MATH 113, HOMEWORK #13 Due Thursday, December 3

Remember, consult the Homework Guidelines for general instructions. Keep in mind that for us, rings are always required to have a multiplicative identity.

GRADED HOMEWORK:

- 1. In this problem, we will build an algebraic extension of \mathbb{Q} in a couple different ways.
 - (a) Let \mathbb{Q} be our base field. Build the extension $\mathbb{Q}(\sqrt{5},\sqrt{7})$ (i.e. the smallest field containing $\mathbb{Q},\sqrt{5}$, and $\sqrt{7}$) in two steps: first a simple extension to add in $\sqrt{5}$, and then another simple extension to add in $\sqrt{7}$ to the result. Give a basis for the overall extension from \mathbb{Q} to $\mathbb{Q}(\sqrt{5},\sqrt{7})$, as in the proof of Theorem 31.4.
 - (b) Next, find the irreducible polynomial $irr(\sqrt{5} \sqrt{7}, \mathbb{Q})$. Verify that your polynomial is irreducible over \mathbb{Q} . (It will have degree 4, so keep in mind that it won't be sufficient to check for roots you also need to make sure it doesn't factor as a product of two quadratics). Find the obvious basis for $\mathbb{Q}(\sqrt{5} \sqrt{7})$ over \mathbb{Q} .
 - (c) Finally, show that the two extension fields you built in parts (a) and (b) are actually the same by using linear algebra – show that every element in the (a) basis can be written as a Q-linear combination of elements in the (b) basis and vice versa.
- 2. Fraleigh Section 31, #25.
- 3. Fraleigh Section 31, #30

UNGRADED HOMEWORK:

Check out the review handouts on the website.