
MATH 104, HOMEWORK #5 SOLUTIONS
Due Thursday, February 18

Remember, consult the Homework Guidelines for general instructions. Results from class, our
textbook, and graded homework are fair game to use unless otherwise specified. You may also use
ungraded homework results from previous problem sets.

GRADED HOMEWORK:

1. Let t1 = 1 and tn+1 = tn

(
1− 1

(n+ 1)2

)
for all n ≥ 1.

(a) Explain how the results in Chapter 10 guarantee that lim tn exists, though they tell you
nothing (or at least very little) about what the limit is.

(b) Use induction to show that tn = n+1
2n for all n ∈ N.

(c) Find lim tn and prove your answer is correct (either by quoting previous results or from
scratch).

Solution. (a) We can easily see that (tn) is a sequence which is decreasing (as tn+1 is ob-
tained by multiplying tn by a fraction between 0 and 1) and bounded below by 0. It’s clearly
bounded above by t1 = 1 since it is decreasing. In Section 10, we showed that bounded
monotonic sequences converge, so our sequence must converge.

(b) Base Case: Clearly t1 = 1+1
2·1 = 1.

Inductive Step. Assume tn = n+1
2n . We wish to show that tn+1 = (n+1)+1

2(n+1) = n+2
2(n+1) . Us-

ing our assumption and the recursive definition of tn+1, we have

tn+1 = tn

(
1− 1

(n+ 1)2

)
=
n+ 1

2n

(
1− 1

(n+ 1)2

)
=
n+ 1

2n

(
n(n+ 2)

(n+ 1)2

)
=

n+ 2

2(n+ 1)
,

as desired.

(c) Since we proved we have an explicit formula for tn, we can use the Section 9 limit shortcuts.

lim tn = lim
n+ 1

2n
= lim

n

2n
+ lim

1

2n
= lim

1

2
+

1

2
lim

1

n
=

1

2
+ 0 =

1

2
,

using the fact that lim 1
n = 0.

Notes. This one should have been very straightforward.

2. Let (an) be the sequence defined by an = 1
n if n is odd and an = n if n is even. That is

(an) = (1, 2, 13 , 4,
1
5 , 6,

1
7 , 8, . . .). Completely characterize (with proof) which subsequences of

(an) have limits, and determine the set S of subsequential limits of (an).
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Solution. Claim: A subsequence (ank
) has lim ank

= +∞ if and only if it has infinitely many
even-indexed terms and finitely many odd-indexed terms. Similarly, (ank

) has lim ank
= 0 if

and only if it has finitely many even-indexed terms and infinitely many odd-indexed terms.
In every other case, (ank

) has infinitely many even-indexed terms AND infinitely many odd
indexed terms, and its limit does not exist. Our proof of this will show that the set of subse-
quential limits is precisely {0,+∞}.

Proof: If (ank
) has infinitely many terms ank

= nk and only finitely many terms ank
= 1

nk
,

then its limit must be +∞, as follows. Let NO denote the largest odd index appearing in
(ank

), so that ank
= nk for all nk > NO. Let M > 0 and take N = max{NO,M}. Then

nk > N implies ank
= nk > N ≥M . This implies lim ank

= +∞.

If (ank
) has finitely many terms ank

= nk and infinitely many terms ank
= 1

nk
, then its

limit must be 0, as follows. Let ε > 0 and set N = max{1ε , NE}, where NE denotes the
largest even index appearing in (ank

). Then nk > N implies ank
= 1

nk
and nk >

1
ε . Rear-

ranging the latter inequality, we have 1
nk
< ε, i.e. |ank

− 0| < ε, so lim ank
= 0.

Note any subsequence must contain infinitely many even-indexed terms or infinitely many
odd-indexed terms, otherwise there are only finitely many terms. If a subsequence has in-
finitely many of both, we see that it diverges. Taking the even-indexed terms only, we get a
subsequence (of our subsequence, yes) whose limit is +∞ and taking only the odd-indexed
terms, we get another subsequence of (ank

) converging to 0. Since we have two subsequences
of (ank

) with different limits, we see that lim ank
cannot exist, since the limit exists if and

only if there is exactly one subsequential limit.

Notes. This one probably took a fair amount of experimenting to find the answer, but it was
relatively simple in the end.

3. Create a sequence (bn) of positive real numbers whose set S of subsequential limits contains
infinitely many numbers from the closed interval [0, 1]. You may clearly describe your sequence
in words or with a recursive definition if you find it difficult to write an explicit formula. Prove
that your answer meets the criterion.

Solution. A simple sequence here is (1, 12 ,
2
2 ,

1
3 ,

2
3 ,

3
3 ,

1
4 ,

2
4 ,

3
4 ,

4
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

5
5 , . . .). Since every

rational number of the form a
b with a ≤ b appears infinitely many times, we can take a

constant subsequence with the limit a
b . (For example, 1

2 = 2
4 = 3

6 = · · · , so there is a constant
subsequence with every term equal to 1

2 .) Thus S has infinitely many elements.

Notes. Another one that is easy-ish once you see it.

* Extra Credit (3 points) – Find the serious mathematical error in the book’s proof of Theorem
11.2 (i) and explain how to fix it. (There is a very quick fix.) Include a figure that shows
what is going on.
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Solution. There is a spot where they used ε when it should have been t − ε. I’ll fill in more
details on Piazza if someone asks.

UNGRADED HOMEWORK:

Pay special attention to starred problems; they are usually classics we will use many times, often impor-
tant theorems hidden in the exercises.

Section Exercises

10 3, 5, 10

11 1, 2, 3, 4, 8*, 9, 10, 11

* No really, make sure you know how to prove the Squeeze Theorem for sequences.


