MATH 113, HOMEWORK #3 Due Thursday, September 10

Remember, consult the Homework Guidelines for general instructions.

GRADED HOMEWORK:

Note: Starting with this HW, feel free to stop writing the * for arbitrary/unknown binary operations. (But definitely leave in +/- if your operation is addition, of course.) You can just write ab in place of a * b and a^n for $a * \cdots * a$ (*n* copies).

- 1. Let $G = \langle \mathbb{R}^3, + \rangle$, the group of real 3-tuples with componentwise addition.
 - (a) What geometric object is the set

$$H = \{(x, y, z) \in \mathbb{R}^3 : 3(x - 1) + 2(y + 5) - (z + 1) = 6\}?$$

Prove that H is a subgroup of G.

- (b) The cyclic subgroup generated by (0,0,0) is the trivial subgroup of G, but other cyclic subgroups are more interesting. Let K be the cyclic subgroup generated by a nonidentity element (a, b, c). Give algebraic and geometric descriptions of K.
- (c) Let L be the line through the origin and the point (2, 3, 5). Is L a subgroup of G? If so, is it a cyclic subgroup of G? (It is easiest to check if you come up with an algebraic description of L.) Be sure to justify your answers.
- 2. Let $G = GL(3, \mathbb{R})$, the group of 3×3 invertible matrices under multiplication.
 - (a) Let L be the set of lower triangular real 3×3 matrices with ones on the diagonal, i.e.

$$L = \left\{ \left[\begin{array}{rrr} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{array} \right] : a, b, c \in \mathbb{R} \right\}.$$

Prove that L is a subgroup of G.

- (b) Note that G is not abelian, but it does have abelian subgroups, such as the trivial subgroup $\{I_3\}$. Find two nontrivial abelian subgroups H and K of G which are not isomorphic to each other. Justify all parts (subgroup, abelian, not isomorphic to each other).
- 3. Mini proofs these should be short, but be sure to write them well! Let the function $\phi : G \to H$, where G and H are groups, be a group homomorphism, i.e. $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. (This is the same definition we had for binary structures, except we know the domain and codomain are both groups, and the equation has the stars dropped.)
 - (a) Prove that if a and b are inverses of each other in G, then $\phi(a)$ and $\phi(b)$ are inverses of each other in H. Conclude that if an element x is its own inverse in G, then $\phi(x)$ is its own inverse in H.
 - (b) If G is abelian, prove that $\phi(g_2)\phi(g_1) = \phi(g_1)\phi(g_2)$ for all $g_1, g_2 \in G$. Does this prove that H is also abelian? Why or why not?

UNGRADED HOMEWORK:

Note: Starred problems from this list are classic results you will almost certainly need to use again.

Section	Problems
4	20, 32, 33, 41
5	20, 28, 30, 31, 34, 36,
	$39, 41^*, 43, 51, 54^*$