
MATH 104, HOMEWORK #11
Due Thursday, April 21

Remember, consult the Homework Guidelines for general instructions. Results from class, our
textbook, and graded homework are fair game to use unless otherwise specified. You may also use
ungraded homework results from previous problem sets.

GRADED HOMEWORK:

1. Ross, Exercise 29.13 and 29.14. Prove that if f and g are differentiable on R, if f(0) = g(0),
and if f ′(x) ≤ g′(x) for all x ∈ R, then f(x) ≤ g(x) for x > 0. Conclude that if f is
differentiable on R, 1 ≤ f ′(x) ≤ 2 for x ∈ R, and f(0) = 0, then x ≤ f(x) ≤ 2x for all x > 0.

Solution. (13) By way of contradiction, assume that there exists some b > 0 with f(b) > g(b).
Define h(x) = g(x) − f(x) for all x ∈ R. Notice our assumption implies h(b) < 0, and we
also have h(0) = g(0)− f(0) = 0. Since h is a difference of differentiable functions, it is also
differentiable on R. In particular, it is continuous on the closed interval [0, b] and differentiable
on the open interval (0, b). Thus the Mean Value Theorem (for continuous functions) implies
that there exists some number c in the interval (0, b) such that

h′(c) =
h(b)− h(0)

b− 0
=
h(b)

b
< 0.

However, by our derivative shortcuts, h′(x) = g′(x) − f ′(x) ≥ 0 for all x ∈ R, so we have
arrived at a contradiction.

(14) Let d(x) = x and g(x) = 2x. Since d′(x) = 1 and g′(x) = 2 for all x ∈ R and
d(0) = f(0) = g(0), we may simply apply the result above for the pair d and f and the pair
f and g, yielding x ≤ f(x) ≤ 2x.

Notes. This is about the level/length of an easy-medium proof on the final.

2. Ross, Exercise 29.18. Let f be differentiable on R with a = sup{|f ′(x)| : x ∈ R} < 1. Select
s0 ∈ R, and set sn = f(sn−1) for n ≥ 1. Prove that (sn) converges and f has a fixed point.

Solution. (a) First, let’s show that (sn) converges to 0. Following the book’s hint, we will
first show that |sn+1 − sn| ≤ a|sn − sn−1| for n ≥ 1. First of all, if there exists N such
that sN − sN−1, i.e. f(sN−1) = sN−1, then sN+1 = f(sN ) = f(sN−1) = sN , and actually
sm = sN for all m > N and lim sn = sN , since our sequence is eventually constant. Otherwise
sn − sn−1 6= 0 for all n. Then

|sn+1 − sn|
|sn − sn−1|

=
|f(sn)− f(sn−1)|
|sn − sn−1|

.

Since sn 6= sn−1, one of (sn, sn−1) and (sn−1, sn) is a valid open interval I. Note f is
differentiable on I and defined on the closure of I (i.e. I ∪ {sn} ∪ {sn−1}), so we may apply
the Mean Value Theorem. Thus for any n, there exists xn with

f ′(xn) =
sn+1 − sn
sn − sn−1

.
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Then
|sn+1 − sn|
|sn − sn−1|

= |f ′(xn)| ≤ a,

or |sn+1 − sn| ≤ a|sn − sn−1| for n ≥ 1. Applying this recursively, we see that
|sn − sn−1| ≤ an−1|s1 − s0|. Using this fact along with the triangle inequality yields, for
m > n,

|sm − sn| ≤ |sm − sm−1|+ |sm−1 − sm−2|+ · · ·+ |sn+1 − sn|
≤ (am−1 + am−2 + · · ·+ an)|s1 − s0|

≤ an

1− a
|s1 − s0|

Finally we can show (sn) is a Cauchy sequence. Let ε > 0 and take N loga[
(1−a)ε
|s1−s0| ]. Let

n > N . Since we have our base satisfying 0 < a < 1, this implies an < aN = (1−a)ε
|s1−s0| . Thus,

for m > n > N , we have

|sm − sn| ≤
an

1− a
|s1 − s0| <

(1−a)ε
|s1−s0|

(1− a)
|s1 − s0| = ε.

Thus (sn) is a Cauchy sequence and therefore convergent.

(b) Let L = limn→∞ sn, where L ∈ R by part (a). Consider the sequence f(sn), which is
precisely the sequence (sn+1). Thus lim f(sn) = lim sn+1 = lim sn = L. Since f is continuous
on R, lim sn = L implies lim f(sn) = f(L). Thus we have L = f(L), since limits are unique
when they exist, and f has a fixed point.

Notes. Part (b) is rather slick here, but the whole problem nicely ties together many topics
we have discussed.

3. Ross, Exercise 32.6. Let f be a bounded function on [a, b]. Suppose there exist sequences
(Un) and (Ln) of upper and lower Darboux sums such that lim(Un − Ln) = 0. Show that f

is integrable and
∫ b
a f = limUn = limLn.

Solution. Notice that in our Darboux sums Un and Ln, the function is the same throughout,
so all that is changing is our partition of [a, b]. Let Un = U(f, Pn) and Ln = L(f,Qn) for all
n, where Pn and Qn are the appropriate partitions of [a, b]. To show f is integrable, we will
show that for each ε > 0 there exists a partition R for which U(f,R)− L(f,R) < ε.

Let ε > 0. Since lim(Un − Ln) = 0, there exists an integer N such that n > N implies
Un − Ln < ε. In particular this holds for N + 1. Take R to be the partition PN+1 ∪ QN+1.
Then U(f,R) ≤ U(f, PN+1) = UN+1 since R refines PN+1. Similarly,
L(f,R) ≥ L(f,QN+1) = LN+1, or equivalently, −L(f,R) ≤ −L(f,QN+1) = −LN+1. Thus
U(f,R)− L(f,R) ≤ UN+1 − LN+1 < ε, so f is integrable.

Rearranging the inequality Ln ≤ L(f) =
∫ b
a f = U(f) ≤ Un, we see that 0 ≤ (

∫ b
a f) − Ln ≤

Un −Ln. Since n > N implies Un −Ln < ε, we have |(
∫ b
a f)−Ln| < ε, which is exactly what

we need to show that limLn =
∫ b
a f . The proof that limUn =

∫ b
a f is similar.
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Notes. Note that for a given n, you cannot assume that Un and Ln are using the same
partition, which is why we had to take the union. Also note that we cannot separate lim(Un−
Ln) into limUn − limLn unless we know these limits exist.

UNGRADED HOMEWORK:

Pay special attention to starred problems; they are usually classics we will use many times, often impor-
tant theorems hidden in the exercises.

Section Exercises

29 1, 2, 3, 4, 7*, 8, 9, 10, 11, 12, 17

30 1, 2, 3

32 1, 2, 3, 4*, 5*, 8*


