
MATH 113, HOMEWORK #8
Due Thursday, October 22

Remember, consult the Homework Guidelines for general instructions.

GRADED HOMEWORK:

1. Determine the isomorphism type of the factor group Z8×Z6×Z4/〈(2, 2, 2)〉 and give two proofs – one
using elementary analysis of the orders of elements, and one using the First Isomorphism Theorem.

2. Let R = Mn(R) denote the ring of n × n matrices with real entries. Determine (with proof) whether
each of the following is a subring of R. (Recall that for us, every ring and thus every subring must
have a multiplicative identity.)

(a) T = {A ∈ R : trace(A) ∈ Q}
(b) D = {A ∈ R : det(A) ∈ Q}.
(c) L = {A ∈ R : A is lower triangular}

3. Let R = Z[x], the ring of polynomials with coefficients in Z. The following parts are not related to
each other.

(a) Let S = {p(x) ∈ R : every term of p(x) has even degree}
= {a0 + a2x

2 + a4x
4 + · · · a2kx2k : k ∈ Z, k ≥ 0, and ai ∈ Z}.

Prove that S is a subring of R.

(b) Let ϕ : R→ Z× Z be defined by p(x) 7→ (p(0), p(1)). Show that ϕ is a ring homomorphism, and
find kerϕ = ϕ−1[{(0, 0)}]. (The kernel of a ring homomorphism will always be the preimage of
the additive identity.)

UNGRADED HOMEWORK:
Starred problems from this list are classic results you will almost certainly need to use again. Ignore the
external direct product business in TF.
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