MATH 113, HOMEWORK #8 Due Thursday, October 22

Remember, consult the Homework Guidelines for general instructions.

GRADED HOMEWORK:

- 1. Determine the isomorphism type of the factor group $\mathbb{Z}_8 \times \mathbb{Z}_6 \times \mathbb{Z}_4 / \langle (2,2,2) \rangle$ and give two proofs one using elementary analysis of the orders of elements, and one using the First Isomorphism Theorem.
- 2. Let $R = M_n(\mathbb{R})$ denote the ring of $n \times n$ matrices with real entries. Determine (with proof) whether each of the following is a subring of R. (Recall that for us, every ring and thus every subring must have a multiplicative identity.)
 - (a) $T = \{A \in R : trace(A) \in \mathbb{Q}\}$
 - (b) $D = \{A \in R : det(A) \in \mathbb{Q}\}.$
 - (c) $L = \{A \in R : A \text{ is lower triangular}\}$
- 3. Let $R = \mathbb{Z}[x]$, the ring of polynomials with coefficients in \mathbb{Z} . The following parts are not related to each other.
 - (a) Let $S = \{p(x) \in R : \text{ every term of } p(x) \text{ has even degree}\}\$ = $\{a_0 + a_2 x^2 + a_4 x^4 + \cdots + a_{2k} x^{2k} : k \in \mathbb{Z}, k \ge 0, \text{ and } a_i \in \mathbb{Z}\}.$ Prove that S is a subring of R.
 - (b) Let $\varphi : R \to \mathbb{Z} \times \mathbb{Z}$ be defined by $p(x) \mapsto (p(0), p(1))$. Show that φ is a ring homomorphism, and find $ker\varphi = \varphi^{-1}[\{(0,0)\}]$. (The kernel of a ring homomorphism will always be the preimage of the *additive* identity.)

UNGRADED HOMEWORK:

Starred problems from this list are classic results you will almost certainly need to use again. Ignore the external direct product business in TF.

Section	Problems
18	$20, 22, 27, 28, 35, 37, 38, 49^*$