
MATH 104, HOMEWORK #6
Due Thursday, February 25

Remember, consult the Homework Guidelines for general instructions. Results from class, our
textbook, and graded homework are fair game to use unless otherwise specified. You may also use
ungraded homework results from previous problem sets.

GRADED HOMEWORK:

1. Ross, Exercise 12.12.

Solution. We will first show that lim supσn ≤ lim sup sn, using the book’s hint, i.e. to first
show that M > N implies

sup{σn : n > M} ≤ 1

M
(s1 + · · ·+ sN ) + sup{sn : n > N}.

We start with the LHS:

sup {σn : n > M} = sup

{
1

n
(s1 + · · ·+ sn) : n > M

}
= sup

{
1

n
(s1 + · · ·+ sN ) +

1

n
(sN+1 + · · ·+ sn) : n > M

}
≤ sup

{
1

n
(s1 + · · ·+ sN ) : n > M

}
+ sup

{
1

n
(sN+1 + · · ·+ sn) : n > M

}
,

with the last bit using the fact that

sup{xn + yn : n > N} ≤ sup{xn : n > N}+ sup{yn : n > N}.

(This is covered in the ungraded HW, Exercise 12.4; I’ll leave the proof to you.) Continuing,
we have

sup {σn : n > M} ≤ sup

{
1

n
(s1 + · · ·+ sN ) : n > M

}
+ sup

{
1

n
(sN+1 + · · ·+ sn) : n > M

}
≤ sup

{
1

M
(s1 + · · ·+ sN )

}
+ sup

{
1

n
(sN+1 + · · ·+ sn) : n > M

}
,

since n > M implies
1

n
<

1

M
,

=
1

M
(s1 + · · ·+ sN ) +

n−N
n

sup{sn : n > N}

<
1

M
(s1 + · · ·+ sN ) + sup{sn : n > N}, since 0 <

n−N
n

< 1.

Note that we needed the sn to be nonnegative to get the second line in the block above.

So we have sup{σn : n > M} ≤ 1
M (s1 + · · ·+sN )+sup{sn : n > N} for any M > N . Keeping

N fixed and taking the limit as M goes to infinity, we obtain

lim supσn ≤ lim
M→∞

1

M
· lim
M→∞

(s1 + · · ·+ sN ) + lim
M→∞

sup{sn : n > N}

= 0 · lim
M→∞

(s1 + · · ·+ sN ) + sup{sn : n > N},
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with the last term due to the fact that sup{sn : n > N} does not rely on M as all (so it
can be treated as a constant with respect to M). Finally, we take the limit as N goes to ∞,
obtaining

lim
N→∞

lim supσn ≤ lim
N→∞

sup{sn : n > N},

which simplifies to
lim supσn ≤ lim sup sn.

WE STILL NEED TO SHOW THE LIMINF PART.

The middle inequality, i.e. lim inf σn ≤ lim supσn, holds for any sequence. Thus, by transi-
tivity, we have

lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn

Notes. This one was a bit brutal. In particular, though I could get the book’s hint to work
for lim sup, I kept running into snags trying to get the symmetric proof for lim inf. There are
a few ways to get the lim inf half, and in the end I decided the one I wrote up was probably
simplest. Be extremely careful – in discussions with multiple students, we found a number of
wrong proofs on the internet.

2. Ross, Exercise 14.6.

Solution. (a) We want to show that if
∑
|an| converges and (bn) is a bounded sequence, then∑

anbn converges, using the Cauchy Criterion. That is, using version 3, we need to show that
for each ε > 0 there exists a number N such that m,n > N implies |

∑n
k=m akbk| < ε.

Let ε > 0, and suppose B > 0 is a real number with |bn| < B (such a number exists since (bn)
is bounded). Since

∑
|an| converges, it satisfies the Cauchy Criterion and thus there exists a

number N so that for all m,n > N we have

n∑
k=m

|ak| =

∣∣∣∣∣
n∑

k=m

|ak|

∣∣∣∣∣ < ε

B
,

since ε
B > 0. Assume m,n > N . Now, applying the triangle inequality (n−m times) and the

above information, we have ∣∣∣∣∣
n∑

k=m

akbk

∣∣∣∣∣ ≤
n∑

k=m

|akbk|

=

n∑
k=m

|ak| · |bk|

≤
n∑

k=m

|ak| ·B

= B

n∑
k=m

|ak|

< B · ε
B

= ε,
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which shows that
∑
anbn satisfies version 3 of the Cauchy Criterion and therefore converges.

(b) Next we conclude that absolutely convergent sequences converge, as a special case of part
(a). Suppose (an) is an absolutely convergent sequence, so that

∑
|an| converges. Let (bn)

be the constant sequence with bn = 1 for all n; it is clearly bounded above and below by 1.
By part (a),

∑
anbn =

∑
an converges.

Notes. This is a pretty reasonable difficulty for an exam problem. You have to know defini-
tions and basics like the triangle inequality, but the proof itself is not too crazy.

3. Using the Cauchy criterion directly (and none of the later tests for convergent series), show
that one of the following series converges and one diverges. You may use whichever of the
three versions is most convenient∑ 1

n2
and

∑(√
n+ 1−

√
n
)

Solution. First we will show
∑ 1

n2 converges. Using version 3 of the Cauchy Criterion, we

need to show that for all ε > 0, there exists a numberN so thatm,n > N implies

∣∣∣∣∣
k∑

k=m

1

k2

∣∣∣∣∣ < ε.

Let ε > 0, and take N = 2
ε , i.e. ε = 2

N . Note that for any integer k, we have 1
k2
< 1

k(k+1)

(larger denominator), and also 1
k(k+1) = 1

k −
1

k+1 Then∣∣∣∣∣
k∑

k=m

1

k2

∣∣∣∣∣ =

k∑
k=m

1

k2

<

n∑
k=m

1

k(k + 1)

=
n∑

k=m

(
1

k
− 1

k + 1
)

=
1

m
− 1

n+ 1

=

∣∣∣∣ 1

m
− 1

n+ 1

∣∣∣∣
≤
∣∣∣∣ 1

m

∣∣∣∣+

∣∣∣∣− 1

n+ 1

∣∣∣∣
=

∣∣∣∣ 1

m

∣∣∣∣+

∣∣∣∣ 1

n+ 1

∣∣∣∣
≤ 1

N
+

1

N
=

2

N
= ε

Next, we’ll show that
∑(√

n+ 1−
√
n
)

diverges by showing it violates the Cauchy Criterion.
In particular, we will show that if we take ε = 1, then for every positive number N , there is

a choice of m,n > N with

∣∣∣∣∣
n∑

k=m

(√
k + 1−

√
k
)∣∣∣∣∣ ≥ 1 = ε.
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Set ε = 1 and let N be any positive number. Let x and y be different positive integers
so that x2 > y2 > N (such integers clearly exist since there are infinitely many perfect
squares). If we set n+ 1 = x2 and m = y2, then∣∣∣∣∣

n∑
k=m

(√
k + 1−

√
k
)∣∣∣∣∣ =

n∑
k=m

(√
k + 1−

√
k
)

=
√
n+ 1−

√
m

=
√
x2 −

√
y2

= x− y ≥ ε = 1,

with x−y ≥ 1 since they are distinct integers. We see that
∑(√

n+ 1−
√
n
)

fails the Cauchy
Criterion and therefore diverges.

Notes. I didn’t intend the
∑ 1

n2 to be quite so tricky, but it’s good to see what sort of
cleverness is sometimes involved for such proofs. (Note the Integral Test gives us a much
easier proof that

∑ 1
n2 converges, though we hadn’t covered it yet.) Also, really make sure

you understand these complicated negations – i.e. what do we need to show to see a sequence
isn’t Cauchy or doesn’t converge.

UNGRADED HOMEWORK:

Pay special attention to starred problems; they are usually classics we will use many times, often impor-
tant theorems hidden in the exercises. Note we already did several of the Section 12 exercises together.

Section Exercises

12 1*, 2, 3, 4*, 5*, 6*, 7, 8*, 10, 14

14 1, 2, 3, 4, 5, 7, 8, 10, 13, 14

* Try doing Exercise 12.11 a different way than we did in class – take the book’s proof for the lim sup
half and flip it to get the lim inf result, using standard tricks.


