
MATH 104, HOMEWORK #2
Due Thursday, January 28

Remember, consult the Homework Guidelines for general instructions. It is not necessary to
quote theorems for all your tiny arithmetic steps.

GRADED HOMEWORK:

1. Prove by directly verifying the axioms that Q(
√

5) = {a+b
√

5 : a, b ∈ Q} is an ordered
field. Be sure to include A0 and M0 as clarified in the January 19 Daily Update. You
may take it as a given that R is an ordered field. Note that when you are checking
axioms such as M4 (multiplicative identities), you are not simply checking that each
element of Q(

√
5) has an inverse – you need to show that the inverse is in the set

Q(
√

5).

Solution. First note that R is an ordered field and axioms A1, A2, A3, M1, M2, M3,
O1, O2, O3, O4, and O5 are all simple equations or inequalities which work for all real
numbers. Since Q(

√
5) is a subset of R, of course these hold in Q(

√
5) as well.

Next, let’s look at A0 and M0. We need to know that addition and multiplica-
tion are binary operations on Q(

√
5). We already know they are binary operations

on R, so given any x, y ∈ Q(
√

5), we know that there is a unique real number
x + y and a unique real number xy. It remains to show that x + y and xy are in
Q(
√

5). Let x = ax + b + x
√

5 and y = ay + by
√

5, with ax, bx, ay, by ∈ QQ. Then
x + y = (ax + bx

√
5) + (ay + by

√
5) = (ax + ay) + (bx + by)

√
5. Using the fact that Q

is a field (which I allowed after a Piazza question), we know that (ax + ay) ∈ Q and
(bx+by) ∈ Q, so x+y does indeed lie in Q(

√
5). Similarly, xy = (ax+bx

√
5)(ay+by

√
5) =

(axay + 5bxby) + (axby + aybx)
√

5 ∈ Q(
√

5). Thus A0 and M0 hold for Q(
√

5).

Finally, we need to verify the axioms on inverses, namely A4 and M4. Given x =
a+b
√

5 ∈ Q(
√

5) (where a, b ∈ Q), we have −x = −a−b
√

5, which is clearly in Q(
√

5)
as well, since Q is a field and contains the additive inverses of a and b. Assuming
x 6= 0, we also have x−1 = 1

x
= 1

a+b
√
5

= 1
a+b
√
5
· a−b

√
5

a−b
√
5

= a−b
√
5

a2−5b2 = a
a2−5b2 −

b
a2−5b2

√
5.

Note that the denominator is never zero for a rational pair (a, b) 6= (0, 0), so this is
sensible. Using the fact that Q is a field, we see that x−1 ∈ Q(

√
5), as desired. Thus

A4 and M4 hold for Q(
√

5).

This completes our list of axioms, so Q(
√

5) is an ordered field, with the same or-
dering as R.

Notes. If you had not encountered the field axioms before this class, this may have
seemed tough, as the book is slightly vague about, for example, axioms A4 and M4.
I think (hope!) our Piazza conversations mostly cleared that up for those who paid
attention. But note, for example, that the “clear” version of A4 for an arbitrary field
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F would state “For each a ∈ F , there is an element (−a) ∈ F such that a+(−a) = 0.”
Axioms M4, A0, and M0 also need a bit of clarification. Make sure you know how it
should go.

Just for fun: A wild thing to think about is that the standard ordering (i.e. matching
R) is not the only reasonable ordering which may be put on Q(

√
5). Another option

is to define a new relation � (the symbol is not important; I just want something
different from standard ≤) as follows 0 � a + b

√
5 if and only if 0 ≤ a − b

√
5 in the

usual ordering of R. You can also convince yourself that knowing which numbers are
positive and which are negative is sufficient to understand the full ordering.

2. The following problem is essentially Exercise 4.7 or Exercise 5.6. Allow for the possi-
bility that supS or supT is ∞ or that inf S or inf T is −∞, as in Section 5.

(a) Suppose that S and T are nonempty subsets of R such that S ⊆ T . Prove that

inf T ≤ inf S ≤ supS ≤ supT.

Solution. First let’s show that inf T ≤ inf S. We know that either inf T = −∞
or inf T is a real number which is a lower bound for T . In the former case, we are
done, since −∞ ≤ −∞, and −∞ ≤ r for all r ∈ R. In the latter case, note that
inf T is also a lower bound for S, since all elements in S belong to T . Then, since
inf T is a lower bound for S and inf S is the greatest lower bound of S, we must
have inf T ≤ inf S.

A symmetric argument proves supS ≤ supT . We know that either supT = ∞
or supT is a real number which is an upper bound for T . In the former case, we
are done, since ∞ ≤ ∞, and r ≤ ∞ for all r ∈ R. In the latter case, note that
supT is also an upper bound for S, since all elements in S belong to T . Then,
since supT is an upper bound for S and supS is the least upper bound of S, we
must have supS ≤ supT .

Finally, we have the middle inequality. Let x ∈ S, which is possible since S
is nonempty. Then since inf S is −∞ or a lower bound of S, we have inf S ≤ x.
Similarly, since supS is ∞ or an upper bound for S, we have x ≤ supS. By
transitivity, inf S ≤ supS.

(b) Give an example of a pair of sets with inf T < inf S = supS < supT.

Solution. Many examples are possible. One is S = {5} and T = {5, 6, 7}. Note
S should contain a single point, to satisfy the middle equality.

(c) Give an example of a pair of sets with S ( T but inf T = inf S < supS = supT.

Solution. Again, many examples are possible. One is S = (0, 1), the open interval,
and T = [0, 1], the closed interval.
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(d) Suppose A and B are nonempty subsets of R. Prove that sup(A∪B) = max{supA, supB}.

Solution. There are several ways to untangle this one, but the easiest is to use
part (a) to start. First, let’s take care of the infinite case. Note that A ∪ B
is unbounded above if and only if A is unbounded above or B is unbounded
above, in which case we get ∞ = ∞, which is fine. Next, assume A ∪ B is
bounded above (and thus A and B are also bounded above.) Since A ⊆ A ∪ B
and B ⊆ A ∪ B, we have supA ≤ sup(A ∪ B) and supB ≤ sup(A ∪ B), i.e.
max{supA, supB} ≤ sup(A ∪ B). Finally, note that max{supA, supB} is an
upper bound of A ∪ B, since x ∈ A implies x ≤ supA ≤ max{supA, supB} and
x ∈ B implies x ≤ supB ≤ max{supA, supB}. But sup(A ∪ B) is the least
upper bound of A∪B, so sup(A∪B) ≤ max{supA, supB}. Combining with out
previous inequality, we have sup(A ∪B) = max{supA, supB}.

Notes. I will try to avoid making you write out symmetric proofs of things, e.g. a
sup version of a statement and an inf version of the same idea, but given one, you
should be able to come up with the other pretty easily. Here, for example, having
done this problem, you could also easily prove that inf(A∪B) = min{inf A, inf B}.

3. In this problem, we’ll do some more difficult business with inequalities.

(a) First prove the following string of inequalities holds for all n ∈ N. No need to
do induction yet; algebraic manipulation is fine. (Hint: probably do each half
separately.)

2(
√
n + 1−

√
n) <

1√
n
< 2(
√
n−
√
n− 1)

Solution. We’ll deal with the left first. We have

2(
√
n + 1−

√
n) = 2(

√
n + 1−

√
n) ·
√
n + 1 +

√
n√

n + 1 +
√
n

=
2((n + 1)− n)√

n + 1 +
√
n

=
2√

n + 1 +
√
n
<

2√
n +
√
n

=
2

2
√
n

=
1√
n
,

with the inequality justified by the fact that
√
n + 1 >

√
n.

Next, let’s see the right half. It is nearly identical in spirit.

2(
√
n−
√
n− 1) = 2(

√
n−
√
n− 1) ·

√
n +
√
n− 1

√
n +
√
n− 1

=
2(n− (n− 1))
√
n +
√
n− 1

=
2

√
n +
√
n− 1

>
2√

n +
√
n

=
2

2
√
n

=
1√
n
,

with the inequality justified using
√
n− 1 <

√
n.
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(b) Next prove that for any integer m ≥ 2, we have the following. (Hint: try using
part (a) a lot. Induction is not necessary, but I would love to see it if you do find
a nice induction proof.)

2
√
m− 2 <

m∑
n=1

1√
n

Solution. Add up the left inequalities from part (a) (see notes below) for n = 1,
n = 2, . . . , n = m:

2(
√

2−
√

1) + 2(
√

3−
√

2) + · · ·+ 2(
√
m + 1−

√
m) <

1√
1

+
1√
2

+ · · · 1√
m
.

Notice the left is a telescoping sum, simplifying to

2(
√
m + 1− 1) <

m∑
n=1

1√
n
.

This is actually more powerful than what we were asked for, but we can finish it
off by noticing that

√
m <

√
m + 1, so

2
√
m− 2 < 2

√
m + 1− 2 <

m∑
n=1

1√
n
.

Notes. It’s not directly obvious from the order axioms that you can legitimately
add inequalities, which state you may add the same thing to both sides, but two
applications of O4 can show this quickly. If a < b and c < d, then a + c < b + c
and b + c < b + d, so using transitivity, we get a + c < b + d as desired. This one
actually works for m = 1 as well.

(c) Finally, prove by induction on m that for all integers m ≥ 2,

m∑
n=1

1√
n
< 2
√
m− 1.

Solution. First we check our base case m = 2, which case we verify that 1.71 ≈
1√
1

+ 1√
2
< 2
√

2− 1 ≈ 1.83. (A quick calculator approximation is sufficient here.)

For our inductive step, we assume the result hold for some m ∈ N, i.e.
m∑

n=1

1√
n

< 2
√
m − 1. We wish to show that the result holds for m + 1, namely

that
m+1∑
n=1

1√
n
< 2
√
m + 1− 1.
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Now, the right hand side of part (a) implies that 1√
m+1

< 2(
√
m + 1 −

√
m), so

we can combine this with our inductive hypothesis, yielding.(
m∑

n=1

1√
n

)
+

1√
m + 1

< 2
√
m− 1 + 2(

√
m + 1−

√
m) = 2

√
m + 1− 1,

that is
m+1∑
n=1

1√
n
< 2
√
m + 1− 1, which completes the inductive step, and thus our

result holds for m ≥ 2..

UNGRADED HOMEWORK:

Note that you should pay special attention to starred problems; they are usually classics we will
use many times, often important theorems hidden in the exercises. There are a lot of these; some
are just quick computations, and even with the proofs, you should not feel compelled to write all of
them up beautifully, but you should figure out how they work. There are some hints and (partial)
solutions for many odd problems at the end of the book.

Section Exercises

1 1, 2, 3, 4, 5, 6, 10, 11

2 1, 2, 3, 4, 5, 6, 7, 8

3 1, 2, 3, 4, 5*, 7*, 8*

4 1, 2, 5, 6, 8, 11*, 12, 14, 15, 16

5 1, 2, 3, 4


