MATH 113, HOMEWORK #2 Due Thursday, September 3

Remember, consult the Homework Guidelines for general instructions.

GRADED HOMEWORK:

- 1. Let V denote the set of vectors $\langle x, y, z \rangle$ in \mathbb{R}^3 , with the operations of addition and subtraction. (Though vectors also have scalar multiplication, you can ignore that for this problem.) Consider the relation
 - $\langle x_1, y_1, z_1 \rangle \sim \langle x_2, y_2, z_2 \rangle$ if and only if $x_1 x_2 = y_1 y_2 + k = z_1 z_2 + 2k$ for some $k \in \mathbb{R}$.
 - (a) Show that \sim is an equivalence relation on V.
 - (b) Describe the equivalence classes of ~, giving a complete list. (Note: there are infinitely many equivalence classes, so you will need set-building notation or something similar.) Your explanation should make it clear that each vector of V belongs to **exactly** one equivalence class from your list; or in other words, your alleged equivalence classes do indeed partition V. Can you give both algebraic and geometric descriptions of the equivalence classes?
- 2. Use polar/exponential form for complex numbers in this problem $(re^{i\theta}$ form).
 - (a) Write out the binary operation tables for $\mathbb{Z}_6 = \langle \mathbb{Z}_6, +_6 \rangle$ and $U_6 = \langle U_6, \cdot \rangle$. Order the rows and columns in a sensible way.
 - (b) Prove that the map $f : \mathbb{Z}_6 \to U_6$ given by $k \mapsto \left(e^{\frac{2\pi}{6}i}\right)^k$ is an isomorphism of binary structures.
 - (c) Find a different isomorphism of binary structures, $g : \mathbb{Z}_6 \to U_6$, and prove your answer is an isomorphism.
- 3. Let $\phi : \mathbb{Z} \to \mathbb{Z}$ be defined by $\phi(n) = n 3$ for all $n \in \mathbb{Z}$. For each part below, construct a binary relation * (and note * may be different in each part) so that ϕ is an isomorphism of binary structures. Justify your answers. Note: it is a trivial exercise to check that ϕ is 1 1 and onto; you may assume this is true and just verify the homomorphism property in each case.
 - (a) $\phi : \langle \mathbb{Z}, * \rangle \to \langle \mathbb{Z}, + \rangle$ (b) $\phi : \langle \mathbb{Z}, + \rangle \to \langle \mathbb{Z}, * \rangle$ (c) $\phi : \langle \mathbb{Z}, * \rangle \to \langle \mathbb{Z}, \cdot \rangle$
 - (d) $\phi : \langle \mathbb{Z}, \cdot \rangle \to \langle \mathbb{Z}, * \rangle$

UNGRADED HOMEWORK:

Section	Problems
0	28, 36
1	35, 36, 37
2	24, 29, 30, 31, 32, 33, 34
3	11, 12, 13, 14, 15, 29, 33