legendrian condition
dz —ydr = 0 = y = dz/dzx. In other words, in passing to the front projection, we loss no
information. Note also that, near each crossing of a front diagram, the strand of the lesser
slope is always the over-strand.

Given a front diagram, the strands of m,.(A) are the maximally immersed connected
submanifolds, the arcs of 7,,(A) are the maximally embedded connected submanifolds and
the regions are the maximal connected components of the complement of 7,,(A) in RZ,.

We say a front diagram in R2 _ is plat if the crossings have distinct z-coordinates, all

T,z

the left cusps have the same z-coordinate and likewise for the right cusps. We say a front
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diagram is nearly plat, if it’s a perturbation of a plat front diagram, so that the crossings and
cusps all have different z-coordinates. We can always make the front diagram 7., (A) (nearly)
plat by smooth isotopies and Legendrian Reidemeister II moves (see FIGURE .

We say a front diagram in R2_ is simple if it’s smooth isotopic to a front whose right
cusps have the same z-coordinate. For example, any (nearly) plat front diagram is simple.

Resolution construction

In this article, we will use both the front and Lagrangian projections. Hence, it’s often
necessary to translate between the 2 projections in some simple way. This can be realized by
the resolution construction |24, Prop.2.2]. Given the front diagram ,.(A), we can obtain the
Lagrangian projection 7., (A") of a link A’ Legendrian isotopic to A, via a resolution procedure
as in FIGURE We say that A’ is obtained from A by resolution construction. Note
that the same conclusion applies to Legendrian tangles (see Section for the definition.)

K=o <~ >=—)0

Figure 1.1.1: Resolving a front into the Lagrangian projection of a Legendrian isotopic
link /tangle.

Legendrian Reidemeister moves

It’s well known that any smooth knot can be represented by a knot diagram, and any 2
knot diagrams represent smoothly isotopic knots if and only if they differ by smooth isotopy
and a finite sequence of 3 types of topological Reidemeister moves. There’s an analogue for
Legendrian knots via front diagrams. That is, 2 front diagrams in R?_ represent the same
Legendrian isotopy class of Legendrian knots in ]R3 ,.. \f and only if they differ by a finite
sequence of smooth isotopies and the following Legendrmn Reidemeister moves of 3 types

(34]):

Figure 1.1.2: The 3 types of Legendrian Reidemeister moves relating Legendrian-isotopic
fronts. Reflections of these moves along the coordinate axes are also allowed.
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Topological knot type

The topological knot type of a Legendrian knot is the smooth isotopy class of its underlying
smooth knot. Clearly, this defines a Legendrian isotopy invariant. As a consequence, all
topological knot invariants (|16} (12, |35] as well as their “categorified” versions (|17, (18, 19])
are automatically Legendrian isotopy invariants.

Thurston-Bennequin number

Given an oriented Legendrian knot A in (R}, o = dz — ydx), the Thurston-Bennequin
number (denoted by thb(A)) measures the twisting of the oriented contact plane field along
the knot. It can be defined as the linking number of the Legendrian knot and its push-off
along the Reeb direction R, = 0., that is, tb(A) := lk(A, A + €z). The geometric definition
makes it automatically a Legendrian invariant. On the other hand, project the Legendrian
knot down to the front plane R2_, the number can be computed via the front diagram:
tb(A) = wr(my,(A)) — e(my.(A)), where wr is the writhe number and ¢ is the number of
right cusps. It’s then also easy to check the Legendrian isotopy invariance via Legendrian

Reidemeister moves.

Rotation number

Given an oriented connected Legendrian knot A in R®, the rotation number r(A) is the
obstruction to extending the tangent vector field of A to a nonzero section of the contact
plane field over a Seifert surface (an embedded compact oriented surface) bounding A. It
can also be computed via the front diagram: r(L) = 1/2(U(m..(A) — D(m,.(A)))), where
U (resp. D) is the number of up (resp. down) cusps (= a cusp near which the orientation
of my.(A) goes up (resp. down)). This is another example where the Legendrian isotopy
invariance can be checked via Legendrian Reidemeister moves. By definition, the rotation
number depends via a sign on the orientation. For an oriented multi-component Legendrian
knot A, we usually define its rotation number r(A) as the ged of the rotation numbers of its
components.

Maslov potential

Given a Legendrian knot A with front diagram ,.(A). Let r = |r(A)| and n be a nonnegative
integer. A Z/nZ-valued Maslov potential of m,,(A) is a map

o {strands of m,.(A)} — Z/nZ

such that near any cusp, have p(upper strand) = p(lower strand) + 1. Such a Maslov
potential exists if and only if 2r is a multiple of n. In particular, the existence of a Z-valued
Maslov potential implies that every component of A has rotation number 0. We will often
fix for A a Z/2r-valued Maslov potential .
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We usually view the topological knot type, the Thurston-Bennequin number and the
rotation number as the classical invariants of (oriented) Legendrian knots. It turns out,
they are not sufficient to classify Legendrian knots up to Legendrian isotopy. In [4], a pair of
Legendrian knots (they represent the same class 59 in the classification of topological knots)
having the same classical invariants, were shown to be distinguished by a new Legendrian
isotopy invariants, the LCH DGA (or Chekanov-Eliashberg DGA) (See Section [1.2] below).

1.2 LCH differential graded algebras

LCH DGA via Lagrangian projection

Here we recall the Legendrian contact homology differential graded algebra for Legendrian
links in R? [11]. The version of DGAs we need will also allow an arbitrary number of base
points placed on the Legendrian links [25] 26]. The construction is naturally formulated via
Lagrangian projection.
Initial data: Let A be an oriented Legendrian link in Riy’z, with rotation number r(A).
Take r = |r(A)| and fix a Z/2r-valued Maslov potential u of m,,(A). Let #1,...,*p be the
base points placed on A, avoiding the crossings of the Lagrangian projection m,,(A), such
that each component of A contains at least one base point. Denote by {ai,...,ag} the set
of crossings of m,,(A), corresponding to the Reeb chords of the Reeb vector field R, = 0,.

The Z/2r-graded LCH DGA A = A(A, p1, %1, ..., *p) is then defined as follows:
As an algebra: A is the associative unital algebra Z[tiﬁl, e ,tfgl] < ay,...,ar > over the
commutative ring Z[t;-tl, 1 < i < B, freely generated by a;,1 < j < R. The generators
t;,t; ! can be regarded as information encoded at the base point ;.
The grading: The algebra A is assigned a Z/2r-grading via |z - y| = |z| + |y|, |t;] = [t; '] =0
and |a;| is defined as follows. The 2 endpoints of the Reeb chord a; belong to 2 distinct
strands of the front projection 7,,(A). Near the upper (lower) endpoint of a;, the over-
strand (understrand) can be parameterized as v — (z,2z = fu(x))(resp. (z,z = fi(x))), and
fi(z(a;)) = f/(x(a;)). By the generic assumption of A, f, — f; attains either a local maxi-
mum (or minimum) at a;, accordingly we define |a;| = p(over-strand) — p(under-strand)+
either O(or—1).
The differential 0: To define the differential 0 on A, we firstly impose the Leibniz Rule
Oz -y) = (0z) -y + (=) - 9y and A(t;) = O(t;') = 0. It then suffices to define the
differential da; for each Reeb chord. Intuitively, da; is a weighted count of boundary-
punctured holomorphic disks in the symplectization (R, xR} , ., d(e”ar) with boundary along
the Lagrangian R, x A, with one positive boundary puncture limiting to the Reeb chord a;
at 400, and several negative boundary punctures limiting to some Reeb chords at —oo.

In our case, we can describe the differential combinatorially. Given Reeb chords a = a;
and by,...,b, for some n > 0. Let D? = D? — {p,q1,...,q,} be a fixed oriented disk with
n + 1 boundary punctures p, qq, ..., q,, arranged in a counterclockwise order.
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Definition 1.2.1 (Admissible disks). Define the moduli space A(a; by, ..., b,) to be the space
of admissible disks w of 7, (A) up to re-parametrization, that is,

o u:(D;,0D}) — (R2,, mey(N)) is a smooth orientation-preserving immersion, extends

continuously to D?;

o u(p) = a,u(q;) = b;(1 <1 <n) and u sends a neighborhood of p (resp. q;) in D?* to a
single quadrant of a (resp. b;) with positive (resp. negative) Reeb sign (see below).

Reeb signs: Near a crossing of the Lagrangian projection m,(A), the 2 quadrants lying in the
counterclockwise (resp. clockwise) direction of the over-strand are assigned positive (resp.

negative) Reeb signs. See Figure (left).

For each u € A(a;by,...,b,), walk along u(9D?) starting from a, we encounter a sequence
$1,...,SN(N > n) of crossings (excluding a) and base points of m,,(A). We then define the
weight w(u) of u as follows

Definition 1.2.2. w(u) := s(u)w(sy) ... w(sy), where
(1) w(s;) = bj if s; is the crossing b;.

(ii) w(s;) = t;(resp. t;') if s; is the base point x;, and the boundary orientation of u(9D?)
agrees (resp. disagrees) with the orientation of A near *;.

(iii) s(u) is the product of the orientation signs (see below) of the quadrants near a and
bi,..., b, occupied by u.

Orientation signs: We will use the same convention as [26]. That is, at each crossing a
such that |a| is even, we assign negative orientation signs to the 2 quadrants that lie on any
chosen side of the under-strand of a; We assign positive orientation signs to all the other

quadrants. See Figure (right).
Y X
SN S

Figure 1.2.1: Left: the Reeb signs of the quadrants at a crossing in a Lagrangrian projection.
Right: the two possible choices of orientation signs for the quadrants at a crossing of even
degree in a Lagrangian projection. The shaded quadrants have negative orientation signs
and the unshaded quadrants have positive orientation signs. At a crossing of odd degree, all
the four quadrants have positive orientation signs.
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Now we can define the differential of a = a;:

= > > w(u) (1.2.0.1)

n bl ..... bn uEA a b1 ..... bn)

Theorem 1.2.3 (|4, |11]). (A,0) is a Z/2r-graded DGA with deg(0) = —1.

Invariance of LCH DGA

We have seen that, the definition of the LCH DGA A(A) associated to a Legendrian link A
depends on several choices: a specific choice of the representative of A inside its Legendrian
isotopy class, and a choice of base points. Here we review that the LCH DGA A(A) is a

Legendrian isotopy invariant, up to a stable isomorphism, in particular, up to homotopy
equivalence of Z/2r-graded DGAs.

Definition 1.2.4. An (algebraic) stabilization of a Z/2r-graded DGA (A,0) is a Z/2r-
graded DGA (S(A), ') obtained by adding 2 new free generators e and f, with |e| = |f| + 1,
such that '|4 = 0 and d'e = f,0'f = 0. Two Z/2r-graded DGAs (A,d) and (A',d') are
stable isomorphic, if they are isomorphic as Z/2r-graded DGAs, after possibly stabilizing
each finitely many times.

Theorem 1.2.5 (|25, Thm.2.20],|11, Thm.3.10]). The isomorphism class of (A(A), ) as an
DGA s independent of the locations of the base points on each connected component of A.
The stable isomorphism class of (A(A),0) is invariant under Legendrian isotopy of A.

LCH DGA via front projection

Assume the front projection A is simple (see Section for the definition). Then the LCH
DGA also admits a simple front projection description.

The resolution construction of A gives a Legendrian isotopic link A’ = Res(A), whose
Reeb chords are in one-to-one correspondence with the crossings and right cusps of m,,(A).
We will denote by A(A,., pt, *1,...%p; k) the LCH DGA associated to Res(A). Denote by
{a1,...a,} (vesp. {c1,...c,}) the set of crossings (resp., of right cusps) of m,.(A). Under the
correspondence, the algebra is generated over Z[t5,1 < i < B] by {ay, 1 <k <p, ¢, 1 < k <
q}. The grading is given by: || = 0, |ay| = p(over-strand) — p(under-strand) and |cy| = 1.
One can also translate the definition of the differential for Res(A) into the front projection
7zz(A). The definition uses the same formula by “counting” the disks in 7,.(A) plus the
additional “invisible disks”, one for each right cusp. An “invisible disk” (See FIGURE ,
the last picture) corresponds to a disk with one unique corner on its left at the crossing of
Tay(Res(A)) corresponding to the right cusp of m,,(A).
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Chapter 2

A tangle approach for studying
Legendrian knots

In this chapter, we give a tangle approach in the study of Legendrian knots. More precisely,
we generalize the basic concepts and results of Legendrian knots to Legendrian tangles,
including ruling polynomials and LCH DGAs. We also show that the ruling polynomials
satisfy the composition axiom, illustrating that they’re the Legendrian analogues of the
Jones polynomials in topological knot theory.

2.1 Ruling polynomials for Legendrian tangles

Legendrian tangles

Fix U = (x, zg) to be a open interval in R, (—oo < xp, < g < 00), so the standard contact
form o = dz — ydx induces a standard contact structure on J'U = U x ]R;iz. A Legendrian
tangle T is a Legendrian submanifold in J'U transverse to the boundary d.J'(U). Typical
examples of Legendrian tangles can be obtained from a Legendrian link front by removing
the parts outside of a vertical strip in R2_.

Remark 2.1.1. In Section notice that the same concepts (front diagrams, strands, arcs,
regions, etc.) can be introduced for any Legendrian tangle T in J'U. We only have to replace
A by T and R, by U x R, there. Similarly, in Section the same procedure applies to
define Maslov potentials for T

As usual, we will assume T has a generic front projection.ﬂ We equip T with a Z/2r-
valued Maslov potential x4 for some fixed > 0. Denote by ny, (resp. ng) the number of left
(resp. right) end-points on 7.

'From now on, we will make no distinction between the Legendrian tangle 7' and its front projection
Tz (T).
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We say 2 Legendrian tangles in J'U are Legendrian isotopic if there’s an isotopy between
them along Legendrian tangles in J'U. Note that during the Legendrian isotopy, we require
the ordering via z-coordinates of the end-points is preserved. That is, for two (say, left)
end-points pi, p2, they necessarily have the common z-coordinate zp, take any path v in
0JY(U) from py to p1, then we say p; > po if 2(p1) — 2(p2) = f7 a > 0. Then, similar to the
case of Legendrian links, two (generic) Legendrian tangle fronts are Legendrian isotopic if
and only if they differ by a finite sequence of smooth isotopies (preserving the ordering of
the end-points) and Legendrian Reidemeister moves of the 3 types (see Figure .

Normal Rulings and Ruling polynomials

Similar to Legendrian knots, we can introduce the notion of m-graded normal rulings and
Ruling polynomials for any Legendrian tangles. Given a Legendrian tangle T', with Z/2r-
valued Maslov potential p for some fixed » > 0. Fix a nonnegative integer m dividing
2r.

Assume that the numbers ny,ng of the left endpoints and right endpoints of T" are both
even. For example, any Legendrian tangle obtained from cutting a Legendrian link front
along 2 vertical lines, satisfies this assumption.

Recall that in Remark we have introduced the notions of arcs, crossings, cusps and
regions of the front m,,(T'). In particular, the front diagram is divided into arcs, crossings
and cusps. For example, an arc begins at a cusp, a crossing or an end-point, going from
left to right, and ends at another cusp, crossing or end-point, meeting no cusp or crossing
in-between. Given a crossing a of the front 7', its degree is given by |a| := p(over-strand) —
p(under-strand).

Definition 2.1.2. We say an embedded (closed) disk of U xR, is an eye of the front T, if it
is the union of (the closures of ) some regions, such that the boundary of the disk in U x R,
being the union of arcs, crossings and cusps, consists of 2 paths, starting at the same left
cusp or a pair of left end-points, going from left to right through arcs and crossings, meeting
no cusps in-between, and ending at the same right cusp or a pair of right end-points.

Definition 2.1.3. A m-graded normal Ruling p of (T, i) is a partition of the set of arcs of
the front T into the boundaries in U x R, of eyes (say ey, ..., e,), or in other words,

U arcs of T = U, (0e; \ {crossings, cusps}) NU x R,,
and such that the following conditions are satisfied:

(1). If some eye e; starts at a pair of left end-points (resp. ends at a pair of right end-
points), we require p(upper-end-point) = u(lower-end-point) + 1(modm).

(2). Call a crossing a a switch, if it’s contained in the boundary of some eye e;. In this
case, we require |a| = 0(modm).
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(3). Each switch a is clearly contained in exactly 2 eyes, say e;,e;. We require the relative
positions of e;, e; near a to be in one of the 3 situations in Figure |2.1.1|(top row).

TTTTTTITITITITITITTT Illllllll?ﬁlllllllll
m HENERENN HENEREEN NN EREEN
I
(

S1) (52) (S3)

ﬁ JInn >ﬁIHHHH
LT X

(R1) (R2) (R3)

Figure 2.1.1: Top row: The behavior (of the 2 eyes e;,e;) of a m-graded normal ruling p
at a switch (where e; and e; are the dashed and shadowed regions respectively), where the
crossings are required to have degree 0 (modm). Bottom row: The behavior (of the 2 eyes
e;,e;) of p at a return. Three more figures omitted: The 3 types of departures obtained by
reflecting each of (R1)-(R3) with respect to a vertical axis.

Definition 2.1.4. Given a Legendrian tangle (T, ), let p be a m-graded normal ruling of
(T, 1), and let a be a crossing. Then, a is called a return if the behavior of p at a is as in
Figure (bottom row). a is called a departure if the behavior of p at a looks like one
of the three pictures obtained by reflecting each of (R1) — (R3) in Figure[2.1.1(bottom row)
with respect to a vertical axis. Moreover, returns (resp. departures) of degree 0 modulo m
are called m-graded returns (resp. m-graded departures) of p.

Define s(p) (resp. d(p)) to be the number of switches (resp. m-graded departures) of p.
Define r(p) to be the number of m-graded returns of p if m # 1, and the number of m-graded
returns and right cusps if m = 1.

Remark 2.1.5. If we fix the pairing pp of left end-points, a m-graded normal Ruling p
determines and 1is determined by a subset, denoted by the same symbol p, of the switches
in the set of crossings of T'. In this case, we will usually make no distinction between a
m-graded normal Ruling and its set of switches.

Definition 2.1.6. Given a m-graded normal Ruling p of a Legendrian tangle (T, 1), denote
by e1,...,e, the eyes in JH(U) defined by p. The filling surface S, of p is the the disjoint

union LIT_ e; of the eyes, glued along the switches via half-twisted strips. This is a compact
surface possibly with boundary. See FIGURE for an example.

Let Ty, (resp. Tr) be the left (resp. right) pieces T near the left (resp. right) boundary.
It’s clear that any m-graded normal Ruling p of T restricts to a m-graded normal Ruling
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Figure 2.1.2: Left: a Legendrian tangle front 7" with 3 crossings ai, as, a3, the numbers
indicate the values of the Maslov potential p on each of the 4 strands. Right: the filling
surface for a normal ruling of 7" by gluing the 2 eyes along the 3 switches via half-twisted
strips.

of the left piece Ty, (resp. of the right piece Tkr), denoted by r.(p) or p|lr, (resp. rr(p) or
p|TR)'

Definition 2.1.7. Fix a m-graded normal Ruling py, (resp. pr) of Ty, (resp. Tr). We define
a Laurent polynomial < pr|RY ,(2)|pr >=< pr|RF (2)|pr > in L[z, 27'] by

< pL|R®(2)|pr >:= D zX(P) (2.1.0.1)

p: rL(p) = pL,TrR(P) = PR

where the sum is over all m-graded normal Rulings p such that r1,(p) = pr,7r(p) = pr- X(p)
1s called the Euler characteristic of p and defined by

X(p) = x(Sp) = X(Spla=zp)- (2.1.0.2)

where xp is the right endpoint of the open interval U = (xr, xr) and x(S,) (resp. X(Sple=zr))
is the usual Euler characteristic of S, (resp. Spls=zy). Equivalently, x(p) = Xc(Splep<e<zr) S
the Euler characteristic with compact support of S|z, <s<wp- Also, notice that when xr = oo,
Sp|m:mR 15 empty with vanishing Euler characteristic.

We will call < pr|RF(z)|pr > the m-graded Ruling polynomial of T with boundary
conditions (pr, pr)-

Remark 2.1.8. Given a m-graded normal Ruling p, with n;, = 2n), (resp. ng = 2n'y) left
(resp. right) end-points and cy, (resp. cgr) left (resp. right) cusps, then S,|p—yy, is the disjoint
union of n'y closed line segments and n = n’, + ¢, = N’y + cr is the number of eyes in p.
Hence, x(S,|z=zy) = 1y is independent of p and we get a simple computation formula

x(p) = cr — s(p) (2.1.0.3)

where s(p) is defined in Definition |2.1.4. In particular, when T is a Legendrian link, the
definition here coincides with the usual definition [15] of Ruling polynomials for Legendrian
links.
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Moreover, when T is a trivial Legendrian tangle of 2n parallel strands, then

< pLl Ry (2)|pr >= 0pp pp-

This may be called the Identity axiom for Ruling polynomials, see Remark|2.1.11| below.

Invariance and composition axiom

Given a Legendrian tangle 7', let’s denote by NR (resp. NR7 (pr, pr)) the set of m-graded
normal Rulings of T (resp. those with boundary conditions (pr, pr)).

Lemma 2.1.9. Given a Legendrian isotopy h between 2 Legendrian tangles T, T', preserving
the Maslov potentials p, p’, there’s a canonical bijection between the set of m-graded normal
Rulings of T and T’

én : NR7 = NRY,

commuting with the restrictions ri,,rr, and such that for any m-graded normal Ruling p, S,
and ¢(S,) are homeomorphic, relative to the boundary pieces at x = x, and x = p.

Note that for such 2 Legendrian isotopic tangles (T, u), (1", 1), their left and right pieces
are necessarily identical: T, =17, T = T},
As a consequence of Lemma [2.1.9] we obtain

Theorem 2.1.10. The m-graded Ruling polynomials < pr|R}(2)|pr > are Legendrian iso-
topy invariants for (T, ).
Moreover, suppose T =T} o Ty is the composition of two Legendrian tangles Ty, Ts, that is,
(T)r = (T2), and T = Ty U(q,), Ta, then the composition axiom for Ruling polynomials
holds:

< pr|RE(2)lpr >=)_ < pu|RE(2)lpr >< pi| RE(2)|pr > (2.1.0.4)

pI

where p; runs over all the m-graded normal rulings of (T1)r = (Ts) L.

Proof. The invariance of Ruling polynomials follows immediately from Lemma [2.1.9] As for
the composition axiom, let p be any m-graded normal ruling of 7" such that p|7, = pr, plr, =
pr- Let T}, Ty be Legendrian tangles over the open intervals (x,x;), (z, xg) respectively.
Take pr = plr)p> P1 = plrys p2 = plm- Let Sy, S,,,S,, be the filling surfaces of p, p1,p2 over
T,Ty, Ty respectively. Then S, |s—s; = Spyle=s, and S, = S, US,, laea; Spa, it follows that
X(p) = X(Sp) = X(Splo=er) = X(Sp1) = X(Spla=a;) + X(Sps) = X(Spsla=ar) = X(p1) + x(p2)-
Now, the composition axiom follows immediately from applying this into Definition of
Ruling polynomials. O

Remark 2.1.11. The previous theorem suggests a “TQFT” interpretation of Ruling polyno-
mials for Legendrian tangles, strengthen the analogue that Ruling polynomials are Legendrian
versions of Jones polynomials, which fits into a TQFT in smooth knot theory.
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Morally, we may regard Legendrian tangles (T, 1) as 1-dimensional cobordisms from the
0-manifold of left endpoints with additional structures (equivalently, Ty, ) to the 0-manifold of
right endpoints with additional structures (equivalently, Tgr). In other words, the 0-manifolds
with additional structures (equivalently, trivial Legendrian tangles (E, po) of even parallel
strands) and 1-dimensional cobordisms (equivalently, Legendrian tangles (T, u)) form a spe-
cial 1-dimensional cobordism category LT 1. Now, we can view Ruling polynomials R (z) as
a “I-dimensional TQFT” functor R™ from LT into the category of free modules of finite
rank over K := Z[z, 27| (See [1] for the basic concepts of TQFTs).

More precisely, associate to any any trivial Legendrian tangle (F,ug) of even parallel
strands (viewed as an object of LCq), R™ assigns the free module R™(E) over K generated
by all the m-graded normal rulings of E; Associate to any 1-dimensional cobordism (T, 1),
R™ assigns the K-module morphism R™(T) := R} (z) from R™(TL) to R™(Tr), defined by
the matriz coefficients < pr|R}(2)|pr >. The previous theorem and Remark [2.1.8 shows
that R™ is indeed a functor.

Proof of Lemma[2.1.9. As any Legendrian isotopy of Legendrian tangles is a composition of
a finite sequence of smooth isotopies and Legendrian Reidemeister moves of the 3 types (see
FIGURE , it suffices to show the proposition for a single smooth isotopy or each of the
3 types of Legendrian Reidemeister moves. As always, we assume the z-coordinates of the
crossings and cusps of the tangle fronts in question are all distinct. The proof is essentially
done for each case by pictures.

If h is a smooth isotopy. This case is actually not trivial, as the ordering by z-coordinates
of the crossings and cusps will change during a smooth isotopy, which will affect the set of
switches of the normal Rulings. We illustrate only one such a case (FIGURE , the other
cases are either similar or trivial. Let a,b be 2 neighboring crossings of T', say z(a) < z(b),
and the smooth isotopy h moves a to the right of b (i.e. x(a) > x(b) after the isotopy), with
the remaining part fixed.

Given a m-graded normal ruling p of T" before the smooth isotopy, if p has no switches at
a, b, take ¢p(p) to be the obvious m-graded normal ruling corresponding to p. In particular,
én(p) has no switches at a, b either. It’s also clear that the filling surfaces S, and Sy, (,) are
homeomorphic relative to the boundary pieces at x = z, and © = xp.

If p has a single switch at a or b, say b, then |b| = 0(modm). The switch b belongs
to 2 eyes of p, say ej,es. Recall that each eye has 2 paths (see definition on the
boundary going from left to right, let’s call them the upper-path and lower-path according
to their z-coordinates. In our case, each of the 2 eyes eq, e5 has one path containing b. If
the the remaining 2 companion paths of e;, e; contain at most one of the two strands at the
crossing a, again ¢,(p) is taken to be the obvious normal ruling corresponding to p with a
switch at b, no switch at a. The proposition holds trivially. If the remaining 2 companion
paths of eq, ey restrict to the strands near a. By the first condition in the definition [2.1.3
of a m-graded normal ruling, we also have that |a| = 0(modm)). We look at the relative
positions of the 2 eyes ey, e; in the vertical strip near a,b. We consider only one situation
illustrated by FIGURE [2.1.3] the others are entirely similar. In this case, the picture on the
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Figure 2.1.3: The bijection between m-graded normal Rulings under smooth isotopy: The
left hand side is a m-graded normal ruling p with a switch at b, instead the corresponding
m-graded normal ruling ¢,(p) on the right hand side has a switch at a. A, B,C, D are the
parts of the filling surface S, (as well as Sy, (,)) outside the vertical strip drawn in the picture.

left gives p near a,b. We can define ¢,(p) to be the m-graded normal ruling (the picture
on the right) having a switch at a, no switch at b and with the same remaining part as p.
It’s easy to see from FIGURE that ¢, (p) satisfies the conditions in the definition m
Moreover, denote the remaining parts of the filling surface S, by A, B, C, D respectively as
in FIGURE then S, is: glue A, C by a strip, call the result A <+ C, glue B, D by a
strip, get B <+ D, then glue A <+ C' and B <+ D by a half-twisted strip, by moving the strips
in the gluing, we see the result is simply A, B,C, D with 3 strips (or 1-handles) attached.
On the other hand, the filling surface Sy, (,) is A <+ D and B <> C' glued via a half-twisted
strip (FIGURE (right)), again the picture shows S, () is A, B,C, D attached with
3 strips. Hence, we conclude that the 2 filling surfaces S, and Sy, (, are homeomorphic
relative to the boundary pieces at x = xy, and x = xi. Note also that, this homeomorphism
is orientation-preserving if S, is orientable.

When a, b are both the switches of p, we define ¢, (p) to be the corresponding m-graded
normal ruling having both a, b as switches. A similar argument proves the proposition.

If h is a type I Legendrian Reidemeister move (F]GURE (left)). Under a type
I Legendrian Reidemeister move, the additional crossing necessarily has degree 0. Given a
m-graded normal ruling p, we define ¢,(p) to be the corresponding normal ruling having this
additional crossing as a switch, and vice versa. The proposition holds trivially, since adding
one disk along the boundary doesn’t change the topological type (and also the orientability)
of a surface.

If h is a type II Legendrian Reidemeister move (FIGURE[1.1.4 (middle)). The defining
conditions of a normal ruling ensures that the 2 additional crossings can not be switches, so
¢, is the obvious bijection. Again, the proposition holds trivially.

If b is a type III Legendrian Reidemeister move (FIGURE[1.1.9 (right)). Let a,b,c be
the 3 crossings involved in the Legendian Reidemeister move III. By a smooth isotopy as
proved above, we may assume a, b, ¢ are neighboring crossings (see FIGURE for an
example). Given a m-graded normal ruling p of T before the move, we need to construction
the bijection ¢, case by case. If p has at most one switch at a,b,c, ¢n(p) is the obvious
normal ruling corresponding to p, with the same switches at a,b,c as p. The proposition
follows easily.
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Figure 2.1.4: The bijection between m-graded normal Rulings under a Legendrian Reide-
meister move III: In the left figure, the normal ruling p has switches at a,b, A, B, C are the
3 eyes containing a, b, ¢, with A the blue disk, C' the red disk and B the disk enclosed by
thick dashed lines. In the right figure, the corresponding normal ruling ¢, (p) has switches at
b, c, the other letters are similar. By moving the strips at the switches in the vertical strip,
the fillings surfaces S,, Sy, (,) are homeomorphic relative to the boundaries at x = x;, and
r = TR.

If p has 2 switches at a,b, no switch at ¢. Then the switches belong to 3 eyes, called
A, B,C. We look at the relative positions of the 6 paths of the eyes A, B,C in the small
vertical strip containing a, b, c. We only consider one such a case as in FIGURE (left),
the other cases are similar. Note that a,b are switches imply that all the 3 crossings a, b, c
have degree 0 modulo m. Moreover, the normal conditions in the definition 2.1.3] of a m-
graded normal ruling ensures that, there’s a unique way to construct a m-graded normal
ruling ¢y, (p) which coincides with p outside the vertical strip. The converse is also true for
the same reason. The picture of ¢, is shown in FIGURE (right), note that now ¢p(p)
has 2 switches at b, ¢, no switch at a. Moreover, the ruling surfaces S, and Sy, (,) only differ
by the gluing of the 3 eyes A, B, C' inside the vertical strip. Use the notations as in the proof
for smooth isotopies, the left hand side of FIGURE gives —B <+ A <> —C, where —B
(resp. —C') means B with the opposite orientation as that induced from U x R,. On the
other hand, the right hand side gives A <+ —(B <> C). By moving the gluing strips (or
I-handles), it’s easy to see that the results after gluing can be identified by an (orientation
preserving) homeomorphism which is identity outside the vertical strip. This shows that .S,
and Sy, (,) are homeomorphic relative to the boundaries at + = x;, and x = xg, and the
homeomorphism is orientation-preserving if S, is orientable.

If the normal ruling p has 2 switches at a, ¢, and no switch at b. Similarly, we look at the
relative positions of the 3 eyes A, B, C containing a, b, c. Again, we only look at one such a
case as in FIGURE (left). The other cases are similar. Now by a similar argument as
above, FIGURE proves the proposition. Note, in this case ¢y, (p) has 2 switches at a, b,
no switch at ¢. The gluing of the 3 eyes on the left figure is A <+ —(B <> (), the gluing of
the 3 eyes on the right figure is —(B <> (') <> A. They can be identified without changing
the parts outside the vertical strip.

The case when p has switches at b, c is entirely similar to the case above.

If the normal ruling p has switches at all the 3 crossings a, b, ¢ (see FIGURE for
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Figure 2.1.5: The bijection between m-graded normal Rulings under a Legendrian Reide-
meister move III: In the left figure, the normal ruling p has switches at a,c. In the right
figure, the corresponding normal ruling ¢y (p) has switches at a,b. the other letters are simi-
lar as in FIGURE2.1.4l By moving the strips at the switches in the vertical strip, the fillings
surfaces S,, Sy, (,) are homeomorphic relative to the boundaries at x = z;, and x = zp.

Figure 2.1.6: The bijection between m-graded normal Rulings under a Legendrian Reide-
meister move III: the normal ruling p (left) and the corresponding normal ruling ¢y (p) (right)
both have switches at the 3 crossings a, b, c.

an example), then ¢y (p) is the obvious normal ruling having a, b, ¢ as switches and the same
shape as p outside the vertical strip. The proposition again follows easily. This finishes the
proof.

O

Remark 2.1.12. Given any m-graded normal ruling p of a Legendrian tangle T, in the proof
of the previous lemma, a direct check also shows that s(¢n(p)) — s(p),r(on(p)) — r(p) and
d(én(p)) — d(p) (see Definition[2.1.4) are all independent of p. We will use this fact in the
proof of Corollary|[3.2.6,

Example

Example 2.1.13. Consider the Legendrian tangle (front) T given by FIGURE[2.1.9 (left),
obtained by removing the left and right cusps of a Legendrian trefoil knot. T has 3 crossings
ai,as,as, and with the Z-valued Maslov potential v chosen as in the figure, the degrees are
la1| = |az| = |as| = 0. Moreover, T' has 4 left end-points, 4 right end-points and no left or
right cusps. So in Remark np =ngr = 4,cp = cg = 0. The left piece Ty, (resp. the
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right piece Tr) consists of 4 parallel lines, labeled from top to bottom, say, by 1,2, 3,4, with
Maslov potential values 2,1,1,0 respectively.

Let’s calculate the Ruling polynomials for (T, ). Firstly, let m # 1 be a nonnegative
integer, then the set of m-graded normal rulings for Ty, (resp. Tr) is NRE, = {(pL)1 =
(12)(34), (pr)2 = (13)(24)} (resp. NRT, = {(pr)1 = (12)(34), (pr)2 = (13)(24)}). Here, for
example in Ty, (12)(34) means the pairing between the strands 1,2 (resp. 3,4), corresponding
to a m-graded normal ruling of Ty,.

Using the notations before Lemma[2.1.9 and in Remark[2.1.5, the m-graded normal rul-
ings of (T, p) are:

(1). NRJ((pr)1s (pr)1) = {ps = {a1}; p5 = {as}; ps = {a1, a2, a3} };

)
(2). NRE((po)1, (pr)2) = {p1 = 0; ps = {a1, aa}};
(3). NR7((pr)2, (pr)1) = {p2 = 0; pr = {az, as}};
) = {ps = {a2}}.

Note that {ay, a3} is not a m-graded normal ruling since it violates the normal condition in
the definition[2.1.3. Apply the computation formula in Remark[2.1.8, the Ruling polynomials
of (T, ) and the corresponding maximal degrees d in z are:

(4). NRE((pr)2, (Pr)2

(1). < (po)1| R (2)|(pr)1 >= 2z + 2%, and d = 3;
(2). < (pL)|RE()|(pr)2 >= 1+ 22, and d = 2;
(3). < (pr)2|RE(2)|(pr)1 >= 1+ 2% with d = 2;
(4). < (pr)2| RE(2)|(pr)2 >= 2z with d = 1.

Note that for m = 1, each of the 2 sets NRlTL and NR%R contains an additional 1-graded
normal ruling (pr)s (resp. (pr)s) = {(14)(23)}. However, no 1-graded normal ruling of
T restricts to (pr)s or (pr)s, hence the above formula also computes the 1-graded ruling
polynomials for (T, ).

In Example[3.2.15, as an illustration of the main theorem we will see that the ruling
polynomials with boundary conditions calculated here, indeed match with the augmentation
numbers with the same boundary conditions (to be defined in Sectz’on for the Legendrian
tangle (T, 1) as above.

2.2 The LCH differential graded algebras for
Legendrian tangles

Generalizing the Chekanov-Eliashberg construction of the LCH DGAs for Legendrian links,
the LCH DGAs for Legendrian tangles with simple fronts (See Section were explicitly
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constructed in [32]. Here we give the basic constructions and properties of the LCH DGAs
associated to any Legendrian tangle T (not necessarily with simple front). The key properties
of the DGAs are the homotopy invariance and co-sheaf property. As in the Section [I.2] we
allow some base points placed on the tangle.

Given an oriented tangle front 7', provided with a Z/2r-valued Maslov potential u. We
can orient the tangle so that each strand is right-moving (resp. left-moving) if and only if
its Maslov potential value is even (resp. odd). We place some base points %1, ...,%p on T so
that each connected component containing a right cusp has at least one base point. Assume
T has ny, left end-points and ng right end-points, labeled from top to bottom by 1,2, ... ,ny
(resp. 1,2,...,ng). We will construct a LCH DGA associated to the resolution (see Section
of T'. The idea is to embed the tangle front T into a Legendrian link front A, and take
the resolution of A. Then define the Z/2r-graded LCH DGA A(T) = A(T, i1, %1, ...,*p) as
a sub-DGA of A(Res(A)).

Embed a Legendrian tangle into a Legendrian link

Let (T, p,*1,...,%p) be given as above. In this subsection, we will give the construction to
embed T into a Legendrian link front (see FIGURE for an illustration). In the case of
FIGURE (left), T is the Legendrian tangle in the vertical strip, with ny = 4,ng = 2
and B = 2.

We firstly glue a np-copy of a left cusp along the top end-points to the ny, left end-points
of T' (see the 4-copy of the left cusp with crossings «;;’s in FIGURE (left)), and also
glue a nr-copy of a right cusp along the bottom end-points to the ng right end-points of T’
(See the 2-copy of the right cusp with crossing 3; in FIGURE (left)). Next, we glue
a ng-copy of a left cusp, placed to the left of the diagram, along the top end-points to the
top end-points of the ng-copy of the right cusp (See the 2-copy left cusp to the left of the
diagram in FIGURE (left)). Now we are left with a diagram, say D, with n, + ng
right end-points (see the bottom dashed line in FIGURE (left)). We glue these right
end-points via ny, + ng right cusps as follows. We extend the Maslov potential u to D, this
extension is unique. Every connected component with nonempty boundary (i.e. component
which is not a loop) of T' is connected to exactly 2 such right end-points, and it’s easy to
see that p(upper end-point) — p(lower end-point) = +1(mod2r). We glue a right cusp to
the 2 end-points from the right so that p defines a Z/2r-valued Maslov potential on the
resulting front diagram. We will place these right cusps so that they have almost the same
x-coordinates. Note that this procedure may involve some additional crossings (See the
bottom-right in FIGURE (left)).

Let’s denote by A the resulting front diagram, we will also add some additional base
points, for example one base point at each of the additional ngr + ny right cusps in the
bottom of A, so that each component of A contains at least one base point. By construction,
A is equipped with a Z/2r-valued Maslov potential, still denoted by . Moreover, A is simple
(see Section away from T'. The ny-copy of the left cusp glued to the left end-points of T’
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Figure 2.2.1: LCH DGA for tangles: In the left picture, embed the Legendrian tangle T
(the part in the vertical strip) into a Legendrian link front A; In the right picture, take the
resolution of the Legendrian link front A.

has ("QL) crossings, denoted by «;,1 <14 < j < np, where q;; is the crossing of the 2 strands
connected to the 2 left end-points 4, j of 7. Then, we have |o;;| = p(i) — p(j) — 1.

Now by the resolution construction, we can define the LCH DGA A(Res(A)). Let
{ai,as,...,ar} be the crossings and right cusps of T, t1,1s,...,tg be the generators in
A(Res(A)) corresponding to the base points *i, %o, ..., *5. By the resolution construction
[24], the differential Ja; only involves the generators {a;,1 < j < R, t;-tl, 1 <j < B} and
{aij, 1 <i<j<np}.

Moreover, the differentials of a;’s are given by

ik|+1
Dag; = > (=Dl gy,
i<k<j

As a consequence, the subalgebra generated by tfl, . ,tﬁl, ai,...,ag and o;;,1 < i <
j < ny form a sub-DGA of A(Res(A)). This leads to the definition of the LCH DGA A(T)
of the Legendrian tangle front 7'

LCH DGAs via Legendrian tangle fronts

Now, let’s translate the construction of sub-DGAs in the previous subsection into definitions
involving only 7.

The general definition

Definition/Proposition 2.2.1. Define the Z/2r-graded LCH DGA A(T) as follows:
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As an algebra: A(T) = Z[t{', ..., 15'] < a1 < i < Rya;,1 <i < j < ng > isa free
associative algebra over L', . .. ,tﬁl}, where a;; corresponds to the pair of left end-points
i.j of T.

The grading and differential is induced from the identification of A(T) with the sub-DGA
obtained above, via t;ﬂ ~ tfﬂ, a; < a; and a;j <> ;. By the construction above, the DGA
A(T) is independent of the choices involved in the construction of A. In particular, we can
translate the DGA A(T) purely in terms of the combinatorics of the tangle front T. More
precisely, we have:

The grading: |t = 0, |a;| = p(over-strand) — p(under-strand) if a; is a crossing, |a;| = 1 if
a; is a right cusp, and |a;;| = p(i) — p(j) — 1.

The differential: As usual, we impose the graded Leibniz Rule O(z-y) = (0z)-y+ (—=1)lx-dy
and the differential of the generators are defined as follows: a(t;ﬂ):o; The differential of a;;
given by the same formula for c;; with ce . replaced by ae., that is,

8Clij = Z (—1)|“i’“‘+1aikakj. (2201)

i<k<j

To translate the differential of a crossing or a right cusp, we proceed as in [24, Def.2.6].

Let a = a; and vy,...,v, be some elements in the generators {a;;1 < i < R,a;;,1 <i <
j<np} of T form >0. Let D} = D> — {p,qu,...,q,} be a fized oriented disk with n + 1
boundary punctures (or vertices) p,qi, ..., ¢y, arranged in a counterclockwise order.

Definition 2.2.2. Define the moduli space A(a;vy,...,v,) to be the space of admissible
disks u of the tangle front T up to re-parametrization, that is,

(i) (Immersion with singularities) The map u : (D?,0D2) — (R%_,T) is an immersion,
orientation-preserving, and smooth away from possible singularities at left and right
cusps, near which the image of the map are indicated as in FIGURE[2.2.9.a,b. Note

that the singularities are not vertices of D?;

(7) (Initial/positive vertex) u extends continuously to p, with u(p) = a, near which the
image of the map is indicated as in Figure|2.2.49.c;

(11i) (Negative vertices at a crossing) If v; is a crossing, u extends continuously to q;, with
u(q;) = v, near which the image of the map is indicated as in Figure .d;

(iv) (Negative vertices at a right cusp) If v; is a right cusp, u extends continuously to g;,
with u(q;) = v;, near which the image of the map is indicated as in Figure|2.2.2.e;

(v) (Negative vertices at a pair of left end-points) If v; is a pair of left end-points ajj,, we
require that, as one approaches q; in D?, u limits to the line segment [j, k] at the left
boundary between the left end-points j, k of T';

(vi) The x-coordinate on the image u(D?) has a unique local maximum at a.
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a. Allowed singularties b. Forbidden singularities
c. Initial vertices d. Negative vertices at a crossing

> > s >

e. Negative vertices at a right cusp

(counted twice)

o 5 =

Figure 2.2.2: Admissible disks: The image of the disk D? under an admissible map near a
singularity or a vertex on the boundary dD?. The first row indicates the possible singulari-
ties, the second and third rows indicate the possible vertices. In the first 2 pictures of part
e, 2 copies of the same strand (the heavy lines) are drawn for clarity.

Note: the last condition 1s in fact a consequence of the previous ones . All the

defining conditions are direct translations from those in Definition|1.2.1| via Lagrangian pro-
jection, for A(Res(A)) in Section[2.4  Via the resolution construction (Figure [1.1.1), the
only nontrivial part is the translation for a right cusp, near which the defining conditions are
tllustrated by Figure|2.2.5.

For each u € A(a;vy,...,v,), walk along u(0OD2) starting from a in counterclockwise
direction, we encounter a sequence Si,...,sn(N > n) of negative vertices of u (crossings,
right cusps, or pairs of left end-points as in Deﬁmtion and base points (away from the
previous negative vertices). Translate Deﬁmtion we obtain

Definition 2.2.3. The weight of u is w(u) := w(sy) ... w(sy), where

(i) w(sg) = ti(resp. t;') if sy, is the base point *;, and the boundary orientation of u(0D?)
agrees (resp. disagrees) with the orientation of T near ;. Note that this includes the
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(counted twice)

o Do Do SO

Figure 2.2.3: The singularity and negative vertices at a right cusp after resolution: The
first figure corresponds to a singularity (Figure a), the remaining ones correspond to a
negative vertex (FIGURE [2.2.2e, going from left to right).

case when the base point *; is located at a right cusp, which is also a singularity of u

(See Figure[2.2.9.a);

(ii) w(sy) = v; (resp. (—1)Pil+10;) if s is the crossing v; and the disk uw(D?) occupies the
top (resp. bottom) quadrant of v; (See Figure[2.2.4.d);

(111) w(sk) = aij if sy is the pair of left end-points a;;;

() w(sk) = wi(sp)wa(sk) if sk is the right cusp v; = u(q;) (see Figure[2.2.9¢), where
wo(sg) = v; (resp. v?) if the image of u near q; looks like the first two diagrams (resp.
the third diagram) of Figure . €;
wi(sk) = 1 if s is a unmarked right cusp (equipped with no base point);
wi(sk) =t; (resp. tj_l) if v; is a marked right cusp equipped with the base point *;, and
v; is an up (resp. down) right cuspﬂ See Figure for an illustration.

Notice that the convention for the orientation signs here is as follows: At each crossing of
even degree of the tangle front T', the two quadrants to the lower right of the under-strand
have negative orientation signs. All other quadrants have positive orientation signs.

Definition 2.2.4. For a = a; a crossing or a right cusp, its differential is given by

da= Y > w(u) (2.2.0.2)

V150000 UEA(G;V1,...,0n)

where for a = a; a right cusp, we also include the contribution from an “invisible” disk u
coming from the resolution construction (see Section , with w(u) =1 (resp. tj_l ort;), if
there’s no base point (resp. a base point x;, depending on whether a; is an up or down right

cusp).

Example 2.2.5. Let T be the Legendrian tangle in Figure (left), with a choice of
Z/2r-valued Maslov potential . As an algebra, the LCH DGA is A(T) = A(T, p, %1, %2) =

2Recall that a cusp is called up (resp. down) if the orientation of the front T' near the cusp goes up
(resp. down).



CHAPTER 2. A TANGLE APPROACH FOR STUDYING LEGENDRIAN KNOTS 28

Z[tfl,téd] < ai,az,a3,a;5,1 < i < j <4 >, where as usual the a;;’s are the generators
corresponding to the pairs of left endpoints. The differential O for A(T) is: As usual, Oa;j; =
Zi<k<j(—1)|“ik‘+1aikakj and O(tFY) = 0. The differentials for a;’s are as follows

day = ayy;

dag = 1+ a3 + (=) ayay;

das = 1" (ass + azs(ars + (= 1) ara0y + azazy) )to.

Note: there’s a strategy to compute daz. We can cut T into elementary Legendrian tangles
and apply Definition/Proposition .

By embedding the Legendrian tangle T into a Legendrian link, the proof of Theorem
[L.2.5 also shows that

Proposition 2.2.6. The isomorphism class of A(T) is independent of the locations of the
base points on each connected component of T. The stable isomorphism class of A(T) is
wnvariant under Legendrian isotopy of T'.

LCH DGA for simple Legendrian tangles

In the case when T is a simple Legendrian tangle (see Section for the definition), in
particular when 7' is nearly plat, we have a simple description of A(T).

The algebra and grading are the same as before, but the differential counts simpler
objects. More precisely, for a = a; a crossing or a right cusp, the differential da is given by
the same formula as in Definition However, we have

Lemma 2.2.7 ([24, §.2.3]). For T a simple Legendrian tangle front, any admissible disk u
in Ala;vy,...,v,) must satisfy:

1. w is an embedding, not just an immersion, so no singularity at a right cusp (see Figure

pEEl)

2. Each negative vertexr of u must be a crossing, so there’s no negative verter at a right

cusp (see Figure . e);

3. There’s at most one negative verter at a pair of left end-points.

Example 2.2.8. Consider the Legendrian tangle (T, ju) in Example[2.1.15 (See Figure[2.1.4
(left)). As usual, label the left end points of T by 1,2,3,4 from top to bottom. Let a;j,1 <
i < j <4 be the pairs of left end points of T. Then the LCH DGA A(T) is generated by a;;
and ay, as, as, with the grading: |ays| = |ais| = |a| = |ass| = 0, |azs| = —1,|a1s| = 1 and
la1| = |as| = |as| = 0. The differential is given by

da;; = Z (=D ayay;

i<l<j
da; = ay3;

(9a2 = (9a3 = 0.
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The co-sheaf property

Let T be a Legendrian tangle in J'U. Let V be an open subinterval of U such that, the
boundary (OU) x R, is disjoint from the crossings, cusps and base points of T. Ty then
gives a Legendrian tangle in J'V with Maslov potential induced from that of T, hence the
LCH DGA A(T|y) is defined. There’s indeed a co-restriction map of DGAs.

Definition/Proposition 2.2.9 (|26, Prop.6.12},[32]). The following defines a morphism of
Z2r-graded DGAs vyy : A(T|v) — A(T):

(1) wyy sends a generator of A(T|v), corresponding to a crossing, a right cusp or a base
point of T, to the corresponding generator of A(T);

(2) For a generator b;; in A(T|y) corresponding to the pair of left end-points i,j of T'|v,
the image vy (bi;) is defined as follows:
Use the notations in Section and consider the moduli space A(b;;;v1,...,v,) of
disks u : (D?,0D?) — (R%_,T) satisfying the conditions in definition with the
condition for a there replaced by “u limits to the line segments i, j] between the pair
of left end-points i,j of T|y at the puncture p € OD? and u attains its local mazima
exactly along [i,7]”. Then define

wy (b)) = Y > w(w (2.2.0.3)

015,00 UEA(byj,v1,...,0n)

Proof. Apply the proof of Prop. 6.12 in [26]: Though it only deals with Legendrian tangles
in nearly plat positions, essentially the same arguments work in the general case, with
‘embedded disks’ replaced by ‘immersed disks’ everywhere. O

Remark 2.2.10. From the definition, it’s easy to see that if the left boundary of V' coincides
with that of U, then the co-restriction map vyy = A(T|V) — A(T) is an inclusion.

Example 2.2.11 (co-restriction ¢ for a right cusp). One key example for the co-restriction
of DGAs is g : A(Tg) — A(T), where T be an elementary Legendrian tangle of a single
(marked or unmarked) right cusp a, and Tg is the right piece of T. For simplicity, assume
T has 4 left endpoints and 2 right endpoints as in Figure|2.2.4| Then A(Tr) = Z < bis >,
where biy is the generator corresponding to the pair of left endpoints of Tg, and A(T) =
Z[tt7Y < a,ai5,1 <i < j <4 > with Ja = 1% + ays (see Definition below), where
a;;’s correspond to the pairs of left endpoints of T, t is the generator corresponding to the
base point if the right cusp is marked and t = 1 otherwise. Then g : A(Tg) — A(T) is given

by

tr(biz) = @+ arst ™" Dagy + apat " Vagy + a5t " Yaagy + arpat " Yaas,

= Qai4 + t_”(“)(alg + a12a) (CL24 + CL(I34).

We introduce a sign at a right cusp, which will also be used later (see Lemma (3.3.2)).
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Figure 2.2.4: Left: An elementary Legendrian tangle of an unmarked right cusp. Right: An
elementary Legendrian tangle of a marked right cusp.

Definition 2.2.12. Given a right cusp a of the oriented tangle front T', we define the sign
o=o(a) of a tobel (resp. —1) if a is a down (resp. up) cusp. See Figure[2.2.5,

— —a

o(a) =1 o(a) = —1

Figure 2.2.5: Left: a down right cusp. Right: an up right cusp.

One key property of LCH DGAs for Legendrian tangles is the co-sheaf property:

Proposition 2.2.13 ([26, Thm.6.13]). If U = L Uy R is the union of 2 open intervals L, R
with non-empty intersection V', then the diagram of co-restriction maps

A(T|y) = A(T|r) (2.2.0.4)

LLVL lLUR

A(T|) =+ A(T)
gives a pushout square of Z/2r-graded DGAs.

Proof. Again the same argument in the proof of Theorem 6.13 in [26] (The case for Legen-
drian tangles in nearly plat positions) applies to the general case. O
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Chapter 3

Points-counting of augmentation
varieties

In this chapter, we study the representation varieties (of rank 1) (called augmentation vari-
eties) of the LCH DGAs associated to Legendrian tangles. We firstly define augmentation
varieties and augmentation numbers (with boundary conditions) associated to Legendrian
tangles, generalizing those of Legendrian knots. We then show a ruling decomposition for the
augmentation varieties, and show that their points-counting over finite fields (or augmenta-
tion numbers) are computed by ruling polynomials defined in chapter . These generalize
and provide more natural proofs to the previous results of M.Henry and D.Rutherford [15].

3.1 Augmentation varieties for Legendrian tangles

Fix a Legendrian tangle T', with Z/2r-valued Maslov potential p, base points *j,...,*g so
that each connected component containing a right cusp has at least one base point. Denote
the crossings, right cusps and pairs of left end-points by R = {ay,...,any}. As always, the
base points are assumed to be away from the crossings and left cusps of T. Let ny,ng be
the numbers of left and right end-points in T respectively.

We define the LCH DGA (A(T),0) as in the previous Section. So as an associative
algebra we have A := A(T) = Z[ti',...,t5'] < a1,...,ax >. Fix a nonnegative integer m
dividing r and a base field k.

Definition 3.1.1. A m-graded (or Z/m-graded) k-augmentation of A is an unital algebraic
map € : (A,0) — (k,0) such that e 0 0 = 0, and for all a in A we have €(a) = 0 if |a| #
O(modm). Here (k,0) is viewed as a DGA concentrated on degree 0 with zero differential.
Morally, ‘e is a Z/mZ-graded DGA map”.

Definition 3.1.2. Define Aug,, (T, k) to be the set of m-graded k-augmentations of A(T).
This defines an affine subvariety of (k*)B x k¥, via the map

Aug, (T, k) > € = (e(ty,...,e(t),elar), ... elan))) € ()8 x BN
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with the defining polynomial equations € o d(a;) = 0,1 < i < N and e(a;) = 0 for |a;| #
O(modm). This affine variety Aug,,(T, k) will be called the (full) m-graded augmentation
variety of (T, pt, *1,...,%5).

Example 3.1.3 (The augmentation variety for trivial Legendrian tangles). Let T' be the
trivial Legendrian tangle of n parallel strands, labeled from top to bottom by 1,2,...,n,
equipped a Z/2r-valued Maslov potential pn. The LCH DGA is A(T) =7 < a;5,1 <i<j <

n >, with the grading |a;;| = (7)) — p(j) — 1 and the differential given by formula (2.2.0.1)).
The m-graded augmentation variety Aug,, (T k) is

Aug,, (T k) = {(e(ai;))1<i<j<nle © Oai; = 0, and e(ai;) = 0 if ai;| # O(modm). }
On the other hand,

Definition 3.1.4. Associate to the trivial Legendrian tangle (T, ), define a canonical Z/m-
graded filtered k-module C = C(T): C is the free k-module generated by ey, ..., e, corre-
sponding to the n strands of T with grading |e;| = u(i)(modm). Moreover, C is equipped
with a decreasing filtration F* > F' > ... D F": F'C = Span{e;;1,...,€n}.

Define B,,(T) := Aut(C) to be the automorphism group of the Z/m-graded filtered k-module
C. Denote I = I(T) :={1,2,...,n}.

Now, in the example, given any m-graded augmentation € for A(T), we construct a Z/m-
graded chain complex C(e) = (C,d(¢€)): The differential d = d(e) is filtration preserving, of
degree —1 given by

< dej,ej >=0 fori > j and < de;,e; >= (—1)“(i)e(aij) fori < j.

Here < de;,e; > denotes the coefficient of ej in de;. The condition that d is of degree —1
is equivalent to: < dej,e; >= (=1)"De(ay;) = 0 if p(i) — u(j) — 1 = |ay| # 0(modm)
for all i < j. The condition of the differential d*> = 0 is equivalent to: for all i < j have
< d*ejej >= Y < dej, e, >< deg,ej >= 0, tL.e. Zi<k<j(—1)“(i)*“(k)e(aik)e(akj) =
eoda;; = 0.

Thus, we see that the map ¢ — C(€) gives an isomorphism between the augmentation
variety Aug,, (T; k) and the set MCS (T k) of Z/m-graded filtered chain complezes (C,d),
or equivalently, the set of filtration preserving degree —1 differentials d of C'. From now on,
we will always use this identification (see also Section .

i<k<j

Given the Legendrian tangle (7', i) of n parallel strands, B,,(T") acts on Aug,,(T;k) =
MCSA(T) via conjugation: given ¢ € B,,(T) and (C,d) in MCSA(T; k), have ¢ - (C,d) :=
(C,podo¢™t). In particular, the B,,(T)-orbit B,,(T) - (C,d) (or B,,(T) - d) is simply the
isomorphism classes of d.

Lemma 3.1.5 (Barannikov normal form, See also [30, 20]). Let (C,d) be any Z/m-graded
filtered chain complex over k, where C = Spang{ei,...,e,} is fivzed with the decreasing
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filtration F* > F' > ... D F": F'C = Span,{eii1,...,en}, then the isomorphism class of
(C,d) has a unique representative, say (C,dy), such that the matriz (< dope;,e; >);; has at
most one nonzero entry in each row and column and moreover these are all 1’s. Equivalently,
there’re 2k distinct indices iy < ji,...,4x < jr in {1,...,n} for some k, such that dye;, = e,
for 1 <1<k and dye; = 0 otherwise.

The unique representative (C,dy) is called the Barannikov normal form of (C,d).

Proof. We divide the index set I := {1,...,n} into 3 types: upper, lower and homological.

For each 1 < i < n, an element of the form c;e; +Zk>i crex is called i-admaissible if ¢; # 0
and ¢ = 0 if |ex| # |e;|(modm) for all k& > 4. In other words, the set of i-admissible elements
is the same as Aut(C) - ¢;, the image of e; under the automorphism group of the Z/m-graded
filtered k-module C'. In particular, any automorphism of C' preserves the set of i-admissible
elements.

e i is called d-closed (or closed) if there’s an i-admissible element x such that dx = 0.
Otherwise, i is called d-upper (or upper).

To check the definition only depends on the isomorphism class of d: If d' is another repre-
sentative in the isomorphism class of d, so d' = ¢ -d = podo ™! for some ¢ € Aut(C). If ¢
is d-closed, say dr = 0 with x i-admissible, then d'¢(z) = ¢(dx) = 0 with ¢(z) i-admissible,
hence i is also d’-closed.

For each index 7, and any i-admissible element x, we can write dx = x¢; + pst *kex for
some [ > i with %, # 0, i.e. dx is l-admissible. If dz = 0 (that is, i is closed), then [ := oo
and “dx is co-admissible” means dx = 0. Now, define pq(x) := 1.

If d = ¢ - d is another representative, then d'p(z) = ¢(dzx) is also l-admissible, hence
pa(p(x)) = pa(z). For each index i, define

pa(t) := max{pg(x)|z is i-admissible}

By definition, p4(i) > i. And, the previous identity shows that p,(i) only depends on the
isomorphism class of d. So we can write p(i) = pg(z). Also, by definition, ¢ is upper if and
only if p(i) < oco.

e j is called lower, if j = p(i) for some upper index i.

If j = p(i) is lower, then j = p(z) for some i-admissible element z, hence dx = *;e; +
D ks *kek is j-admissible. Tt follows that d(xje; + 3, *kex) = d?z = 0. Therefore, j is
closed.

e j is called homological, if j is closed but not lower.

As a consequence, we obtain a partition and a map associated to the isomorphism class of d

I=LUHUU (3.1.0.1)
p:U—L
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where L, H and U are the sets of lower, homological and upper indices respectively. We
emphasize that the partition and the map depend only on the isomorphism class of d.
Moreover, p : U — L is a bijection. By definition, it’s clearly surjective. To show it’s
also injective: Otherwise, assume ¢ < ¢’ are 2 upper indices such that p(i) = p(i') = k.
In particular, |e;] = |ey| = |ex| + 1. Then for some i-admissible x and 7’-admissible ele-
ment ' we have k = p(i) = p(z) and k = p(i') = p(2'), that is, dv = cper + >, cj€;
and dr’ = cper + )., ¢je; are both k-admissible, i.e. ¢ # 0,¢ # 0. If follows that
d(cir —cpa’) = 3o *j¢5 and cpx — 2’ is still i-admissible. Hence, pq(cir — cx2’) > k =
p(1) = max{pq(y)|y is i-admissible}, contradiction.

Suppose U = {i,1 < 1 < kliy < iy < ... < g} and j; = p(4y),1 < I < k, then
L ={j;,1 <1<k} By definition of p, for each [ there exists an i;-admissible element, say
e;,, such that ¢ := de;, is ji-admissible. We may even assume that e}, = e; +> ., *;e;. For
each i in H, by definition, there exists an i-admissible element e; = e; + ., *;¢; such that
de}, = 0. We thus have constructed a set of elements {e], €}, ..., e/} in C with €} i-admissible,
it follows that they form a basis of C'. Define an automorphism ¢ of C' by ¢(€}) = ¢;, and
take dy = ¢-d. Then, doe; = p(de}). As a consequence, dpe;, = e, for 1 <1 < k and dpe; =0
for + € H. That is, dy is a Barannikov normal form of d.

Conversely, given a Barannikov normal form dy of d, there exist 2k distinct indices 1; <
Ji,---5% < Jg such that dpe;, = ej for 1 < [ < k and dpe; = 0 otherwise. Apply the
definition of the 3 types of indices with respect to dy, we must have U = {iy,...,ix} and
p(i;) = max{pg,(z)|x is i;-admissible} = j;, so L = {j1,...,jx}. Hence, dy is uniquely
determined by the partition I = L LU H U U and the bijection p : U = L, which are
determined by the isomorphism class of d. O

Definition 3.1.6. Given a trivial Legendrian tangle (T, ), a partition I(T) = U LU H UL
together with a bijection p : U = L as in the proof of the previous lemma (see Equation
), will be called an m-graded isomorphism type of T', denoted by p for simplicity.
Note: p(i) > i and |eymy| = |e;| — L(modm) for alli € U.

Remark 3.1.7. By Lemma |53.1.5, each m-graded isomorphism type p of T determines an
unique isomorphism class O, (p; k) of Z/m-graded filtered k-complexes (C(T),d). In other
words, O, (p; k) is the By, (T)-orbit of the canonical augmentation €, (equivalently, the
Barannikov normal form d, determined by p), using the identification in Ezample .
We thus obtain a decomposition of the augmentation variety for the trivial Legendrian tangle

(T, p):
Aug, (T k) = U,0n(p; k) (3.1.0.2)

where p runs over all m-graded isomorphism types of T.

In addition, take a m-graded augmentation € of A(T), or equivalently the m-graded filtered
chain complex C(e) = (C,d(¢€)). Suppose € is acyclic, meaning that (C,d(€)) is acyclic or
H = 0 in the partition I = L U H UU associated to d(e). Then, the associated m-graded
isomorphism type p : U = L can be identified with an m-graded normal ruling (denoted by
the same p) of T.
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Remark 3.1.8. In Lemma given any complex (C,d) (or the corresponding augmen-
tation €), which determines a partition I = U LU LU H and a bijection p : U = L, say
U={iy <iy <...<ix} and p(i;) = ji. Then ¢~ -d = dy is the Barannikov normal form
for some ¢ € Aut(C). Can take the decomposition ¢ = D o ¢y, where D is diagonal and
@o is unipotent, i.e. wole;) = e; + > ;. *;e;. Then (oo - d)(ei,) = cey for ¢ € k* and
1 <1<k, and (¢y"-d)(e;) = 0 for the remaining cases. Such a complez (C,¢y" - d) (or the
corresponding augmentation o, - €) is called standard, and we say (C,¢y" - d) is standard
with respect to p.

In fact, the unipotent automorphism @y can be taken to be canonical. See Lemma|3.53.7.

Augmentation varieties for Legendrian tangles also satisfy a sheaf property, induced by
the co-sheaf property of LCH DGAs in Section 2.2 More precisely, we have

Definition/Proposition 3.1.9. Let T a Legendrian tangle in J'U.

(1) Let V' be an open subinterval of U, then the co-restriction of DGAs wyv = A(T|y) —
A(T) induces a restriction ryy = ¢} : Aug,,(T; k) — Aug,,(T|v; k).

(2) If U = L Uy R is the union of 2 open intervals L, R with non-empty intersection V,
then the diagram of restriction maps

Aug, (T k) —% Aug, (T|g; k) (3.1.0.3)

TLUl/ lTVR

gives a fiber product of augmentation varieties.

Take the left and right pieces of T', called Ty, Tk respectively. We get 2 restrictions
of augmentation varieties r, = ¢j : Aug,,(T) — Aug,,(11) and rgp = 5 : Aug,, (T) —
Aug,, (Tr). We can then define some subvarieties:

Definition 3.1.10. Given m-graded isomorphism types pr, pr for Tr, Tr respectively, and
er € On(pr; k). Define the varieties

Augm(Ta €L, PR; k) = {EL} XAugm(TL;k) XAugm(T> k) ><Augm(TR;k) Xom(pR; k)
Augm(T7 PL; PR; k) = Om(va k) X Aug,, (Tr:k) XAUgm(T7 k) X Aug,, (Tr;k) Xom(pR7 k)

Aug, (T €, pr; k) will be called the m-graded augmentation variety with boundary condi-
tions (er, pr) for T. When €, = €,, is the canonical augmentation of T}, corresponding to
the Barannikov normal form determined by py,, we will call Aug,, (T, €,,, pr; k) the m-graded
augmentation variety (with boundary conditions (pr, pr)) of T'.
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By definition, we immediately obtain a decomposition of the full augmentation variety
Augm(T; k) = I—lpL,pRAugm(Ta PL; PR; k) (3104)

where pr, pr run over all m-graded isomorphism types of T, Tk respectively.
Note that the augmentation variety Aug,, (7, k) itself is not a Legendrian isotopy invari-
ant. However, we can define

Definition 3.1.11. Let F, be any finite field, and pr,pr be m-graded isomorphism types
of Tr,Tr respectively. The m-graded augmentation number (with boundary conditions

(pr,pr)) of T over F, is
aug,, (T, pr, pr; @) = e ConrmiO|Aug, (T €, , pr; Fy)| (3.1.0.5)

where |Aug,, (T, €,,, pr; Fy)| is simply the counting of IF,-points.

Remark 3.1.12. Alternatively, we can use Aug,, (T, pr, pr; k) instead of Aug,, (T, €,,, pr; k)
to define the augmentation number. However, this alternative definition only differs from
the previous one by a normalized factor ¢~ mOmLiR)|O, (p; F,)| = (%)'”, where L comes
from the partition 1(Ty) = U U H U L determined by pr,. See Corollary|3.5.8

In the next section, we will see that the augmentation numbers defined above are Legen-
drian isotopy invariants. However, for the purpose of clarity, we will now restrict ourselves
to the case when pr, pg are m-graded normal rulings. In particular, this ensures that 7" has
even left and even right endpoints.

3.2 Ruling polynomials compute augmentation
numbers

Computation for augmentation numbers

Given a Legendrian tangle (T, ). For the moment, we will assume T is placed with B
base points so that each right cusp is marked. Label the crossings, cusps and base points
away from the right cusps of T" by ¢1,...,q, with z-coordinates, from left to right. Let
ro < 1 < ... < x, be the z-coordinates which cut 7" into elementary tangles. That is, xg
and x,, are the the z-coordinates of the left and right end-points of 7', and z;_; < z,, < z;
for all 1 <i <n. Let T; = T'|{zg<a<a,} and E; := T|(3,_,<z<z,} be the i-th elementary tangle
around ¢;, then T'="T,, = E1 0 Fyo...0 E, is the composition of n elementary tangles.
Fix m-graded normal rulings pr, pr of Tp, T respectively. Fix e, € O,,(pr; k).

Definition 3.2.1. For any m-graded normal ruling p of T' such that p|r, = pr and p|r,, = pr,
denote p; := p|(r)p=(1341), for 0 < i < n. In particular, py = pr, pn = pr. Define the variety

AUgfn(T7 EL) = AUgm(Eh €L, Pl) XOm(p1) * X Omlpn-1) Augm(Em Pn—1; pn)
AugﬁL(T7 pL) = Augm(E17 pOJ pl) Xom(pl) e Xo'm(pnfl) Augm(En7 pTL—17 p'I’L)
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while for simplicity we have ignored the coefficient field k.

Remark 3.2.2. Given any elementary Legendrian tangle E: a single crossing, a left cusp,
a (marked or unmarked) right cusp, or 2n parallel strands with a single base point, let € be
any m-graded augmentation of A(E) and denote €r, := €|g, , € = €|g,. If € is acyclic (see
Remark , then so is eg. By induction, this result then generalizes to all Legendrian
tangles. For a justification, see Corollary[3.5.3.

We then obtain a partition into subvarieties
Aug, (T, er, pr; k) = U,Augt (T, er; k) (3.2.0.1)

where p runs over all m-graded normal rulings of 7" such that p|r, = pr and p|r, = pr.
Consider the natural map

P, : Aug? (T, €1 k) — AugerT"’l(Tn_l, er; k) (3.2.0.2)
Clearly the fibers are Aug,,(E,, €,_1, pn; k), where €, 1 € O, (pn_1; k).

Lemma 3.2.3. Let (E,u) be an elementary Legendrian tangle: a single crossing q, a left
cusp q, a marked right cusp q or 2n parallel strands with a single base point x. Let p be a
m-graded normal ruling of E, denote pr := plg,.pr = pley. Toke any er in On(pr; k),
have

Aug,, (B, er, pri k) =2 (k7)) XOFE x )

where B is the number of base points in E, x(p) = s(p) — cr, cr the number of right cusps
in E. And, s(p) and r(p) are defined as in Definition[2.1.4]

We will not show the lemma until the Section [3.3]

Remark 3.2.4. In fact, for any Legendrian tangle T = T, as above, one can show that
Aug? (T, ep; k) =2 (k%) XO)FB 5 o)

See Theorem |3.53.10. However, for our purpose of points-counting, the previous lemma will
suffice.

Assuming the lemma, we see that the map P, : Aug? (T,,,€r; k) — AugﬁlT"’l (Th-1, €5 k)
is surjective with smooth isomorphic fibers (k*) X(Plea)+B(En) 5 grelen)  where B(E,,) denotes
the number of base points in E,,. It follows that

dimAugf, (T, €,) = dimAugn™ " (To_1,ez) — x(plz,) + B(Ey) + r(pls,)
‘Aug%(Trh €1} ]Fq)| = ’Augrpr'LT"’l (Tnfla €r; Fq) ’ (q _ 1)*X(P‘En)+B(En)qr(P|En)
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So by induction, we obtain

dimAug? (T,er; k) = —x(p) + B —r(p) (3.2.0.3)
[Augf (T, e1;Fy)| = (g — 1)+ g0)

As a consequence of Equation (3.2.0.1)), we then have

Lemma 3.2.5. Given a Legendrian tangle (T,p) with B base points so that each right
cusp is marked, let pr, pr be m-graded normal rulings of Ty, Tr respectively, then for any
er € On(pr; k), have

dimAug,, (T, €L, pr; k) = max,{—x(p) + B+1r(p)} (3.2.0.4)
and the augmentation number is given by

aug,. (T, pr, pr; q) = q—maxp{—x(p)+B+r(p)} Z(q _ 1)—x(p)+qu(p) (3.2.0.5)
P

where p runs over all m-graded normal rulings such that p|r, = pr, plr, = Pr-

Corollary 3.2.6 (Invariance of augmentation numbers). In the setting of the previous lemma
with B fized, then the augmentation numbers aug, (T, pr, pr;q) are Legendrian isotopy in-
variants.

Proof. Given a Legendrian isotopy h : T — T", by Lemma[2.1.9) there’s a canonical bijection
én : NRJ = NRJ between the sets of m-graded normal rulings of T, 7', which commutes
with the restriction to left and right pieces, and x(¢n(p)) = x(p) for any m-graded normal
ruling of 7. Moreover, by Remark [2.1.12] there’s a constant C, which only depend on 7" and
h, such that r(¢n(p)) = r(p) + C,.. Apply the previous lemma, we get

dimAug,, (T, pr, pri k) = max,{—x(u(p)) + B +r(¢dn(p))}
= max,{—x(p) + B+r(p)}+C.
= dimAug,,(T, pr, pr; k) + C,

where p runs over all m-graded normal rulings of T" such that p|r, = pr, p|7, = pr, and

aug,, (T", pr, pr;q) =

q_dimAUgm(Tpr7PR§k)_Cr Z(q _ 1)—X(¢h(p))+qu(¢h(p))

p
_ q—dimAugm(T,pL,pR;k)—Cr Z(q _ 1)—x(p)+BqT(p)+Cr

p
= augm(Ta PLs PR; Q)

where p runs as above. O



CHAPTER 3. POINTS-COUNTING OF AUGMENTATION VARIETIES 39

Ruling polynomials compute augmentation numbers

Theorem 3.2.7. Let T be a Legendrian tangle equipped with a Z./2r-valued Maslov potential
W oand B base points so that each connected component containing a right cusp has at least
one base point. Fix a nonnegative integer m dividing 2r and m-graded normal rulings pr, pr
of Ty, Tg respectively, then the augmentation numbers and Ruling polynomials of (T, ) are
related by

aug, (T, pr, pr;q) = 4~ 7 27 < pu| R (2)|pr > (3.2.0.6)

where q is the order of a finite field F,, z = q% — q’%, d is the mazximal degree in z of
< pr|Ry(2)lpR >.

Proof. Firstly, we prove the theorem when each right cusp is marked in T'. We need the
following direct generalization of |15, lem.3.5]

Lemma 3.2.8. Let (T, p) be any Legendrian tangle and fix m-graded normal rulings pr, pr
of Ty, Tr respectively. Let p and p' be any two m-graded normal rulings of T which restricts
to pr, (resp. pr) on Ty, (resp. Tg), then

—x(p) +2r(p) = —x(p') +2r(p)

Note: Unlike [15, lem.3.5], we do not assume T' to have nearly plat front diagram. We
will postpone the proof of the lemma until the end of this subsection.

Assuming Lemma , we prove Theorem . Fix po such that dimAug, (T, pr, pr) =
—x(po) + B + r(pp). It follows from lemma that —x(po) is also maximal, hence d =
—x(po) = max.deg, < pr|R}(z)|pr >. For any m-graded normal ruling p, Lemma
implies that r(p) —r(po) = 3(d + x(p)). Plug this into equation (3.2.0.5), we obtain

augm(T, pr, priq) = q ETE YT (g — 1) X0HBgre)
= q‘T S, (g2 —q ) X0
— g 27 < pr|R7(2)|pr >

1

where z = q% — ¢ 2 and p runs over all m-graded normal rulings of T such that p|y, =

pL: Pl = Pr-
In general, the theorem reduces to the previous case via Lemma below. O

Lemma 3.2.9 (Dependence on the base points of augmentation numbers). As in the previous
theorem, let (T, 1) be a Legendrian tangle with B base points *1, ..., *p so that each connected
component containing a right cusp has at least one base point. Fiz m-graded normal rulings
oL, Pr of Tr, Tr respectively, then the normalized augmentation number

d+B B

N.aug,, (T, pr, priq) == q 2 z ~aug,, (T, pr, pr; q)

1s independent of the number and positions of the base points on T.
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Proof. To express the explicit dependence on the base points, we write aug,, (T, pr, pr;q) =
aug,,, (T, %1, ..., x5, pr, pr; q) and N.aug,,(T, pr, pr; ¢) = N.aug,, (T, *1, ..., *p, pr, Pr; q)-

Firstly, we show that the (normalized) augmentation number is independent of the po-
sitions of the base points in each connected component of T'. It suffices to show that: Let
(%1,...,%p) and (%], ...,%3) be 2 collections of base points on 7', which are identical ex-
cept that for some i, when «; is the result of sliding *; across a crossing of Res(T"). Then
aug,, (T, *1,...,%p, pr, pr; q) = aug,, (T, %\, ..., %5, pr, pr; q). Notice that a base point on a
right cusp corresponds to a base point on the boundary of the “invisible” disk after resolution.

Suppose *;, x; lie on the opposite sides of a in Res(T") and the orientation of T' goes
from *; to %, where a is a crossing or right cusp of 7. We firstly assume the strand
containing #;, *; is the over-strand at a of Res(T'). If u is an admissible disk as in Defi-
nition with an initial vertex at a, and w(u),w’(u) are the weights of u in the DGAs
(A(T, *1,...,%5),0), (A(T,*,,...,*%),d) respectively. Then w(u) = t; 'w'(u),i.e. d'(t;'a) =
Oa. If u is an admissible disk with at least one negative vertex at a, then w’(u) is the result
of replacing each a by ¢;'a in w(u). In other words, we have an isomorphism of Z/2r-
graded DGAs ¢ : A(T,*y,...,%p) — A(T,*,,...,*%) given by é(a) = t;'a,¢(a') =
for all generators o' # a, and ¢(t;) = t;. It follows that ¢ induces an isomorphism
¢ i Aug,, (T, %, ..., %5, €5, pr; k) = Aug,, (T, *1,...,%p,€,,, pr; k) defined by ¢*e’ = € o ¢.
Notice that ¢’ only changes the values of augmentations at a, the boundary condition
(€p,,pr) is indeed preserved by ¢*. Now, by definition aug,,(T,*1,...,%*s,pr,Pr;q) =
aug,, (T, %, ..., %5, pL, PR; q)-

If the strand containing x*;, *; is the under-strand at a of Res(T'). A similar argument
shows that ¢ : A(T,*y,...,*%5) — A(T,*),...,*%), given by ¢(a) = at;, ¢(a’) = a’ for a’ # a
and ¢(t;) = t;, defines an isomorphism of Z/2r-graded DGAs. Again, the desired equality
follows as in the previous case.

Secondly, we show that the normalized augmentation number is independent of the
number of base points on T. By the first half of the result proved above, it suffices to
show that: Let *;,...,%p,%py; a collection of base points on T such that xg,*p,; lie
in a small neighborhood of T avoiding the crossings, cusps and other base points, then

N'augm(Ta *1,- -3 %B, PL, PR; Q) = N'augm<T? *1,-- -3 %B, *B4+1, PLy PR; q)7 or equivalently,

q—1)

aug,, (T, *1,...,%B41,PL, PR} q) = aug,, (T, *1,...,%B, pL, PR; Q) (3.2.0.7)

In this case, there’s a natural morphism of Z/2r-graded DGAs ¢ : A(T,*q,...,*5) —
A(T,*q,...,%p41) given by ¢(a) = a for all generators a, ¢(t;) = t; for i < B and
é(tp) = tptpy1. Indeed, we obtain an isomorphism of DGAs ® : A(T, *y,...,*p)[t,t7}] =
A(T,%1,...,%p11) given by ®(a) = a,¢(t;) = t;,i < B, ®(tg) = tptpr1 and O(t) = tpi1.
Hence, we obtain an induced isomorphism

O Aug,, (T, %1, ..., %511, €pp, PR; ) = Aug,, (T, %1, ..., %p, €5y, pr; k) X k*
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given by ®* := ¢* X eg.1, with ¢*e(a) = €(a) for all generators a, ¢*e(t;) = €(t;) for i < B
and ¢*e(tp) = €(tp)e(tp+1), and egi1(€) = €(tpy1). By definition of augmentation numbers,
it then follows that the equality (3.2.0.7)) holds. n

Now, let’s prove Lemma[3.2.8 For any m-graded normal ruling p of (T, 1), define 1'(p) to
be the number of m-graded returns of p. It suffices to show —x(p)+27"(p) = —x(p") + 27 ()

for any p, p' as in Lemma [3.2.§ However, —x(p) = s(p) — cg implies
=X(p) +2r'(p) = (s(p) +7"(p) +d(p)) = cr +7'(p) — d(p)
= 1 —cr+7'(p) = d(p)

where 7, is the number of crossings of the front T" of degree 0 modulo m. Hence, Lemma
is a consequence of the following

Proposition 3.2.10. Let (T, 1) be any Legendrian tangle and fix m-graded normal rulings
pr,pr of Tr,Tr respectively. Then for any m-graded normal ruling p such that p|y, =
o1l = prs 7/ (p) — d(p) is independent of p.

Before the proof, let’s firstly make some definitions. For any m-graded isomorphism type
(Definition p of a trivial Legendrian tangle E of n parallel strands. So p determines
a partition I/ = U U L U H and a bijection p : U = L, where I = [(E) = {1,2,...,n}
is the set of left endpoints of E. Notice that H = () when p is a m-graded normal ruling
(Remark [3.1.7). For each i in H, we take p(i) := oco. Now, we define the subsets I(i),i € 1,
A(i) = Ay(i),i € UU H of I, and an index A(p), depending on p as follows:

Definition 3.2.11. For any i € I, define
1) = {j € 1 > i, ulj) = (i) (modm)}.
Note: I(i) is independent of p. Now for any i € U U H, define
) = Ay(i) == {j € UL H|j € 1() and p(j) < p(i)}.

Note: for any j € A(i), have p(j) < p(i) < oo, hence we necessarily have j € U. Now,
define A(p) € N by

Alp) =Y [ADI+ Y1)

iCUUH icL
See Corollary[3.3.§ for an interpretation of A(p).

With the definition above, we can now prove the proposition.
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Proof of Proposition [3.2.10, Assume T lives over the interval [z, 21]. Let p be any m-graded
normal ruling of 7" such that p|r, = pr, p|lr, = pr. For each z in [z, 1] avoiding the crossings
and cusps of T', define A(x) := A(p|(z}). In particular, A(zy) = A(pr) and A(x1) = A(pr).

Observe that, as x increases, A(z) increases (resp. decreases) by 1 when passing an m-
graded return (resp. m-graded departure) of p and is unchanged when passing a crossing
of all other types. When passing a right cusp ¢, let x., z., be the z-coordinate immediately
before and after q. Suppose p. := plg—s, and p) := pl,—,; determine the partitions I, =
I(T|y=z.) = U, U L, and I} = I(T'|,=2) = U, L, respectively. Suppose ¢ connects strands
kk+1 of T|,—y., then k € U,k +1 € L., p.(k) = k+ 1 and A, (k) = 0. Denote
I¢ = {i € I(T)y=z.)|pp(i) = a(modm)}, Us := {i € Uu(i) = a(modm)} and L¢ := {i €
L. p(i) = a(modm)} for all congruence classes a(modm). Say, pu(k) = a(modm). It follows
that

A(zre) — Alwe) — [Le(k + 1)

= Y 1+ ) 1+ > 1

i€Uc, k€A, (i) i€Le,kel.(i) i€Le, k+1€1.(i)
= > 1+ > 1+ > 1
i€Ug i<k, pe(i)>k+1 ieLg i<k j=pe L ()€U, j<pe(f)=i<k+1
= Y 1+ Y 1
ieUe,i<k ieLo,i<k

= |[ielli<k}|.
Hence,

Alx,) — A(xl) = |iel|i>k+1,u(i) = pulk+1)(modm)}|
i € Lli < ki) = (k) (modm)},

is independent of p. Similarly, when passing a left cusp, A(x) only changes by a constant,
which only depends on (7', 1) near the cusp, not on p.

As a consequence, by moving x from zq to x;, we obtain that A(pr) — A(pr) = A(x1) —
A(zo) = 1"(p) — d(p) + C for some constant C, which depends only on (7', ), not on p. It
follows that 7'(p) — d(p) is independent of p. O

Remark 3.2.12. In [33], we have also considered the concepts of m-graded generalized
normal rulings and m-graded generalized Ruling polynomials for Legendrian tangles. More-
over, the previous main results admit a direct generalization to this setting, and essentially
the same arguments apply. See also |21 for some applications of generalized normal rulings
to the study of Legendrian knots in J*S*.

Example

Example 3.2.13. Consider the Legendrian tangle (T, ) in Example (See Figure[2.1.9
(left)), with no base point. Hence, B = 0. Let’s check Theorem[3.2.7] with our example by a
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direct calculation.

Let bi;,1 < i < j < 4 be the pairs of right end points of T, so A(Tg) is generated by
bij’s with the grading: |bi2| = |big| = |bas| = |bsa| = 0,|bas| = —1, |b1s| = 1. By Ezample
Tr has 2 m-graded normal rulings (pr)1,(pr)2. Let’s firstly determine the orbits
Om((pr)1; k), Om((pr)2; k).  Use the identification in Example given any m-graded
augmentation er for Tg, denote by dg the corresponding differential for C(Tg). Let I :=
{1,2,3,4} be the set of right endpoints of T.

By the proof of Lemmal[3.1.8, dr € O ((pr)1; k) if and only if the partition and bijection
determined by dp is I = U U L and (pg); : U = L, where U = {1,3}, L = {2,4} and
(pr)1(1) = 2,(pr)1(3) = 4. That is, the condition says 1,3 are dg-upper, and (pr)i(i) =
pag (1) = max{pa,(z)|x is i-admissible} for i = 1,3, equivalently, < dgei,es ># 0 and
< dges,eq ># 0. Hence, we have

Om((pr)1; k) = {er € Aug,,(Tr; k)|e(bi12) # 0, €(bss) # 0}.

Similarly, dgr € On((pr)2; k) if and only if 1,2 are dr-upper and (pr)2(i) = pa,(i) =
max{pq, (z)|z is i-admissible} for i = 1,2. For i = 1, the previous condition says <
dger,ea >= 0 (otherwise, pa,(1) = 2, contradiction), < dgres,e3 >= 0 (Otherwise, 2 is
dg-upper and pq,(2) = 3, contradiction), and < dgrey,e3 ># 0; For i = 2, the previous
condition says < dres,eqs ># 0 and < dres, ey >= 0. As a consequence, we have

Om((pr)2; k) = {er € Aug,,(Tr; k)|er(b12), €r(bas), €r(bsa) = 0, €r(b13), €r(bas) # 0}.

Now, let € be any m-graded k-augmentation of T', denote by €y, €g the restriction of € to
Ty, Tk respectively. Let x; = €(a;), and x;; = €(a;;) fori < j. Notice that €(azs) = 0 = €(ai4).
By Ezample [2.2.8, the full augmentation variety for T is:

Aug, (T k) = {(zi, zij)| 23, 214 = 0, Z Doy a0 = 0}

1<k<j

for m # 1 and

Aug,, (T k) = {(wi, 257) [was = 0, > (=11, = 0}

i<k<j
for m = 1. Moreover, the co-restriction vg : A(Tg) — A(T) is given by

a13(1 + agas) + aip(a; + az + ayasas);
bi3) = ai2(1 + ajas) + ajzas;

= ay4; tr(ba3) = 0;
1+ agay)azy — agaay;

1 + azag)asy — (a1 + az + asasaq)az,.
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It follows that

(bi2) = 213(1 + @woxs) + T12(w1 + T3 + T12273);
€r(b13) = z12(1 4 2122) + T13%2;
€r(bia) = 143 €g(b23) = 0;

(boa) = (1 + 2122) T34 — ToTo4;

(b34) =

(1 + 2ox3)wos — (21 + 23 + T12223) T34

With the preparation above, we have the following augmentation variety and augmentation
number (with fized boundary conditions) associated to (T, u), corresponding to each case in

Example(2.1.15:

(1). Notice that for ep, = €(pr)» have 12 = 1 = x34 and x;; = 0 otherwise. Hence, for the

boundary conditions ((pr)1, (pr)1) (see Definition|3.1.10), have

Augm(T7 €pL)1)s (pR)l; k) = {6 € Augm(T; k)|€L = €pr)1> R € OM(<IOR)1; k)}
{(J}Z‘)lgigg - k?3|$1 + T3+ T1X2T3 7é 0}
= K" x kUK x kU (k*)?
where in the decomposition of the last equality, the subvarieties are {x1 = 0,23 # 0}, {x3 =

0,21 # 0} and {x; # 0,23 # 0,21 + x3 + 12223 # 0} respectively. Hence, by Definition
3.1.11] and Example the augmentation number is

augm(T( L)1 (pr)a) = ¢ 22— 1)g + (¢ —1)%)
= ¢ 32+ 2%) = ¢ < (o) RE(2)|(pr)1 >

where z = q2 — ¢ 2 and 3 = d = max.deg, < (pp )| R™(2)|(pr)1 >
(2). For the boundary conditions ((pr)1, (pr)2), have

Aug,, (T, €p,)1), (PR)2; k) = {€ € Aug,, (T k)|er = €)1, €r € Om((pr)2; k) }
= {{(Iz’>1§i§3 - k‘3|$1 + T3 + T1T2T3 = 0, 1 + T1T2 7é 0}
= {(z1,22) € K|l + @12 # 0} = kU (K")?

where in the decomposition of the last equality, the subvarieties are {x; = 0,29 € k} and

{z1 # 0,1 + x129 # 0} respectively. Hence, by Definition |3.1.11] and Example the
augmentation number is:
aug,,,(T, (o)1, (pr)21q) = ¢ (g + (¢ — 1)*)
d
= ¢ '(1+2%) =q72 < (pp)i|BF (2)|(pr)2 >

1

where z = q2 — ¢ 2 and 2 = d = max.deg, < (pp)|RP(2)|(pr)2 >
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(8). Notice that for e, = €(pr)2, have 13 =1 = 194 and x;; = 0 otherwise. Hence, for the
boundary conditions ((pr)2, (pr)1), have

Augm(T7 E(,UL)Q)? (pR)l, k) = {6 e Augm(T, ]{j)|€L — G(PL)Q) €p € Om((pR)l; k)}
= {{(zi)1<i<s € K*|1 + w3 # 0}
B Uk x (k"")2
where in the decomposition of the last equality, the subvarieties are {xy = 0, (x1,23) € k2}

and {xo # 0,1 + xox3 # 0,21 € k} respectively. Hence, by Definition |3.1.11| and Example
the augmentation number is:

aug,, (T, (pr)1, (pr)2: @) = ¢ (¢* + q(qg — 1)*)
= ¢ '1+22) = ¢ < (pr)o| RE()|(pr)1 >

where z = q2 — ¢ 2 and 2 = d = max.deg, < (pr)o| R7(2)|(pr)1 >
(4). For the boundary conditions ((pr)2, (pr)2), have

Aug, (T, €(py)0)s (PR)2; k) = {€ € Aug,,(T; k)ler = €(y)50€r € Om((pr)2; k) }
= {{(xi>1§i§3 € k3’1 + Toxz = 0,1’2 % 0}
= kxEk*

Hence, by Definition|3.1.11] and Example the augmentation number is:

aug,, (T, (pr)2, (pr)2: @) = ¢ q(q — 1)
= ¢ rr=q % < (pr)2| RE(2)|(pR) >

where z = q2 — ¢ 2 and 1 = d = max.deg, < (p1,)2| R7(2)|(pr)2 >
Altogether, the calculation matches with Theorem in each case.

3.3 Augmentation varieties for elementary
Legendrian tangles

The main goal of this section is to show Lemma [3.2.3, More generally, we also obtain a
ruling decomposition (a finer structure) for the augmentation varieties Aug, (T ¢z, pr; k)

(see Theorem [3.3.10)).

The identification between augmentations and A-form MCSs

Let (E, i) be any elementary Legendrian tangle: a single crossing ¢, a left cusp ¢, a (marked
or unmarked) right cusp ¢, or n parallel strands with a single base point ¢. Assume E has
ny, left endpoints and ng right endpoints, and denote pr, == g, , pr := ple,-
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Let € be any m-graded k-augmentation of A(E). Denote €, := €|g, , €r = €|g,, where eg
is induced from € via 1 : A(ER) = A(E). By Example[3.1.3] we can identify ¢, and ep with
some Z/m-graded filtered complexes (C(EL),dr) and (C(FER), dg) respectively. We know dg
is completely determined by dj and the information of € near q. To make this precise, we
firstly introduce the following

Definition 3.3.1. A handleslide is a vertical line segment H,. lying on two strands of (T, j1),
equipped with a coefficient r € k, where (T, 1) is some trivial Legendrian tangle of n parallel
strands. For simplicity, we denote such a handleslide by H,. A handleslide H, is m-graded
if either r = 0 or its end-points belong to 2 strands having the same Maslov potential value
modulo m.

A 7Z/m-graded handleslide H, with coefficient r between strands j < k, is also equivalent
to an Z/m-graded filtered elementary transformation H, : C((H,)r) — C((H,)gr) (closely
related to Morse complex sequences (MCSs) in [15]):

Hie) = { it

ej—rey 1=
Now, by a direct calculation we have

Lemma 3.3.2. Given (E,u) and € as above.

1. If E is a single crossing q between strands k,k + 1. Then there’s an isomorphism
of Z/m-graded (not necessarily filtered) complezes ¢ : (C(Er),dr) — (C(ER),dr)
given by ¢ = s, 0 H, for r = —e(q), where s, : C(Er) = C(ER) is the Z/m-graded
elementary transformation

sk(ei) = Cr+1 1=k

and H, : C(Ey) = C(Ey) is the handleslide between strands k,k + 1 of Er. Note:
< dLek, €1 >= 0=< dRek, €k+1 >

Pictorially, we can represent s by the front diagram E with a crossing between strands
k,k+1, hence @ is represented by the front diagram E with a handleslide of coefficient
r between strands k,k + 1 to the left of q.

2. If E is a left cusp q connecting strands k,k+1 of Er. Then as a Z/m-graded complex,
(C(ER),dr) is a direct sum of (C(EL),dr) and the acyclic complex (Span{eg, exi1},
drer = (—=1)*2Wey 1), via the morphism o : (C(EL),dy) — (C(Eg),dg):

QO(G’L) - €it2 7 Z k

Pictorially, we can simply represent ¢ by the front diagram E.
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3. If E is a right cusp q connecting strands k,k + 1 of Er. Let t be the generator corre-
sponding to the base point in A(FE) if q is marked, and 1 otherwise. Then there’s an
morphism of complexes ¢ : (C(EL),dr) — (C(ER),dr) given by ¢ = p.0Qo H,, where
H, : (C(EL),dr) = (C(EL),d}) is the handleslide with coefficient r = —e(q) between
strands k,k + 1 of Er, Q : (C(EL),d;) — (C(EL),d;)/Span{ey, d} e} is the natural
quotient map, and ¢, : (C(Er),d;)/Span{ex, dyex} = (C(ER),dg) is the isomorphism
defined by

€; 1<k
SDC([@'])_{@_Qz‘>lc+1

Note: < dpey,epr1 >=< dyeg, epi1 >= (—1)PE) (—¢(t)7@D) (see Deﬁmtionfor
o(q)), this ensures that the quotient (C(EL),d;)/Span{e, d;ex} is freely generated by
lei],i # k,k+1 as a k-module.

Pictorially, we can represent @.o Q by the front E (with coefficient €(t)°? attached to
the base point if q is marked), then ¢ is represented by the front E with a handleslide
between strands k,k + 1 of Ey, to the left of q.

4. If E is a single base point q on the strand k. Let X\ := ¢(q) (resp. e(q)™') if the orienta-
tion of the strand k is right moving (resp. left moving). Then there’s an isomorphism
of complexes v : (C(EL),dr) — (C(ER),dg) via

ﬂw_{Aqi—k
Pictorially, we can simply represent ¢ by the front E with the coefficient X attached to
the base point.

Corollary 3.3.3. There’s an isomorphism H,(C(EL),dr) — H.(C(ER),dg) of Z/m-graded
k-modules . In particular, if € is acyclic, then so is €g. By induction, this result then
generalizes to all Legendrian tangles.

Proof. By the previous lemma, the only nontrivial case is when F is a single right cusp,
when we obtain a short exact sequence of Z/m-graded complexes 0 — Span{e,drer} —
(C(EL),dr) — (C(ER),dr) — 0 with the first term acyclic. Pass to the long exact se-
quence of homologies, we then obtain the desired isomorphism from H,((C(Ep),dr)) to
H.(C(Eg), d). 0

Definition 3.3.4. Given any elementary Legendrian tangle (E, i), a m-graded A-form MCS
for E is a triple ((C(EL),dy), e, (C(ER),dgr)), where (C(EL),dr),(C(ERr),dr) are Z/m-
graded filtered complezes, ¢ : (C(EL),dy) — (C(ERr),dr) is a Z/m-graded morphism of
complexes (or equivalently, the diagram ), such that they satisfy the conditions in each case

of Lemma[3.5.9, In particular, (C(ER),dg) is determined by (C(Eyr),dr) and ¢.
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Remark 3.3.5. With the definition above, Lemma[3.3.9 then shows that, there’s an identifi-
cation between the augmentation variety Aug,, (E; k) and the set of m-graded A-form MCSs
MCSA(E; k) for E, for any elementary Legendrian tangle (E, ).

For any Legendrian tangle (T, ), by cutting T into elementary Legendrian tangles, one
can define a m-graded A-form MCS for T as a “composition” of m-graded A-form MCSs
for the elementary parts of T. We can similarly define the set MCSA(T; k) of all m-graded
A-form MCSs for T. The lemma then shows by induction that, there’s an identification
Aug,, (T k) =2 MCSA(T; k).

Handleslide moves

There're some identities involving the elementary transformations (represented by han-
dleslides H,. or crossings s as in Lemma between Z/m-graded complexes. They can be
represented by the local moves (or handleslide moves) of diagrams as in Figure Each
diagram represents a composition of elementary transformations with the maps going from
left to right, and each local move represents an identity between 2 different compositions.

T1 =+ T2 (_»(a) 1 T2 ™1 T2 <—>(b) ) 1 r >< <_>(c) >< r
71 (d) [71 [72 (e) T2] ] (f) T

Figure 3.3.1: Local moves of handleslides in a Legendrian tangle 7" = identities between
different compositions of elementary transformations. The moves shown do not illustrate all
the possibilities.

More precisely, the possible local moves in a Legendrian tangle (7', i) are as follows (see
also |15, Section.6)):

Type 0: (Introduce or remove a trivial handleslide) Introduce or remove a handleslide with
coefficient 0 and endpoints on two strands with the same Maslov potential value modulo
m.

Type 1: (Slide a handleslide past a crossing) Suppose T' contains one single crossing between
strands £ and k£ + 1, and exactly one handleslide h between strands i < j, with
(1,7) # (k,k+1). We may slide h (either left or right) past the crossing such that the
endpoints of & remain on the same strands of T'. See Figure [3.3.1] (¢),(f) for two such
examples.

Type 2: (Interchange the positions of two handleslides) If T' contains exactly two handleslides
hi, hs between strands iy < ji, and i3 < jo, with coefficients 7, ry respectively. If
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j1 # 19 and iy # js, we may interchange the positions of the handleslides, see Figure
3.3.1 (b) for an example; If j; = iy (resp. i; = ja) and hy is to the left of hy, we may
interchange the positions of hj, hy, and introduce a new handleslide between strands
i1, 72 (resp. ig,j1), with coefficient —ryrg (resp. ri73), see Figure (d) (resp. (e)).

Type 3: (Merge two handleslides) Suppose 1" contains exactly two handleslides hq, hy between
the same two strands, with coefficients rq, 79, respectively. We may merge the two
handleslides into one between the same two strands, with coefficient r + ry, see Figure
3.3.1] (a).

Type 4: (Introduce two canceling handleslides) Suppose T' contains no crossings, cusps or han-
dleslides. We may introduce two new handleslides between the same two strands, with
coefficients r, —r, where r € k.

Suppose T' contains no crossings or cusps, recall that as usual the strands of T" are labeled
from top to bottom as 1,2,...,s. Given a handleslide A in T', denote by t; < by the top and
bottom strands of A.

Definition 3.3.6. Given 2 handleslides h, h' in T, we say h < h' if either t, > tp orty, = ty
and by, < by:.
A collection of handleslides V' in T 1is called properly ordered if given any 2 handleslides
h,h in V', with h to the left of h', then h < I'.

Given a collection of handleslides V' in T, define V' to be the collection obtained from
reversing the ordering of the x-coordinates of the handleslides in V.

Assume V is a collection of handleslides in 7" such that either V or V' is properly ordered.
There're 2 additional types of moves involving V', as a composition of Type 0, 2 and 3 moves:

Type 5: (Incorporate a handleslide h into a collection V) Suppose h is a handleslide in T
immediately to the right of V', with coefficient r. We move h into V' via Type 0, 2 and
3 moves to create a new collection V, so that V has the same ordering property as V:
If necessary, use a Type 0 move to introduce a trivial handleslide in V' with endpoints
on the same strands as h, such that V' has the same ordering property as before. In
this way, V' contains a unique handleslide A’ with endpoints on the same strands as h
and say, with coefficient 7’ (' may be 0); Label the handleslides between h and A’ from
right to left by hi, ho, ..., h,. For each 1 < j < n, move h past h; via a Type 2 move,
which possibly creates a new handleslide £’ (See Figure m (d) and (e)); Merge
with the existing handleslides in V' with the same endpoints as h; via Type 2 moves
and one Type 3 move. The ordering property of V' ensures this does not introduce any
new handleslides; After the above moves, h and h’ are next to each other, use a Type
3 move to merge h and h'. The resulting handleslide has coefficient r + 7.

When h is immediately to the left of V', a similar procedure can be used to incorporate
the handleslide & into V' such that the resulting collection V' has the same ordering
property as V.
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Type 6: (Remove a handleslide h from a collection V') Suppose h is a handleslide with coefficient
rin V. Use Type 2 moves, we can remove h from V' with coefficient unchanged, so that
it appears either to the left or right of the remaining handleslides (with possibly new
handleslides, see Figure m (d), (e)), denoted by V; Use Type 2 and Type 3 moves
to reorder and merge handleslides in V' so that V has the same ordering property as

V. The ordering property of V' ensures this can be done without introducing any new
handleslides.

Augmentation varieties for elementary Legendrian tangles
Now, we're able to prove Lemma |3.2.3

Proof of Lemma|3.2.5. The result is trivial if £ is a left cusp, a marked right cusp or 2n
parallel strands with a single base point. Also , if F is a single crossing ¢ and |¢| # 0(modm),
then by definition, x(p) = r(p) = B = 0 and Aug? (E,er; k) = {(er,€(q))|e(q) = 0} is a
single point, the result follows. Now, assume F is a single crossing ¢ between strands k, k+ 1
of B, and |¢| = 0(modm). Since B = 0 and —x(p) = s(p) — cr = s(p), we need to show:
Aug’ (B, ep; k) =2 (k*)*) x k),

Let (C(EL),dr) be the complex corresponding to €y, under the identification in Remark

3.3.5] we have
Augh (E,er; k) = {r € k[(C(ER),dr) == sy o H.((C(EL),dL)) € Om(pr; k)}  (3.3.0.1)

Here r = —¢(q) corresponds to € € Aug? (E, €r; k) and H, is the handleslide (which represents
an elementary transformation) with coefficient r between strands k,k + 1 of F;. Use the
identification above, given any r in Aug? (F,er; k), denote (C(ER),dr) = si o
H,((C(Ep),dy)). For simplicity, we simply write dgr = (s o H,.) - d.

Firstly, we show the lemma in the case when € is a standard augmentation, or equiva-
lently the complex (C(FpL),dy) is standard (See Remark for the definition).

Notice that pr(k) # k+ 1. Let A = {k,k + 1,pr(k),pr(k + 1)}, « = minA, g =
min(A\ {a, pr(a)}). Let a =< dpea, e, (o) >,b =< dres, e,, (3 >. Notice that both a and
b are nonzero, as (C(Ep),dy) is standard with respect to p;, (see Remark [3.1.8). Given any
rin Aug? (E,ep; k), we divide the discussion into several cases:

(1) pr(k) <k <k+1<pr(k+1). If r =0, then dg is standard and ¢ is a m-graded
departure of p.
If r # 0, then H - dp is standard for some composition of m-graded handleslides H (See
Figure (S1)). Notice that any m-graded handleslide represents a m-graded filtra-
tion preserving automorphism of a m-graded filtered complex, which doesn’t change
the isomorphism class, hence the m-graded normal ruling determined by the complex.
It follows that H - dg and dr determines the same m-graded normal ruling of Ej.

Hence, ¢ is a (S1) switch of p (See Figure (S1)).
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(2) (a) po(k+1)<pr(k)<k<k+1or
(b) k<k+1<pp(k+1)<pr(k).

If r = 0, then dg is standard (with respect to pr), and ¢ is a m-graded departure of p.
If r # 0, then H - dg is standard for H = some composition of handleslides (See Figure
(S2) (resp. (S3))). And it follows that ¢ is a (S2) (resp. (S3)) switch in the case
(2a) (resp. (2b)).

(3)

polk+1) <k <k+1< py(k). Then dp is standard and ¢ is a m-graded (R1) return
(See Figure B.3.2] (R1)).

(4) (a) po(k) <k <k+1<po(k+1)or

)k<k‘+1<p0(l€)<po(k+ )

(b
Then dp is standard and ¢ is a m-graded (R2) (resp. (R3)) return in the case (4a)
(resp. (4b)) (See Figure |3.3.2[ (R2) (resp. (R3))).

= e i O B e S
r —r~ ! al,b —bry lar~? a yb rby 1 =1 ta
b, I N T
(S1) (S2) (S3)
a va ai arb ] _alr>=""T"
v 1> , b by ‘a v ay b
v b vb > by a‘rv|

(RD) (R2) (R3)

Figure 3.3.2: The handleslide moves which preserve standard complexes: the crossing is a
switch on the top row and a m-graded return on the bottom row respectively, of the normal
ruling determined by the complexes on the 2 ends. The dashed arrows correspond to the
nonzero coefficients < de;, e; > of the complexes associated to the 2 ends.

As a consequence, via the identification (3.3.0.1)) we obtain that

{rlr =0} 1If ¢ is a m-graded departure of p;
Augl (E,ep; k) = ¢ {r|r #0} 1If ¢ is a switch of p;
{rlr € k} 1If q is a m-graded return of p.

If follows that Aug?, (E,er; k) = (k*)5?) x k™) as desired.

In the general case, by Remark , there exists an unipotent automorphism g of C'(Ep)
such that dy := ' - dy, is standard. We can represent ¢y by a collection of handleslides V/
which is properly ordered. Hence, dg = (sxo H,oV')-dy. Pictorially, the morphism syo H,oV
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is represented by the Legendrian tangle front E, with a handleslide H, to the left of ¢ and
a collection of handleslides V' to the left of H,. Let A’ be the handleslide between strands
k,k+1in V' with coefficient r/, where 7’ = 17(¢p) is a constant depending on ¢y.

Use a type 5 move to incorporate H, into V', to obtain a collection of handleslides V;.
The handleslide h; between strands k, k 4+ 1 in V; has coefficient r +7/. Use a Type 6 move
to remove h; from V) so that it appears to the left of the remaining handleslides, denoted
by V5. Now, V5 contains no handleslides between strands &,k + 1. Hence, we can use Type
2 moves to slide V5 past the crossing ¢ to obtain a collection of handleslides V3 to the right
of ¢. The meaning of the procedure is that sy o H. oV = V30 s, 0 hy as a Z/m-graded
isomorphism from C'(Ep) to C(FEg). Hence, dg = (sx o H,o V') -dy = (V305 0hy) - dy, which
is isomorphic to (s o hy) - dy, where hy = H,.,,s is the handleslide between strands k, k + 1
of Er. It follows that

Aug? (E,ep; k) ={r € k|(sx 0o Hyyv) - do € Op(pr; k) }.

Now, dy is standard, we have reduced the problem to the previous case. More precisely, we
have

{rlr+ 1" =0} If ¢ is a m-graded departure of p;
Augl (E,ep; k) =< {r|r+r"#0} If q is a switch of p; (3.3.0.2)
{r|r+7" €k} If qis a m-graded return of p.

and the desired result follows.
O]

In Remark|3.1.8] it turns out that there’s canonical choice of the unipotent automorphism
$o:

Lemma 3.3.7. Let (T, ) be a trivial Legendrian tangle of n parallel strands, and p be
any m-graded isomorphism type (Definition of (T, ). FEquivalently, given the iso-
morphism class Oy, (p; k) = Aut(C) - d, of Z/m-graded filtered complezes (C' = C(T),d)
over k, determined by the Barannikov normal form d,. There’s a canonical algebraic map
o : Om(p;k) — Aut(C) such that, o(d) is unipotent and po(d)~t - d is standard for all
d € On(p; k). Equivalently, the principal bundle Aut(C) — O, (p; k) = Aut(C) - d, has a
canonical section .

Proof. As in the proof of Lemma [3.1.5, let I = I(T) = {1,2,...,n} be the set of left
endpoints of 7. Then p determines a partition / = U U L LI H and a bijection p : U = L,
where U,L and H are the sets of upper,lower and homological indices in I determined by
the isomorphism class O,,(p; k).

As in Definition [3.2.11] define the subsets I(i),i € I and A(i),i € U U H of 1. Clearly,
for each j € A(i) have A(j) C A(7).
Claim: Given any d in O,,(p; k) and any upper or homological index i in U U H, there
exists a unique i-admissible element in C of the form €] = e; + ZjeA(i) aje;, such that de] is
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p(i)-admissible. When p(i) = oo, de) is oo-admissible means de; = 0. Moreover, €, = e.(d)
depends on d algebraically.

Proof of Claim: We firstly show the existence. By the proof of Lemma [3.1.5] we know:
p(i1) = max{pq(z)|x is i-admissible.} for any ¢« € U LI H. Hence, we can take an i-admissible
element of the form x = e; + 3, a;je;, such that pa(z) = p(i), i.e. dx is p(i)-admissible.

If aj = 0 for all j € I(i) \ A(i), then €, = x is the desired element. Otherwise, for
xo = x above, define j = j(x¢) := min{j|j € 1(i) \ A(i) and a; =< z¢,e; ># 0.}. Then by
definition of A(7), either j € LUH or j € U and p(j) > p(i). If j € LU H, then there exists
an j-admissible element of the form y; = e; + 3,0 ;%€ such that dy; = 0. It follows that
T = To—a;y; is --admissible and dx; is still p(7)-admissible, but j(x1) > j = j(zo). Here, we
define minf) := oco. If j € U and p(j) > p(i), then there exists a j-admissible element of the
form y; = e;+ >, ; xie; such that dy; is p(j)-admissible. It follows again that x1 = zo — a;y;
is i-admissible and dz; is still p(i)-admissible, but j(z;) > j(xo).

If j(z1) = oo, then e, = x; is the desired element in the Claim. Otherwise, replace
by x; and repeat the procedure above. Inductively, for some sufficiently large N, we obtain
in the end an i-admissible element of the form zy = ¢; + > ) 45€; such that dxy is
p(i)-admissible and j(xy) = co. Now, €; = x fulfils the Claim.
uniqueness. We show the uniqueness by induction on |A(i)|. If A(i) = (), then €, = e;,
which is clearly unique. For the inductive procedure, assume the uniqueness holds when
|A(i)| < k, and consider the case when |A(i)| = k. Let €] = e; + >, 4;) aje; be any element
satisfying the Claim Since A( ) € A(i) for all j € A(i), by induction we can rewrite
e, = e; + Zje A b e}, where € is umquely determined by d for all j € A(:). We want to
show the uniqueness of b;’s.

Assume A(i) = {i1 < is < ... < ix} and p(A(d)) = {j1 < j2 < ... < jJgt C L. By
definition of A(7), we know p(i;) < p(i) for all 1 <1 < k. By the conditions of the Claim, d¢]
is p(i)-admissible, hence < dej, e,;,) >= 0 for all 1 <[ < k. That is, the following system of
linear equations for b;’s holds:

jeI(i)

(< ep(ip),de;q >)palbe)g = (= < Cp(iy)> dEi > >)p

Notice that the coefficient matrix (< ey,), de;, >) is similar to (< ¢;,,dej, . (; » >). And by
definition, de’ 7=1ia) is j,-admissible, hence < e]p, de’ o=1(io) >=0ifp < q and <ej,,de 1 >7é
0. That is, the square matrix (< e;,,de/ 7=1ia) >) is lower triangular and 1nvert1ble hence
(< €p(iy), de;, >) is also invertible. It follows that

(bg)g = (< ep(ip)adegq >)pq( < €p(iy); de; > >)p

where by induction e;q’s are uniquely determined by d, hence so is the right hand side. The
uniqueness in the Claim then follows. The previous equation also shows by induction that
e = el(d) depends algebraically on d. O
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On the other hand, for each j € L, so j = p(i) for some i € U. By the Claim, de] = c;e]
for some ¢; # 0 and some j-admissible element of the form €} = e; + >, ;*¢;. The claim
shows that both c¢; and ¢ are also uniquely determined and depend on d algebraically.
Now, define an unipotent isomorphism ¢o(d) of C' by po(d)(e;) = €} for all 1 < i < n. It
follows that ¢o : O, (p; k) — Aut(C) defines a canonical algebraic map. Moreover, for any
d € O,,(p; k) and any i € U, have

(po(d)™" - d)e; = @o(d)™" odogy(d)(e;) = po(d) ™ ode])
= Cp(i)SDO(d)il(e;(i)) = Cp()€p(i)-

Similarly, (po(d)™' - d)e; =0 for i € HU L. So ¢o(d)~" - d is standard.
Finally, for the canonical section of Aut(C') — O,,(p; k), we simply take o(d) := D(d) o
¢o(d), where D(d)(e;) = e} for i € UU H and D(d)(e}) = c;e} for j € L. O

Corollary 3.3.8. Let (T, 1) be a trivial Legendrian tangle of n parallel strands, and p be
any m-graded isomorphism type of (T, ). Then

Oups k) 2= (k)M > kAP
where A(p) is defined as in Definition |3.2.11].

Proof. By the previous lemma, there’s an identification between d € O,,(p; k) and ¢(d),
where ¢ is the canonical section of Aut(C(T)) = O, (p;k) = Aut(C(T)) - d,. But, use
the notations in the proof of Lemma m (see also Definition , the general form
of p(d) is ¢(d) = D(d) o po(d), where po(d)(e;) = €; = € + 3 jcaq) *ij€; for i € UUH
and wo(e;) = e + > iy *ij¢; for i € L. Moreover, D(d)(e;) = ¢ for i € U U H, and
D(d)(e;) = c;e; for i € L and some ¢; € k*. It follows that

7

1%

Om(p; k) {(%;5, i€ UUH,j€ A(i), ori€ L,j€I(i),c,i € L)|c; # 0}

o (k*)\LI w kAP)

by Definition [3.2.11] O

The previous lemma allows us to show a stronger result than Lemma |3.2.3;

Lemma 3.3.9. Let (E,u) be an elementary Legendrian tangle: a single crossing q, a left
cusp q, a marked right cusp q or 2n parallel strands with a single base point x. Let p be
a m-graded normal ruling of E, denote pr = p|g,,pr = IO‘ERD' Then the natural map
P :Aug,, (E, pr, pri k) = Om(pr; k) given by € — €, = €|g, is algebraically a trivial fiber
bundle with fibers isomorphic to (k*)™X+B x ) where B is the number of base points,

x(p) = cr — s(p) (see Definition[2.1.]).

!Notice that p is uniquely determined by pr, pg.
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Proof. As in the proof of Lemma the only nontrivial case is when E contains a single
crossing ¢ and |¢q| = O(modm). In the proof of Lemma for the general case (i.e. for a
general augmentation €, € O,,(pr; k) or the corresponding differential dy for C'(FEy)), the
unipotent automorphism ¢, can be taken to be canonical: ¢y := @g(€r), by lemma m
above. Hence, the constant ' = r/(¢;) in Equation depends algebraically on €7,. Use
the identification in Remark [3.3.5] it follows that

{(e,7)|eL € Opm(pr),r +1'(er) =0} ¢ is a departure;
Aug, (E,pr,pr) = {(er,7)ler € Onlpr),r+r'(er) # 0} ¢ is a switch;
{(er,7)|eL € Om(pr)} q is a return.

with the natural map P given by (e1,r) — €. Here we have ignored the coefficient field k.
Therefore, we obtain an isomorphism

P X R: Aug,,(E, pr, pr; k) = Om(pr; k) x ((K7) X 5 )
where R(ep, ) =7+ 1r'(er). The result then follows. O
As a consequence, we obtain

Theorem 3.3.10. Let (T, p) be any Legendrian tangle, with B base points placed on T so
that each right cusp is marked. Fix m-graded normal rulings pr, pr of Ty, Tr respectively.
Fiz e, € On(pr;k). Then there’s a decomposition of augmentation varieties into disjoint
union of subvarieties

Augm(T’ €L, PR; k) = I—lﬂAugﬁl(Ta €L, PR; k)

(See Definition , where p runs over all m-graded normal rulings of T such that p|7, =
pL; Plry = pr. Moreover,

Augh, (T ep, pr; k) = (k%) XOHE 5 7). (3.3.0.3)

Proof. Use the notations in Definition|3.2.1, 7" = FEjo...oFE, is a composition of n elementary

tangles, and the canonical projection P, : Aug? (T, €r; k) — Augﬁlfn‘l (T,,—1,€1; k) is a base

change of the projection Aug,, (E,, pn_1,Pn; k) = Om(pn_1;k). The latter, by the previous
lemma, is a trivial fiber bundle with fibers isomorphic to (k*)~X(len)+BEN) 5 grielea)  Hence,
so is the projection P, and

Augh (T, 17 k) = Augh™ (T, €0 k) x (k) X2 HEED o frllen)

By induction, the desired result then follows from Lemma [3.2.3 [

Remark 3.3.11. We've defined varieties Aug? (T, pr, pr; k) = Augl (T, pr; k) in Definition
3.2.1. Use Lemma[3.3.9, a similar argument as in the proof above also shows that

Aug,, (T, pr, pr; k) = UpAugy (T, pr, pr; k) (3.3.0.4)
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with

Augl, (T, pr, pri k) = Om(prik) x (kK7) X5 5 o) (3.3.0.5)
o (k*)fx(pHBJrn’L w kr(P)+A(pL)

where ny, = 2n), is the number of left endpoints of T

Remark 3.3.12. By the previous remark, the augmentation variety Aug,, (T, pr, pr; k) clearly
has polynomial-count [14). By N.Katz’s theorem (14, Thm.6.1.2], the counting polynomial
for the points-counting of the variety Aug,, (T, pr,pr;F,) over finite fields, then coincides
with the weight (or E-, or wirtual Poincaré) polynomial of the variety Aug,, (T, pr,pr;C)
over C, which is again essentially computed by the ruling polynomial < pp|R}(2)|pr >. A
similar result holds for Aug, (T, €L, pr; k).

This gives some motivation for studying the mized Hodge structure of the variety in the
next chapter.
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Chapter 4

Towards cohomology of augmentation
varieties

Let (T, i) be an oriented Legendrian tangle. The invariance of LCH DGAs up to homotopy
equivalence, ensures that, given any augmentation variety with fixed boundary conditions
associated to (T, u), the mixed Hodge structure on its compactly supported cohomology,
up to a normalization, is a Legendrian isotopy invariant. In this chapter, generalizing the
points-counting of augmentation varieties in chapter [, we study some more aspects of the
Hodge theory of the augmentation varieties.

4.1 A spectral sequence converging to the mixed
Hodge structure

In this section, associated to the ruling decomposition of the augmentation variety, we derive
a spectral sequence converging to the mixed Hodge structure. As an application, we obtain
some knowledge on the cohomology of the augmentation variety.

As in Section , let (T, 1) be an oriented Legendrian tangle with each right cusp marked,
and T'= FioFEso0... F, is the composition of n elementary Legendrian tangles. Fix m-graded
normal rulings pr, pr of T, Tk respectively. Denote by NR7T (pr, pr) the set of m-graded
normal rulings p of T" such that p|r, = pr, plr, = p&-

For each 1 < i < n — 1, recall that the co-restriction of LCH DGAs induce a restriction
map of augmentation varieties r; : Aug,, (T, pr, pr; k) — Augr ((Ei)r = (Eit1)r; k), where
Augl ((Ei)r = (Eiz1)r; k) is the variety of acyclic augmentations (See Remark of
(Ei)r = (Eit1)r. Take the underlying normal rulings, r; induces the restriction map on the
sets of normal rulings r; : NR7 (pr, pr; k) — NR{E, ., given by ri(p) = p|z,),. Moreover,
the ruling decomposition Augy, ((Ei)gr; k) = U Aug) ((Ei)r; k) = On(7; k) is a stratification
stratified by the B,,((E;)g)-orbits, where 7 runs over the set NR{p, . of all m-graded normal
rulings of (E;)g.
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Definition 4.1.1. Firstly, define a geometric partial order <% on NRZ% via inclusions of
strata: For any 7,7 in NR{g,, ., we say 7" < 7, if Op(7';k) C Oy, O (75 k) in Aug? (Ei)g: k).
Now, deﬁne an algebraic part1al order <4 on NRZ(pr, pr): For any p,p in NR} (pr, pr),

we say p' <A p, if ri(p') <€ ri(p) forall1 <i<n-—1.

Definition 4.1.2. For each m-graded normal ruling p of T, define a closed subvariety
Ap(T3 k) of Aug,, (T pr, pr; k)

AT k) = {e € Aug,,(T, pr, pr; k)| Rr(e) <* p}

Notice that A,(T;k) = Ni'r (Om(ri(p);k’)), so it’s indeed a closed subvariety. It’s also

1,11

clear that A,(T; k) = I_IP/SApAugm(T, k) set-theoretically.

The ruling decomposition induces a finite ruling filtration of Aug, (T, pr, pr; k) by closed
subvarieties:

Definition/Proposition 4.1.3. Define a decomposition NR} (pr, pr) = UE R; by induc-
tion: Let D+1 be the mazimal length of the ascending chains in (NR}”(pL, pr), <?). Let Rp
is the subset of mazimal elements in (NRY (pr, pr), <4). Suppose we’ve defined R;11, ..., Rp,
let R; be the subset of mazimal elements in (NRY (pr, pr) — U2, Ry, <*).

Now, define the closed subvariety A; = Ai(T, pr, pr; k) of Aug,, (T, pr, pr; k) as

A = Uper, Ap(Ts k) (4.1.0.1)
for 0 < i < D. By definition, we obtain a finite filtration:
Aug, (T, pr,pr;k) =Ap D Ap1D...0A4 DA =0 (4.1.0.2)
Moreover, as varieties we have
A; — Aio1 = Uper,Augl (T3 k) (4.1.0.3)
That is, A; — A;_q is the disjoint union of some open subvarieties Augh (T k).

Proof. It suffices to show the last identity. This is clear set-theoretically, it’s enough to show
each Aug? (T k) is an open subvariety of A;—A;_;. We only need to show that, for any p # p’
in R;, have Aug”,(T; k) N Aug?.(T; k) = 0. Otherwise, say, ¢ € Aug?,(T;k) N Aug’,(T; k),
then Rr(e) = p, and e € Aug’, (T; k) C ;7 (On(ri(p); k) for all 1 < i < n — 1. It follows
that 7;(€) € Onm(ri(p); k), hence r;i(p) <& ri(p') for all 1 < i < n — 1, that is, p’ <4 p.
However, p is maximal in NR7(pr, pr) — U2, R}, so p = p/, contradiction. O

Now, the ruling filtration induces a spectral sequence computing the mixed Hodge struc-
ture (Definition/Proposition [4.2.1]) of the augmentation variety Ap = Aug,, (T, pr, pr; C):
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Lemma 4.1.4. Any finite filtration Ap D Ap_1 D ... D Ag D A_1 = 0 by closed subvarieties
induces a spectral sequence converging to the compactly supported cohomology of the variety
Ap, respecting the mized Hodge structureﬂ (MHS):

EPt = HZM(Ap\ Apr) = HZ™(Ap).

Proof. This is a well-known fact to experts. However, we give a complete proof here, due to
a lack of good reference. For each 0 <p < D, let U, = A, — A,_1 and j, : U, — A, be the
open inclusion. Let 4, : A,_; — A, be the closed embedding. We then obtain a short exact
sequence of sheaves on A,:

0= Uphip @, = Q, = (ip)i,'Q, —0 (4.1.0.4)

where Q , is the constant sheaf on A,. Take the hypercohomology with compact support,
— P

we obtain a long exact sequence in the abelian category of mixed Hodge structures (Defini-
tion/Proposition 4.2.1)):

oo HUU) 25 HI(A) 2 HU(A, ) 25 HYWU,) — ... (4.1.0.5)

We can now construct an ezact couple |23, Section 2.2] from the long exact sequences asso-
ciated to the triples (U,, A,, A,_1) as follows: Take

D = ®,,D" D" = HP*1"Y (X, 1); E = ®,,E", EP .= H'T(U,).
Define morphisms of Q-modules i : D — D, j: D — E, and k: E — D as follows: Let

ilprera = By : D = HET(X,) — DM = HEV(X,);
Jlorars =8, : DM = HIYI(X, 1) — EPH = HIPTH(U,);
klgra = oy« BPOTY = HPROPL([) 5 prELatl — prtatl(x

It’s easy to check that we have obtained an exact couple C = {D, E, 1, j, k} of bi-graded
Q-modules

D

N4

such that the bi-degrees of the morphisms are: deg(i) = (—1,1),deg(j) = (0,0), and
deg(k) = (1,0). Recall that, an exact couple C = {D, E,i,j,k} is a diagram of bi-graded

'For simplicity, we will only consider mixed Hodge structures over Q, and the cohomology is understood
as that with rational coefficients.
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Q-modules as above, with i, j, k Q-module homomorphisms, such that, the diagram is ex-
act at each vertex. Also, given any exact couple C = {D, E,1i,j,k}, the derived couple
C'=CW ={D' E' i Kk} of Cis defined as follows: Take

D' =i(D) =ker(j),E' = H(E,d) = Ker(j o k)/Im(j o k), where d = j o k.
and define

i = i’i(D) D — D/;
j D" — E' by j'(i(x)) = j(x) + dE € E' Yz € D;
K. E — D' by K(e + dE) = k(e), Ve € Ker(d).

Notice that C’" is again an exact couple [23, Prop.2.7].

In our case, for each n > 0, let C™ = {D™ EM i) 0 MY — (C("=1)) be the n-th
derived couple of C. Then, by [23, Thm.2.8], the exact couple C induces a spectral sequence
{E,,d,},r = 1,2,..., where E, = EU"Y and d, = j7) o k™ has bi-degree (r,1 — 7). In
particular, £y = EF = E** dy = jok.

To finish the proof of the lemma, we also need to determine E., = E, for r >> 0. By
[23, Prop.2.9], have EP? = ZP4/BP4 where ZP% = k= (Im(i"~ 1) . Dptra-r+l — prila)
BP1 = j(Ker(i" ') : DP1 — pDp=r+hatr=1) Moreover, B2 = N, ZP1/ U, B,

In our case, clearly have EPd = EP? for r >> 0. Moreover, for r >> 0, we see that
it =0:DPt = HPYYA, ) — Drorthaetrel = getatl(A) = () =0, and j = 6, :
Dra = HPHY(A, ) — BPO = HPM(U,), so BYt = Tm(d, : HP1 (A, 1) — HPFI(U,)) =
Ker(a, : H?*9(U,) — H?*9(A,)). On the other hand, for r >> 0, i"~! = [ : DPTra=r+1 =
HPY(A,,,—1 = Ap) — DPtH4 = HPYI(A)) is the natural morphism induced by the inclusion
I, : Ay = Ap, and k = oy, : EP9 = HIM(U,) — DPPH = HPY(Ay). So, ZP = oM (I
HPt9(Ap) — HP'(Ap)). Therefore, we have EPY = o (Im(I}))/Ker(ay) = Im(1}) N
Im(a,) = Im(1})NKer(f3,), where the last 2 equalities follow from the following commutative
diagram with exact rows, in which all the squares are fiber products:

Im(Z¥) N Im((gzp)

0 — Ker(ay) — o} (Im(I7)) Tm (1)
1d Im(ay,)
0— Ker(a,) —= H2*9(U,) - . HEY9(A,) 2 HP¥9(4, )

Let FPHP™(Xp) := Ker(I ). Clearly, the identity of inclusions I, 1 = I, 01, : A, 4 A

IP . . I; D
A, — Ap induces [; | =idyo0ly = 3,0l : HI*(Xp) — HITY(A)) LN HP*4(A,_1). So we
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obtain a filtration H?™4(Xp) = FO > F' > ... D FP > PP+ = for H?™(Xp). Thus, we
obtain the following commutative diagram with exact rows:

[ S D —

J |

0 — Ker(l5) — HI"(Xp) —Im(L}) —0
Jrd I

0— Ker(I*_,) — HP* (X p) —Tm(I*_,) 0

/ J

....... > Fp/FpH R |

By the five lemma, we then have the natural isomorphism EP4 = FP/FPH(HPTI(Xp)).
Thus, the spectral sequence {EP9,d,.} converges to H*t9(Xp), with the first page given by
EY? = HPT(U,) = HPT1(A,\ A,—1). Finally, the compatibility with MHS is automatic, as all
the morphisms in the previous construction, hence in the spectral sequence, are morphisms
in the abelian category of mixed Hodge structures over Q. O]

4.2 Applications

The spectral sequence in the previous subsection allows us to draw some conclusions about
the cohomology of the augmentation variety. We begin with some preliminaries on mixed
Hodge structures, mainly due to Deligne [5, |6]. A general reference is [28]. We only review
the part which is most relevant to us.

Definition /Proposition 4.2.1. (5, 6/ or [28])

1. Let X be a complex algebraic variety, for each j there exists an increasing weight
filtration

0O=W_ ,CWyC...CW,;=H!(X)=H!(X,Q)
and a decreasing Hodge filtration
H(X)C=HX,C)=F">F'>...>F"> F" =0

such that the filtration F' induces a pure Hodge structure of weight | on the complexifi-
cation of the graded pieces Gr}” = W, /W,_1 of the weight filtration: for each 0 < p <,
we have

GI‘YVC = Fi"Grr}/V(C @ Fl-rH1Gr)V".

2. If X is smooth and projective, then H)(X) = H’(X,Q) is a pure Hodge structure of
weight j, with the Hodge filtration F*HI(X,C) = ®p1qejp>iHP(X), induced from the
classical Hodge decomposition H)(X,C) = @py,—; H1(X) = HY(X,QP).
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For example, if X = PY(C), then H*(X) = Q(—1) is the pure Hodge structure of weight
2 on Q, with the Hodge filtration on H*(X,C) = HY(X) = C given by F* = C, F? = 0.
Here Q(—1) is called the (—1)-th Tate twist (of the trivial weight 0 pure Hodge structure
Q). In general, define Q(—m) := (Q(—1))®™ to be the (—m)-th Tate twist, that is, a
pure Hodge structure of weight 2m on Q, with Hodge filtration F™ = C, F™+1 = (.

3. If we replace H)(X,Q) by any finite dimensional vector spaces V' over Q, then
gives a mized Q-Hodge structure (MHS) on V. One standard fact is that, the category
of MHSs form an abelian category [28, Cor.2.5].

4. Gwen any triple (U, X, Z) of complex varieties, with i : Z — X the closed embedding,
and j : U = X — Z — X the open complement, there exists an induced long exact
sequence in the abelian category of MHSSs:

o HI(U)D H(X) DS HN(Z) S HWU) > .

Definition 4.2.2. For any complex algebraic variety X, define the (compactly supported)
mixed Hodge numbers by

RPGI (X)) := dimCGrgGrEjrqu(X)C.
Define the (compactly supported) mixed Hodge polynomial of X by

Ho(X;w,y,t) = Y B9 (X )ayt.

D:q,J

And, the specialization E(X;x,y) := H.(X;z,y,—1) is called the weight polynomial (or
E-polynomial ) of X.

Definition 4.2.3. We say, an complex algebraic variety X is Hodge-Tate type, if hfquv'_: 0
whenever p # q. That is, X is of Hodge-Tate type, if for each j and l, the piece FP N F1 of
Hodge type (p,q) on the pure Hodge structure Gr}¥ H3(X)® vanishes whenever p # q.

c

Now, we come back to the study of augmentation varieties:
Proposition 4.2.4. The MHS on H}(Aug,,(T, pr, pr; C)) is of Hodge-Tate type.

Proof. By the previous subsection, the ruling filtration for Ap = Aug,, (7, pr, pr; C) induces
a spectral sequence EY™? = HPY9(A,\ A, 1) = HPT9(Ap), in the abelian category of mixed
Hodge structures over Q. Moreover, A, \ A,_1 = Uyep,Augh (T;C), where Aug? (T;C) =
Aug? (T, pr, pr; C) =2 (C*)aP) x C**) by Theorem , with a(p) = —x(p)+B+nl,b(p) =
r(p) + A(pr). Hence, By = H} (A, \ Ap—1) = Sper, H; (C*)2) @q HY(C)®*®) is of Hodge-
Tate type (Example . As each E | is a subquotient of £, it follows that E for all
r > 1, in particular, EX = H*(Ap), is also of Hodge-Tate type. ]
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Also, we have:

Proposition 4.2.5. H!(Aug,,(T, pr,pr;C)) = 0 for i < C, where C = C(T,pr, pr) :=

(—x(p)+B+n)+2(r(p)+A(pr)) (Remark[3.3.11) is a constant depending only on T, pr,, pr-
In particular, the cohomology HY(Aug,, (T, pr, pr; C)) vanishes in the lower-half degrees.

Proof. In the proof of Proposition we observe that HY((C*)¥¥) x C¥P) = 0 if x <
a(p) + 2b(p) = C (Example [4.2.7)). Hence, EY! = HP™1(A,\ A,_1) = 0if p+ ¢ < C. It then
follows from the spectral sequence that, EP*9 for all » > 1, in particular, E2F? = HPTI(Ap),
vanishes if p+¢g < C. n

Remark 4.2.6. Notice that, by Theorem |3.5.10, if we instead work with the augmentation
varieties Aug,, (T, e, pr; k), all the previous discussions in this section still apply, possibly
up to a different normalization.

Examples

Example 4.2.7. We begin with some preliminary examples.

1. Take X = C*. For example, take T to be the standard Legendrian unknot with 2 base
points, with one on the right cusp, then X = Aug,, (T;C) = C*. Let Y = PY(C), and
j: X =C* <Y be the open inclusion, with the closed complement i : Z = {0,00} —
Y. From the classical Hodge theory, we know H*(Y) = Q[0] & Q(—1)[—2], where [-]
corresponds to the cohomological degree shifting. That is, HX(Y) is the pure Hodge
structure Q in cohomology degree 0, Q(—1) in cohomology degree 2, and 0 otherwise.
Similarly, H*(Z) = Q*[0]. Now, by Deﬁnition/Pmposz'tion the triple (X,Y, Z)

C
induces a long exact sequence of mized Hodge structures:

0— HY(X) = HY)=Q— H(Z)=Q?
— H{(X) = HNY)=0—= HNZ)=0
= H}(X) = HZ(Y) = Q(~1) = H(Z) =0

Together with the knowledge about the cohomology of X, it implies that H(X) =
Q[—1] ® Q(—1)[—2] as MHSs. Thus, H.(X;z,y,t) =t + xyt>.

2. Similarly, take X = C. We see that H}(X) = Q(=1)[-2]. Thus, H.(X;z,y,t) = zyt>.

3. Now, take X = (C*)*x C°. The Kiinneth formula implies that H}(X) = H}(C*)®*®q
H:(C)*" = (Q[-1] @ Q(—1)[-2]))** ®@q (Q(~1)[-2)*". Thus, Ho(X;z,y,t) = (t +
xyt?)*(zyt?)®. In particular, X is of Hodge- Tate type, and H}(X) vanishes if x < a+2b.

Example 4.2.8. Take (A, ) be the Legendrian right-handed trefoil knot as in Figure
with B(A) = 2 base points placed on the 2 right cusps. Clearly, the rotation number r =
0. As in the figure, denote the generic vertical lines by v = x;,0 < i < 3. Take the
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Legendrian tangle (T, p1) == (A, p)[{zo<a<as}, this is Ezvample[3.2.15, So, T = Ey o Ey o Es is
a composition of 8 elementary Legendrian tangles, where E; = A|z, | <gea,y for 1 < i < 3.
Denote T; = A|jzgczezy = E10... 0 E; for 1 <i < 3. As usual, for each i, label the strands
of T over x = x; from top to bottom by 1,2,...,s;. For simplicity, take m # 1. Recall
[33, Example.2.13] that NRY, = {(pp) = (12)(34), (pr)2 = (13)(24)}, NRZ, = {(pm) —
(12)(34), (pr)2 = (13)(24)}.
Use the notations in Fxample recall that
(1). Aug,, (T, €y, (pr)13 k) = {(2:)71 € K |loy+ a3+ z1m0ms # 0} = K* x kUE* X kU (k*)%.

(2). Aug,, (T, €y ),s (Pr)2: k) = {(i)iy € KP|lay + 25 + miwomy = 0F = {(2))L, € K1 +
T1T9 7& O} =kU (k*)Z

(3). Aug,, (T, €pr)ss (Pr)1;K) = {(20)in) € FP|1 4 wows # 0} = K> Uk x (k*)?.
(4)- Mg, (T, €(op)as (PR)2: k) = {(i)is |1 + oy = 0} = {(2:)i; € kP # 0} =k x k™.

where in each case above, the last equality corresponds to the ruling decomposition. Also,
(x1,x2,x3) corresponds to the augmentation € € Aug, (T;k) defined by e(a;) = x;, and

€, = €y (Tesp. €(py)o) i (1),(2) (resp. (3),(4)).

Figure 4.2.1: (A, u) = the Legendrian right-handed trefoil knot with 2 base points *, %y
at the right cusps ci, ¢y respectively. aq,as,as are the crossings, and the numbers encode
the Maslov potential values on each strand. Moreover, define Legendrian tangles T; :=
A|{x0<x<mi}, 1 S i S 3, and T = T3.

We want to compute the mized Hodge polynomial for each case. Define for each Legen-
drian tangle T;, the augmentation variety Aug,, (15, er; k) := {e € Aug,, (T5; k) : €|y, = €L}
Denote k := C. For each i, denote the pairs of endpoints of T'|(z=z,1 by a;q, 1<p<qg<4
In the computation, we will use the following fact frequently: If Y = A"(k) is an affine
space, j: U =Y 1is an nonempty Zariski open subset, and i : Z =Y —U — Y is the closed
complement. Then HX(Y) = Q(—n)[—2n] as MHSs, and dim;,Z <n—1= H*" 1 (Z)=0=
H2?(Z). Thus, by Definition/Proposition [4.2.1, the triple (U,Y, Z) induces ezact sequences
of MHSs:

0=H(Y)— H(Z) = HU) — HY(Y) =0,i+1 < 2n; (4.2.0.1)
0=H"YZ)— H™U) > H™Y)=Q(-n) - H*(Z) = 0.
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(a). Firstly, consider case (2). Note: Aug,,(T, €, )., (Pr)2; k) = Aug,, (T, €(p,),, (12)(34); k),
where (12)(34) is the m-graded normal ruling of (I5) . It’s direct to see that Aug,,(Ts, €5,y k)
= {(z;), € k*} = k%, Notice that 1 + z129 = €(ai,) for any e € Aug,,(Ts, €y, k), it fol-
lows that j : Aug,,(Ts, €(p,),, (12)(34); k) = {1 + z122 # 0} — Aug,, (15, €(p,),; k) is the open
embedding, and i : Aug,, (T, €(p,),, (13)(24): k) = {14+ 2129 = 0} = kX — Aug,, (T2, €(p.),: F)
18 the closed complement. Hence, implies that

H; (Aug,, (To, €5y, (12)(34); k) = H7H(EX) = (Q[-1] @ Q(—1)[-2])" 7, < 4;
Hél(Augm(TQ’E(PL)N(12>(34) k)) ( 2) :Q<_2)'

Thus,

HZ(Aug,, (T €(p,),: (pr)2; k) = Q[—2] ® Q(—1)[-3] & Q(—2)[—4].

(b). Consider the case (1). Note: Aug,, (T, € k) = {(x:)iy € k*} = k3, and x1 + x5 +
T129x3 = €(ai,) for any € € Aug, (T, €,,), 3 k). So j: Aug,, (T, €, (Pr)1: k) = {&1 + 25 +
r122x3 7# 0} = Aug, (T, €(p,),; k) is the open embedding, and i : Aug,, (T, €., (Pr)2; k) =
{1 + 23 + 212923 = 0} —= Aug,, (T, €(p,),; k) is the closed complement. Hence, (4.2.0.1
implies that

H;(Augm(T, €(pL)1s (pR)13 k)) = H:_l(Augm(T, €lpL)1> (pR)% k))
= (Q[-2] 2 Q(-1)[-3] ® Q(=2)[-4])" ", * < 6;
HS(Augm(T, €pr)1> (pR)l; k)) = HE(Augm(Tv €(pr)1> k)) = Q(_B)'

That 1s,
HE(Aug,, (T, €(p),, (Pr)1; F)) = Q[=3] & Q(—1)[—4] & Q(-2)[-5] & Q(-3)[-6].
(c). Consider the case (4). As Aug, (T, €., (Pr)2; k) = k* X k, by Ezample we

immediately have:

H(Aug,, (T €(pr)o, (pr)2; F)) = Q(=1)[=3] © Q(-2)[—4].

(d). Finally, consider the case (3). Note: Aug,,(T, €y, k) = {(x:)i, € k*} = k3, and
14 xoxs = €(ai,) for any € € Aug,, (T, €y, k). So j: Augm(T €pr)s (PRI ) = {(20)], €
k2|1 + zoxs # 0} — Aug,, (T, €y, ),; k) is an open embedding, i : Aug,, (T, €(,,),, (PR)2; k) =
{14+ 2ow3 = 0} = k* x k — Aug,, (T, €,,),; k) is the closed complement. Hence, (4.2.0.1

implies that

1

H*(Augm( €(pL)2> (pR)la k)) H;™ 1(Augm(T €(pL)2> (:OR)27 k))
= (Q(-D[-3] ® Q(=2)[-4)])" ", * < 6
HG(Augm( €(pr)2> (pR)la k)) HG(Augm(T €(pr)2s k)) = Q(_?’)

||2
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That 1is,

HE(Aug,, (T, €(py)o, (Pr)1; F)) = Q(=1)[—4] © Q(=2)[-5] © Q(-3)[-6].

Note: Aug,, (A k) = Aug,, (T, €,),, (Pr)13 k), s0 we also have H}(Aug,,(A;k)) = Q[—3] @
Q(—1)[—4] & Q(—2)[-5] & Q(—3)[—6]. In particular, the mized Hodge polynomial is given
by H.(Aug,,(A; k);x,y,t) = 3 + qt* + ¢*t° + ¢35, where ¢ = xy. Clearly, B(A) = 2, and
dim = dim Aug,,(A; k) = 3. It follows that,

P(q,t) = (t + qt*) BN (@)~ BN g (Aug,, (As k) 2,9, 1) = (1+ qt)qt

gives the 2-variable invariant generalizing the ruling polynomial.
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