
WEAK TRANSFER FROM CLASSICAL GROUPS TO GENERAL LINEAR

GROUPS

SUG WOO SHIN

Abstract. Following Arthur, we present a trace formula argument proving that discrete auto-
morphic representations on (possibly non-quasi-split) classical groups weakly transfer to general
linear groups in the sense that the transfer is compatible with Satake parameters and infinitesimal
characters. This result is conditional on the weighted fundamental lemma but no more. We explain
how the weak transfer leads to the existence of automorphic Galois representations valued in the C-
groups, as formulated by Buzzard and Gee, when the automorphic representations are C-algebraic
and satisfy suitable regularity conditions.
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1. Introduction

Classical groups are the isometry groups of symmetric, symplectic, or (skew) Hermitian forms.
They play vital roles in many areas of mathematics. In number theory they are prominent in
the theory of automorphic forms and the Langlands program. One of the key questions is how to
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transfer automorphic representations on classical groups to general linear groups as predicted by
the Langlands functoriality conjecture. There are two main approaches: the converse theorem and
the trace formula.

The converse theorem was successfully employed to transfer cuspidal generic automorphic rep-
resentations on quasi-split classical groups over number fields by Cogdell, Kim, Krishnamurthy,
Piatetski-Shapiro, Shahidi, and others; see [CPSS11] and the references therein. Lomeli [Lom09]
proved the analogous result for split classical groups over global function fields. There is a prospect,
arising from the work by Cai–Friedberg–Ginzburg–Kaplan [CFGK19], that the converse theorem
method may extend to all classical groups without any genericity condition.

It is perhaps fair to say that the trace formula method requires more groundwork to get started,
notably the stabilization of the trace formula and the fundamental lemma as well as their twisted
analogues. Since the tools are still developing over global function fields, we will concentrate on the
number field case from here throughout the paper. When it works, the trace formula leads to extra
information beyond the existence of transfer to general linear groups, such as parametrization of
local and global packets of representations characterized by endoscopic character identities and the
Arthur multiplicity formula. This has been carried out for

• quasi-split symplectic and special orthogonal groups by Arthur [Art13],
• quasi-split unitary groups by Mok [Mok15],
• for non-quasi-split unitary groups by Kaletha–Minguez–Shin–White [KMSW], under tem-
peredness and pure-inner-twist hypotheses.

• for non-quasi-split odd special orthogonal groups by Ishimoto [Ish], under temperedness
hypothesis.

It is worth mentioning that Clozel and Labesse (see [Lab11] and the references therein) proved un-
conditional results on the transfer of cohomological automorphic representations on unitary groups
to those on general linear groups (without full endoscopic classifications for them). However the
results in the bulleted list are conditional on the proof of the weighted fundamental lemma and
some results to be proven. (By “some results”, we mean the preprints [A25], [A26], and [A27] in
[Art13] that are yet to appear, as well as their analogues for unitary groups, which are also missing
at the time of writing this article.) The weighted fundamental lemma is known for split groups by
Chaudouard–Laumon [CL10, CL12] but it is also needed for non-split groups. We also need the
“non-standard weighted fundamental lemma” formulated by Waldspurger [Wal09] to complete the
stabilization of the twisted trace formula [MW16a, MW16b].

Apart from the conditionality mentioned above, the trace formula is believed to yield similar
results as above for all non-quasi-split classical groups as outlined in [Art13, Ch.9]. This is a
central problem to work out in its own right and is also pivotal for arithmetic applications involving
Shimura varieties since non-quasi-split groups appear naturally in that context. A full solution of
the problem would take years to complete.

The first goal of this paper is to explain that Arthur’s argument in [Art13, Ch.3] is already
enough to establish the existence of weak transfer for all classical groups. He states the results
for quasi-split symplectic and special orthogonal groups but the argument works generally. Our
intention is merely to bring this part of his work to the broader audience.

Here a weak transfer means that the transfer is compatible with Satake parameters at finite
places and infinitesimal characters at infinite places. The argument is relatively simple as long as
we accept the stabilization of the twisted (and untwisted) trace formula. In particular we do not
need [A25], [A26], [A27], or their analogues mentioned above. Rather, the weak transfer at hand
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is conditional only on the weighted fundamental lemma for non-split groups and the non-standard
weighted fundamental lemma.

As an application and our second goal, we verify Buzzard–Gee’s conjecture on the existence
of automorphic Galois representations, which amounts to one direction of the global Langlands
correspondence, for classical groups. Besides the weak transfer, a crucial ingredient comes from
what is known in the construction of automorphic Galois representations for general linear groups.
Once this is taken for granted, it is a series of elementary exercises to deduce Buzzard–Gee’s
conjecture for classical groups (modulo some technical hypotheses discussed below). While we do
not claim originality, it may be of interest to see all classical groups treated side by side in the
language of C-groups. Previous works usually considered these groups separately; e.g., see [KSb,
§2], [KSa, §6], and the references at the start of §3.4 below.

Now we describe the two main goals more precisely in §1.1 and §1.2 below. They correspond to
§2 and §3 in the main body of the paper.

1.1. Weak transfer. Let G and G̃ be connected reductive groups over a number field F , and
ξ̃ : LG → LG̃ be a morphism of L-groups (either the Galois or Weil form). Assume that G̃ is

quasi-split over F . Let S be a finite set of places of F including all infinite places such that G, G̃,
and ξ̃ are unramified over Fv for all places v /∈ S. (For ξ̃, this means that η is inflated from an
L-morphism with respect to the Galois or Weil group for an extension unramified at v.) At each

v /∈ S, the map η induces a map ξ̃∗ from irreducible unramified representations of G(Fv) to those of

G̃(Fv) (on the level of isomorphism classes) by Satake transform, which amounts to the unramified

local Langlands correspondence for each of G and G̃. A weak form of the Langlands functoriality
conjecture is the following, cf. [Lan70, Questions 3 and 5] and the commentary in [Art21, §4] for
instance.

Conjecture 1.1.1. Let ξ̃ : LG → LG̃ be a morphism of L-groups. For each automorphic repre-
sentation π of G(AF ), there exists an automorphic representation Π of G̃(AF ) such that, for every

v /∈ S where π is unramified, Πv is unramified and isomorphic to ξ̃∗(πv). Moreover the infinitesimal

characters of archimedean components of Π are determined by those of π via ξ̃.

We are particularly interested in the case where π appears in the discrete spectrum of the space
of L2-automorphic forms on G(AF ). Although the beyond endoscopy program was proposed by
Langlands to attack this conjecture, the general case is still completely out of reach. Good news is
that substantial progress has been made in the (twisted) endoscopic case, namely when ξ̃ realizes

G as a (twisted) endoscopic group for G̃. A prominent example is Langlands and Arthur–Clozel’s
base change for general linear groups [AC89].

Another case is the transfer for classical groups that we are concerned with in this paper. In this
case G is a classical group and G̃ is (the restriction of scalars of) a general linear group; the latter

is denoted G̃0(N) in the main text. We are divided into Cases S and U:

• Case S: G is a special orthogonal or a symplectic group, ξ̃ is the standard embedding.
• Case U: G is a unitary group, and ξ̃ is the base change embedding (up to a twist).

In these two cases the quasi-split inner form G∗ of G may be thought of as a twisted endoscopic
group for G̃. See §2.1 and §2.2 for more details. Henceforth we make the following hypothesis,
which is needed in the stabilization of the trace formula (including the twisted case) by Arthur and
Moeglin–Waldspurger:
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(H1) The weighted fundamental lemma is true for non-split groups. Moreover its non-standard
version is true.

Theorem 1.1.2. Assume (H1). Then Conjecture 1.1.1 is true for Cases S and U above.

Here is the idea of proof in the essential case when G = G∗, i.e., when G is quasi-split. By
induction, we may assume that the theorem is known for all classical groups of smaller rank, or
finite products thereof. Let π be as in Conjecture 1.1.1. Let cS and ζ denote the family of Satake
parameters of π away from S and the infinitesimal character of π at ∞, respectively. The L-
morphism ξ̃ transfers cS and ζ to a family of Satake parameters c̃S and an infinitesimal character
ζ̃ for G̃. We assume that (ζ̃, c̃S) does not appear in the automorphic spectrum for G̃. The goal is
to derive a contradiction.

The main input is the stabilized trace formula relating G and G̃, where the subscript ζ̃, c̃S

indicates the (ζ̃, c̃S)-isotypic part of each trace formula (reviewed in §2.4 following [Art13, Ch.3];
we recommend [Art05] for a detailed introduction to the trace formula):

IG̃
disc,ζ̃,c̃S

(f) =
∑
Gẽ

ι(ẽ)S ẽ
disc,ζ̃,c̃S

(f ẽ), where (1.1.1)

• IG̃disc is an invariant distribution on G̃(AF ), which is the discrete part of the invariant trace

formula for the twisted group G̃,
• Gẽ stands for the twisted endoscopic group in a twisted elliptic endoscopic datum ẽ for G̃
(up to isomorphism); this includes Gẽ = G,

• ι(ẽ) ∈ Q is a positive constant,
• S ẽ

disc is a stable distribution on Gẽ(AF ), which is the discrete part of the stable trace
formula for the twisted endoscopic group of ẽ,

• f is a decomposable test function on G̃(AF ) whose components away from S belong the
unramified Hecke algebras,

• f ẽ is a function on Gẽ(AF ) which is a transfer of f .

By induction hypothesis, S ẽ
disc,ζ̃,c̃S

can be shown to be equal to the sum of traces of the discrete

automorphic representations of Gẽ(AF ) whose Satake parameters and infinitesimal character trans-

fer to (ζ̃, c̃S). The point is that the “error terms” all come from classical groups of smaller rank,
which have to do with automorphic representations of general linear groups by induction, whereas
(ζ̃, c̃S) is unrelated to such representations by hypothesis. In particular, for ẽ such that Gẽ = G,
the stable distribution S ẽ

disc,ζ̃,c̃S
is not the zero distribution since π appears in the sum. (Recall

that (ζ̃, c̃S) is the image of (ζ, cS) via ξ̃.)

The left hand side of (1.1.1) is trivially zero by the assumption that (ζ̃, c̃S) does not appear in the

automorphic spectrum of G̃. Hence our preceding observation about S ẽ
disc,ζ̃,c̃S

tells us that a certain

nonnegative combination of traces of irreducible representations on different groups on the right
hand side vanishes. We crucially invoke Arthur’s vanishing result [Art13, §3.5], exactly designed for
these circumstances and relying on the nonnegativity of coefficients, to show that the right hand
side is term-by-term trivial, i.e., every nonnegative coefficient is zero. This is a contradiction since
S ẽ
disc,ζ̃,c̃S

was seen to be nontrivial.

1.2. Automorphic Galois representations. For the moment we go back to a general connected
reductive group G over a number field F . An automorphic representation π of G(AF ) is called
L-algebraic (resp. C-algebraic) if the infinitesimal character of π at ∞ is algebraic (resp. algebraic
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after shifting by the half sum of positive roots), cf. Definition 3.1.1 below. By CG we denote the
C-group of G introduced by Buzzard–Gee [BG14], which is a certain semi-product of LG with Gm;
see §3.1 below. It can also be thought of as the L-group of a central Gm-extension of G.

Fix a prime ℓ. Let S denote the finite set of places of F containing all ℓ-adic and infinite
places as well as the finite places v such that either G or π is ramified at v. When v /∈ S, write
ϕπv = ϕLπv : WFv → LG for the unramified Langlands parameter for πv, with coefficient in C. We

also define a C-normalized parameter ϕCπv : WFv → CG by modifying ϕπv ; see below Lemma 3.1.5

for more details. In this paper, a Galois representation ΓF → LG(Qℓ) or ΓF → CG(Qℓ) always
means a continuous semisimple representation which is unramified at all but finitely places and
whose restriction to the local Galois group at each place above ℓ is de Rham. When the de Rham
condition is satisfied, the Galois representations can be assigned Hodge–Tate cocharacters (§3.1).

Buzzard–Gee [BG14] formulated the following, cf. Conjectures 3.1.2 and 3.1.8 below, generalizing
from the case of general linear groups in Clozel’s work [Clo90].

Conjecture 1.2.1. Let ? ∈ {L,C}, ℓ a prime, and ι : C ∼= Qℓ an isomorphism. For each ?-algebraic
discrete automorphic representation π of G(AF ), there exists a Galois representation

r = rℓ,ι(π) : ΓF → ?G(Qℓ)

such that

(i) r|ssWFv

∼= ιϕ?πv at finite places v /∈ S,

(ii) The Hodge–Tate cocharacters of r are explicitly determined by the infinitesimal characters
of π at ∞.

Our interest lies in the conjecture when G is a classical group. We will concentrate on the C-
algebraic case for two reasons. Firstly, it is more directly related to the geometric Satake equivalence
(that is, part (i) of the conjecture is compatible with geometric Satake in the C-algebraic case,
cf. [Zhub]) and the cohomology of Shimura varieties (e.g., as observed in [Joh13]). Secondly, the
C-algebraic case is more general as illustrated by the example of an even unitary group (i.e., of even
rank) over a totally real field relative to a CM quadratic extension. Such a group does not possess
any L-algebraic automorphic representations whose archimedean components belong to discrete
series whereas there are many C-algebraic ones. (In fact, one can go from the C-algebraic case to
the L-algebraic case and vice versa after pulling back via a central Gm-extension of G, cf. [BG14,
§5], but we do not discuss it further.) With that said, it is worth mentioning that C-algebraicity
and L-algebraicity coincide for symplectic, special even orthogonal, and odd unitary groups.

From now, assume that F is a totally real field. In Case U, assume that G is a unitary group
with respect to a CM quadratic extension E over F , and write c ∈ Gal(E/F ) for the nontrivial
element. In Case S, set E := F and c := 1 (trivial automorphism of F ).

We fix π as in Theorem 1.1.2, so the theorem provides us with an automorphic representation
Π of GLN (AE) for a suitable N . Without loss of generality we assume that Π is an isobaric sum
of cuspidal automorphic representations of smaller general linear groups: Π = ⊞r

i=1Πi. (In fact we
show that Π can be chosen as such when proving the theorem.) By the strong multiplicity one
theorem, such a Π is unique up to isomorphism. (Hence Π1, ...,Πr are unique up to isomorphism
and permutation.) For each i, we write Π⋆i for the contragredient of Πi ◦ c, where c naturally acts
on GLN (AE). Consider the following hypotheses.

(H2) The infinitesimal character of Π is regular at infinity, cf. Definition 3.2.1 below.
(H3) Each Πi is (conjugate) self-dual, i.e., Π

⋆
i
∼= Πi for every i.
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Condition (H2) is equivalent to regularity of the infinitesimal character of π at infinity unless G∗

is a special even orthogonal group (Lemma 3.2.2). Hypothesis (H3) is implied by a full endoscopic
classification theorem, which is a conditional theorem for classical groups as already discussed. Our
second main theorem is the following (Theorem 3.2.7).

Theorem 1.2.2. Assume (H1), (H2), and (H3). Then the C-algebraic version of Conjecture 1.2.1
holds true in Cases S and U above, except that (i) is true only up to outer automorphism in the
even orthogonal case. If we assume only (H1) and (H2) then we have the existence of the Galois
representation as in the conjecture satisfying (i) but possibly not (ii).

Let us outline the steps of the proof.

(Step 1) Prove Conjecture 1.2.1 for cuspidal regular automorphic representations Π0 of GLN over
totally real or CM fields (see Proposition 3.1.11 below for the precise version).

(Step 2) Combine Step 1 with Theorem 1.1.2 to construct a GLN -valued Galois representation R(π)
corresponding to given π on a classical group.

(Step 3) Factor the Galois representation R(π) through the L or C-group of G. In Case U, this
entails extending the Galois representation along the quadratic extension E/F .

Step 1 follows by combining the work of many authors as recalled in the proof of Proposition
3.1.11, if Π0 is moreover (conjugate) self-dual up to a character. Without hypothesis (H3), we
need to appeal to more recent work by Harris–Lan–Taylor–Thorne and Scholze [HLTT16, Sch15].
In this case we lose control of the Hodge–Tate cocharacter. (See the last paragraph in the proof
of Proposition 3.1.11.) This is why part (ii) of Conjecture 1.1.1 is not verified when (H3) is not
assumed. Other than this, the argument is the same whether (H3) is assumed or not.

In Step 2 we start from a weak transfer π 7→ Π = ⊞r
i=1Πi and apply Step 1 to construct Galois

representations Ri from Πi. The desired Galois representation is essentially ⊕r
i=1Ri but this is not

literally true. We need to keep a careful track of L and C-normalizations.
In Step 3 the main input is Belläıche–Chenevier’s result on the sign of Galois representations

[BC11]. Thanks to this, the argument is relatively simple in Case S. More work is needed in Case
U, but knowing the sign again allows us to factor the extended Galois representation through the
C-group.

Remark 1.2.3. When F is a global function field of characteristic p > 0, Conjecture 1.2.1 can
be stated for ℓ ̸= p in terms of the L-group of G, without imposing condition (ii) or algebraicity.
(Every automorphic representation is considered algebraic.) Then Conjecture 1.2.1 is true for every
G and every cuspidal π by V. Lafforgue [Laf18].

1.3. Complements. We comment on the prospect of removing hypotheses (H1), (H2), and (H3).
The author is cautiously optimistic that the removal of (H1) would be attainable within the next
few years. The regularity condition (H2) is nontrivial only for special even orthogonal groups. To
dispense with it in Theorem 1.2.2, a viable approach is to realize the GLN -valued Galois repre-
sentation directly in the ℓ-adic cohomology of certain orthogonal Shimura varieties. We hope to
address this problem in [KSZ], which is a sequel to [KSZ21]. To remove (H3), the main problem is
to compute the Hodge–Tate weights of the automorphic Galois representations in [HLTT16, Sch15]
as mentioned above. We believe that the result should be within reach by available methods.

There are other ways to strengthen Theorems 1.1.2 and 1.2.2. Theorem 1.1.2 is going to be
eventually superseded by a full endoscopic classification; the point of our theorem lies in the sim-
plicity and uniformity of the argument. Theorem 1.2.2 can be upgraded by listing more properties
satisfied by the Galois representation r. For instance, we can ask for a description of the image of
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complex conjugation at real places of F , cf. Remark 3.2.8. Another question is to prove local-global
compatibility at all finite places v, namely that the Weil–Deligne representation associated with
r at v corresponds to the v-component of the automorphic representation via the local Langlands
correspondence. This is known in the setting of Proposition 3.1.11 for GLN . (If π is not conjugate
self-dual up to a character then the compatibility is known away from places above ℓ.) From this,
our existing arguments should justify the local-global compatibility for G at all finite places (avoid-
ing places above ℓ if (H3) is not assumed), at least if G is quasi-split. In fact, such a reasoning
already appears in the proof of [KSb, Thm. 2.4 (i),(iv)] and [KSa, Thm. 6.4 (SO-i)] in some special
cases. If G is not quasi-split then the same should work once the local Langlands correspondence
for G becomes available in a way that is compatible with the local Langlands for its quasi-split
inner form.

Finally one can try to characterize those Galois representations which correspond to automorphic
representations in Conjecture 1.2.1. In fact it is fruitful to view the Galois representations as global
L-parameters and extend the Galois representations to some sort of global A-parameters as in
[JT20, §4]. Then a natural problem is to formulate local and global A-packet classifications for
algebraic automorphic representations by means of such Galois-theoretic A-parameters. We hope
to address this elsewhere.

1.4. Notation and conventions. Let k be a perfect field. Denote by k an algebraic closure of
k. Write Γk′/k := Gal(k′/k) for any Galois extension k′/k and put Γk := Γk/k. When T is a torus

over k, write X∗(T ) := Homk(T,Gm) and X∗(T ) := Homk(Gm, T ). Put X∗(T )R := X∗(T ) ⊗Z R

for Z-algebras R, which is an R[Γk]-module. Define X∗(T )R likewise. Let T̂ denote the dual torus
of T over C equipped an action of Γk.

From now on, let F be a number field. Write AF for the ring of adèles and ASF for the ring of
adèles away from S, where S is a finite set of places of F . For each place v of F , write WFv for
the local Weil group. We fix the embeddings ιv : F ↪→ F v at each v, which induce the injections
ΓFv ↪→ ΓF . If v is a complex place, then there are two R-isomorphisms ι1, ι2 : F v ∼= C. For each
complex embedding τ : F ↪→ C inducing the place v, we write ιτ : F ↪→ C for either ι1ιv or ι2ιv,
whichever induces τ via the inclusion F ⊂ F . If τ is a real embedding inducing v then set ιτ := ιv.
Thus we have ιτ : F ↪→ C extending every embedding τ : F ↪→ C.

Let F0 be a subfield of F (allowing F0 = F , and S a finite set of places of F0 containing all
infinite places. Then ΓF,S denotes the Galois group Gal(FS/F ), where FS ⊂ F is the maximal
extension of F which is unramified at every place of F which lies above some place of F0 in S.

Let G∗ be a connected quasi-split reductive group over F , with an F -pinning (B∗, T ∗, {X∗
α}). Let

Ĝ∗ denote the Langlands dual group over C equipped with a ΓF -action on Ĝ∗ (called an L-action),

a ΓF -pinning (B̂∗, T̂ ∗, {X̂∗
α∨}), and a ΓF -equivariant bijection between the based root datum of Ĝ∗

and the dual based root datum of G∗. This allows us to define the Galois form of the L-group
LG∗ := Ĝ∗ ⋊ΓF . It is also convenient to use ΓF ′/F in place of ΓF , where F

′ is a finite extension of
F over which G∗ splits. Only in §2 we will occasionally consider the Weil form of the L-group, with

the Weil group of F in place of ΓF . We will often fix an isomorphism ι : C ∼= Qℓ and also view Ĝ∗

and LG∗ over Qℓ. Write Sbad(G
∗) for the set of places v of F which are either infinite or such that

G∗
Fv

is ramified. At v /∈ Sbad(G
∗), the pinning determines a hyperspecial subgroup K∗

v ⊂ G∗(Fv).
Unramified representations of G∗(Fv) at v /∈ Sbad(G

∗) are always meant to be relative to this K∗
v .

Let G be a connected reductive group over F with an isomorphism υ : G∗
F

≃ GF such that

υ−1σ(υ) is an inner automorphism of G∗
F

for every σ ∈ ΓF . Such a pair (G, υ) is called an inner
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twist of G∗ over F , and classified up to isomorphism by the Galois cohomology valued in the adjoint
group H1(F,G∗,ad), whose image in H1(Fv, G

∗,ad) is trivial for v not contained a finite set of places

S. Then H1(F,G∗,ad(ASF )) = ⊕v/∈SH
1(Fv, G

∗,ad) is trivial, so υ is defined over ASF after conjugation

by an element of G∗,ad(ASF ). Thereby we obtain an isomorphism G∗(ASF ) ∼= G(ASF ), canonical up to

G∗(ASF )-conjugacy. Put Sbad(G) := Sbad(G
∗) ∪ S. At each v /∈ Sbad(G), we transport hyperspecial

subgroups K∗
v to Kv ⊂ G(Fv) via the isomorphism and use them for the notion of unramified

representations. We transfer the F -pinning for G∗ to a pinning for G via υ so that the based root
data for G∗ and G are ΓF -equivariantly identified. Thereby we may and will identify the L-group
LG with LG∗, and transfer (B̂∗, T̂ ∗, {X̂∗

α∨}) for Ĝ∗ to (B̂, T̂ , {X̂α∨}) for Ĝ.
We fix a maximal compact subgroup K∞ =

∏
v|∞Kv ⊂

∏
v|∞G(Fv). By H(G) we denote the

space of smooth compactly supported functions onG(AF ) which are bi-K-finite under some compact
subgroup K =

∏
vKv ⊂ G(AF ), where Kv is the fixed hyperspecial subgroup (resp. maximal

compact subgroup) at all but finitely many v (resp. all infinite places v). Let H(G∞) denote the
space of smooth compactly supported functions on G∞ :=

∏
v|∞G(Fv), and HS

ur(G) the unramified

Hecke algebra of compactly supported bi-KS-invariant functions on G(ASF ), where S ⊃ Sbad(G) and
KS =

∏
v/∈SKv is the product of fixed hyperspecial subgroups. More generally the same definition

of H(G) makes sense when G is a nontrivial coset in a twisted group, e.g., G = G(N) as in §2.2
below.

Write AG for the maximal Q-split torus in the center of ResF/QG. (We have AG = {1} for the

classical groups to be considered.) Put [G] := G(F )\G(AF )/AG(R)0. Let L2
disc([G]) denote the

discrete part of the L2-space of functions on [G], viewed as a G(AF )-module by right translation.
Every irreducible G(AF )-subrepresentation is referred to as a discrete automorphic representation.

Write Sbad(G) for the set of places v of F such that either Gv is ramified or v|∞. Let S be a finite
set of finite places of F containing Sbad(G). At v /∈ S, let Hur(Gv) denote the unramified Hecke
algebra of bi-Kv-invariant functions on G(Fv), and take HS

ur(G) for the algebra of bi-KS-invariant
functions on G(ASF ). Denote by L2

disc([G])
S-ur the subspace generated by discrete automorphic

representations which are unramified away from S. Write CS(G) for the set in which each member

is a family of semisimple Ĝ-conjugacy classes cv ⊂ LGv over finite places v /∈ S such that cv maps
to the geometric Frobenius element under the projection from LGv to the unramified Galois group
over Fv. By the Satake isomorphism, each cv corresponds to a C-algebra morphisms Hur(Gv) → C
at v /∈ S. Thereby CS(G) is identified with the set of C-algebra morphisms HS

ur(G) → C.
Write F∞ := F ⊗Q R =

∏
v|∞ Fv. For a place v of G, we often write Gv to mean G ×F Fv,

and G∞ := (ResF/QG) ×Q R =
∏
v|∞Gv. Write G∞,C := (ResF/QG) ×Q R =

∏
τ :F ↪→CGτ , where

Gτ := G ×F,τ C. Let T∞,C =
∏
τ Tτ be a maximal torus in G∞,C. The Lie algebra of T∞,C is

denoted by t∞,C. Write Ω∞ =
∏
τ Ωτ for the Weyl group of T∞,C in G∞,C. We often write Ω for

Ωτ for simplicity.
We use Z(G∞) to denote the center of the universal enveloping algebra of the Lie algebra of

G∞,C. By the Harish-Chandra isomorphism, we may identify Z(G∞) = C[t∞,C]
Ω. Write C∞(G) for

the set of C-algebra morphisms Z(G∞) → C, or equivalently

C∞(G) = t∗∞,C/Ω = X∗(T∞)C/Ω∞ = X∗(T̂∞)C/Ω∞ =
∏
τ X∗(T̂τ )C/Ω. (1.4.1)

Let π = ⊗′
vπv be an irreducible admissible representation of G(AF ) such that π is unramified

outside S. At each v /∈ S, each πv corresponds to a semisimple Ĝ-conjugacy class c(πv) ⊂ LGv
known as the Satake parameter of πv, and vice versa. By assigning to π the infinitesimal character
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at ∞ and the Satake parameters away from S, we obtain a map

π 7→ (ζπ∞ , (c(πv))v/∈S) ∈ C∞(G)× CS(G).

According to the decomposition (1.4.1), we write ζπ∞ = (ζπ∞,τ )τ :F ↪→C.
For π as above, we have an unramified L-parameter ϕπv : WFv → LGv at each v /∈ S and

an archimedean L-parameter ϕπv : WFv → LGv at v|∞. The relation to the above map is as
follows. For v /∈ S, ϕπv sends lifts of the geometric Frobenius element into c(πv). For v|∞ and
each τ : F ↪→ C inducing v, if we identify F v = C via τ thus WF v

= C× ⊂ WFv , then ϕπv |C× is

Ĝ-conjugate to a map of the form z ∈ C× 7→ λ(z)λ′(z) ∈ T̂τ ⊂ Ĝτ = Ĝv such that λ = ζπ∞,τ .
When v is a place of F , we denote by | · |v the usual norm character on F×

v or WFv valued
in positive real numbers, satisfying the product formula. Our normalization at finite places v is
that a uniformizer in F×

v and a lift of the geometric Frobenius in WFv both map to the inverse
of the residue field cardinality. By detN : GLN → Gm we mean the determinant map, and
|detN |v : GLN (Fv) → R>0 the map x 7→ |detN (x)|v. We often omit N and v and simply write | · |,
det, and | det |.

Given a finite dimensional representation r (typically of a local Weil group), rss stands for
its semisimplification. By an (ℓ-adic) Galois representation of ΓF , where F is a number field,
we mean a continuous semisimple representation of ΓF on a finite-dimensional Qℓ-vector space
which is unramified at almost all places of F and de Rham at ℓ. More generally, when G is as
above, an LG or CG-valued Galois representation is a continuous representation ΓF → LG(Qℓ) or
R : ΓF → CG(Qℓ) which

• is unramified at almost all places of F ,
• commutes with the projections from ΓF and the L or C-groups onto the Galois group
ΓF ′/F , where F

′/F is a Galois extension with respect to which LG or CG is formed,
• i ◦ R is semisimple and de Rham at ℓ for a faithful algebraic representation (cf. [Bor79,

§2.6]) of the L-group or C-group.

For G over F as above, write Eell(G) for a set of representatives for isomorphism classes of
(standard) elliptic endoscopic data (H,H, s, ξ) as in [KS99, §2.1], cf. [LS87, §1.2]. We refer to H as
an elliptic endoscopic group for G. We will always be in the case when H can be taken to be the
L-group of H. Our notation for such a datum is usually e = (Ge, LGe, se, ξe). The set Eell(G) always
contains a unique element e0 whose endoscopic group is a quasi-split inner form of G. Write E<ell(G)
for the complement Eell(G)\{e0}. Every endoscopic group in E<ell(G) has strictly lower semisimple
rank than G.

The cyclotomic character has Hodge–Tate weight −1 in our convention.

2. Weak transfer

2.1. Classical groups. Let m,n ∈ Z>0. We introduce the quasi-split classical groups Sp2n,
SO2n+1, SO

η
2n, and Un, naturally sitting inside (the restriction of scalars of) general linear group

GLm. (Compare with [Art13, Ch.1, Ch.9] and [Wal10, §1].) For unitary groups, we write N instead
of m in anticipation of §2.2.
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Define anti-diagonal matrices Jm, J
∗
m ∈ GLm(Z) and J ′

2n ∈ GL2n(Z) as follows:

Jm =


1

1

. .
.

1

 , J∗
m =


1

−1

. .
.

(−1)m−1

 , J ′
2n =

(
−Jn

Jn

)
.

When m = 2n, let η : ΓFη/F → {±1} be a faithful character. (So Fη/F is a quadratic extension

if η ̸= 1, and Fη = F if η = 1.) If η = 1 then set Jηm := Jm. If η ̸= 1, choose α ∈ O×
F whose

square roots generate Fη over F . Then define Jη2n from J2n by replacing the 2× 2-matrix ( 0 1
1 0 ) in

the middle with
(
1 0
0 −α

)
.

Case S. We define the OF -group schemes

G ∈ {Spm, Oη
m},

with N = 2n in the latter two cases, by the following formula

G := {g ∈ GLm : tgJg = J}, J ∈ {J ′
m, J

η
m}, respectively,

on OF -algebra valued points. The connected component of the identity in Oη
m is denoted by SOη

2n.
By abuse of notation, we still write Sp2n and SOη

2n for the F -group schemes obtained by base
change. We often omit η in case η = 1. Each group contains a Borel subgroup B over F : if G is
SOm or Sp2n then B consists of upper triangular matrices in G; if G = SOη

2n with η ̸= 1 then B
consists of matrices (gij) such that gij = 0 if i > j and (i, j) ̸= (n + 1, n). We make an explicit
choice of a maximal torus T in B in the following examples, dividing into Cases S and U . We also
describe the character group of T as well as the half sum of positive roots ρ. When Ai are square
matrices for 1 ≤ i ≤ r, let diag(A1, ..., Ar) denote the block diagonal matrix.

G = Sp2n. We take T = {diag(t1, ..., tn, t−1
n , ..., t−1

1 ) : t1, .., tn ∈ Gm} and use the coordinates to
identify X∗(T ) = Zn with trivial ΓF -action. We have the Weyl group Ω = {±1}n ⋊ Sn, where
(ϵ1, .., ϵn) ∈ {±1}n acts on (ai) ∈ X∗(T ) by sending each ai to aϵii , and Sn acts by permuting
a1, ..., an. By computation ρ = (n, n− 1, ..., 2, 1).

G = SOη
2n (allowing η = 1). Take T = {diag(t1, ..., tn−1, s, t

−1
n−1, ..., t

−1
1 ) : t1, .., tn−1 ∈ Gm, s ∈

SOη
2}. Using b as the last coordinate we identify X∗(T ) = Zn, with ΓF acting through η on the

last coordinate as {±1}. The Weyl group Ω is the index two subgroup of {±1}n ⋊ Sn consisting
of (ϵ1, ..., ϵn, σ) such that

∏n
i=1 ϵi = 1. Each element of Ω acts on Zn in the same way as in the

Sp2n-case. We have ρ = (n− 1, n− 2, ..., 1, 0).

G = SO2n+1. Here T = {diag(t1, ..., tn, 1, t−1
n , ..., t−1

1 ) : t1, .., tn ∈ Gm} and X∗(T ) = Zn with
trivial ΓF -action. The Weyl group Ω = {±1}n ⋊ Sn acts on X∗(T ) in the same way as above, and
ρ = 1

2(2n− 1, 2n− 3, ..., 3, 1).

For each G the choice of (B, T ) as above extends to an F -pinning (a.k.a. F -splitting, cf. [KS99,

§1.2]). The Langlands dual groups Ĝ, as reductive groups over C, are described as Ŝp2n = SO2n+1,

ŜOη
2n = SO2n, and ŜO2n+1 = Sp2n, equipped with pinnings for Ĝ chosen in the same way as for G.

The L-action of ΓF on Ĝ is trivial when G is the split group Sp2n, SO2n, or SO2n+1, whereas the
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action for G = SOη
2n with η ̸= 1 factors through Gal(Fη/F ) with the nontrivial element acts as the

outer automorphism θ̂◦ : g 7→ ϑgϑ−1 on SO2n, where

ϑ = diag

(
In−1,

(
0 1
1 0

)
, In−1

)
∈ SO2n(C).

Set F ′ := F unless G = SOη
2n, in which case F ′ := Fη, so that the ΓF -action factors through ΓF ′/F .

Then the F ′/F -form of the L-group LGF ′/F = Ĝ⋊ΓF ′/F is given as follows; we will often omit the
subscript F ′/F :

LSp2n = SO2n+1,
LSOη

2n =

{
O2n, η ̸= 1,

SO2n, η = 1,
, LSO2n+1 = Sp2n,

where LSOη
2n = O2n when η ̸= 1 by sending the nontrivial element of Gal(Fη/F ) to ϑ.

Endoscopic groups Ge in Eell(G) have the following forms, where 0 ≤ n′ ≤ n and η′, η′1, η
′
2 : ΓF →

{±1} are continuous characters, understanding that η ̸= 1 (resp. η = 1) in any factor of the form
SOη

2 (resp. SOη
0) in the list:

• G = Sp2n: G
e = SOη′

2n′ × Sp2n−2n′ ,

• G = SOη
2n: G

e = SO
η′1
2n′ × SO

η′2
2n−2n′ , η′1η

′
2 = η,

• G = SO2n+1: G
e = SOη′

2n′+1 × SO2n+1−2n′ .

There is redundancy in the second and third items, which can be removed by imposing n′ ≤ ⌊n/2⌋.
See [Art13, §1.2] or [Wal10, §1.8] for a description of full endoscopic data.

Case U. In this case, let E be a quadratic extension of F . Write c for the nontrivial element in
Gal(E/F ). Define UN as an OF -group scheme by

UN := {g ∈ ResOE/OFGLN : tgJ∗
Nc(g) = J∗

N}

on OF -algebra valued points. Again we still write UN for UN ×OF F . This group contains a
Borel subgroup B (resp. a maximal torus T ) over F consisting of upper triangular (resp. diagonal)
matrices in UN so that

T = {(t1, ..., tN ) : ti ∈ ResE/FGm, ti · c(tN+1−i) = 1, i = 1, ..., N}.

By fixing an F -algebra embedding τ0 : E ↪→ F , we obtain a projection (ResE/FGm)F → Gm,F

induced by E ⊗F F → F , a⊗ b 7→ τ(a)b, thereby TF
∼= GN

m,F
. This leads to an identification

X∗(T ) = X∗(T̂ ) = ZN via τ0,

with the ΓF -action factoring through ΓE/F , and c ∈ ΓE/F acts as (ai) 7→ (−aN+1−i). (If τ0c
was used instead of τ0, then the identification changes by (ai) 7→ (−aN+1−i).) We compute ρ =
(N−1

2 , N−3
2 , ..., 1−N2 ). The above choice of (B, T ) extends to an F -pinning.

The map τ0 induces a projection (ResE/FGLN )F → GLN,F inducing UN,F
∼= GLN,F and also

ÛN ∼= GLN as a complex reductive group. The standard pinning for GLN is carried over to a

pinning for ÛN . The L-action of ΓF , factoring through ΓE/F , is given by c ∈ ΓE/F acting as

θ̂(g) := J∗
N
tg−1(J∗

N )
−1 for g ∈ ÛN ∼= GLN . This determines the structure of the L-group:

ξ̃0 :
LUN ∼= GLN ⋊ ΓF ,

L(UN )E/F ∼= GLN ⋊ ΓE/F via τ0.
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We also let ξ̃0 denote either map or the common restriction to the dual group: ÛN ∼= GLN . If
τ0 is replaced with a conjugate embedding τ0c, then the above isomorphism is composed with
g ⋊ γ 7→ θ̂(g)⋊ γ. Let v be a finite place of F . Recall that ιv : F ↪→ F v is fixed (§1.4), which gives
rise to

τ0,v : E
τ0
↪→ F

ιv
↪→ F v.

Write u for the place of E indued by F v via τ0,v. As we did for ξ̃0, we obtain an isomorphism

ξ̃u : L(UN )Fv = GLN ⋊ ΓFv via τ0,v.

The maps ξ̃0 and ξ̃u fit in a commutative square with the natural embeddings L(UN )Fv ↪→ LUN
and GLN ⋊ ΓFv ↪→ GLN ⋊ ΓF . Similarly, let σ : F ↪→ C be an embedding. Write v for the infinite
place of F induced by σ. We have chosen ισ : F ↪→ C to extend σ in §1.4. Write τ0,σ := ιστ0. Then
we obtain

ξ̃τ0,σ : L(UN )Fv = GLN ⋊ ΓFv via τ0,σ.

For the embedding τ0,σc conjugate to τ0,σ, we define ξ̃τ0,σc to be ξ̃τ0,σ followed by g⋊ γ 7→ θ̂(g)⋊ γ.

Similarly, if a finite place v splits in E as u and u′ then ξ̃u′ is set to be ξ̃u composed with g ⋊ γ 7→
θ̂(g)⋊ γ. To sum up, we defined

ξ̃τ for all embeddings E ↪→ C and ξ̃u for all finite places u of E.

When v is an infinite place, we also fix an isomorphism F v ∼= C and still write τ0,v for the

composite map E ↪→ F v ∼= C. This map induces T̂τ0,v
∼= GN

m over C, thus X∗(T̂τ0,v) = ZN .
Endoscopic groups in Eell(UN ) have the form UN1×UN2 for integers N1 ≥ N2 ≥ 0 and N1+N2 =

N . See [Rog90, §4.6] (cf. [Wal10, §1.8] or [Mok15, §2.4]) for more details on full endoscopic data.
We note that the Weil form (rather than the Galois form) of the L-group is needed to describe the
L-morphisms in the endoscopic data.

2.2. Twisted general linear groups. Consider Cases S and U together. Keep the same E and
c as above in Case U; set E = F and c = 1 ∈ Gal(E/F ) in Case S for uniformity. For N ∈ Z≥1 we
introduce the groups

G̃0(N) := ResE/FGLN and G̃(N) := G̃0(N)⋊ ⟨θ⟩,

where ⟨θ⟩ is an order 2 group with θ acting on G̃0(N) as θ(g) : g 7→ J∗
N
tc(g)−1(J∗

N )
−1. Fix a

standard pinning (BN , TN , {XN}) of G̃0(N), which is stabilized by θ. In particular, TN is the

diagonal maximal torus of G̃0(N). Write G(N) := G̃0(N)⋊ θ for the θ-coset in G̃(N). We also let

G(N) stand for the datum (G̃(N), θ) as in [Art13, p.125]. For simplicity of notation we will often

write LG(N) and Ĝ(N) for LG̃0(N) and ̂̃G0(N).

Denote by Ẽell(N) a set of representatives for isomorphism classes of twisted endoscopic data for

(G̃(N), θ). Each element of Ẽell(N) is represented by a quadruple ẽ = (Gẽ, LGẽ, sẽ, ξ ẽ), cf. [KS99].

By Ẽsim(N) we mean the subset of simple twisted endoscopic data in Ẽell(N), i.e., the data where
Gẽ attains maximal semisimple rank.

We give an explicit parametrization of Ẽell(N) by means of the twisted endoscopic group Gẽ

following [Art13, §1.2] and [Rog90, §4.7]. For simple endoscopic data we will write G and ξ̃ for Gẽ

and ξ ẽ, and describe ξ̃ explicitly.
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Case S. The twisted endoscopic groups are parametrized by triples

(NO, NS , η), NO, NS ∈ Z≥0, NO +NS = N, NS is even, η : ΓF → {±1},
where the continuous character η is trivial if NO = 0, nontrivial if NO = 2, and arbitrary if NO > 2.
The corresponding Gẽ is SOη

NO
× SONS+1 if N is even, and SpNO−1 × SONS+1 if N is odd. In each

case, ξ ẽ can be described as in [Art13, p.11]. (If N is odd then η only affects ξ ẽ, not Gẽ.)

The triple corresponds to an element of Ẽsim(N) precisely when NO = 0 or NS = 0. If N = 2n,
then we have (0, N, 1) and (N, 0, η). In the first case, G = SO2n+1 and

ξ̃ : LG = Sp2n ↪→ GL2n

is the standard embedding, inducing the map on cocharacter groups

X∗(T̂ ) = Zn → X∗(T̂2n) = Z2n, (ai)
n
i=1 7→ (a1, ..., an,−an, ...,−a1).

The triple (0, N, 1) corresponds to G = SOη
2n and

ξ̃ : LG = O2n ↪→ GL2n

is again the standard embedding, inducing the map on cocharacter groups

X∗(T̂ ) = X∗(T ) = Zn → X∗(T̂2n) = Z2n, (ai)
n
i=1 7→ (a1, ..., an,−an, ...,−a1).

Strictly speaking the codomain of ξ̃ is GL2n × ΓFη/F , but the image of ξ̃ in the Galois factor is

dictated by the fact that ξ̃ is an L-morphism, so we often omit it from the formula. The same will
apply to ξ̃ below when N is odd.

If N = 2n+ 1, simple data correspond to (N, 0, η), thus G = Sp2n and

ξ̃ : LGFη/F = SO2n+1 × ΓFη/F ↪→ GL2n+1

given by the standard embedding on SO2n+1 and η : ΓFη/F ↪→ {±1} ⊂ GL2n+1 on the Galois group.
The induced map on cocharacters is

X∗(T̂ ) = Zn → X∗(T̂2n+1) = Z2n+1, (ai)
n
i=1 7→ (a1, ..., an, 0,−an, ...,−a1).

Case U. The twisted endoscopic groups in Ẽell(N) are parametrized by quadruples

(N1, N2, κ1, κ2), N1, N2 ∈ Z≥0, N1 +N2 = N, κ1, κ2 ∈ {±1},
with (κ1, κ2) either (1,−1) or (−1, 1) if N is even, and (1, 1) or (−1,−1) if N is odd, modulo the
equivalence (N1, N2, κ1, κ2) ∼ (N2, N1, κ2, κ1). (Compare with [Mok15, §2.4], but beware of a small
inaccuracy that the equivalence between endoscopic data is incorrect there.) For each quadruple
we have a twisted endoscopic group Ge = UN1 ×UN2 , with respect to the same E/F , which is part
of a twisted endoscopic datum. We refer to loc. cit. for a formula for the L-morphism ξ ẽ, which
depends on κ1, κ2.

The subset Ẽsim(N) corresponds to quadruples (N, 0, κ1, κ2). Set κ := κ1 ∈ {±1}. We need
not keep track of κ2 as it is determined by N and κ1. In both cases the twisted endoscopic group
is G = UN ; let ξ̃+, ξ̃− : LUN → LG̃0(N) denote the L-morphisms corresponding to κ = 1,−1,

respectively. Let τ0 : E ↪→ F be the embedding fixed in §2.1. Then Ĝ(N) = GLN × GLN , where
the copies of GLN are indexed by τ0 and τ0c in the order, and ΓE/F acts by permuting the two

factors. The “base change” morphism ξ̃+ is easy to describe:

ξ̃+ : L(UN )E/F
via τ0=== GLN ⋊ ΓE/F → LG̃0(N) = (GLN ×GLN )⋊ ΓE/F , (2.2.1)
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g ⋊ γ 7→ (g, θ̂(g))⋊ γ = (g, J∗
N
tg−1(J∗

N )
−1)⋊ γ.

This map is independent of the choice of τ0: if τ is replaced with τc, then the first identification is
twisted by g⋊γ 7→ θ̂(g)⋊γ while the second map becomes g⋊γ 7→ (g, θ̂(g)) (if the first component
is still labeled by τ) so the changes are canceled out, while the last identification is unchanged.

The map ξ̃+ induces a map on the cocharacter groups

X∗(T̂ )
via τ
=== ZN → X∗(T̂N ) = ZN ⊕ ZN , (ai) 7→ ((ai), (−aN+1−i))

in accordance with (2.2.1). Similarly we can describe the map induced by ξ̃+:

X∗(T̂∞) = ⊕σX∗(T̂ ) → X∗(T̂N,∞) = ⊕τX∗(T̂N ),

where the first sum is over embeddings σ : F ↪→ C and the second over τ : E ↪→ C. Namely
if (ai) ∈ X∗(T̂ ) denotes the σ-component, then the image is supported on the τ0,σ and τ0,σc
components on the right, and the map is (ai) 7→ ((ai), (−aN+1−i)).

We refer to [Mok15, §2.4] for a description of ξ̃−, which will be needed only in a minor way, and

leaves it as an exercise to describe the induced map on cocharacter groups. We just remark that ξ̃−
is not defined on L-groups relative to a Galois extension; we need the Weil form of the L-groups.

2.3. Global parameters. We introduce (conjugate) self-dual parameters for general linear groups,
which will serve as parameters for automorphic representations of classical groups. We are following
[Art13, §1.4] in spirit, but our situation is simpler in that we do not need the seed theorems of
Arthur (namely [Art13, Thm. 1.4.1, 1.4.2]) as we will prove only weak transfers.

For m ∈ Z≥1, let Ψsim(m) denote the set of (isomorphsim classes of) unitary cuspidal automor-
phic representations of G(m,AF ) = GLm(AE). Write Ψ(N) for the set of formal global parameters

ψ = ⊞i∈Iµi ⊠ νni , µi ∈ Ψsim(mi), mi, ni ∈ Z≥1, (2.3.1)

where I is a finite index set, νni is an irreducible ni-dimensional algebraic representation of SL2(C),
and

∑
i∈I mini = N . Given ψ is considered equal to another parameter ψ′ = ⊞i′∈I′µi′ ⊠νn′

i
if there

exists a bijection f : I → I ′ such that µi = µf(i) and ni = nf(i) for all i ∈ I.
Given µ ∈ Ψsim(m), let µ⋆ := µ∨◦c ∈ Ψsim(m) denote its conjugate-dual. This definition extends

to Ψ(N) by setting ψ⋆ := ⊞i∈Iµ
⋆
i ⊠ νni . Put

Ψ̃(N) := {ψ ∈ Ψ(N) : ψ⋆ = ψ}.
Let S be a finite set of places of F containing all the places of F ramified in E. Write ΨS(N) for

the subset of ψ ∈ Ψ(N) which are unramified outside S; the latter means that µi are all unramified

outside S in (2.3.1). Put Ψ̃S(N) := Ψ̃(N)∩ΨS(N). We define C∞(N) and CS(N) to be the sets of

C-algebra characters of Z(G̃0(N)∞) and HS
ur(G̃

0(N)), respectively. We have a map

ψ ∈ ΨS(N) 7→ (ζψ,∞, c
S(ψ)) ∈ C∞(N)× CS(N)

defined as follows. Given ψ as in (2.3.1), we have (ζµi,∞ , c
S(µi)) ∈ C∞(mi) × CS(mi). The block

diagonal embedding
∏
i∈I

∏ni
j=1GLmi → GLmini induces a map∏

i∈I

ni∏
j=1

(
C∞(mi)× CS(mi)

)
→ C∞(N)× CS(N).

We define (ζψ∞ , c
S(ψ)) to be the image of(

ζµi,∞ + ni+1−2j
2 , q

ni+1−2j

2
v cS(µi)

)
i∈I, 1≤j≤ni

,
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where the sum ζµi,∞ + a with a ∈ Q means that the sum is taken in X∗(T̂mi)C/Ωmi , and a ∈

Q = X∗(Gm)Q embeds into X∗(T̂mi)Q via the inclusion of Gm = Z( ˜̂G0(mi))
ΓF in T̂mi ; the product

qbvc
S(ψ) with b ∈ Q is taken in ˜̂G0(mi), where q

b
v ∈ Gm(C) is viewed as a central element of the

dual group of G̃0(mi). Our definition of (ζψ,∞, c
S(ψ)) is given explicitly such that it is consistent

with the local A-parameters at ∞ and finite places away from S obtained from localizing ψ.

2.4. Stabilized trace formulas. Let G be an inner form of a quasi-split classical group as in
§2.1. (In fact the discussion below in the untwisted case works for general reductive groups as in
the relevant parts of [Art13, Ch.3].)

Let us begin by introducing the notion of Hecke types following [Art13, p.129]. We freely use the
notation and the choices made from §1.4. Let S be a finite set of places of F containing Sbad(G). Let
κ∞S be an open compact subgroup of

∏
v G(Fv), where v runs over finite places in S. Write KS for

the product of hyperspecial subgroups K0
v over finite places v /∈ S, and fix a finite set of irreducible

representations τ∞ consisting of a fixed maximal compact subgroup K∞ of G∞ =
∏
v|∞G(Fv). A

compact subgroup of G(AF ) of the form κ = (τ∞, κ
∞
S K

S) is called a Hecke type. Write H(G)κ for
the subspace generated by f = f∞f∞ ∈ H(G) such that f∞ is bi-invariant under κ∞S K

SK∞ and
such that f∞ transforms under left and right translations under K∞ according to representations
in τ∞.

Let h ∈ HS
ur(G) and z ∈ Z(G∞). By evaluating cS ∈ CS(G) and ζ ∈ C∞(G) at h and z

respectively (see §1.4), we obtain the numbers to be denoted by ĥ(cS) ∈ C and ζ(z) ∈ C. Moreover
h and z act on HS

ur(G) and H(G∞), written as fS 7→ h ∗ fS and f∞ 7→ z ∗ f∞, such that for
irreducible admissible representations πS of G(ASF ) and π∞ of G∞,

πS(h ∗ fS) = ĥ(cS(πS))πS(fS), π∞(z ∗ f∞) = ζπ∞(z)π∞(f∞). (2.4.1)

In particular we have identities by taking the traces of both sides in (2.4.1). The commuting action
of (h, z) on HS

ur(G)×H(G∞), again denoted by ∗, obviously extends to H(G(AF ),KS).
Let t ∈ R≥0. Write IGdisc,t for the discrete part of the trace formula, which is an invariant linear

form on H(G). The restriction of IGdisc,t to H(G)κ decomposes as a finite sum of eigen-linear forms

of HS
ur(G). Moreover, we can further decompose as a finite sum of eigen-linear forms for the action

of Z(G∞) on H(G∞). Write C∞(G) for the set of C-algebra characters Z(G∞) → C, and CS(G) for
the set of C-algebra characters HS

ur(G) → C. Thus we can write

IGdisc,t(f) =
∑

(ζ,cS)∈C∞(G)×CS(G)

IGdisc,ζ,c(f), f ∈ H(G(AF ),KS), (2.4.2)

where IGdisc,ζ,c are (ζ, cS)-eigen-linear forms:

IGdisc,ζ,cS ((h, z) ∗ f) = ĥ(cS)ζ(z)IGdisc,ζ,cS (f), h ∈ HS
ur(G), z ∈ Z(G∞). (2.4.3)

The ζ and cS appearing in (2.4.2) should be thought of as the infinitesimal characters at ∞ and the
away-from-S Satake parameters for the automorphic representations contributing to Idisc,t. For a
fixed Hecke type κ, the sum (2.4.2) runs over a finite set depending only on κ and not on f ∈ H(G)κ
by Harish-Chandra’s finiteness theorem.

Note that t is determined by ζ to be the norm of the imaginary part of ζ, cf. [Art13, p.123]. That
is, for a fixed ζ and cS , the linear form IG

disc,ζ,cS
in (2.4.2) is nontrivial for at most one t. Hence the

meaning of IG
disc,ζ,cS

is unambiguous even if we do not include t in the notation.
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Write RGdisc,t for the regular representation of G(AF ) on L2
disc([G]). (See §1.4.) Just like IGdisc,t

the invariant distribution trRGdisc,t decomposes:

trRGdisc,t(f) =
∑

(ζ,cs)∈C∞(G)×CS(G)

trRGdisc,ζ,cS (f), f ∈ H(G(AF ),KS).

To discuss stable distributions, we will only consider G with the following property: for every
finite sequence ei = (Ge

i,Ge
i , s

e
i, ξ

e
i ) indexed by i = 1, ..., r, where ei is an elliptic endoscopic datum

for Ge
i−1 over F for 2 ≤ i ≤ r, we can take Ge

i =
LGe

i for all 1 ≤ i ≤ r. (That is, ei is isomorphic to
an endoscopic datum whose second entry is given by the L-group of the first entry.) The purpose
of the simplifying hypothesis is to dispense with any discussion of z-extensions. This suffices for
our needs as the classical groups in §2.1 satisfy the condition.

Now we consider elliptic endoscopic data e = (Ge,Ge, se, ξe) for G over F . Denote by f e ∈
H(Ge(AF )) a Langlands–Shelstad transfer of f . Arthur inductively defined stable linear forms
Se
disc,t = SG

e

disc,t : H(Ge) → C for each e satisfying the fundamental identity

IGdisc,t(f) =
∑

e∈Eell(G)

ι(e)Se
disc,t(f

e), (2.4.4)

where ι(e) ∈ Q>0 is an explicit constant. The transfer f e has trivial stable orbital integrals
unless S ⊃ Sbad(G

e), which we assume from now. In particular if f ∈ H(G(AF ),KS) then
f e ∈ H(Ge(AF ),Ke,S), where Ke,S is the product of fixed hyperspecial subgroups of Ge(Fv) over
v /∈ S. Based on (2.4.2) and (2.4.4), we can adapt the argument for [Art13, Lem. 3.3.1] to decompose
Se
disc,t into stable linear forms

Se
disc,t(f

e) =
∑

(ζ′,c′,S)∈C∞(Ge)×CS(Ge)

Se
disc,ζ′,c′,S (f

e), f ∈ H(Ge(AF ),Ke,S),

such that each Se
ζ′,c′,S

satisfies the analogue of (2.4.3). If G is quasi-split, then this applies in

particular to Ge = G, that is, we have a stable linear form SG
disc,ζ,cS

: H(G(AF ),KS) → C for (ζ, S)

as before. Given (ζ, cS) ∈ C∞(G)× CS(G), define

Se
disc,ζ,cS :=

{ ∑
(ζ′,c′,S) 7→(ζ,cS)

Se
disc,ζ′,c′,S

, if S ⊃ Sbad(G
e)

0, otherwise.

where the sum is taken over the pairs such that ζ ′ 7→ ζ and c′,S 7→ cS under the natural maps
C∞(Ge) → C∞(G) and CS(Ge) → CS(G) induced by ξe. Then we have a refinement of (2.4.4) as in
[Art13, Lem. 3.3.1]:

IGdisc,ζ,cS (f) =
∑

e∈Eell(G)

ι(e)Se
disc,ζ,cS (f

e). (2.4.5)

The discussion so far can be adapted to the twisted case, as this case is covered in [Art13, §3.1–
§3.3]. For the twisted group G̃(N) introduced in §2.1, denote by I

G(N)
disc,t the twisted invariant trace

formula and by Ẽell(N) a set of representatives for isomorphism classes of twisted endoscopic data.

Each ẽ ∈ Ẽell(N) is again represented by a quadruple (Gẽ, LGẽ, sẽ, ξ ẽ), where Gẽ is a product of one
or two classical groups as listed in §2.2.

Recall that we defined C∞(N) and CS(N) in §2.3. Put K(N)S ⊂ G̃0(N)(ASF ) for the product of

hyperspecial subgroups coming from the obvious integral model of G̃0(N) over OF . We have h ∈
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HS
ur(G̃

0(N)) and z ∈ Z(G̃0(N)∞) act on H(G(N,ASF ),K(N)S) and H(G(N)∞), respectively, such

that the analogue of (2.4.1) holds for representations of G̃(N,ASF ) and G̃(N)∞. The decomposition
(2.4.2) admits a twisted analogue:

I
G(N)
disc,t (f) =

∑
(ζ̃,c̃S)∈C∞(N)×CS(N)

I
G(N)

disc,ζ̃,c̃S
(f), f ∈ H(G(N,AF ),K(N)S),

where each I
G(N)

disc,ζ̃,c̃S
is an invariant linear form on H(G(N)) satisfying the eigen-property analogous

to (2.4.3). As before, I
G(N)

disc,ζ̃,c̃S
is nontrivial for at most one t, so there is no danger if t is omitted

in the subscript.
Provided that S ⊃ Sbad(G

ẽ), the L-morphism ξ ẽ : LGẽ → LG̃0(N) induces maps C∞(Gẽ) →
C∞(N) and CS(Gẽ) → CS(N). Thereby we put, for each (ζ̃, c̃S) ∈ C∞(N)× CS(N),

S ẽ
disc,ζ̃,c̃S

:=
∑

(ζ,cS)7→(ζ̃,c̃S)

S ẽ
disc,ζ,cS ,

as a stable linear form on H(Gẽ). If S ̸⊃ Sbad(G
ẽ) then set S ẽ

disc,ζ̃,c̃S
:= 0.

The stabilization of the twisted trace formula due to Moeglin–Waldspurger [MW16a, MW16b]
shows that, if f ẽ denotes a Langlands–Shelstad–Kottwitz transfer of f ∈ H(G(N)) then the twisted
analogue of (2.4.4) holds:

I
G(N)
disc,t (f) =

∑
ẽ∈Ẽell(N)

ι(ẽ)S ẽ
disc,t(f

ẽ),

where ι(ẽ) ∈ Q>0 is an explicit constant. For (ζ̃, c̃S) as above, we refine the preceding formula again
by [Art13, Lem. 3.3.1]:

I
G(N)

disc,ζ̃,c̃S
(f) =

∑
ẽ∈Ẽell(N)

ι(ẽ)S ẽ
disc,ζ̃,c̃S

(f ẽ). (2.4.6)

2.5. Weak transfer for classical groups. Let G∗ be a quasi-split classical group as in Case S
or U of §2.1. Let ξ̃ : LG∗ → LG̃0(N) be the L-morphism such that G∗ and ξ̃ constitute a simple

twisted endoscopic group for (G̃(N), θ) as in §2.2. Let (G, υ) be an inner twist of G∗ over F (§1.4).

Theorem 2.5.1 (quasi-split case). Assume (H1) in §1.1 and let G = G∗. Fix a finite set S ⊃
Sbad(G).

(i) For (ζ, cS) ∈ C∞(G)×CS(G) write (ζ̃, c̃S) ∈ C∞(N)×CS(N) for the image of (ζ, cS) under

ξ̃. Unless (ζ̃, c̃S) = (ζψ,∞, c
S(ψ)) for some ψ ∈ Ψ̃S(N),

trRGdisc,ζ,cS (f) = IGdisc,ζ,cS (f) = SGdisc,ζ,cS (f) = 0, f ∈ H(G(AF ),KS).

(ii) We have a G(AF )-equivariant decomposition

L2
disc([G])

S-ur =
⊕
ψ

⊕
(ζ,cS)7→(ζψ,∞,cS(ψ))

L2
disc,ζ,cS ([G])

where the first sum runs over ψ ∈ Ψ̃S(N), and the second over (ζ, cS) ∈ C∞(G) × CS(G)
which map to (ζψ,∞, c

S(ψ)) under ξ̃. (See §2.3 for the notation.)
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This theorem corresponds to [Art13, Prop. 3.4.1, Cor. 3.4.3]. Arthur’s main global theorems

(§1.5 therein) show that only a proper subset of Ψ̃S(N) contributes in (i) and (ii), consisting of the
ones coming from square-integrable parameters of G. The soft argument here does not narrow down
the set of ψ as much. Theorem 2.5.1 is proven essentially in the same way as [Art13, Prop. 3.4.1,
Cor. 3.4.3]. We give some details for the convenience of the reader, taking for granted the key input
[Art13, Prop. 3.5.1] on vanishing.

Proof. Assume that (ζ̃, c̃S) ̸= (ζψ,∞, c
S(ψ)) for any ψ ∈ Ψ̃S(N). Let us show (i) and (ii) by

induction on N . The assertion is clear when G is a torus; this serves as the base case. Suppose
that (i) and (ii) are known for all quasi-split classical groups which are simple twisted endoscopic
groups of G(N ′) for all N ′ < N and that G is a simple twisted endoscopic group for G(N).

Recall that IGdisc,t − trRGdisc,t is by definition a linear combination of traces of induced repre-
sentations from discrete automorphic representations πM on proper Levi subgroups M of G. So
the same is true for IG

disc,ζ,cSS
− trRG

disc,ζ,cS
. Hence, if the latter were nonzero, then there exists a

proper Levi M of G such that (ζ, c) is the image of c = (ζM , c
S
M ) ∈ C∞(M) × CS(M) associated

with some discrete automorphic representation πM of M(AF ). We can write M = Mh ×Ml with
Mh a classical group, where Mh is realized as a twisted endoscopic group for G(N − 2N ′), and
Ml = G(N ′) with N ′ < N . According to M = Mh ×Ml, we decompose c = (ch, cl). By induc-

tion hypothesis for Mh, we have ch map to (ζψh,∞, c
S(ψh)) for some ψh ∈ Ψ̃(N − 2N ′). On the

other hand, since the L2-discrete spectrum of Ml is completely accounted for by Ψ(N ′) thanks to
[MW89] (see [Art13, pp.23–25] for explanation), we have cl = (ζψl,∞, c

S(ψl)) for some ψl ∈ Ψ(N ′).

Since (ζ, c) is the image of (ch, cl) under parabolic induction, we see that (ζ̃, c̃
S) = (ζψ,∞, c

S(ψ)) for

ψ = ψh ⊞ ψl ⊞ ψ⋆l ∈ Ψ̃(N). This is a contradiction. We conclude that

IGdisc,ζ,cS (f) = trRGdisc,ζ,cS (f), f ∈ H(G(AF ),KS). (2.5.1)

Now IG
disc,ζ,cS

− SG
disc,ζ,cS

is a linear combination of Se
disc,ζ,cS

over e ∈ E<ell(G). If the difference

were nonzero, then for some e,

Se
disc,ζ,cS =

∑
(ζ′,c′,S)7→(ζ,cS)

Se
disc,ζ′,c′,S

is nontrivial. Since Ge is a product of quasi-split classical groups G1 and G2 of lower rank (see
§2.1), by arguing as in the preceding paragraph based on the induction hypothesis for G1 and G2,
we reach a similar contradiction. (The difference is that there is no general linear factor in G and
that the role of parabolic induction is played by the endoscopic transfer via ξe.) Hence

IGdisc,ζ,cS (f) = SGdisc,ζ,cS (f), f ∈ H(G(AF ),KS). (2.5.2)

By the initial hypothesis, I
G(N)

disc,ζ̃,c̃S
= 0. Applying (2.4.6), (2.5.1) and (2.5.2), we obtain

0 = I
G(N)

disc,ζ̃,c̃S
(f) =

∑
ẽ∈Ẽell(N)

ι(ẽ)trRG
ẽ

disc,ζ̃,c̃S
(f ẽ).

Since the right hand side is a non-negative linear combination of traces of irreducible representa-
tions, Arthur’s vanishing result [Art13, Prop. 3.5.1] implies that the linear combination is identically

zero, namely trRG
ẽ

disc,ζ̃,c̃S
= 0. Since trRG

disc,ζ̃,c̃S
is a nonnegative linear combination of traces of

irreducible representations, it follows that the partial sum trRG
disc,ζ,cS

vanishes identically. This

completes the proof of (i) in light of (2.5.1) and (2.5.2).
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Part (ii) follows immediately from (i) since trRG
disc,ζ,cS

= 0, which implies L2
disc,ζ,cS

([G]) = 0,

unless (ζ, cS) maps to (ζψ,∞, c
S(ψ)) for some ψ ∈ Ψ̃S(N). □

Theorem 2.5.2 (general case). Assume (H1). Let (G, υ) be an inner twist of G∗ over F . For each
ζ ∈ C∞(G) and cS ∈ CS(G),

trRGdisc,ζ,cS (f) = IGdisc,ζ,cS (f) = 0, f ∈ H(G(AF ),KS),

unless ξ sends (ζ, cS) to (ζψ,∞, c
S(ψ)) for some ψ ∈ Ψ̃(N). There is a G(AF )-equivariant decom-

position

L2
disc([G])

S-ur =
⊕
ψ

⊕
(ζ,cS)7→(ζψ,∞,cS(ψ))

L2
disc,ζ,cS ([G]),

where the sums run over ψ ∈ Ψ̃S(N) and (ζ, cS) ∈ C∞(G)×CS(G) such that ξ((ζ, cS)) = (ζψ,∞, c
S(ψ)).

Proof. We induct on N as in the proof of Theorem 2.5.1. The argument there carries over to show
that

IGdisc,ζ,cS (f) = trRGdisc,ζ,cS (f), f ∈ H(G(AF ),KS),

using the fact that a proper Levi subgroup of G is a product of G′(N) with N ′ < N and a non-
quasi-split classical group of lower rank than G; the induction hypothesis is applied to the latter.

Now we consider (2.4.5). Since the stable distributions on the right hand vanish by Theorem 2.5.1
(if e ∈ E<ell(G), we can also argue as in the proof of that theorem), we deduce that IG

disc,ζ,cS
(f) = 0.

Hence trRG
disc,ζ,cS

vanishes as well, and the assertion about L2
disc([G]) follows. □

Theorem 2.5.2 can be rephrased as the existence of a weak endoscopic lift for G as a twisted
endoscopic group of (G̃(N), θ).

Corollary 2.5.3. Assume (H1). For every discrete automorphic representation π of G(AF ) unram-
ified away from S, there exists an automorphic representation Π of G0(N,AF ), which is an isobaric

sum of cuspidal representations, such that Π∨ ∼= Π◦ c and (ζπ∞ , c
S(π)) maps to (ζΠ∞ , c

S(Π)) via ξ̃.

Proof. Since π appears in L2
disc([G])

S-ur, it appears in L2
disc,ζ,cS

([G]) for some (ζ, cS) mapping to

(ζψ,∞, c
S(ψ)) as in Theorem 2.5.2. In particular (ζ, cS) = (ζπ∞ , c

S(π)). Writing ψ in the form
(2.3.1), we can take Π to be the isobaric sum

⊞i∈I

(
µi|det |

ni−1

2 ⊞ µi|det |
ni−3

2 ⊞ · · ·⊞ µi| det |
1−ni

2

)
.

By construction (ζψ,∞, c
S(ψ)) = (ζΠ∞ , c

S(Π)). Since ψ⋆ = ψ, it follows that Π∨ ∼= Π ◦ c. □

3. Automorphic Galois representations

3.1. The Buzzard–Gee conjecture. Throughout this subsection, let G be a connected reductive
group over a number field F (which need not be a classical group). Let ℓ be a prime number and

ι : C ∼→ Qℓ an isomorphism. We work with fixed ℓ and ι at a time, but note that the conjectures
below predict the existence of weakly compatible systems of Galois representations in a suitable
sense as ℓ and ι vary.

Let G∞,C =
∏
τ Gτ and T∞,C =

∏
τ Tτ be as in §1.4. Fix a Borel subgroup B∞,C = Bτ containing

T∞,C. The half sum of positive roots is denoted by ρ∞ = (ρτ )τ ∈ X∗(T∞,C)Q. We also view ρ∞ as

the half sum of positive coroots of T̂∞,C relative to B̂∞,C, thus an element of X∗(T̂∞,C)Q. We also

have ρ ∈ X∗(T ) = X∗(T̂ ) as the half sum of positive roots for T and B as in §1.4. The pairs (B, T )
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and (Bτ , Tτ ) determine isomorphisms X∗(T ) ∼= X∗(Tτ ) and X∗(T̂ ) ∼= X∗(T̂τ ), under which ρ maps
to ρτ .

Let π = ⊗′
vπv be a discrete automorphic representation of G(AF ). We assigned the infinitesimal

character ζπ∞ = (ζπ,τ ) ∈ X∗(T∞,C)C/Ω∞ = ⊕τX∗(T̂ )C/Ω in §1.4. We introduce two notions of
algebraicity for π in terms of ζπ∞ .

Definition 3.1.1. We say that π is L-algebraic if ζπ∞ ∈ X∗(T∞,C)/Ω. If ζπ∞ belongs to the
image of X∗(T∞,C) + ρ∞ in X∗(T∞,C)C/Ω then π is said to be C-algebraic. The representation
π is regular if ζπ∞ is regular as an Ω-orbit in X∗(T∞,C)C, i.e., each element of the orbit has the
trivial stabilizer in Ω.

The L and C-algebraicity conditions are independent of the choice of T∞,C and B∞,C. (See
[BG14, §2.3].) An equivalent definition can be given by imposing similar conditions on ζπ∞,τ , Tτ ,
and ρτ for every τ : F ↪→ C.

Write Sram(π) for the set of places v of F such that either v ∈ Sbad(G) or πv is ramified. Let S(ℓ)
denote the set of places of F above ℓ. At a finite place v /∈ Sram(π) of F , let ϕπv : WFv → LG(C)
denote the unramified L-parameter for πv (§1.4). Changing coefficients by ι, we obtain

ιϕπv :WFv → LG(Qℓ).

Given a Galois representation r : ΓF → LG(Qℓ) which is de Rham at ℓ and an embedding σ : F ↪→
Qℓ, we follow [BG14, §2.4] to assign a Hodge–Tate cocharacter µHT(r, σ) : Gm → ιĜ over Cℓ, whose
Ĝ(Cℓ)-conjugacy class is defined over Qℓ; here ιĜ stands for the base change of Ĝ from C to Qℓ

via ι or its further base extension to Cℓ. (Such a base change is implicit in the notation LG(Qℓ).)

Thereby we obtain a conjugacy class of cocharacters Gm → ιĜ over Qℓ, which in turn gives an

element of X∗(ιT̂ )/Ω. We denote the resulting element by

µr,σ ∈ X∗(ιT̂ )/Ω.

Conjecture 3.1.2. Suppose that π is L-algebraic. There exists a Galois representation

r = rℓ,ι(π) : ΓF → LG(Qℓ)

such that

(i) r|ssWFv

∼= ιϕπv at finite places v /∈ Sram(π) ∪ S(ℓ),
(ii) µr,ιτ = −ιζπ,τ for every embedding τ : F ↪→ C.

Remark 3.1.3. The negative sign in (ii), which does not appear in [BG14, §3.2], is due to the
different sign convention. (The cyclotomic character has Hodge–Tate weight 1 there; see [BG14,
§2.4].) In this conjecture and the next conjecture, we omit the statement on the image of complex
conjugation as we fell short of proving it in the case of interest, cf. Remark 3.2.8 below.

Remark 3.1.4. When G = GLN , choosing T to be the diagonal maximal torus, we can identify
each member of X∗(Tι−1σ)/Ωτ with ordered n integers (ai)

n
i=1 with a1 ≥ a2 ≥ · · · ≥ an. Similarly,

each member of X∗(T∞,C)Q/Ω can be regarded as ordered rational numbers (ai)
n
i=1 such that a1 ≥

a2 ≥ · · · ≥ an. In particular, if π is L-algebraic or C-algebraic, then we can write −ζπ,τ = (ai)
n
i=1

for a suitable set of ai’s as such. So condition (ii) above may be understood as an equality of
multi-sets for G = GLN .

Following [Zhub] (which gives a different but equivalent definition of C-groups as in [BG14]) the
C-group of G is defined by taking the semi-direct product

CG := LG⋊Gm, (1⋊ t)(g ⋊ 1)(1⋊ t)−1 = Ad(ρ(t))g ⋊ 1, g ∈ LG, t ∈ Gm.
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This is well defined because Ad(ρ) is an algebraic action of Gm on LG (although ρ need not be

an algebraic cocharacter into Ĝ). We can also write CG = Ĝ ⋊ (Gm × ΓF ) with Gm and ΓF
acting on Ĝ via the Ad(ρ)-action and the L-action respectively, since the Galois action and the

Gm-action on Ĝ commute. It is convenient to fix a finite Galois extension F ′/F over which G
splits, and use the finite Galois forms of the L-group LGF ′/F = LG ⋊ ΓF ′/F and similarly for the

C-group CGF ′/F = LGF ′/F ⋊ Gm. From now on, we use the finite Galois form and drop F ′/F

from the subscript unless specified otherwise. We will use the natural Ĝ-conjugation on CG, with
coefficients in Qℓ or C, to define the notion of isomorphism for local parameters and global Galois

representations valued in CG. (It does not make any difference if we use the conjugation by Ĝ⋊Gm

instead.) Write T̂ ad for the image of T̂ in the adjoint group of Ĝ. .

Lemma 3.1.5. If there exists ρ̃ ∈ X∗(T̂ ) which is ΓF -invariant and has the same image in X∗(T̂
ad)

as ρ, then CG ∼= LG×Gm via g ⋊ t 7→ (gρ̃(t), t) with the inverse map (g, t) 7→ gρ̃(t)−1 ⋊ t. These

maps are Ĝ-equivariant: the image of h(g ⋊ t)h−1 equals (hgρ̃(t)h−1, t) for h ∈ Ĝ.

Proof. This is a straightforward verification. □

Let v be a finite place of F not in Sram(π). We introduce a C-normalization of the unramified L-
parameter for πv (with C-coefficient), which is natural from the viewpoint of the geometric Satake
equivalence, cf. [Zhub, §1.4]:

ϕCπv :WFv → CG = LG⋊Gm, x 7→ ϕπv(x)2ρ(|x|1/2)⋊ |x|−1. (3.1.1)

It is elementary to check that ϕCπv is well defined up to Ĝ-conjugacy. Indeed, if ϕπv is conjugated by

an element of Ĝ then the resulting ϕCπv is conjugated by the same element. When ρ̃ as in Lemma

3.1.5 exists, the isomorphism therein gives an alternative description of ϕCπv :

ϕCπv :WFv → LG×Gm, x 7→
(
ϕπv(x)2(ρ− ρ̃)(|x|1/2), |x|−1

)
. (3.1.2)

Example 3.1.6. When G is Sp2n or SOη
2n, we take ρ̃ = ρ. In this case F ′ = F except for the case

of SOη
2n with η ̸= 1; then take F ′ = E. For G = SO2n+1, we take F ′ = F . In this case no ρ̃ as

in the lemma exists. For GLN , we can take ρ̃ = (N − 1, N − 2, ..., 1, 0) with F ′ = F . So when
G = GLN , (3.1.2) reads

ϕCπv(x) =
(
ϕπv(x)|x|(1−N)/2, |x|−1

)
. (3.1.3)

For G = UN , we take F ′ = E. For odd N we can take ρ̃ = ρ, but there does not exist ρ̃ if N is
even. (For instance, (N − 1, N − 2, ..., 0) is not ΓF -invariant.)

Example 3.1.7. For SO2n+1 (with F ′ = F ), we have two maps

Sp2n ×Gm → GSp2n, (g, t) 7→ gt,
Sp2n ×Gm → CSO2n+1 = Sp2n ⋊Gm, (g, t) 7→ g2ρ(t)−1 ⋊ t2.

whose kernels are both generated by (−1,−1). This induces an isomorphism

CSO2n+1
∼= GSp2n.

Under this isomorphism, (3.1.1) reads

ϕCπv :WFv → GSp2n, x 7→ ϕπv(x)|x|−1/2.
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We return to a general discussion. Let τ : F ↪→ Qℓ be an embedding. To a Galois representation
rC : ΓF → CG(Qℓ) which is de Rham at ℓ, we assign a Hodge–Tate cocharacter µHT(r

C , τ) : Gm →
Ĝ⋊Gm over Cℓ, which gives rise to an element

µrC ,τ ∈ X∗(ιT̂ ×Gm)/Ω,

as in the case of L-group valued representations. Indeed, CG is the L-group of a Gm-extension of

G, cf. [BG14] and [Zhub], and T̂ ×Gm is a maximal torus of Ĝ⋊Gm whose Weyl group is naturally

isomorphic to Ω, the Weyl group for T̂ in Ĝ. The action of ω ∈ Ω on X∗(T̂ × Gm) = X∗(T̂ ) ⊕
X∗(Gm) = X∗(T̂ )⊕Z, induced by the Ĝ-conjugation on Ĝ⋊Gm, is that ω(a, b) = (ωa+b(ωρ−ρ), b),
where ωa and ωρ are computed using the natural ω-action on X∗(T̂ ). Define ζCπ,τ by

− ζCπ,τ = (−ζπ,τ − ρ, 1) ∈ X∗(T̂ ×Gm)Q/Ω. (3.1.4)

This is well defined since if ζπ,τ ∈ X∗(T̂ )Q denotes any representative in its Ω-orbit (still denoted
ζπ,τ ) then ω(−ζπ,τ − ρ, 1) = (−ωζπ,τ − ρ, 1) by the preceding formula. When ρ̃ as in Lemma 3.1.5
exists, composition with the isomorphism CG ∼= LG×Gm gives an alternative description

− ζCπ,τ = (−ζπ,τ − ρ+ ρ̃, 1) ∈ X∗(T̂ ×Gm)Q/Ω. (3.1.5)

The reader is cautioned that even though T̂×Gm serves as a maximal torus in both CG and LG×Gm

via the natural inclusions, the isomorphism CG ∼= LG × Gm does not induce the identity map on

T̂ × Gm. Rather the induced map “shifts” by ρ̃, which explains the difference between (3.1.4)
and (3.1.5). While (3.1.4) is for general CG-valued representations, (3.1.5) is for LG × Gm-valued
representations and requires the existence of ρ̃.

The C-algebraic version of Buzzard–Gee’s conjecture is adapted to our setting as follows.

Conjecture 3.1.8. Suppose that π is C-algebraic. There exists a Galois representation

rC = rCℓ,ι(π) : ΓF → CG(Qℓ)

such that

(i) rC |ssWFv

∼= ιϕCπv at finite places v /∈ Sram(π) ∪ S(ℓ),
(ii) µrC ,ιτ = −ιζCπ,τ for every embedding τ : F ↪→ C.

Remark 3.1.9. Condition (i) implies that the composition of rC with the projection CG(Qℓ) →
Gm(Qℓ) is ω

−1
ℓ , the inverse cyclotomic character, in view of (3.1.1). This convention is consistent

with [Zhua] but opposite to that of [BG14, §5.3, Conj. 5.40], where the composition is ωℓ.

Remark 3.1.10. When ρ ∈ X∗(T̂ ) (not just ρ ∈ X∗(T̂ )Q), Conjectures 3.1.2 and 3.1.8 are equiv-
alent via the isomorphism CG ∼= LG×Gm of Lemma 3.1.5 given by ρ̃ = ρ. Indeed, L-algebraicity
coincides with C-algebraicity in that case. Further, r as in the former conjecture gives rise to rC

in the latter conjecture by rC(γ) := (r(γ), ωℓ(γ)
−1) via the isomorphism. Conversely r can be

recovered from rC by projection.

Conjectures 3.1.2 and 3.1.8 are known for general linear groups under certain hypotheses as we
now recall. The case of classical groups will be eventually derived from this result.

Proposition 3.1.11. Let F , E, and ⋆ be as in §2.2. Conjectures 3.1.2 and 3.1.8 are true for every
discrete automorphic representation π of GLN (AE) (in particular E serves as the field F in the
conjectures) if the following holds:
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• π is regular (and L or C-algebraic as assumed in the conjectures), and
• π⋆ ∼= π ⊗ (χ ◦NE/F ) for a Hecke character χ : F×\A×

F → C×.

If π is regular but does not satisfy the second condition, then Conjectures 3.1.2 and 3.1.8 are true
except for the assertions on Hodge–Tate cocharacters.

Proof. The last assertion will be addressed at the end of proof. Until then we assume that π satisfies
both conditions. We begin with the case when π is cuspidal and C-algebraic. Let us represent ζπ,τ
by (a1, ..., an)− (n−1

2 , ..., n−1
2 ) with (ai)

n
i=1 ∈ Zn. By [BLGGT14, Thm. 2.1.1] (which summarizes a

theorem due to many people; see references therein), there exists a semisimple Galois representation
R = Rℓ,ι(π) : ΓE → GLN (Qℓ) such that

R|ssWEv

∼= ιϕπv | · |(1−N)/2
v , v /∈ Sram(π) ∪ S(ℓ), (3.1.6)

µR,ιτ = (a1, ..., an) = −ζπ,τ + (n−1
2 , ..., n−1

2 ). (3.1.7)

Choosing ρ̃ as in Example 3.1.2, we identify CGLN ∼= GLN × Gm as in Lemma 3.1.5. Then we
define an GLN ×Gm-valued representation

rC : ΓE → GLN (Qℓ)×Gm(Qℓ), γ 7→ (R(γ), ω−1
ℓ (γ)).

Comparing (3.1.6) with (3.1.3), we verify part (i) of Conjecture 3.1.8. The cocharacter ζCπ,τ in part
(ii) of the conjecture becomes a GLN ×Gm-valued cocharacter in view of (3.1.5):

t 7→ ((−ζπ,τ − ρ+ ρ̃)(t), t) =
(
(−ζπ,τ + (n−1

2 , ..., n−1
2 )(t), t

)
.

This coincides with µrC ,ιτ in view of (3.1.7) and the fact that the Hodge–Tate cocharacter of ω−1
ℓ

is the tautological map t 7→ t on Gm.
We turn to the case of cuspidal L-algebraic π. Then π′ := π|det |(N−1)/2 is cuspidal, regular,

and C-algebraic. So there exists R(π′) such that (3.1.6) and (3.1.7) hold with π′ in place of π. We

take r = rℓ,ι(π) := R(π′). Then r|ssWEv

∼= ιϕπ′
v
| · |(1−N)/2

v
∼= ιϕπv at v /∈ Sram(π) ∪ S(ℓ), so (i) of

Conjecture 3.1.2 is satisfied. Similarly (ii) follows from (3.1.7) for r = R(π′).
From now, let π be a non-cuspidal discrete automorphic representation. By [MW89]

π = ⊞r
j=1π0|det |(r+1−2j)/2

as an isobaric sum, for someN0, r ∈ Z≥1 and π0 a cuspidal automorphic representation of GLN0(AE),
where N = N0r. If π is regular L-algebraic then πj := π0|det |(r+1−2j)/2 is regular, L-algebraic,
and unramified outside Sram(π). By the preceding argument, we have rℓ,ι(πj) corresponding to πj
satisfying Conjecture 3.1.2. Then r := ⊕jrℓ,ι(πj) is the Galois representation corresponding to π
predicted by the conjecture. We leave to the reader to verify Conjecture 3.1.8 when π is regular
C-algebraic and non-cuspidal as no new idea is needed.

Finally, if the second condition on π is not assumed, we can run the same argument as above
except that we apply the theorems of Harris–Lan–Taylor–Thorne and Scholze [HLTT16, Sch15]
instead of [BLGGT14, Thm. 2.1.1] to obtain Galois representations. The only difference in the
outcome is that the Hodge–Tate weights have not been identified for the Galois representations in
[HLTT16, Sch15], so we are unable to verify (ii) in Conjectures 3.1.2 and 3.1.8. □

3.2. Existence of Galois representations for classical groups. From here until the end of
the paper, we use the same notation as in §2.5, including G∗, N , and ξ̃ : LG ↪→ LG̃0(N). In Case

U, take ξ̃ to be the standard base change morphism ξ̃+ (rather than ξ̃−). In Case S, we recall that

ξ̃|
Ĝ∗ is the standard embedding of Ĝ∗ into GLN .
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Let ℓ be a prime and choose an isomorphism ι : C ≃ Qℓ. Let S be a finite set of places of F
which contains all places above ℓ and ∞ such that G is unramified at places outside S.

Definition 3.2.1. A discrete automorphic representation π of G(AF ) is said to be std-regular if

ξ̃(ζπ∞) ∈ C∞(N) is regular.

Lemma 3.2.2. If π is std-regular then it is regular. The two conditions are equivalent unless G is
an inner form of SOη

2n.

Proof. As we explicated the map X∗(T̂ ) → X∗(T̂N ) induced by ξ̃ in §2.2, the lemma follows from
the definition. □

Example 3.2.3. When G = SOη
2n, a Weyl group orbit in X∗(T̂ ) = Zn is uniquely represented by

(ai) such that a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an|. If ζπ∞ corresponds to such a tuple (ai) then π is regular
if strict inequalities hold everywhere, and std-regular if furthermore an ̸= 0.

Let r : ΓE → GLm(Qℓ) be a Galois representation. Define another representation r⊥ by

r⊥(γ) := tr(cγc−1)−1,

which is isomorphic to the dual representation r∨ in Case S. Let χ : ΓE → Q×
ℓ be a Galois character

such that χ(cγc−1) = χ(γ) for all γ ∈ ΓE (which is automatic in Case S). From now assume that r
is irreducible. Provided that r⊥ ∼= rχ, we recall how to define a sign

sgn(r, χ) ∈ {±1}
following [BC11, §1.1]. In Case S, we obtain a nonzero ΓF -equivariant pairing r ⊗ r → χ−1 up to
a nonzero scalar. According as the pairing is orthogonal or symplectic (it cannot be both since r
is irreducible), we assign 1 or −1 as the value of sgn(r, χ). When χ is trivial, we just write sgn(r)
and refer to it as the sign of r. Of course if m is odd then always sgn(r, χ) = 1. In Case U, by
assumption there exists h ∈ GLm(Qℓ), unique up to nonzero scalars, such that r⊥ = hrh−1χ. Then
it is elementary to check that th = sgn(r, χ)h for sgn(r, χ) ∈ {±1}, which does not depend on the
choice of h.

Henceforth we restrict E and F as follows in order to access Proposition 3.1.11.

(Case S) E = F is a totally real field.
(Case U) F is a totally real field, and E is a CM quadratic extension of F .

We also consider the following hypotheses, cf. the paragraph above Theorem 1.2.2. The two versions
of (H2) are equivalent to each other since ζΠ∞ = ξ̃(ζπ∞).

(H2) π is std-regular.
(H3) In Corollary 2.5.3, if Π is written as an isobaric sum Π = ⊞r

i=1Πi then Πi is (conjugate)
self-dual for every i, i.e., Π⋆i = Πi.

Proposition 3.2.4. Let E and F be as above. Assume (H1). Let π be a discrete automorphic
representation of G(AF ) which is unramified outside S, C-algebraic, and satisfying (H2) and (H3).
Then there exists a continuous semisimple Galois representation

R = Rℓ,ι(π) : ΓE,S → GLN (Qℓ)

with the following property. If G∗ = Sp2n or SOη
2n (Case S), we have

(i) R|ssWFv

∼= ιξ̃ϕπv for every place v of F not above S,

(ii) µR,ισ = −ιξ(ζπ,σ) for embeddings σ : F ↪→ C.
(iii) R∨ ∼= R. When G∗ = SOη

2n, every self-dual irreducible constituent of R has sign 1.
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(iv) detR = 1 if G∗ = Sp2n and detR = η if G∗ = SOη
2n.

If G∗ = SO2n+1 (Case S) then

(i)’ R|ssWFv

∼= ι(ξ̃ϕπv | · |(1−N)/2) for every place v of F not above S,

(ii)’ µR,ισ = −ιξ̃(ζπ,σ) + (N−1
2 , ..., N−1

2 ) for embeddings σ : F ↪→ C.
(iii)’ R⊥ ∼= R ⊗ ωN−1

ℓ . For every irreducible constituent r of R such that r⊥ ∼= r ⊗ ωN−1
ℓ , we

have sgn(r, ωN−1
ℓ ) = −1.

If G∗ = UN (Case U) then with ξ̃u, ξ̃τ as in §2.1,

(i)” R|ssWEu

∼= ι(ξ̃uϕπv | · |
(1−N)/2
u ) for every place u of E not above S, where v is the place of F

restricted from u,
(ii)” µR,ιτ = −ιξ̃τ (ζπ,τ |F ) + (N−1

2 , ..., N−1
2 ) for embeddings τ : E ↪→ C.

(iii)” R⊥ ∼= R ⊗ ωN−1
ℓ . For every irreducible constituent r of R such that r⊥ ∼= r ⊗ ωN−1

ℓ , we

have sgn(r, ωN−1
ℓ ) = 1.

If (H1) and (H2) are assumed but not (H3), then the above is true except (ii), (ii)’, and (ii)”.

Remark 3.2.5. In fact the proof below shows that every irreducible constituent of R in (iii)

(resp. (iii)’ and (iii)”) is self-dual (resp. self-dual up to ωN−1
ℓ ) thanks to (H3).

Remark 3.2.6. We could have stated the UN -case uniformly with the SO2n+1-case if we rewrite
R as a Galois representation ΓF,S → LG(N)(Qℓ) via a variant of Shapiro’s lemma. Then (i)” and

(ii)” can be merged into (i)’ and (ii)’. E.g., both (i)’ and (i)” assert R|ssWFv

∼= ιξ̃ϕπv | · |
(1−N)/2
v in

this formulation. However the current formulation for unitary groups is convenient in §3.4.

Proof. Let Π = ⊞r
i=1Πi be the automorphic representation of G(N,AF ) = GLN (AE) which is a

functorial lift of π as in Corollary 2.5.3. We are going to apply Proposition 3.1.11 to each Πi. The
proof will be presented only when (H1), (H2), and (H3) are assumed. If (H3) is dropped then we
lose track of Hodge–Tate cocharacters according to Proposition 3.1.11 but the argument is identical
other than that. This explains the last assertion of Proposition 3.2.4.

According to (H3), each Πi is a cuspidal automorphic representation of GLmi(AE) such that

Π⋆i
∼= Πi and

∑
imi = N . Since (ζΠ∞ , c

S(Π)) = ξ̃(ζπ∞ , c
S(π)), the std-regularity of π implies that

Π is regular. Moreover the description of ρ and ξ̃ in §2.1 and §2.2 tells us that

• If G∗ = Sp2n then π is also L-algebraic; Π is both L and C-algebraic.
• If G∗ = SOη

2n then π is also L-algebraic; Π is L-algebraic but not C-algebraic.
• If G∗ = SO2n+1 then Π is C-algebraic but not L-algebraic.
• If G∗ = UN then Π is C-algebraic; it is not L-algebraic if N is even.

Suppose G∗ = SO2n+1. Since Π is regular C-algebraic, we see that Π|det |(1−N)/2 is regular

L-algebraic, so Π′
i := Πi| det |(1−N)/2 is regular L-algebraic as well. Moreover (Π′

i)
⋆ ∼= Π′

i| det |N−1,
so Proposition 3.1.11 yields a Galois representation r′i := rℓ,ι(Π

′
i). Then R := ⊕r

i=1r
′
i satisfies (i)’

and (ii)’ in light of properties (i) and (ii) of Conjecture 3.1.2 for r′i. Indeed, (i)’ is checked as follows:

R|ssWFv

∼= ιϕΠ′
v
∼= ιϕΠv | · |(1−N)/2 ∼= ιξ̃ϕπv | · |(1−N)/2, v /∈ S.

As for (ii)’, since µr′i,ισ = ιζΠ′
i,σ

for every i, we have

µR,ισ = −ιζΠ| det |(1−N)/2,σ = −ιξ̃(ζπ,σ) +
(
N−1
2 , ..., N−1

2

)
.
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Moreover, we have ϕ∨Πv
∼= ϕΠv since Π

∨ ∼= Π, so the displayed formula implies that R⊥ ∼= R⊗ωN−1
ℓ .

The rest of (iii)’ is verified by [BC11, Cor. 1.3] (our N is n there). This finishes the proof when G∗

is SO2n+1.
The case G∗ = UN can be treated as in the SO2n+1-case, by defining Π′

i, r
′
i, and R in the same

way. There is only a minor difference in showing (i)”:

R|ssWEu

∼= ιϕΠ′
u
∼= ιϕΠu | · |(1−N)/2 ∼= ιξ̃uϕπv | · |(1−N)/2, v /∈ S.

The justification of (ii)’ also goes through for (ii)” with a similar change. The proof of (iii)” is
identical to that of (iii)’ except that we use the conjugate duality and invoke [BC11, Thm. 1.2]
rather than Cor. 1.3 therein.

Now consider G∗ = Sp2n or SOη
2n. Then Π is regular L-algebraic so each Πi is regular L-algebraic,

cuspidal, and Π∨
i

∼= Πi. By Proposition 3.1.11, there is a corresponding Galois representation
ri := rℓ,ι(Πi). Taking R := ⊕r

i=1ri, we deduce (i) and (ii) for R from the properties of ri as in the
preceding paragraph. It follows from (i) that R is self-dual. When G∗ = SOη

2n, [BC11, Cor. 1.3] tells
us that the irreducible self-dual constituents of R are orthogonal, so the proof of (iii) is complete.
Finally (iv) is shown by computing detR|WFv

using part (i). □

When ϕ1, ϕ2 :WFv → CG(Qℓ) are two parameters, we write ϕ1
◦∼= ϕ2 to mean

• ϕ1 ∼= ϕ2 if G∗ ≇ SOη
2n, and

• ϕ1 ∼= ϕ2 or θ̂◦(ϕ1) ∼= ϕ2 if G∗ ∼= SOη
2n.

Similarly if µ1, µ2 ∈ X∗(T̂ )Q/Ω then µ1
◦
= µ2 means µ1 = µ2 if G∗ ≇ SOη

2n, and µ1 = µ2 or

θ̂◦(µ1) = µ2 if G∗ ≇ SOη
2n.

Theorem 3.2.7. Let E and F be as above and assume (H1). Let π be as in Proposition 3.2.4
satisfying (H2) and (H3). Then Conjecture 3.1.8 holds true if G∗ ≇ SOη

2n, and it holds up to
outer automorphism if G∗ ∼= SOη

2n. More precisely, there exists a continuous semisimple Galois
representation

rC = rCℓ,ι(π) : ΓF,S → CG(Qℓ)

such that

(i) rC |ssWFv

◦∼= ιϕCπv for every place v of F not above S,

(ii) µrC ,ισ
◦
= −ιζCπ,σ for every σ : F ↪→ Qℓ.

If we drop (H3), then the theorem still holds true except for part (ii).

The proof is the same whether we assume (H3) or not. Without (H3), we lose property (ii)
of the theorem only because we do not know (ii), (ii)’, and (ii)” in Proposition 3.2.4. With this
understanding, we will present the proof in §3.3 and §3.4 below in the case that all of (H1), (H2),
and (H3) are assumed.

Remark 3.2.8. Buzzard–Gee also makes a prediction on the image of complex conjugation at each
real place but we do not see how to prove it completely beyond some partial results. For instance,
in the proof of Proposition 3.2.4 in Case S, every r′i is totally odd by [Tay12, Täı16, CLH16], but
this alone does not determine the image of complex conjugation (up to conjugacy) under R. Thus
the information is insufficient to pin down the image of complex conjugation under rC in Theorem
3.2.7. The image is sometimes identified under additional hypotheses, cf. [KSb, Thm. 2.4] and
[KSa, Thm. 6.5].
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3.3. Proof of Theorem 3.2.7: Case S. Write R = Rℓ,ι(π) : ΓF → GLN (Qℓ) for the Galois
representation as in Proposition 3.2.4. (We are in the E = F case.) We will divide into three
cases according to G∗. When G∗ is either Sp2n or SOη

2n, we will prove Conjecture 3.1.2 as this is
equivalent to Theorem 3.2.7 but notationally simpler; see Remark 3.1.10.

If G∗ = Sp2n then R∨ ∼= R. Such an isomorphism gives a nondegenerate ΓE,S-equivariant

pairing R⊗R→ Qℓ, which must be orthogonal since N = 2n+ 1 is odd. That is, possibly after a
GL2n+1-conjugation, R factors as

ΓE,S −→ O2n+1(Qℓ)
ξ̃−→ GL2n+1(Qℓ).

Take rCℓ,ι(π) : ΓE,S → O2n+1(Qℓ) to be the first map. By Proposition 3.2.4 (iv), the image of rCℓ,ι(π)

is contained in SO2n+1(Qℓ). Since the natural map T̂ /Ω → T̂2n+1/Ω2n+1 is injective, one deduces
(i) and (ii) of Conjecture 3.1.2 from (i) and (ii) of Proposition 3.2.4.

Next consider G∗ = SOη
2n. As in the Sp2n-case, we obtain

rCℓ,ι(π) : ΓF,S → O2n(Qℓ)

such that ι(η) ◦ rCℓ,ι(π) ∼= Rℓ,ι(π). The difference is that T̂ /Ω → T̂2n/Ω2n is not a bijection but

induces a bijection on the set of θ̂◦-orbits on T̂ /Ω → T̂2n onto T̂2n/Ω2n. With this observation, (i)
and (ii) of Conjecture 3.1.2 is implied by (i) and (ii) of Proposition 3.2.4. [CHECK]

In the remaining case G∗ = SO2n+1, we identify CSO2n+1 = GSp2n as in Example 3.1.7. Let
R = Rℓ,ι(π) : ΓF → GL2n(Qℓ) be the Galois representation corresponding to π by Proposition 3.2.4.

Then there is a symplectic pairing (R⊗ ωn−1
ℓ )⊗ (R⊗ ωn−1

ℓ ) → ω−1
ℓ . After conjugation, R⊗ ωn−1

ℓ

factors through the standard embedding η̃C : GSp2n → GL2n. Denote the resulting representation
by

rC = rCℓ,ι(π) : ΓF,S → GSp2n(Qℓ).

Write λ : GSp2n → Gm for the similitude character. Since the symplectic pairing is valued in ω−1
ℓ ,

we have

λrC = ω−1
ℓ .

By construction, the properties of R in Proposition 3.2.4 tell us that

η̃C(rC |ssWFv
) ∼= ι(η̃ϕπv · | · |−1/2) = η̃C

(
ιϕπv · | · |−1/2

)
,

η̃C(µrC ,ισ) = µη̃CrC ,ισ = −ιη̃(ζπ,σ) + (12 , ...,
1
2) = η̃C

(
− ιζπ,σ + (12 , ...,

1
2)
)
.

On the other hand, we have

λ(ι(η̃ϕπv · | · |−1/2)) = | · |−1 = λrC |WFv
= λ(rC |ssWFv

),

λ
(
− ιζπ,σ + (12 , ...,

1
2)
)
= 1 = µω−1

ℓ ,ισ = µλrC ,ισ = λ(µrC ,ισ).

To deduce the theorem, we need to show that the above relations hold without taking η̃C and λ at
both ends. This is implied by the following facts. Firstly, if semisimple elements g1, g2 ∈ GSp2n(Qℓ)
are such that η̃C(g1), η̃

C(g2) are conjugate and λ(g1) = λ(g2) then g1, g2 are conjugate in GSp2n(Qℓ),
cf. [KSb, Lem. 1.1, 1.3]. Secondly, the analogous injectivity is also true on the level of conjugacy

classes of cocharacters via the isomorphism X∗(TGSp) ⊗Z Q×
ℓ

∼= TGSp(Qℓ), which is equivariant

for the Weyl group action, where TGSp is a maximal torus of GSp2n over Qℓ. The proof in the
SO2n+1-case is complete.
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3.4. Proof of Theorem 3.2.7: Case U. Recall that E is a CM quadratic extension of a totally
real field F in this case. Throughout this section we choose ρ̃ as in Example 3.1.6. A key point
in the proof is to extend a GLN -valued representation of ΓE,S to a CU-valued representation of
ΓF,S . We begin with two lemmas to help address this problem. Similar problems were considered
in related settings; see [CHT08, §2.1], [BC09, App. A.11], [BLGGT14, §1] (cf. [BG14, §8.3] for a
comparison with C-groups), and [KSa, App. A] for instance.

Lemma 3.4.1. Let R : ΓE,S → GLN (Qℓ) be a Galois representation. If there exists h ∈ GLN (Qℓ)
such that

th = h and R⊥(γ) = hR(γ)h−1 · ωℓ(γ)N−1, γ ∈ ΓE,S , (3.4.1)

then there exists a Galois representation

R̃ : ΓF,S → CUN (Qℓ) = GLN (Qℓ)⋊ (Gm × {1, c})

uniquely determined by

• R̃(γ) = R(γ)ρ̃(ωℓ(γ))⋊ (ω−1
ℓ (γ), 1) for all γ ∈ ΓE,S,

• R̃(c) = h−1JN ⋊ (−1, c).

Proof. The uniqueness is clear. The main point is to check that the two conditions on R̃ define a
group homomorphism. This amounts to checking that R̃(c)2 = 1 and R̃(c)R̃(γ)R̃(c)−1 = R̃(cγc−1)
for γ ∈ ΓE,S . Set h0 := h−1JN = h−1J−1

N and let ρ̃ be as in Example 3.1.6. We compute:

R̃(c)2 = (h0 ⋊ (−1, c))(h0 ⋊ (−1, c)) = (h0 ⋊ (−1, 1))(J⋆N
th−1

0 J⋆,−1
N ⋊ (−1, 1))

= h0ρ̃(−1)J⋆N
th−1

0 J⋆,−1
N ρ̃(−1)−1 = h0JN

th−1
0 J−1

N = h−1th = 1.

R̃(c)R̃(γ)R̃(c)−1 = (h0 ⋊ (−1, c))(R(γ)ρ̃(ωℓ(γ))⋊ (ω−1
ℓ (γ), 1))(h0 ⋊ (−1, c))−1

= (h0 ⋊ (−1, 1))
(
J⋆N

tR(γ)−1ρ̃(ωℓ(γ))
−1J⋆,−1

N ⋊ (ω−1
ℓ (γ), 1)

)
(h0 ⋊ (−1, 1))−1

= h0JN
(
tR(γ)−1ρ̃(ωℓ(γ))

−1J−1
N ⋊ (ω−1

ℓ (γ), 1)
)
h−1
0

= h−1tR(γ)−1ρ̃(ωℓ(γ))
−1J−1

N ρ̃(ωℓ(γ))
−1h−1

0 ρ̃(ωℓ(γ))⋊ (ω−1
ℓ (γ), 1).

By an explicit computation with ρ̃ and JN , we verify that

J−1
N ρ̃(ωℓ(γ))

−1 = ρ̃(ωℓ(γ))J
−1
N ωℓ(γ)

1−N .

Substituting in the above formula and using h = J−1
N h−1

0 , we obtain

R̃(c)R̃(γ)R̃(c)−1 = h−1 · tR(γ)−1hρ̃(ω(γ)) · ωℓ(γ)1−N ⋊ (ωℓ(γ)
−1, 1).

On the other hand, we see from (3.4.1) that

R(cγc−1) = tR⊥(γ)−1 = h−1tR(γ)−1h · ωℓ(γ)1−N

so R̃(cγc−1) = h−1tR(γ)−1h ·ωℓ(γ)1−N ρ̃(ωℓ(γ))⋊ (ω−1
ℓ (γ), 1). Hence we conclude that R̃(c)R̃(γ) =

R̃(cγc−1), recalling that ωℓ(γ) lies in the center of GLN (Qℓ). □

Lemma 3.4.2. Let R : ΓE,S → GLN (Qℓ) be a semisimple Galois representation such that

• R⋆ ∼= R⊗ ωN−1
ℓ , and

• every irreducible subreprsentation R0 ⊂ R such that R⋆0
∼= R0⊗ωN−1

ℓ has sgn(R0, ω
N−1
ℓ ) =

1.

28



Then there exists a Galois representation

R̃ : ΓF,S → CUN (Qℓ) = GLN (Qℓ)⋊ ({1, c} ×Gm)

such that

• R̃(γ) = R(γ)ρ̃(ωℓ(γ))⋊ (ω−1
ℓ (γ), 1) for all γ ∈ ΓE,S,

• R̃(c) = h−1JN ⋊ (−1, c) for a symmetric matrix h ∈ GLN (Qℓ).

Proof. Since R⋆ ∼= R⊗ ωN−1
ℓ , we can decompose R into irreducibles

R ∼= (⊕r
i=1Ri)⊕ (⊕s

j=1(Rj ⊕ (R⊥
j ⊗ ω1−N

ℓ ))

such that R⋆i
∼= Ri ⊗ ωN−1

ℓ and R⋆j ≇ Rj ⊗ ωN−1
ℓ for every i, j. (Recall that R⋆j

∼= R⊥
j .) Write

di := dimRi and dj := dimRj . For each i, since sgn(Ri, ω
N−1
ℓ ) = 1, there exists hi ∈ GLdi(Qℓ)

satisfying (3.4.1) for hi and Ri in place of h and R. For 1 ≤ j ≤ s, take

hj :=

(
0 I
I 0

)
∈ GL2dj (Qℓ),

where 0 and I stand for the zero and identity dj × dj matrices. Then it satisfies (3.4.1) for hj and

R⊥
j ⊗ω1−N

ℓ in place of h and R by construction. Hence if we form h ∈ GLN (Qℓ) as a block diagonal

matrix according to the decomposition of R by putting together hi and hj , then (3.4.1) holds true

for h and R. By Lemma 3.4.1 we obtain the desired R̃. □

Now we put ourselves in the setting of Theorem 3.2.7 for G∗ = UN and let R : ΓE,S → GLN (Qℓ)
be the representation coming from Proposition 3.2.4. Since R satisfies the condition of Lemma
3.4.2, we obtain

rC : ΓF,S → CUN (Qℓ)
ξ̃0
== GLN (Qℓ)⋊ ({1, c} ×Gm)

as in the lemma. (We renamed R̃ as rC .) By construction the following composition is equal to
the representation (R,ω−1

ℓ ):

ΓE,S
rC−→ GLN (Qℓ)⋊Gm

ς−→ GLN (Qℓ)×Gm,

where ς : g ⋊ t 7→ gρ̃(t) is the isomorphism from Lemma 3.1.5.
Our goal is to verify (i) and (ii) of Theorem 3.2.7 for rC . Since the codomain of rC is identified

with GLN (Qℓ) ⋊ ({1, c} × Gm) via ξ̃0 above, we want to do the same with ϕCπv : WFv → CUFv
via CUFv

∼= GLN (Qℓ) ⋊ ({1, c} × Gm) given by ξ̃u : LUFv
∼= GLN (Qℓ) ⋊ {1, c} (and the identity

map on the Gm-factor of the C-group), which is consistent with ξ̃0. For each σ : F ↪→ C, similarly

ζπ,σ ∈ X∗(T̂σ)Q is viewed as an element of X∗(GN
m)Q via ξ̃τ0,σ . (See Case U of §2.1 for the discussions

on ξ̃0, ξ̃u, and ξ̃τ0,σ .) Therefore (i) and (ii) are equivalent to the following assertions. (See §2.1 for
τ0,v and τ0,σ.)

(a) ςrC |ssWFv

∼= ιξ̃u(ϕ
C
πv), for each finite place v of F not contained in S, and the place u of E

induced by τ0,v : E ↪→ F v,

(b) µςrC ,ισ = (−ιξ̃τ0,σ(ζCπ,σ), 1) for every embedding σ : F ↪→ C.
We observed that ςrC = (R,ω−1

ℓ ). Hence (a) holds after restriction to WEu by Proposition 3.2.4
(i)”. Assertion (a) follows from this because the isomorphism class on each side is determined by
its restriction to WEu ; this is a special case of [GGP12, Thm. 8.1 (ii)]. As for (b), let τ0,σ : E ↪→ C
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be as in §2.1, which extends σ. The Hodge–Tate cocharacters can be computed after taking a finite
base extension, so

µςrC ,ισ = µςrC |ΓE ,ιτ0,σ
= µ(R,ω−1

ℓ ),ιτ0,σ
.

Hence (b) is a consequence of Proposition 3.2.4 (ii)” as well as the fact that ωℓ has Hodge–Tate
weight −1. □
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