
MATH 104, HOMEWORK #7
Due Thursday, March 10

Remember, consult the Homework Guidelines for general instructions. Results from class, our
textbook, and graded homework are fair game to use unless otherwise specified. You may also use
ungraded homework results from previous problem sets.

GRADED HOMEWORK:

1. (a) Ross, Exercise 18.10.

(b) For which k with 0 < k < 2 must there exist x, y ∈ [0, 2] so that |y − x| = k and
f(x) = f(y)? Justify your answer.

Solution. (a) Suppose f(x) is continuous on the closed interval [0, 2] and f(0) = f(2). Note
that f(x+ 1) is defined on [−1, 1] (as it is simply a translation of f(x)), and it is continuous
on that interval. Define g(x) = f(x + 1) − f(x), and note that g is defined on the closed
interval [0, 1], and since it is the difference of continuous functions defined on that domain, it
is continuous as well. Observe that g(0) = f(1)− f(0) and g(1) = f(2)− f(1) = f(0)− f(1),
so g(0) = −g(1). We now consider two cases. If g(0) = 0, then f(1) = f(0), and we have
found two inputs x = 0 and y = 1 satisfying |x − y| = 1 and f(x) = f(y). Otherwise,
one of g(0) and g(1) is positive and the other is negative. Applying the Intermediate Value
Theorem, we see there must exist a value a ∈ (0, 1) with g(a) = 0. In this case, we then have
0 = g(a) = f(a+ 1)− f(a), so f(a) = f(a+ 1). Thus we can take x = a and y = a+ 1 (note
both are in the interval [0, 2]) satisfying |x− y| = 1 and f(x) = f(y).

(b) Claim: if k > 1, no such points are guaranteed. For a counterexample, take any continu-
ous function with f(0) = f(1) = f(2) which is strictly negative on (0, 1) and strictly positive
on (1, 2). Then any x, y with f(x) = f(y 6 = 0 will lie entirely in (0, 1) or entirely in (1, 2).

It seems like the result might hold for any k < 1, but it is rather tough to prove and definitely
not even obviously true. A reasonable partial answer might go as follows: We can at least get
an infinite set of small k values as follows. It is easy to see that the proof in part (a) can be
generalized – if f(x1) = f(y1) and |x1−y1| = d, the same technique can be used to show that
there exist points x2 and y2 with f(x2) = f(y2) and |x2 − y2| = d

2 . Repeating as necessary,
we can show that the result holds for any k = 1

2n .

You can show that more rational numbers k < 1 work as follows. Suppose k = 2
n for some

integer n ≥ 1. Take g(x) = f(x + k) − f(x), which will be defined on the interval [0, 2 − k].
Then consider g(0) = f(k) − f(0), g(k) = f(2k) − f(k), g(2k) = f(3k) − f(2k), etc. up to
g(2− k) = f(2)− f(2− k). Note that these sum to f(2)− f(0) = 0. Thus, you can convince
yourself that you must have g = 0 at one of these points, in which case you immediately have
a pair that works, or you have an adjacent pair with g > 0 for one and g < 0 for the other,
in which case you can apply the Intermediate Value Theorem as before to guarantee a spot
for which g = 0.
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Notes. Make sure you get part (a) on this one, as well as how to generalize it to k = 1
2n . The

rest is mostly an exploration problem to help you practice examining your proofs to see if
they generalize, possibly with a few modifications. I’m not sure if we have the right tools to
give a complete proof yet, but if you discovered one, excellent!

Update: Some very clever students were able to show that actually these are all the k-values
that work, so it looks like the fractions k = 2

n with n ∈ Z+ are all we have. (This is not quite
what I expected to happen!)

2. (a) Complete Ross, Exercise 19.4.

(b) What are the pros and cons of the three proofs that f(x) = 1
x2

is not uniformly contin-
uous? (The three proofs being the one you just wrote, plus Example 3 and Example 6
in Section 19.)

Solution. (a) We will prove 19.4 by contradiction. Assume f is uniformly continuous on a
bounded set S, but f is not bounded on S. Since f is not bounded on S, given any M > 0,
there exists some x ∈ S such that |f(x)| > M (otherwise ±M would be bounds for f).
With this in mind, construct a sequence of elements in S: for each n ∈ N , choose some
xn ∈ S such that |f(xn)| > M . Since each term of the sequence (xn) is in S, our sequence is
bounded, and thus by Bolzano-Weirstrass, it has a convergent subsequence (xnk

). As conver-
gent subsequences are always Cauchy, we see that (xnk

) is a Cauchy sequence. Since uniformly
continuous functions map Cauchy sequences to Cauchy sequences, we see that (f(xnk

)) must
be a Cauchy sequence of real numbers and must therefore converge to some real number, i.e.
lim
k→∞

f(xnk
) = L ∈ R. However, this is incompatible with the fact that |f(xnk

)| > nk for all

k ∈ N, which implies lim
k→∞

|f(xnk
)| =∞.

(b) Since 1
x2

is unbounded on the interval (0, 1), we see that it cannot possibly be uniformly
continuous, by the contrapositive of the result in (a).

Notes. We have essentially done this proof several times now with slightly different assump-
tions in the last few sections; you should have a good sense of how it goes. Only parts (a) and
(b) from the textbook were graded. The pros/cons portion was to get you thinking about
efficiency, since we have a good handful of ways to deal with uniform continuity, and you want
to have a good sense for which method to pick when it’s up to you on an exam. You should
have noted that the Example 3 proof was very technical but relied only on definitions (and
experience with δ − ε proofs), while the proofs in Example 6 and part (b) above were very
quick once we had a couple easily stated results. (When you are lucky, the more machinery
you have at your disposal, the shorter your proofs can get.)

3. Complete Ross, Exercise 19.1. (Only a few of these will be carefully graded, but you won’t
know which ahead of time. Make sure each part is clearly labeled.) You can use any theorems
through Section 19.
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Solution. (a) This IS uniformly continuous on [0, 2π]. This function is made of sums, differ-
ences, products, and compositions of functions which are continuous on all of R (and thus
on [0, 2π]), so it is continuous on [0, 2π]. The theorem stating that continuous functions on
closed intervals are uniformly continuous completes the proof.

(c) This function IS uniformly continuous on (0, 1), as it can be extended to f̃(x) = x3 on
[0, 1], which is uniformly continuous since it is continuous on a closed interval.

(d) This function is NOT uniformly continuous on R. We will prove this one from the
(negation of) the definition. Pick ε = 1. We will show that for all δ > 0, there exist
x1 = x+ δ

3 and x2 = x in R with |x1 − x2| = | δ3 | < δ but |x31 − x32| = |(x+ δ
3)3 − x3| ≥ ε = 1.

Let δ > 0. Expand |(x+ δ
3)3 − x3| as∣∣∣∣x3 + 3
δ

3
x2 + 3(

δ

3
)2x+ (

δ

3
)3 − x3

∣∣∣∣ =

∣∣∣∣δx2 +
δ2

3
x+

δ3

27

∣∣∣∣ .
Since we have a parabola opening upward (most importantly, it is an unbounded function),
there is definitely a large enough choice of x for which∣∣∣∣δx2 +

δ2

3
x+

δ3

27

∣∣∣∣ = δx2 +
δ2

3
x+

δ3

27
≥ 1.

(g) This function IS uniformly continuous on (0, 1]. He we take an extension of f(x) =
x2 sin( 1x) on (0, 1] to a continuous function f̃(x) on [0, 1] by setting

f̃(x) =

{
x2 sin( 1x), if x 6= 0

0, if x = 0

It is clear that f̃ is continuous at points other than x = 0, since it is made of compositions,
products, and quotients of appropriate continuous functions. It remains to check that f̃ is
continuous at x = 0. Let ε > 0, and choose δ =

√
ε. Then |x| = |x − 0| < δ implies that

|x|2 = |x2| < δ2. Notice that |f̃(x) − 0| ≤ |x2| for all x ∈ [0, 1] – it is obvious for x = 0 and
otherwise we have |f̃(x) − 0| = |x2 sin( 1x)| ≤ |x2|, since | sin( 1x)| ≤ 1. Using transitivity to

string everything together, we have |f̃(x) − f(0)| ≤ |x2| < δ2 = ε, which implies that f̃ is
continuous at x = 0 and thus on all of [0, 1].

Thus, we have found an extension of our function which is continuous on a closed interval
containing (0, 1], so f is uniformly continuous.

Notes. Parts (a), (c), and (g) were graded. The part (d) solution is just there to give you an
example of a reasonable proof that something is not uniformly continuous.

In part (g), note that you could also have seen that f was continuous by expressing f as the
product of x and the function in Example 7 of Section 19, but the proof that the Example
7 function is continuous at 0 needs a proof, which is Exercise 17.9. Normally only ungraded
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HW from previous sets is considered fair game without proof (as stated in the directions at
the top), but since I gave you the Section 17 ungraded HW last week, I would accept it on
this problem.

UNGRADED HOMEWORK:

Pay special attention to starred problems; they are usually classics we will use many times, often impor-
tant theorems hidden in the exercises. Note I already listed the first two sections of ungraded HW on Piazza
last week; they are here again in case you are using your homework sheets to keep track of them.

Section Exercises

15 1, 2, 3, 4, 5, 6, 7

17 1, 2, 3, 5, 8, 9, 10, 11

18 1, 2, 3, 4, 5, 6, 7, 8, 11,

19 2, 3, 5, 6, 8, 9


