
MATH 104, HOMEWORK #4 SOLUTIONS
Due Thursday, February 11

Remember, consult the Homework Guidelines for general instructions. Feel free to use any theorems
up through Section 10 if they apply, unless the problem specifically says otherwise. However, re-
member that you need to state any results you use (rather than calling it Theorem 9.2 or whatever).

GRADED HOMEWORK:

1. More work with limits.

(a) Find lim
n→∞

loga n

n
for a > 1 and give a formal proof of your answer.

(b) Find lim
n→∞

loga n

n
for 0 < a < 1 and give a formal proof of your answer.

Solution. (a) We will first prove a lemma: if (sn) is a sequence of positive real numbers with
sn → 1, then (loga(sn)) is a sequence converging to 0 for any base a > 1. Let ε > 0. Set
ε1 = min{aε − 1, 1− a−ε}. (Since a > 1, both choices for ε1 are positive.) Choose N so that
n > N implies |sn− 1| < ε1, which is possible since sn → 1. Then we have −ε1 < sn− 1 < ε1,
which gives us a−ε−1 < sn−1 < aε−1 or equivalently, a−ε < aloga(sn) < aε. Since a > 1 and
we have exponential growth (rather than decay), we see that −ε < loga(sn) < ε, and thus
| loga(sn)− 0| < ε. Thus lim loga(sn) = 0.

Then, to finish the proof, recall that we showed in the book that limn
1
n = 1. We can

rewrite
loga n

n
=

1

n
loga(n) = loga(n

1
n ).

Thus, if we take sn = n
1
n in the notation of our lemma, we see that lim loga n

n = 0.

(b) For the second portion, notice that if 0 < a < 1, then 1
a > 1. Also, loga(n) = − log 1

a
(n)

by basic logarithm properties. Using our limit shortcut for pulling out constant factors, we
have

lim
n→∞

loga n

n
= lim

n→∞
−

log 1
a
n

n
= − lim

n→∞

log 1
a
n

n
= 0,

with the final conclusion due to part (a).

Notes. It turns out the proof for this lemma is noticeably harder if you have a different limit
for sn, but we’ll see it with some more general results later.

On this one you likely ran into a lot of issues on what sort of material is fair game to
use for this class, and it’s a very gray area. It’s something I am constantly thinking about;
we’ll just keep discussing.

2. Find the following limit, and give a formal proof of your answer. (Hint: this would be rather
tedious/difficult to do from scratch, so you should apply prior results instead.)

lim
n→∞

(−1)n+117n

32n+1n!
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Solution. We claim that this limit is 0. To show it, we will use the result from Problem 2

from HW 3: if lim
n→∞

|an+1

an
| < 1, then lim

n→∞
an = 0.

If we take (an) to be the sequence defined above, we have

an+1

an
=

(−1)n+217n+1

32(n+1)+1(n+ 1)!
· 32n+1n!

(−1)n+117n
=

−17

9(n+ 1)
.

Using our limit shortcut theorems, we have lim −17
9(n+1) = −17

9 lim 1
n+1 . Since 0 ≤ 1

n+1 ≤
1
n for

all positive integers n, and 0 = lim 0 = lim 1
n , the Squeeze Theorem implies that lim 1

n+1 = 0,

so lim −17
9(n+1) = −17

9 · 0 = 0 < 1. Finally, HW 2, Problem 2 quoted above implies that
lim an = 0.

Notes. Instead of using the Squeeze Theorem, you may have showed that lim −17
9(n+1) = 0 from

scratch. The natural choice for N here would be N = max{0, 179ε − 1}. (To keep things clear,
it’s good to make sure N is not negative, which is why we take the max with 0.)

3. Theorem 10.11 (in particular the half which says Cauchy sequences are always convergent)
relies heavily on the Completeness Axiom. It really should say that a Cauchy sequence of
real numbers always converges in R. There are some other spaces where this result does not
hold (essentially because they are not complete).

(a) Suppose you are working in Q. Find a sequence (an) in Q which is a Cauchy sequence, but
which does not converge (to an element of Q). Rigorously justify both claims (Cauchy
and non-convergent).

(b) Suppose you are working in the half-open interval (0, 1]. Find a sequence (bn) in (0, 1]
which is a Cauchy sequence, but which does not converge (to an element of (0, 1]).
Rigorously justify both parts.

Solution. (1) Answers may vary quite a bit here. One relatively simple sequence to work
with is increasingly accurate decimal approximations of

√
2, which we know is irrational from

previous sections. One way to make this precise is to set an =
b10n√2c

10n . Here a0 = 1, i.e.√
2 rounded down to the nearest integer, and then a1 = 1.4, a2 = 1.41, a3 = 1.414, picking

up the next digit each time, and so on. Then it is easy to check that if n,m > N , then
|an − am| < 1

10N
. (For example, if you keep at least two digits after the decimal, then no two

later terms have a distance more than 1
100 from each other.) Since each ε > 0 is larger than

some 10N , taking such an N each time will show us we have a Cauchy sequence.

(b) Here the only reasonable thing to do is take a sequence limiting to 0. One such se-
quence is bn = 1

n . We know that lim 1
n = 0 from previous work, so it does not converge in the

interval (0, 1], since 0 is not in this interval. To show it is a Cauchy sequence, note that bn is a
strictly decreasing sequence bounded below by 0. Thus for m,n > N , we have |bn− bm| < 1

N .
Since each ε > 0 is larger than some 1

N , this means our sequence is Cauchy.
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Notes. One critical part here is making sure you can justify that a number is not in Q. Several
people thought of using the sequence limiting to e below, but we don’t actually have a good
explanation for why e is irrational yet. Furthermore, it would be extremely tough to directly
show that that sequence is Cauchy.

What I intended here, though I should have specified more clearly, is for you to practice
showing a sequence is Cauchy from the definition. Make sure you can do that.

UNGRADED HOMEWORK:

Pay special attention to starred problems; they are usually classics we will use many times, often impor-
tant theorems hidden in the exercises. The Section 9 exercises this week mostly formalize the vague notions
we discussed about polynomial, exponential, and factorial growth, plus a couple other familiar sequences.

Section Exercises

9 13*, 14*, 15*, 16, 17, 18*

10 1, 6, 7, 8, 9, 11

* We proved earlier that if (an) converges to a, then (
√
an) converges to

√
a (given appropriate assump-

tions so that this even makes sense). How would you modify the proof for other roots, e.g. ( 5
√
an), or

really, any rational exponent?

* Given that lim
n→∞

(
1 +

1

n

)n

= e, prove that lim
n→∞

(
1 +

k

n

)n

= ek for any integer k. (Actually, this

works when k is any real number, but the proof is somewhat less tedious for just integers.)


