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Abstract. There have been a number of old and recent results on the cohomology of Shimura
varieties and locally symmetric spaces with characteristic zero and torsion coefficients, sometimes
leading to striking arithmetic applications. Often these results are obtained under a suitable local
genericity or regularity hypothesis. Without such a hypothesis, we formulate a prediction on the
range of vanishing cohomological degrees under a general local condition. This is based on an
axiomatic formalism of Arthur parameters, which is conditionally available for classical groups, as
well as the closure ordering conjecture from the p-adic Adams–Barbasch–Vogan theory and the
Adams–Johnson theory of cohomological parameters at ∞. We start from the L2-cohomology of
locally symmetric spaces with complex coefficients and then proceed to consider the cohomology of
Shimura varieties and their local analogues with torsion coefficients.
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1. Introduction

Locally symmetric spaces arise as the quotients of symmetric spaces for reductive Lie groups
by arithmetic lattices. These spaces, equipped with Hecke correspondences, provide a geometric
and topological incarnation of automorphic forms. When locally symmetric spaces are essentially
Shimura varieties (modulo technical issues with the center), algebraic geometry is brought in to
enrich the subject and lead to further progress.

A fundamental problem is to understand the cohomology of locally symmetric spaces, not only
with C-coefficients but also with torsion coefficients. In the case of certain Shimura varieties and
GLn-locally symmetric spaces, even partial answers took much effort but there was a great reward,
namely outstanding progress in the Langlands program such as [Sch15, ACC+23, CN]. Further,
we refer to [CG18, GV18] for perspectives on the cohomology of locally symmetric spaces in the
context of the Taylor–Wiles method and its generalization.

In fact, the cohomology with C-coefficients is described in terms of automorphic forms by Franke’s
formula (subsuming the formulas due to Matsushima and Borel–Casselman). However, the formula
is not always amenable to explicit calculations to control vanishing of cohomology. The situation is
far more mysterious with torsion coefficients such as Fℓ. For one thing, there is no general notion
of automorphic forms with torsion coefficients (apart from the zero-dimensional case).

Our paper revolves around the following question: find a bound on the non-vanishing degrees
for the cohomology of locally symmetric spaces under a prescribed local condition at a finite prime.
Ideally we want that a universal recipe yields a bound that is tight or almost tight in all cases. The
case of torsion coefficients is particularly deep and motivated by potential applications to automor-
phy lifting and local-global compatibility. Several results have been obtained on the vanishing of
torsion cohomology of Shimura varieties by [CS17, CS24, Kosb, dSS, HL, DvHKZ] mostly under
local genericity hypotheses (which differ slightly from each other) and by [Boy19, CT23] which cover
some non-generic cases. Thus it is natural and timely to ask what would be an optimal genericity
condition and what the bound would be in the non-generic case in general.

Our goal is to present reasonable conjectures for the L2-cohomology and the Betti cohomology
(with or without compact support) with characteristic zero coefficients under a general local con-
dition, with a view towards the case of torsion coefficients under a non-genericity condition. The
recipe is based on an axiomatic formalism of Arthur (a.k.a. A-)parameters and packets. It has
been a well-known principle from the beginning [Art89], when the coefficient field is C, that the
SL2-part of an Arthur parameter controls how the relevant part of the cohomology spreads out in
different degrees in some precise way. We spell out what should happen under a local constraint,
utilizing our knowledge of local Arthur packets at both non-archimedean and archimedean places.
Moreover, a reinterpretation of our recipe in the case of Shimura varieties led us to come up with
an analogous conjecture on non-vanishing cohomological degrees for moduli spaces of local shtukas
in mixed characteristic with ℓ-adic coefficients. Guided by these considerations with characteristic
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zero coefficients, we make some predictions for cohomology with torsion coefficients locally and
globally; see §1.11 below.

1.1. L2-cohomology of Shimura varieties. We would like to illustrate the vanishing problem
and basic ideas on the L2-cohomology of Shimura varieties, where the cohomology is easiest to
understand by means of automorphic representations.

Let (G,X) be a Shimura datum. For a sufficiently small open compact subgroup K =
∏
vKv ⊂

G(A∞), let ShK denote the Shimura variety of level K. Though ShK admits a canonical model
over a number field, we focus on ShK as a complex manifold. Consider a complex local system Eλ,K
over ShK corresponding to an irreducible algebraic representation Eλ of GC of highest weight λ.
The L2-cohomology

H i
(2)(Sh, Eλ) := lim−→

K

H i
(2)(ShK , Eλ,K) (1.1)

is a G(A∞)-module. Now fix a prime p and an irreducible smooth representation π0p of G(Qp). Here
is a basic question.

Question 1.2. If π0p appears as a subquotient of H i
(2)(Sh, Eλ) then can we prove a bound on i in

terms of a numerical invariant attached to π0p?

We can get off the ground thanks to an automorphic description by Borel–Casselman [BC83].
Write g for the Lie algebra ofGC, andK∞ for the centralizer inG(R) of an element ofX (so thatK∞
is roughly a maximal compact subgroup of G(R) modulo center). Then there is a G(A∞)-module
isomorphism

H i
(2)(Sh, Eλ) =

⊕
π

m(π) · π∞ ⊗H i(gC,K∞, π∞ ⊗ Eλ), (1.2)

where π = π∞⊗π∞ runs over discrete automorphic representations ofG(A) (whose central character
at∞ is constrained by λ), and m(π) ∈ Z≥0 denotes the automorphic multiplicity of π. So Question
1.2 asks, if πp = π0p, what we can say about the relative Lie algebra cohomology of π∞.

Such a link between p and∞ is best formulated by Arthur’s conjectural endoscopic classification
of automorphic representations by Arthur parameters (A-parameters), which takes the following
rough form. There is a set of global A-parameters Ψ(G) and a set of local A-parameters Ψ(Gv)
for each place v of Q, equipped with localization maps Ψ(G) → Ψ(Gv), ψ 7→ ψv, as well as an A-
packet Πψv consisting of finitely many (isomorphism classes of) irreducible unitary representations
of G(Qv) attached to each ψv. Given ψ ∈ Ψ(G), define Πaut

ψ as the set of discrete automorphic

representations π = ⊗′
vπv such that πv ∈ Πψv . Then (1.2) becomes

H i
(2)(Sh, Eλ) =

⊕
ψ∈Ψ(G)

⊕
π∈Πaut

ψ

m(π) · π∞ ⊗H i(gC,K∞, π∞ ⊗ Eλ). (1.3)

Then Question 1.2 amounts to asking

Question 1.3. Let ψ ∈ Ψ(G), π ∈ Πaut
ψ , and Eλ as above. If πp = π0p, then what is the range of

non-vanishing degrees for H i(gC,K∞, π∞ ⊗ Eλ)?

A key point for us is that each ψ (resp. each ψv) yields a morphism of algebraic groups SL2 → Ĝ

up to Ĝ-conjugacy, denoted by ψ|SLA2 (resp. ψv|SLA2 ), and that these associations are compatible with

the localization map ψ 7→ ψv. (The superscript A is a decoration for “Arthur” SL2, to distinguish
it from “Deligne” SL2, denoted by SLD2 .) In particular, if a global ψ localizes to ψp and ψ∞ then

ψp|SLA2 = ψ|SLA2 = ψ∞|SLA2
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(again up to Ĝ-conjugacy). Hence the question is divided into two parts.

(i) Given π0p, find all possible SL2 → Ĝ that arise as ψp|SLA2 for ψp ∈ Ψ(Gp) whose A-packet

contains π0p.

(ii) Given ψ∞|SLA2 , the range of non-vanishing degrees for H i(gC,K∞, π∞ ⊗ Eλ).
Part (i) reflects the well-known subtlety that local A-packets are not disjoint, namely π0p may

appear in Πψp for multiple ψp. For our purpose, we are interested in identifying the parameter such
that its restriction to SL2 is the “largest” in some precise sense, which we denote by

ψ0
p|SLA2 : SL2 → Ĝ.

(This should be considered to be analogous to “least” tempered representations.) The (unique)
determination of ψ0

p|SLA2 from π0p would be a consequence of (a version of) the closure ordering

conjecture, which suggests that ψ0
p|SLA2 should equal the restriction to SLD2 of the L-parameter

ϕπ̂0
p
:WQp × SLD2 → LG

to SLD2 for the Aubert dual of π0p. See §3.1 and §3.3 below for more details and references. In

the special case when π0p is A-generic, which by definition means ϕπ̂0
p
|SLD2 is trivial, the conjecture

implies that an A-packet Πψp contains π0p only if ψp|SLA2 is trivial. In other words, A-generic

representations are conjectured to show up only in tempered A-packets.
Part (ii) is more classical and essentially understood from the works of Vogan–Zuckerman and

Adams–Johnson [VZ84, AJ87] (for real reductive groups which need not come from Shimura data).
A necessary condition is that π∞ has infinitesimal character dual to that of Eλ, which imposes
a constraint on ψ∞|SLA2 . For example, if λ is a regular weight, then ψ∞|SLA2 must be trivial in

order that π∞ ∈ Πψ∞ ; if λ = 0 then there is no constraint on ψ∞|SLA2 . With that said, we restrict

ourselves to the case of constant coefficients for simplicity, namely when λ = 0. (The range of
non-vanishing degrees for λ = 0 is valid for all λ but non-optimal in general. In the main text, we
address the optimal range for general λ, at least for C-coefficients.)

The answer to (ii) is complicated to describe in general, but a nice formulation is possible in
the case of Shimura varieties following Arthur [Art89, §9]. Let µ : Gm → GC denote the Hodge

cocharacter determined by (G,X), which gives rise to a weight character for the dual group Ĝ.

Write r−µ for the irreducible representation of Ĝ with extreme weight −µ. Given ψ∞|SLA2 , we

obtain ψ∞|GAm by restricting from SL2 to a maximal torus. (Here GA
m means a maximal torus in

SLA2 .) Then the weights w ∈ Z of Gm on the representation r−µ ◦ ψ∞|GAm correspond to the non-

vanishing degrees i = w + dimSh. To put it differently, fix a Borel pair in Ĝ, write ρ for the half

sum of positive coroots, and choose µ and ψ∞|GAm to be dominant possibly after Ĝ-conjugation.

Then dimSh = ⟨2ρ, µ⟩ and the non-vanishing degrees i lie in the interval

⟨2ρ− ψ∞|GAm , µ⟩ ≤ i ≤ ⟨2ρ+ ψ∞|GAm , µ⟩ (1.4)

In summary, a conditional answer to Questions 1.2 and 1.3 is (choosing ϕπ̂0
p
|GDm to be dominant)

⟨2ρ− ϕπ̂0
p
|GDm , µ⟩ ≤ i ≤ ⟨2ρ+ ϕπ̂0

p
|GDm , µ⟩, (1.5)

assuming a classification result by local and global Arthur packets as well as the local Langlands
correspondence by L-parameters and the closure ordering conjecture. For example, when π0p is

A-generic, (1.4) reads i = ⟨2ρ, µ⟩, namely the L2-cohomology is concentrated in the middle degree.
We expect that A-genericity is an optimal condition for this to happen.
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The flow of information may be recapitulated as follows.

π0p
Aubert invol.

local Langlands
// ϕπ̂0

p
|SLD2

closure

ordering
ψ0
p|SLA2

via ψ
ψ∞|SLA2

Adams–Johnson

Vogan–Zuckerman
// vanishing range

of cohomology
(1.6)

In the case of GLn and quasi-split classical groups, a good deal is known regarding the classifica-
tion result, the local Langlands correspondence, and the closure ordering conjecture. See §2.9 and
§3.1 below for further details. It is worth remarking that it requires care to state the classification
result for a few reasons: the Ramanujan conjecture is unknown, and the global Langlands group
is only hypothetical. Keeping this in mind, we formulate in the main text a list of axioms distilled
from what we really need from the classification.

From Question 1.2 one can try to generalize or extend in a few directions.

(I) Shimura varieties ⇝ locally symmetric spaces.
(II) L2-cohomology H i

(2) ⇝ Betti cohomology (with compact support) H i, H i
c.

(III) Shimura varieties ⇝ moduli of local shtukas such as local Shimura varieties.
(IV) C-coefficients ⇝ torsion coefficients (which makes sense for H i, H i

c).
1

The goal of our paper is to take a first step in all of them by formulating precise questions/conjectures
with little evidence and interpreting known results in an appropriate context. Let us elaborate a
little more in the rest of the introduction: (I)–(II) in §1.4, (III) in §1.9, and (IV) in §1.11 below.

1.4. Cohomology of locally symmetric spaces with C-coefficients. Let G be a connected
reductive group over Q. We make the simplifying hypothesis that the center of G is anisotropic
over Q. (We do not assume it in the main text.) We have a tower of locally symmetric spaces YG,K
indexed by sufficiently small open compact subgroups K ⊂ G(A∞); see (4.1). As in (1.2) we can
define G(A∞)-modules

H i
(2)(YG, Eλ), H i(YG, Eλ), H i

c(YG, Eλ).

Fix a prime p and an irreducible smooth representation π0p of G(Qp). We can ask the analogue of
Question 1.2 about the cohomology spaces above. Again we will assume an axiomatic classification
as formulated in §2.9 below. If we try to proceed as in the case of Shimura varieties, then we can
again get started by applying the analogue of (1.2) due to Borel et al. but two differences stand
out.

• The discrete automorphic spectra on proper Levi subgroups of G may contribute to the
right hand side of (1.2).
• No clean formula such as (1.4) seems available for the non-vanishing degree at ∞.

As for the first point, our heuristics (to be confirmed by an argument) suggests that the contribution
from proper Levi subgroups should not affect the bound on non-vanishing degrees. To address the

second point, we introduce a numerical invariant in terms of ψ∞|SLA2 : SL2 → Ĝ and the weight

parameter λ, partly guided by the behavior of relative Lie algebra cohomology (Lemma 2.7):

a
(2)
G (ψ∞|SLA2 , λ) := max

L⊂GR
q(L) ∈ 1

2Z≥0,

where L runs over the set of θ-stable Levi subgroups of GR (see §2.4 for a reminder and further

references) such that a regular unipotent element of L̂ lies in the closure of the unipotent orbit of

ψ∞|SLA2
(
( 1 1
0 1 )

)
and such that the centralizer of λ in Ĝ contains a Ĝ-conjugate of L̂; here q(L) is half

the real dimension of the symmetric space associated with L. The condition on λ is an interpolation

1For Hi
(2), we switch to the intersection cohomology via Zucker’s conjecture in order to take torsion coefficients.

5



of the two extreme cases: if λ is trivial (i.e., when the cohomology is taken with constant coefficients)
then no condition is imposed, while if λ is a regular weight, then the condition implies that L must
be a fundamental maximal torus and that ψ∞ must be a tempered parameter.

On the other hand, we still expect that ϕπ̂0
p
|SLD2 = ψ∞|SLA2 as discussed in the previous subsection.

Hence we are led to:

Conjecture 1.5 (Conjecture 4.4). If π0p appears as a subquotient of H i
(2)(YG, Eλ) then

q(GR)− a
(2)
G (ϕπ̂0

p
|SLD2 , λ) ≤ i ≤ q(GR) + a

(2)
G (ϕπ̂0

p
|SLD2 , λ).

We stress that the statement of the conjecture relies only on the local Langlands correspondence
for G(Qp), although we arrived there via a conjectural classification in terms of local and global
Arthur packets.

Shimura varieties as real manifolds are essentially locally symmetric spaces (modulo taking a
finite quotient and issues with the center). In that case, Conjecture 1.5 is consistent with (1.5) in

that q(GR) corresponds to dimSh = ⟨2ρ, µ⟩ and a(2)G (ϕπ̂0
p
|SLD2 , λ) to ⟨ϕπ̂0

p
|GDm , µ⟩.

We conditionally verify Conjecture 1.5.

Theorem 1.6 (made precise in Theorem 4.11). Assume an axiomatic classification and the closure
ordering conjecture for π0p. Then Conjecture 1.5 holds true.

The proof is straightforward for part of the cohomology that comes from discrete automorphic
representations of G(A), following the ideas of (1.6). The main point of the argument is to deal
with the contribution from proper Levi subgroups via delicate computations of some numerical
invariants.

Our axioms for endoscopic classification are known for inner forms of GLn, and if we accept the
twisted weighted fundamental lemma, also for quasi-split classical groups. The closure ordering
conjecture is known for GLn, and quasi-split classical groups. Hence we obtain the following, where
“a suitable version” takes into account the problem with split tori in the center as well as whether
the assignment of SL2-morphism is compatible with the restriction (e.g., from GSp2n to Sp2n); see
Corollaries 4.12, 4.13 for the precise statements.

Corollary 1.7. A suitable version of Conjecture 1.5 is true if G is an inner form of GLn that is
split at p. Conditional on the twisted weighted fundamental lemma, it is also true for quasi-split
classical groups as well as for G appearing in the Hilbert–Siegel and quasi-split unitary Shimura
data.

Examples of G as in the last case include the restriction of scalars G = ResFQGSp2n for a totally
real field F . Even though the endoscopic classification is only partially known for such similitude
groups [Xu18, Xu, Xu24], we deduce this case from the case of symplectic groups by relating the
automorphic spectra via restriction.

It is more complicated to formulate conjectures and prove results on H i(YG, Eλ) and H i
c(YG, Eλ)

due to increased complexity of Franke’s formula [Fra98] compared to Borel–Casselman’s formula
for the L2-cohomology. Accordingly we propose an a priori intricate definition of the invariant

aG(ψ∞|SLA2 , λ) ∈
1
2Z≥0,

bounded below by a
(2)
G (ψ∞|SLA2 , λ) by definition. We often know or expect that aG(ψ∞|SLA2 , λ) =

a
(2)
G (ψ∞|SLA2 , λ); see Question 3.15 below. We would like to advertise (cf. Question 4.3):
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Question 1.8. If π0p appears as a subquotient of H i(YG, Eλ) (resp. H i
c(YG, Eλ)) then

i ≥ q(GR)− aG(ϕπ̂0
p
|SLD2 , λ),

(
resp. i ≤ q(GR) + aG(ϕπ̂0

p
|SLD2 , λ)

)
?

For Shimura varieties, analogously (cf. the discussion below Conjecture 1.5), if π0p appears as

a subquotient of H i(Sh, Eλ) then we may ask whether i ≥ ⟨2ρ − ϕπ̂0
p
|GDm , µ⟩; in particular if π0p is

A-generic then we predict i ≥ dimSh. The non-vanishing of H i
c(Sh, Eλ) should work similarly as in

Conjecture 6.8. We hope to discuss them for quasi-split classical groups, including relevant locally
symmetric spaces, in a sequel.

In fact, we formulate unramified analogues of everything in this subsection, where the p-part of
the level subgroup K is fixed to be a hyperspecial subgroup of G(Qp) and π0p is unramified. See
Conjecture 4.2, Question 4.3, Theorem 4.9, and Corollary 4.12 below.

1.9. Compactly supported cohomology of local Shimura varieties. Let G be a connected
reductive group over Qp. Write Cp for the completion of an algebraic closure of Qp. For a conjugacy
class of (geometric) dominant cocharacter µ and an element b of the Kottwitz set B(G,µ−1), Scholze
defines the tower of moduli spaces Sht(G, b, µ)K of local G-shtukas with open compact subgroups
K ⊂ G(Qp), which are diamonds in the sense of Scholze in general. For simplicity, assume µ is
minuscule, in which case Sht(G, b, µ)K is a smooth rigid analytic variety of dimension d = ⟨2ρ, µ⟩,
say over Cp. In some special situations, these spaces are identified with the geometric generic fibers
of Rapoport–Zink spaces. Fixing a prime ℓ ̸= p, we may define a G(Qp)-representation

H i
c(Sht(G, b, µ),Qℓ)

by taking a colimit over K as before; in fact, in the local setting, it extends to an action of
G(Qp)×Jb(Qp) for a certain inner form Jb of a Levi subgroup of the quasi-split form of G determined
by b. (In the main text, we choose to write Gb in place of Jb.)

For an irreducible smooth representation of π0 or π0b of G(Qp) or Jb(Qp) respectively, we can
again ask the analogue of Question 1.2 about the cohomology spaces above. For basic b’s, we expect
that the answer to this question is analogous to the case of compactly supported cohomology of
global Shimura varieties. To formulate the statement, we assume a local Langlands correspondence
for G and Jb by L-parameters with ℓ-adic coefficients, cf. (ℓ-LLC) in §6.20 below, and (A2++) in
§5.1 and Theorem 5.6 for quasi-split classical groups. (We only need the restriction to GD

m of the
L-parameters.)

Conjecture 1.10. Assume that b is basic, and let π0p and π0b be as above. If π0p (resp. π0b ) appears

as a subquotient of H i
c(Sht(G, b, µ),Qℓ) then

d = ⟨2ρ, µ⟩ ≤ i ≤ ⟨2ρ+ ϕπ̂0 |GDm , µ⟩, resp. d = ⟨2ρ, µ⟩ ≤ i ≤ ⟨2ρ+ ϕπ̂0
b
|GDm , µ⟩.

For general b and µ, the relevant cohomology is much more complicated, so the optimal bound
must be modified and depend on b as well; refer to Conjecture 6.21 in the main text. These
expectations come from some known cases, a relation with global Shimura varieties, and also some
experience with the categorical local Langlands conjecture. Indeed, the conjectures for global and
local Shimura varieties can be related via a suitable form of Mantovan’s formula (Proposition 6.31).

1.11. Torsion coefficients. In both global and local settings, the case of torsion coefficients is
far more difficult, especially in the case of locally symmetric spaces, and not much is known in
general. Part of the difficulty is that there is no näıve analogue of the invariant like ϕπ̂|SLD2 due to

lack of a precise enough mod ℓ formulation of the local Langlands correspondence and the Aubert
involution for general reductive groups. However, given recent results as we mentioned, we are a
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little more optimistic about global (and local) Shimura varieties. We include a rather optimistic
expectation (Conjecture 6.15) in the case of constant coefficients based on the idea that the bounds
for characteristic 0 lifts might give a correct bound; this is the case at least for several generic cases
discussed in these recent results.

1.12. Organization. In §2 we review the basics of local L- and A-parameters, Adams–Johnson’s
theory, the axiomatic formulation of local and global A-packets together with key examples. The
goal of §3 is twofold. Firstly, we assign an SL2-morphism, or a nilpotent conjugacy class, to an
irreducible representation of a p-adic reductive group in light of the closure ordering conjecture.
Secondly, we assign numerical invariants to a nilpotent conjugacy class for the purpose of measuring
deviation from the middle degree when studying vanishing of cohomology. The next section §4 is
devoted to formulating vanishing conjectures on the cohomology of locally symmetric spaces with
C-coefficients and proving results in the case of L2-cohomology. To switch from C-coefficients
to ℓ-adic or torsion coefficients, we set up representation-theoretic preliminaries in §5. Finally,
§6 formulates conjectures on the vanishing range for the cohomology of Shimura varieties and
their local analogues with both ℓ-adic and mod ℓ coefficients. We also discuss examples and the
relationship between the global and local conjectures.

1.13. Acknowledgments. We would like to thank Hiraku Atobe, David Hansen, and Yihang Zhu
for helpful discussions. We also thank Baiying Liu for answering questions and providing comments
on the closure ordering conjecture. We are grateful to the Mathematisches Forschungsinstitut Ober-
wolfach, the Hausdorff Research Institute for Mathematics, Research Institute for Mathematical
Sciences (RIMS), and the University of Tokyo for providing wonderful environments, where part of
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Gerard van der Geer for allowing us to contribute to the conference proceedings for the Schiermon-
nikoog conference in April 2024. TK was supported by JSPS KAKENHI Grant Number 20K14284
and 24K16895. SWS is partially supported by NSF grant DMS-2401353 and NSF RTG grant
DMS-2342225.

1.14. Notation. Let k be a field. Let k denote an algebraic closure of k, and Γk the full Galois
group over k. Fix an embedding Q ↪→ C. When there is a distinguished prime p (as in §6) we also
fix Q ↪→ Qp and Qp

∼= C compatibly with it.

Given an algebraic group G over k, write Gk for its base change to k. The center of G is denoted
by ZG. Let CentG(h) denote the centralizer of h in G, where h is either a subgroup of G or a
morphism into G. Set a∗G := X∗

k(G) ⊗Z R, where X∗
k(G) is the group of characters G → Gm over

k. When G is connected reductive over k, choose a minimal k-rational parabolic subgroup P0 with
Levi decomposition P0 = M0N0 and take A0 to be the maximal k-split torus A0 in ZM0 . We may
choose a maximal torus T and a Borel subgroup B of Gk such that A0,k ⊂ T ⊂ B ⊂ M0,k; see

[SZ18, 2.3.2]. Let Ĝ denote the Langlands dual group of G equipped with a Γk-invariant pinning.

When k′/k is a finite field extension and G is a group over k′, write Resk
′
k G for the k-group obtained

from G by the Weil restriction of scalars.
Now let k be a local or global field. Write Wk for the Weil group over k. For G as above, we

adopt the Weil form of the L-group LG := Ĝ⋊Wk, where the action of Wk on Ĝ is determined by

the pinning of Ĝ.
When k is a number field, we fix hyperspecial subgroups at almost all finite places v of k such that

Gkv is unramified as in [Art81, p.9]. The choice of hyperspecial subgroups is usually suppressed
although it determines the notion of unramified Hecke algebras and unramified representations.
(When k is a non-archimedean local field andG is unramified over k, we fix an arbitrary hyperspecial
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subgroup.) Set G∞ := (ReskQG) ×Q R and [G] := G(k)\G(Ak)/AG(R)◦. Denote by L2([G]) the
space of square-integrable functions on [G] as a G(Ak)-module under the right translation action,
and L2

disc([G]) the discrete spectrum. Let AG denote the maximal Q-split torus in ReskQZG. When

χ : AG(R)◦ → C× is a (possibly non-unitary) character, it can be viewed as an automorphic
character of G(Ak) by pulling back along the projection G(Ak) → AG(R)◦. Write L2

χ([G]) for the

G(Ak)-module obtained by twisting L2([G]) by χ.
Let diag(x, y) denote the diagonal 2×2 matrix with diagonal entries x, y. We will often decorate

the group SL2 as SLA2 or SLD2 for “Arthur” or “Deligne”. Write GA
m and GD

m for the diagonal
maximal tori therein.

Often a representation or a parameter means an isomorphism class of representations or param-
eters by abuse of language. When G is over a local field k, write Irr(G) for the set of (isomorphism
classes of) irreducible admissible representations of G(k).

2. Arthur packets

2.1. Local parameters. Let G be a connected reductive group over a local field k. Adopt the
notation and convention from §1.14; in particular, A0 ⊂ M0 ⊂ P0 ⊂ G are fixed as well as a

Γk-invariant pinning for Ĝ. Write | · | : k× → R×
>0 for the absolute value character (normalized

to send a uniformizer to the inverse of the residue field cardinality if k is nonarchimedean), which

induces a character Wk → R×
>0, still denoted by | · |. We define | · |1/2 by taking the positive square

root values of | · |.
The local Langlands group Lk is defined to beWk if k is archimedean andWk×SLD2 (C) otherwise.

We define an embedding iW :Wk → Lk to be the identity map if k is archimedean, and the following
map otherwise:

iW :Wk → Lk =Wk × SLD2 (C), x 7→ (x,diag(|x|1/2, |x|−1/2)).

Denote by Ψ+(G) the set of isomorphism classes of continuous morphisms over Wk

ψ : Lk × SLA2 (C)→ LG(C) = Ĝ(C)⋊Wk

such that (i) ψ|SLA2 is algebraic and (ii) ψ|Lk is semisimple. The isomorphism is given by Ĝ-

conjugation. (The superscripts D and A are inserted to distinguish the two copies of SL2. We drop
them when there is no danger of confusion.)

A subset Ψ(G) ⊂ Ψ+(G) is defined by imposing the condition on ψ ∈ Ψ+(G) that the 1-cocycle

ζψ :Wk → Ĝ given by ψ (so that ψ(w) = ζψ(w)⋊ w for w ∈Wk) sends Wk into a bounded subset

of Ĝ; the condition depends only on the isomorphism class of ψ. A member of Ψ(G) is often called
an (isomorphism class of) local A-parameter in the literature; a member of Ψ+(G) may be thought
of as a generalized A-parameter. We define the subsets Φbdd(G) ⊂ Ψ(G) and Φ(G) ⊂ Ψ+(G) by
the condition that ψ|SLA2 is trivial. Members in Φbdd(G) and Φ(G) are referred to as (isomorphism

classes of) bounded L-parameters and L-parameters, respectively. Given ψ ∈ Ψ+(G), the associated
L-parameter ϕψ ∈ Φ(G) is defined to be the pullback of ψ along the map

iL : LFv → LFv × SLA2 (C), x 7→ (x,diag(|x|1/2, |x|−1/2)),

where | · | : LFv ↠WFv → R×
>0 is the absolute value character. The map

Ψ+(G)→ Φ(G), ψ 7→ ϕψ

9



is not injective (unless G is a torus) but it is injective when restricted to Ψ(G) by [CFM+22,
Lem. 3.3] or [Art84, Prop. 1.3.1]. In §2.9 below, we will introduce an intermediate set Ψ′(G) on
which the map remains injective.

Let P be a standard k-rational parabolic subgroup of G, which has a unique Levi decomposition
P = MN such that M ⊃ M0. Put a∗M := X∗

k(M)⊗Z R. Each ν ∈ a∗M determines an L-morphism

φν : Wk → (ZΓk
M̂

)◦; see [SZ18, 4.8]. Write a∗,+M for the open chamber in a∗M determined by P as in

[SZ18, 1.3]. Now define the set of triples

Φstd.tri(G) := {(P, ϕM , ν)},

where P ⊂ G is a standard k-rational parabolic with unique Levi decomposition P = MN as
above, ϕM ∈ Φbdd(M), and ν ∈ a∗,+M . We also define a variant Ψstd.tri := {(P,ψM , ν)} using
ψM ∈ Ψ(M) in place of ϕM . The Langlands classification theorem for representations admits the
following analogue for parameters.

Lemma 2.2. The map Φstd.tri(G) → Φ(G) induced by (P, ϕM , ν) 7→ φν · ϕM (composed with
LM ↪→ LG) is a bijection. The map Ψstd.tri(G) → Ψ+(G), (P,ψM , ν) 7→ φν · ψM , is also a
bijection.

Proof. See [SZ18, Thm. 1.4, §4.8, §A.2] for the first assertion. The same argument applies to the
second assertion. □

It is convenient to introduce the subset Φe.bdd(G) ⊂ Φ(G) of essentially bounded L-parameters

by the condition that ζϕ(Wk) ⊂ Ĝ has bounded image in Ĝ/ZΓk
Ĝ

, where ζϕ : wk → Ĝ is the 1-cocycle

defined by ϕ. Lemma 2.2 tells us that this subset exactly corresponds to the subset of Φstd.tri(G)
determined by P = G under the bijection, i.e., ϕ ∈ Φ(G) is essentially bounded exactly when
ϕ = φνϕ0 for ν ∈ a∗G and ϕ0 ∈ Φbdd(G).

Likewise, let Ψe(G) ⊂ Ψ(G) denote the subset of ψ such that ψ|Lk belongs to Φe.bdd(G). So
ψ ∈ Ψe(G) if and only if ψ = φνψ0 for ν ∈ a∗G and ψ0 ∈ Ψ(G). Henceforth, the word “essentially”
and the subscript “e” stand for “up to twist” by ν ∈ a∗G or the corresponding parameter/character.

Now suppose that k is non-archimedean. We define the Aubert involution ψ 7→ ψ̂ on Ψ+(G) by
switching SLD2 and SLA2 , i.e., the Aubert dual parameter is given by

ψ̂ :Wk × SLD2 × SLA2 → LG(C), (w, h1, h2) 7→ ψ(w, h2, h1).

Clearly Ψ(G) is invariant under the involution. When G is unramified over k, a parameter ψ ∈
Ψ+(G) is said to be unramified if ψ is trivial on SLD2 as well as the inertia subgroup of Wk.

When k is archimedean and ψ ∈ Ψ+(G), the parameter ζψ := ϕψ ◦ iW |WC is said to be the
infinitesimal character of ψ. Since WC = C× is commutative, we can conjugate ζψ to have image

contained in a maximal torus T̂ of Ĝ. If the centralizer of ζψ is T̂ then ψ is said to be regular.

We say ψ is C-algebraic if ζψ is of the form z 7→ λ1(z)λ2(z), where λ1, λ2 ∈ X∗(Ĝ)Q such that

λ1 − ρG ∈ X∗(T̂ ) for the half sum of positive coroots ρG of T̂ in Ĝ. The regularity and C-

algebraicity are invariant under Ĝ-conjugacy and independent of the choices, cf. [BG14, §2.3]. Define
Ψra(G), Ψera(G), Ψ

+
ra(G) to be the subset of regular C-algebraic parameters in Ψ(G), Ψe(G), Ψ

+(G),
respectively. We remark that our definition of Ψra(G) coincides with [NP21, §7, Def. 3]. Finally let
Ψe.ra(G) ⊂ Ψ+(G) denote the subset of ψ = φνψ0 over all ν ∈ a∗G and all ψ0 ∈ Ψra(G). This subset
extends Ψra(G) by character twists, and we have Ψra(G) ⊂ Ψera(G) ⊂ Ψe.ra(G). We apologize for
the possibly confusing notation. Only Ψera(G) matters for our discussion of cohomology as opposed
to Ψe.ra(G), which is introduced only for a marginally expository purpose.
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2.3. Local parameters valued in C-groups. Later we will need to know how the assignment
of local L-packets and A-packets changes under the Aut(C)-action on the coefficient field. For this
purpose, we introduce C-groups and local parameters valued in C-groups. This subsection will not
play a role until §5 below.

We maintain the setting of §2.1. Write Ĝad for the adjoint group of Ĝ, equipped with a pinning

induced by that of Ĝ. In particular T̂ ad ⊂ Ĝad is the image of T̂ ⊂ Ĝ. We have ρad ∈ X∗(T̂
ad),

the half sum of positive coroots of T̂ ad in Ĝad, so that ρad is the image of ρG ∈ X∗(T )Q = X∗(T̂ )Q
under T̂ → T̂ ad. By Adρad we denote the action of Gm on Ĝ where t ∈ Gm acts by the adjoint
action of ρad(t). Thereby we define a semi-direct product group

CG := LG⋊Adρad Gm,

so that the group law reads (g1 ⋊ t2)(g2 ⋊ t2) = g1ρ
ad(t2)(g2) ⋊ t1t2. Let pr : CG → Gm denote

the natural projection map. Equivalently, CG is isomorphic to the quotient of LG ×Gm by the

central element (2ρG(−1),−1) ∈ Z(Ĝ)Wk ×Gm of order 2. The projection LG → Wk induces a
projection CG→ Wk. Our definition of C-groups follows [Zhu], cf. [Shi24, §3], which is equivalent
to the original definition [BG14, Def. 5.38, Prop. 5.39].

Denote by CΨ+(G) the set of Ĝ-conjugacy classes of continuous morphisms ψ : Lk × SLA2 (C)→
CG(C) satisfying (i), (ii) of §2.1 such that pr ◦ ψ = | · |−1. Following the same procedure as in §2.1
we define CΨe(G),

CΦ(G), and CΦe.bdd(G). We have a bijection

Ψ+(G)
∼→ CΨ+(G), ψ 7→ Cψ,

given by the formula Cψ(x, h) = ψ(x, h)2ρG(|x|1/2) ⋊ |x|−1, x ∈ Lk, h ∈ SLA2 . This bijection

restricts to bijections Ψe(G)
∼→ CΨe(G), Φ(G)

∼→ CΦ(G), and Φe.bdd(G)
∼→ CΦe.bdd(G).

2.4. Cohomological Arthur packets à la Adams–Johnson. Let G be a connected reductive
group over R. Choose a Cartan involution θ on G and compatibly a maximal compact subgroup
K of G; the choice is unique up to G(R)-conjugacy. Let A be an R-split subtorus of ZG. Set

q(G) := 1
2(dimG− dimK), q♭(G) := q(G/A) = q(G)− 1

2 dimA ∈ 1
2Z≥0,

l0(G) := rk(G)− rk(K), l♭0(G) := l(G/A) = l0(G)− rk(A) ∈ Z≥0,

q0(G) := q(G)− 1
2 l0(G) = q♭(G)− 1

2 l
♭
0(G) ∈ Z≥0.

These invariants do not depend on the choice of θ and K. Our definition follows [BW00, III.4.3]
but allows for a flexible choice of A, which we often quotient out for Shimura varieties and locally
symmetric spaces; see Example 2.5 and (4.1) below. Given a connected reductive subgroup L ⊂ G
over R, define

q♭(L) := q(L/A) = q(L)− 1
2 dimA ∈ 1

2Z≥0.

We have the notion of θ-stable parabolic subalgebras Q of gC and analogously θ-stable parabolic
subgroups of GC as in [NP21, Def. 6]; in particular, Q determines a subgroup LQ ⊂ G over R
such that LQ,C is a Levi of GC. The subgroups of G that arise in this way are called θ-stable
Levi subgroups. For example, if G = GLN then θ-stable Levi subgroups have the form L =
GLn0 ×

∏r
i=1ResC/RGLni , where r, n0, ..., nr ∈ Z≥0 and n0 + 2

∑r
i=1 ni = N . See [NP21, §9] for

more examples.

Fix pinnings for G and Ĝ as well as a θ-stable fundamental maximal torus T∞ ⊂ G and a θ-
stable Borel subgroup B ⊂ GC containing T∞; such a B always exists by [NP21, Prop. 11]. Write
g := LieG⊗RC; likewise fraktur letters stand for the complex Lie algebras arising from Lie groups.

By ω
Ĝ
we mean the longest element of the Weyl group of T̂ in Ĝ, or its lift to Ĝ.
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Example 2.5. Suppose that our real group arises from a Shimura datum (G,X). Then T∞ is an
elliptic maximal torus over R. Write µ ∈ X∗(T∞) for the dominant minuscule cocharacter over C
arising from the Shimura datum, and ρG ∈ X∗(T∞) for the half sum of all positive roots for G. In
this case, take A := AGR to be the maximal R-split torus in ZGR and write

q(G), l0(G), q(L) for q♭(G), l♭0(G), q
♭(L).

Then q(G) = ⟨2ρG, µ⟩, which equals the complex dimension of X as well as the dimension of the
Shimura variety; l0(G) = 0 in this case. If we define ρL similarly for a θ-stable Levi subgroup L
then q(L) = ⟨2ρL, µ⟩.
Remark 2.6. For G as in the preceding example, a typical choice of A for the locally symmetric
space is not AGR but the one coming from the maximal Q-split torus in ZG. This is why we want
a flexible choice of A in the definitions.

Let ψ ∈ Ψra(G). Conjugating ψ we may and will assume that ψ|WC×TSL2
has image in T̂

and that ϕψ(z) = λ1(z)λ2(z) with λ1, λ2 ∈ X∗(T̂ )Q such that λ1 − ρG equals the highest weight

λ ∈ X∗(T ) = X∗(T̂ ) of an irreducible algebraic representation Eλ of GC. Then L̂ := Z
Ĝ
(ψ(WC))

is a Levi subgroup of Ĝ, and ψ|SL2 is a principal morphism into L̂. Moreover, L̂ is invariant under

ω
Ĝ
· j ∈ LG, ω

Ĝ
· j(λ) = −λ, and λ pairs trivially with every root of T̂ in L̂ by [NP21, Thm. 5].

Then there is a finite nonempty set Q of θ-stable standard parabolic subgroups Q such that L̂Q
(as a standard Levi of Ĝ) equals L̂. Each Q ∈ Q gives rise to an irreducible unitary representation
π(ψ,Q) of G(R) obtained by cohomological induction from a one-dimensional representation of
LQ(R). The Adams–Johnson packet is defined to be

ΠAJ
ψ := {π(ψ,Q) : Q ∈ Q}.

See [NP21, Thm. 6] for other parametrizations of ΠAJ
ψ . We remark that members of ΠAJ

ψ share the
same infinitesimal character, which corresponds to ζψ defined in §2.1.

Since the highest weight representation Eλ may have a non-unitary central character, it is useful
to extend the construction to ψ ∈ Ψera(G). In fact ΠAJ

ψ can be constructed for ψ ∈ Ψe.ra(G) in the
same way as above via cohomological induction from a one-dimensional representation; what we
lose is the unitarity of the members π(ψ,Q). Note that ΠAJ

ψ was considered in [Kot90, p.194] not

only for ψ ∈ Ψra(G) but for ψ ∈ Ψe.ra(G) (assuming G contains an elliptic maximal torus).
In the following, we take K ′ := K◦A(R)◦ so that k′ = k⊕ a holds for their Lie algebras.

Lemma 2.7. Let ψ ∈ Ψera(G). For each π = π(ψ,Q) ∈ ΠAJ
ψ , we have

H i(g,K ′, π ⊗ E∨
λ ) = 0, i /∈ [q♭(G)− q♭(LQ), q♭(G) + q♭(LQ)].

Proof. We have a Cartan decomposition g = k ⊕ p and a Levi decomposition q = LieQ = l ⊕ u.
Since the latter is a θ-stable decomposition, we have l = (l ∩ k)⊕ (l ∩ p) and u = (u ∩ k)⊕ (u ∩ p).
It follows from [VZ84, Thm. 5.5], cf. [NP21, Thm. 6 (2)], that

H i(g, k, π ⊗ E∨
λ ) = 0, i /∈ [dim(u ∩ p), dim(u ∩ p) + dim(l ∩ p)].

One has dim(u ∩ p) = dim p− dim(l ∩ p) = (dim g− dim k)− (dim l− dim(l ∩ k)) = q♭(G)− q♭(L).
Similarly dim(u ∩ p) + dim(l ∩ p) = (dim g − dim k) + (dim l − dim(l ∩ k)) = q♭(G) + q♭(L) +
dimA. On the other hand, we may assume that π ⊗ E∨

λ has trivial central character on A(R)◦,
since H i(g, k, π ⊗ E∨

λ ) = 0 otherwise. Then we apply the Künneth formula for the compatible
decompositions g = g0 ⊕ a and k′ = k⊕ a to obtain

H•(g, k, π ⊗ E∨
λ ) = H•(g0, k, π ⊗ E∨

λ )⊗H•(a,1) = H•(g, k′, π ⊗ E∨
λ )⊗H•(a,1),
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where the last equality is satisfied by the definition of the relative Lie algebra cohomology. Since
Hj(a,1) = ∧ja∗ is nonzero in j ∈ [0, dimA], the lemma follows from the non-vanishing range of
H i(g, k, π ⊗ E∨

λ ). □

Lemma 2.8. Let ψ ∈ Ψera(G). For π = π(ψ,Q) ∈ ΠAJ
ψ , if H i(g,K ′, π⊗E∨

λ ) ̸= 0 for some i ∈ Z≥0

then a Ĝ-conjugate of L̂Q is contained in the centralizer Cent
Ĝ
(λ).

Proof. Up to Ĝ∞-conjugation, [NP21, Prop. 6] allows us to assume that ψ|WC has image in T̂ , that

the centralizer of ψ|WC in Ĝ equals L̂Q, and that ψ|WC is given by

ψ|WC :WC → T̂ , z 7→ (z/z)
λ+ρG−ρLQ ,

where we identify ρG (resp. ρLQ) with the half sum of positive coroots in Ĝ (resp. L̂Q), and

λ ∈ X∗(T̂ ) is dominant. In particular, every root α of T̂ in L̂Q satisfies ⟨α, λ + ρ∨
Ĝ
− ρ∨

L̂Q
⟩ = 0. It

follows that ⟨α, λ⟩ = 0, hence L̂Q ⊂ Cent
Ĝ
(λ). □

2.9. Axioms. We state a minimalistic list of three axioms (A1)–(A3) for local and global Arthur
packets as working hypotheses for our paper. Their extensions inclusive of Levi subgroups will be
given a superscript +. The reader is referred to [Art89] for refined conjectures in the original form
on the internal parametrization of each local Arthur packet, endoscopic character identities, the
global Arthur multiplicity formula, etc. We also drew inspiration from [Clo07, Lect. 2] and [Art13].
Notable results on verifying the axioms are highlighted in §2.15 with further references below.

Let G be a connected reductive group over a global field F . For each place v, we write Gv for
GFv . Our first axiom is the existence of a set of global A-parameters (up to isomorphism):

(A1) There exists a set Ψ(G) equipped with a localization map at every place v of F :

Ψ(G)→ Ψ+(Gv), ψ 7→ ψv. (2.1)

Moreover, there exists an intermediate subset

Ψ(Gv) ⊂ Ψ′(Gv) ⊂ Ψ+(Gv),

which depends only on Gv over Fv, such that the map (2.1) factors through Ψ′(Gv) and
such that the map Ψ′(Gv) → Φ(Gv), ψv 7→ ϕψv , is injective. For each infinite place y, if
ψ ∈ Ψ(G) and the localization ψy lies in Ψ+

ra(Gy) then ψy ∈ Ψra(Gy).

Given axiom (A1), we extend Ψ(G) by certain “character twists” to define

Ψe(G) :=
{
(ψ, χ) |ψ ∈ Ψ(G), χ : AG(R)◦ → R×

>0

}
, (2.2)

where χ runs over (possibly non-unitary) continuous characters. Each χ determines an element
νχ ∈ a∗G via the natural linear pairing between LieAG(R)◦ and a∗G. Write νχ,v for the image of νχ
under a∗G → a∗Gv . Then we can extend (2.1) by setting (recall φνχ,v from §2.1)

Ψe(G)→ Ψ+(Gv), ψ = (ψ, χ) 7→ ψ
v
= φνχ,v · ψv. (2.3)

The image lies in Ψ′
e(Gv) := {φνv · ψ′ | νv ∈ a∗Gv , ψ

′ ∈ Ψ′(Gv)}.
Now we introduce a strengthening of axiom (A1):
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(A1+) For all Levi subgroups M of G, axiom (A1) holds true; moreover there exists a map
Ψ(M)→ Ψ(G) which makes the following diagram commute at every place v:

Ψ(M) //

(2.1)
��

Ψ(G)

(2.1)
��

Ψ+(Mv) // Ψ+(Gv),

where the bottom map is induced by the natural map LMv → LGv. Moreover the image
of Ψ′(Mv) is contained in Ψ′(Gv).

The image of (2.1) should be contained in Ψ(Gv) by a suitable generalization of the Ramanujan
conjecture, namely we should be able to take Ψ′(Gv) = Ψ(Gv). However this is a wide open
problem. Hence we often take Ψ′(Gv) to be strictly larger.

Each local A-parameter should be assigned a local A-packet, as initially conjectured by Arthur
in [Art89, Conj. 6.1, 6.2]. We formulate a coarse axiom tailored to our purpose.

(A2) For every v and ψv ∈ Ψ(Gv), there exists a finite set Πψv consisting of irreducible unitary
representations of G(Fv). (The set Πψv is allowed to be empty if Gv is not quasi-split.) The
set of isomorphism classes of irreducible tempered representations of G(Fv) is partitioned
into Πϕv as ϕv runs over Φbdd(Gv). Moreover if v is finite then for each ψv ∈ Ψ(Gv),

(A2a) suppose GFv is unramified; then ψv is unramified if and only if Πψv contains an
unramified representation (with respect to a fixed hyperspecial subgroup, cf. §1.14).
If so, the unramified representation in Πψv is unique and has L-parameter ϕψv .

(A2b) the Aubert involution πv 7→ π̂v (denoted by π#v in [Aub95, Cor. 3.9]) induces a bijection

Πψv
∼→ Π

ψ̂v
.

At each infinite place y the following hold:
(A2c) every πy ∈ Πψy has infinitesimal character given by ϕψy ,

(A2d) if ψy ∈ Ψra(Gy), then Πψy = ΠAJ
ψy

.

Once Axiom (A2) is granted, its analogue for “essential” Arthur parameters ψv ∈ Ψe(Gv) is easily
obtained by character twists. More precisely, we take a decomposition ψv = φνψv,0 for ν ∈ a∗Gv
and ψv,0 ∈ Ψ(Gv), write χν : G(Fv) → R×

>0 for the character determined by ν, and then define
Πψv := {π ⊗ χν : π ∈ Πψv,0}. Using compatibility of various representation-theoretic operations
with character twists, one verifies that the set of isomorphism classes of irreducible essentially
tempered representations of G(Fv) is partitioned into Πψv over ψv ∈ Φe.bdd(Gv), and that (A2a)–

(A2d) hold true for Ψe(Gv); e.g., (A2d) is upgraded to the equality Πψy = ΠAJ
ψy

for ψy ∈ Ψera(Gy).

It is useful to strengthen (A2) as follows.

(A2+) For each v, axiom (A2) holds for every Levi subgroup Mv of Gv in place of Gv, inclusive
of (A2a)–(A2d); moreover the following holds for each ψM,v ∈ Ψ(Mv):

(A2e) all irreducible constituents of the normalized parabolic induction of each πM,v ∈ ΠψM,v
to Gv are contained in Πψv , where ψv ∈ Ψ(Gv) is the image of ψM,v.

Remark 2.10. The C-algebraicity at an infinite place is only compatible with the un-normalized
parabolic induction. For ψM,v 7→ ψv as in (A2e), when v is an infinite place, what is preserved is
not the C-algebraicity but the essential C-algebraicity.
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Upon accepting (A2+), we can assign a local packet to a general parameter ψv ∈ Ψ+(Gv)
following [Art13, p.45]. (For Axiom (A3) below, only the local packet for ψv ∈ Ψ′(Gv) matters.)
The parameter ψv corresponds to a standard parabolic subgroup Pv =MvNv, a parameter ψM,v ∈
Ψ(Mv), and νv ∈ a∗,+Mv

by Lemma 2.2. Write χνv : M(Fv) → R×
>0 for the character given by νv,

which is unramified if v is non-archimedean; e.g., see [SZ18, §1.2, §A.1]. Then Πψv is defined to

consist of irreducible subquotients of n-ind
G(Fv)
Pv(Fv)

(πv ⊗ χνv) as πv runs over ΠψM,v . In particular,

if ψv ∈ Ψ+(Gv) is unramified then Πψv contains a unique unramified representation π0ψv (with

respect to a fixed hyperspecial subgroup), whose L-parameter is ϕψv . Conversely, if Πψv contains
an unramified representation then πv must be unramified. Then ψM,v is unramified by (A2+),
thereby ψv is also unramified.

On the other hand, if ϕv ∈ Φ(Gv) is a general L-parameter then the L-packet Πϕv is defined by
a similar procedure: again we find Pv = MvNv, ϕM,v ∈ Φbdd(Mv), and νv ∈ a∗Mv

by Lemma 2.2.

Then Πϕv consists of the unique irreducible quotients of n-ind
G(Fv)
Pv(Fv)

(πv ⊗ χνv) by definition. By

the Langlands quotient theorem (and axiom (A2) above), the L-packets Πϕv form a partition of
Irr(Gv) as ϕv runs over Φ(Gv).

Before moving on to the third axiom, we record a useful extension of (A2b).

Lemma 2.11. Assume axioms (A2) and (A2+). Let ψv ∈ Ψ+(Gv), to which we assign a packet

Πψv as above. Then the involution πv 7→ π̂v induces a bijection Πψv
∼→ Π

ψ̂v
.

Proof. We have ψM,v ∈ Ψ(Mv) and νv ∈ a∗Mv
from ψv as above. Then the twist of ψ̂M,v ∈ Ψ(Mv)

by νv maps to ψ̂v. By (A2b), Π
ψ̂M,v

= {π̂M,v : πM,v ∈ ΠψM,v}. Hence Π
ψ̂v

consists of irreducible

subquotients of n-ind
G(Fv)
Pv(Fv)

(π̂M,v) as πM,v runs over ΠψM,v . Since Aubert duality induces a bijection

between irreducible subquotients of n-ind
G(Fv)
Pv(Fv)

(πM,v) and those of n-ind
G(Fv)
Pv(Fv)

(π̂M,v) (see [Aub95,

p.2189]), we are done. □

Given ψ ∈ Ψ(G), utilizing (A1) and (A2+), define a global A-packet

Πψ :=
∏′
v Πψv = {⊗′

vπv : πv ∈ Πψv , πv = π0ψv for all but finitely many v}. (2.4)

Not every member of Πψ is to be automorphic in this formulation. Nevertheless our axiom (A3)
postulates that the L2-discrete automorphic spectrum of G(AF ) should be exhausted by Πψ.

(A3) We have a G(AF )-module decomposition for suitable coefficients mπ ∈ Z≥0:

L2
disc([G]) =

⊕
ψ∈Ψ(G)

⊕
π∈Πψ

mππ. (2.5)

(A3+) Axiom (A3) is true for all Levi subgroups M of G, presupposing (A1+) and (A2+).

Axiom (A3) implies the following variant. Let χ : AG(R)◦ → R×
>0 be a continuous character.

Write Ψχ(G) ⊂ Ψe(G) for the preimage of χ under the second projection map, cf. (2.2). Via
the projection map G(F )\G(AF ) → AG(R)◦, we can view χ as an automorphic character and
decompose χ =

∏
v χv over the places v of F . The character χv : G(Fv)→ R×

>0 is nothing but the
character corresponding to the element νχ,v ∈ a∗Gv below Axiom (A1). For ψ = (ψ, χ) ∈ Ψχ(G), we

can define Πψ :=
∏′
v Πψv

=
∏′
v Πψv ⊗ χv. Twisting (2.5) by χ we obtain

L2
disc,χ([G]) =

⊕
ψ∈Ψχ(G)

⊕
π∈Πψ

mππ, mπ ∈ Z≥0. (2.6)
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Remark 2.12. Since we are mainly concerned with cohomology of locally symmetric spaces, we
do not need the full strength of the above axioms. Rather, it suffice to understand the packets
satisfying the regular C-algebraicity condition at infinity.

Remark 2.13. Even though endoscopic character identities are crucial in the study of A-packets,
they do not enter our axioms as we do not make any direct use of them. Similarly we do not ask
for parametrization of members of a packet. Axiom (A3) is much weaker than Arthur’s multiplicity
formula because nothing is said about mπ (e.g., mπ > 0 for which π); one can think of (A3) as an
upper bound on the set of π occurring in the automorphic spectrum.

Example 2.14. For a sanity check we verify axioms (A1)–(A3) when G is a torus. In this case take

Ψ(G) to be the continuous cohomology group H1(WF , Ĝ) modulo the locally trivial cohomology

group ker1(WF , Ĝ). (The definition can be rephrased in terms of morphisms WF → LG.) At
each place v we have Ψ(Gv) = Φbdd(Gv) by definition; put Ψ+(Gv) := Φbdd(Gv) and Ψ′(Gv) :=
Φbdd(Gv). As explained in [Lan97, Thm. 2], class field theory assigns a unique character χ(ϕv) :
G(Fv) → C× to the packets Πϕv for each ϕv ∈ Φ(Gv), in particular for ϕv ∈ Φbdd(Gv); each
ϕ ∈ Ψ(G) is associated with a character χ(ϕ) : G(F )\G(AF ) → C× such that χ(ϕ) =

∏
v χ(ϕv) if

ϕv denotes the localization of ϕ at each v. Given this, axioms (A1)–(A3) are readily checked.

2.15. Arthur’s formalism for general linear groups and classical groups. In this subsection
we discuss notable cases where the axioms of §2.9 are known. We assume that the global field F is
a number field for two reasons: results are more complete in this case, and only this case is relevant
to our later discussions where archimedean theory plays a key role.

2.15.1. Inner forms of GLn. We begin with G = GLn over F . Following [Art13, §1.4], we define
Ψ(G) = Ψ(GLn) to be the set consisting of formal sums ψ = ⊞ri=1(πi ⊠ νi), where πi is a cuspidal
automorphic representation of GLmi(AF ), νi is an irreducible ni-dimensional algebraic representa-
tion of SL2 such that

∑r
i=1mini = n. Given ψ and a place v of F , we define ψv = ⊕ri=1ϕπi,v ⊗ νi,

where ϕπi,v : LFv → GLmi(C) is the L-parameter of πi,v; this is the first part of (A1). For the
second part, we take the local parameter set at each v as follows:

Ψ′(GLn) :=
{
(⊕i∈Iψi)⊕

(
⊕j∈Jψj ⊗ (| · |ϵjWF

⊕ | · |−ϵjWF
)
)
: ψi ∈ Ψ(GLni), ψj ∈ Ψ(GLnj ), ϵj ∈ (0, 12)

}
,

where the obvious constraint that
∑

i ni +
∑

j nj = n is in place. (The sets I and J are allowed to

be empty.) Then the injectivity of Ψ′(GLn)→ Φ(GLn) is a straightforward combinatorial exercise.
The image of (2.1) is contained in Ψ′(GLn) by the deep results on the unitary dual of GLn over local
fields by Tadić and Vogan [Tad86, Vog86]. For the last assertion of (A1), it is enough to observe that
if ψy belongs to Ψ

′(GLn) as above and if the index set J is non-empty then ψy cannot be C-algebraic
(nor L-algebraic); if J is empty then the parameter obviously lies in Ψ(GLn). Here regularity is not
used and only algebraicity matters for the verification. As for (A2), the local A-packets Πψv are
defined to be the L-packet Πϕψv given by the local Langlands for GLn for ψv ∈ Ψ(Gv). Even when

ψv lies in the larger set Ψ′(Gv) defined above, the packet Πψv (defined in §2.9) equals Πϕψv , and
Πψv is a singleton whose unique member is a unitary representation by [Tad86, Vog86] mentioned
above. Property (A2b) in this case was shown in [Zel80, §9]. (Zelevinsky’s involution coincides
with the involution of (A2b) by [Aub95, Thm. 2.3].) By definition ψv is unramified if and only if
ϕψv is unramified, and (A2c) is clear from the corresponding property of Πϕψy . Property (A2d)

should be implied by Πϕψy ⊂ ΠAJ
ψy

; this can also be seen from the explicit description of Πψy and

ΠAJ
ψy

, cf. [AMR18, §3.2, §11.1] and [NP21, §12]. Axiom (A3) is implied by [MW89], which a fortiori

tells us, combined with the multiplicity one theorem, that mψ = 1 for every ψ and π as in (A3).
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Now let G be an inner form of GLn. The local and global parameter sets remain unchanged
(by allowing the corresponding packets to be empty), so (A1) is the same as before. Axioms (A2)
and (A3) are consequences of the main theorems of [Bad08, BR10], if the local A-packets for inner
forms are defined to be singletons or possibly the empty set as determined via character identities
by the local theorem in the introduction of [Bad08] in the p-adic case and [BR10, Thm. 1.2] in
the real case. They also show unitarity; in our formulation it means that the unique member of
each local A-packet Πψv (if nonempty) is unitary for each v and each ψv ∈ Ψ(Gv) (in fact also for
ψv ∈ Ψ′(Gv)).

For GLn and its inner forms, it is straightforward to upgrade (A1)–(A3) to (A1+)–(A3+). For
example (A2e) is easily verified from the compatibility of the Langlands correspondence with par-
abolic induction (and the fact that the parabolic induction of an irreducible unitary representation
is always irreducible).

2.15.2. Quasi-split classical groups. The case of even special orthogonal group is postponed to the
end of §2.15.2. When G is a symplectic or odd special orthogonal group, it is a twisted endoscopic
group of GLN for a suitable N ∈ Z≥1, the set Ψ(G) is realized within the subset of self-dual
parameters in Ψ(GLN ) via the standard embedding LG→ LGLN . When G is a unitary group with
respect to a quadratic extension E/F , it is a twisted endoscopic group of ResE/FGLN , and Ψ(G)
lies in the subset of conjugate self-dual parameters in Ψ(GLN,E). For either type of G, axioms
(A1+)–(A3+) including the characterization of Ψ(G) are proved in [Art13, Mok15] in much more
precise forms, except that (A2d) is verified in [AMR18]. We remark that (A1+)–(A3+) for quasi-
split classical groups include (A1+)–(A3+) for GLn since every proper Levi subgroup has general
linear groups as direct factors.

Some further explanation may be appropriate regarding (A2e), (A2c), (A2b), (A2a), and the last
two assertions of (A1) as they are hard to locate in the main theorems of [Art13, Mok15]. (Once
they are understood for classical groups G, it is not hard to extend to Levi subgroups.) Axiom (A2e)
is verified in the proof of [Art13, Prop. 2.4.3]. Even though axiom (A2c) is not explicitly stated, it
results from the twisted endoscopic character identity, which reduces the axiom to the analogue for
general linear groups since the twisted transfer is compatible with infinitesimal characters, cf. the
argument in [Täı19, p.867]. Axiom (A2b) can be extracted from [Art13, §7.1] and its adaptation
to unitary groups. The “if” part and the uniqueness in (A2a) are only implicit in [Art13, Mok15]
but these can be derived from loc. cit. as explained in [AHKO, App. C], [Täı17, Lemma 4.1.1]. The
last assertion of (A2a) is [Art13, Prop. 7.4.1] and [Mok15, Prop. 8.4.1]. We add that once (A2a) is
verified for one hyperspecial subgroup, it is true for all hyperspecial subgroups because the natural
action of Gad(Fv) is transitive on all hyperspecial subgroups while Gad(Fv) induces a permutation
of Πψv since Gad(Fv) preserves the stable character associated with Πψv . As for (A1), we take
Ψ′(Gv) to be the preimage of Ψ′(GLN ) (see §2.15.1) under Ψ+(Gv) → Ψ+(GLN ). Our Ψ′(Gv) is

the same as Ψ̃+
unit(Gv) in [Art13, p.45], and the localization lies is in this set. The injectivity of

Ψ′(Gv) → Φ(Gv) reduces to the case of GLN since the map Ψ′(Gv) → Ψ′(GLN ) is injective. For

the last part of (A1), if ψy ∈ Ψ′(Gy) is localized from ψ then ψy transfers to a parameter ψ#
y in

Ψ′(GLn) (over R or C) by the endoscopic classification. Then the same argument in §2.15.1 shows

that ψ#
y ∈ Ψ(GLn), hence ψy also belongs to Ψ(Gy).

Returning to even special orthogonal groups, everything above is true if we work consistently with
the outer automorphism orbits of various objects. (For the last assertion of (A1) the transferred

parameter ψ#
y is only L-algebraic and possibly non-regular but the argument of §2.15.1 for that

part still works, as we explained there.) The reader is referred to [Art13] for the precise formulation
and statements.
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It should be noted that the above results of [Art13, Mok15] are conditional (only) on the validity
of the twisted weighted fundamental lemma in general; see [AGI+] and the discussion in §0.4 therein.

2.15.3. Non-quasi-split classical groups. At the outset let us mention our convention to take the
local and global parameter sets to be the same as their counterparts for quasi-split inner forms.
Instead of imposing the relevance condition for parameters, we allow packets to be empty.

Axioms (A1)–(A3) should follow from the stronger but provisional results and conjectures stated
in [Art13, Ch. 9] and [KMSW, §§1.6–1.7], which have yet to be established. Axiom (A3) is a
coarser version of the main global theorem. There is nothing new concerning (A1) and (A2a) in
that they are assertions about the quasi-split case. Since the provisional local A-packets are going
to satisfy endoscopic character identities, we can check (A2c). The same identities are a starting
point for (A2d), but verification requires serious work; this is complete for pure inner forms by
[MR19, MR20], which obtain an explicit description of A-packets for all A-parameters (which may
not be regular C-algebraic). The upgrade to (A1+)–(A3+) should go in the same way as in the
quasi-split case; e.g., the proof of (A2e) can be adapted from the quasi-split case (see §2.15.2 above)
to the non-quasi-split case as in [KMSW, §2.6]. In summary, once the assertions in [Art13, Ch. 9]
and [KMSW, §§1.6–1.7] are proven, all of (A1+)–(A3+) are going to be true at least for pure inner
forms of quasi-split classical groups.

3. On Arthur SL2-morphisms

3.1. Assignment of a nilpotent conjugacy class. Let Ĝ denote the Langlands dual group of a
connected reductive group G over a local field k. We have a natural bijection between the following
sets:

(i) Ĝ(C)-conjugacy classes of algebraic morphisms SL2 → Ĝ,

(ii) Ĝ(C)-conjugacy classes of Lie algebra morphisms sl2 → Lie Ĝ,

(iii) Ĝ(C)-conjugacy classes of nilpotent elements in Lie Ĝ(C).
The map from (i) to (ii) is induced by differentiation, and (ii) to (iii) by evaluation at ( 0 1

0 0 ). In
fact the bijection works for an arbitrary connected reductive group over a field of characteristic 0

in place of Ĝ over C; e.g., see [BMIY, Thm. 3.2]. A morphism SL2 → Ĝ is said to be principal if
it corresponds to the conjugacy class of regular nilpotent elements in (iii).

Write Nilp
Ĝ

for the set consisting of (iii) above. This set is equipped with a partial ordering
≤ such that N1 ≤ N2 if the closure of N2 contains N1 when viewing N1 and N2 as locally closed

subset in the nilpotent cone of Ĝ.
Given a parameter ψ ∈ Ψ+(G), we have a nilpotent conjugacy class

Nψ ∈ Nilp
Ĝ

corresponding to the restriction ψ|SLA2 . On the other hand, if L̂ ⊂ Ĝ is a connected reductive

subgroup (possibly well-defined up to Ĝ-conjugacy), we define

N (L̂) ∈ Nilp
Ĝ

to be the nilpotent conjugacy class corresponding to some (thus any) principal morphism SL2 → L̂.

We remark that the assignment L̂ 7→ N (L̂) is injective when L̂ runs over Ĝ-conjugacy classes of Levi

subgroups by [CM93, Thm. 8.1.1]. When L̂ arises from ψ ∈ Ψra(G) as in §2.4, we have Nψ = N (L̂)

by definition. For ψα ∈ Ψera(G) obtained by twisting ψ, we still have Nψα = N (L̂).
From here, assume that k is non-archimedean and that axiom (A2+) holds true for G over k

in place of Gv over Fv there. Each π ∈ Irr(G) admits the Aubert–Zelevinsky dual π̂ ∈ Irr(G) by
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[Aub95]. As a consequence of axiom (A2+), as explained in the paragraph below (A2+), we have a
unique L-parameter ϕπ̂ :Wk×SLD2 (C)→ LG whose packet contains π̂. Hence ϕπ̂|SLD2 (C) determines

a nilpotent conjugacy class, to be denoted

N (π) ∈ Nilp
Ĝ
.

The significance of this definition stems from our belief in the following axiom:

(CO(π)) For every ψ ∈ Ψ(G) such that π ∈ Πψ, we have Nψ ≤ N (π).

Indeed, this goes back to Clozel’s ideas [Clo11, p.103], one precise version of which was confirmed
by Mœglin [Mœg09] for classical groups, cf. §3.3 below. Axiom (CO(π)) is also closely related to
the closure ordering conjecture [Xu24, Conj. 3.1], which is natural from the perspective of p-adic
Adams–Barbasch-Vogan packets as in [CFM+22, Vog93]. More precisely, axiom (CO(π)) follows
from (a version of) the closure ordering conjecture for the Aubert duals π̂ and Π

ψ̂
together with

axiom (A2b).2

In fact, it is reasonable to expect the following extension of (CO(π)) is true when axiom (A1) is
available, which provides us with the set Ψ′(G):

(CO′(π)) For every ψ ∈ Ψ′(G) such that π ∈ Πψ, we have Nψ ≤ N (π).

There is another way to assign a nilpotent conjugacy class in the unramified case. Assume that
G is an unramified group over k. Let Ψ′(G) be a set such that Ψ(G) ⊂ Ψ′(G) ⊂ Ψ+(G) and such
that the map Ψ′(G) → Φ(G), ψ 7→ ϕψ, is injective. As above, Ψ′(G) naturally comes from axiom
(A1). We continue to assume (A2+) for G over k. Now consider π ∈ Irr(G) that is unramified, and
assume that π ∈ Πψπ for some ψπ ∈ Ψ′(G). Let

N ur(π) ∈ Nilp
Ĝ

denote the nilpotent conjugacy class corresponding to ψπ|SLA2 . For well-definedness of N ur(π), it

is enough to see that π ∈ Πψπ for a unique ψπ. Observe that such a ψπ is unramified, and the
L-parameter of π is ϕψπ by (A2a) and its extension to Ψ+(G); this was explained in §2.9. Then ψπ
is uniquely determined by the L-parameter of π since the map Ψ′(G)→ Φ(G) in (A1) is injective.

Lemma 3.2. In the unramified setting of the preceding paragraph, N ur(π) = N (π).

Proof. By (A2b) and its extension to Ψ′(G) (see §2.9), we obtain π̂ ∈ Π
ψ̂π

from π ∈ Πψπ . Since

ψπ is unramified, it is trivial on SLD2 , so ψ̂π is an L-parameter, i.e., trivial on SLA2 . Hence, by

definition, N (π) corresponds to ψ̂π|SLD2 , but the latter equals nothing but ψπ|SLA2 . □

In practice, the local data above arise from axioms (A1+)–(A3+) by localizing a group G over a
global field F at a finite place v. In that case it is not a serious restriction to require an unramified
πv to be in Πψv for a Ψ′(G). If not, we know from the axioms that πv does not show up in the
spectral decomposition of (A3) so such a πv is negligible in global applications.

3.3. Axiom (CO′(π)) for GLn and classical groups. Let k be a p-adic field. Let us verify
axiom (CO′(π)) for G = GLn over k; we will shortly see that the equality holds. Suppose π ∈ Πψ
for ψ ∈ Ψ′(G). By (A2b) π̂ ∈ Π

ψ̂
= Πϕ

ψ̂
. Hence the L-parameter ϕπ̂ of π̂ is equal to ϕ

ψ̂
. So we

have
ϕπ̂|SLD2 = ϕ

ψ̂
|SLD2 = ψ̂|SLD2 = ψ|SLA2 , (3.1)

2In [HLLZ], there are several versions of closure ordering conjectures. Roughly in their notation, the one we need

here is ϕπ̂ ≥D ψ̂, equivalently ψ ≥A ϕ̂π̂ (ϕ̂π̂ is taken as a generalized A-parameter), while [Xu24, Conj. 3.1] claims a
stronger inequality ϕπ̂ ≥C ϕψ̂. Refer to [HLLZ, Rem. 4.6] for the relation between the different orderings.

19



where the last two equalities hold by definition (see §2.1). It follows that N (π) = Nψ.
We expect (CO′(π)) to be true for inner forms of GLn but do not check it here. We merely

observe that the equality does not always hold. For example, if G = D× for a central division
algebra D over k and π is the trivial representation, then π̂ = π and ϕπ̂ is principal on SLD2 . On
the other hand, π ∈ Πψ when ψ = ϕπ̂ is viewed as an A-parameter. Then N (ψ) = {0} < N (π). In
this case, the preceding argument for GLn does not apply since Πϕ

ψ̂
is empty.

Now consider a quasi-split classical group G over k. Recall from §2.15.2 that we have the set

Ψ′(G) of generalized A-parameters. (This set is stable under the involution ψ 7→ ψ̂, as this is the
case for each of Ψ′(GLn) and Ψ(G).) The reader is also reminded that Πψ is defined for each
ψ ∈ Ψ′(G). Hence axiom (CO′(π)) has an unequivocal meaning. This is proven by Mœglin in
[Mœg09, §6.3] for Ψ(G); she was inspired by Clozel’s ideas, and not by the p-adic ABV theory. The
case of Ψ′(G) reduces to the case of Ψ(G): the members of Πψ, ψ ∈ Ψ′(G) are defined after (A2+),
and they are irreducible subquotients of parabolic induction of twists of members of ΠψM for certain
ψM ∈ Ψ(M) for a Levi subgroup M . However, these parabolic inductions are irreducible, thanks
to [Mœg11, Prop. 5.1], and their L-parameters are induced from those of M . Therefore, it reduces
to checking the claim for ψM , which is covered by Mœglin as already mentioned.

Let us also note that a stronger version, i.e., ϕπ̂ ≥C ϕ̂ψ using the closure relation ≥C in the Vogan
variety, is verified when G is the split group SO2n+1 or Sp2n in a recent paper [HLLZ, Thm. 1.3,
Rem. 2.5], after the works of Mœglin, Xu, and Atobe on A-packets.

Example 3.4. Assume G is the split group SO2n+1, O2n, or Sp2n. One interesting example is the
case π is generic in the sense that it has a Whittaker model. In this case, [HLLZ, Lem. 7.11] implies
that, if π belongs to Πψ for some ψ ∈ Ψ′(G), then N (π) = {0}. The extra assumption is negligible
in global applications. Combined with axiom (CO′(π)), this means that every ψ ∈ Ψ′(G) such that
π ∈ Πψ is generic in the sense that ψ|SLA2 is trivial, i.e., ψ = ϕψ. In particular, if ψ ∈ Ψ(G) then ψ

is tempered. This statement is known as the enhanced Shahidi conjecture [LS25, Conj. 1.6].
In this vein, it is natural to call π A-generic when N (π) = {0} in our framework. (This notion of

genericity has to do with A-parameters or Aubert-dual, hence the terminology.) As above, axiom
(CO′(π)) implies that, for such a π, any ψ ∈ Ψ′(G) such that π ∈ Πψ is generic. And [HLLZ,
Lem. 7.11] implies that any generic π is A-generic.

For general ϕ ∈ Φ(G) (not necessarily of the form ϕψ for ψ ∈ Ψ′(G)), there is the notion of open
L-parameters [Sol, CDFZ]; see [DHKM, Prop. 6.10] for equivalent characterizations. For quasi-split
groups, it is expected that ϕ is open if and only if its L-packet Πϕ contains a generic representation,
and it is known for classical groups [CDFZ, Cor. 4.8].

3.5. Extension along central morphisms. Recall that the definition of N (π) relies on local
Langlands, but the local Langlands parametrization does not fully propagate along central mor-
phisms. (E.g., our understanding of local Langlands for GSp2n is more limited than that for Sp2n.)
The purpose of this section is to extend the definition ofN (π) along central morphisms nevertheless.

Suppose (A2+) holds for G. Let Gder → H be a central morphism over a non-archimedean
local field k inducing an isogeny Gder → Hder. Let π be an irreducible unitary representation of
H(k). By [LS19, Prop. 4.1.3], its pullback to Gder(k) is the direct sum of finitely many irreducible
unitary representations πi of Gder(k) that are H(k)-conjugate. Again by [LS19, Prop. 4.1.3], each πi
appears in the restriction of some irreducible unitary representation π̃i of G(k), unique up to certain
character twists. According to the desiderata for the local Langlands correspondence regarding the
adjoint action and character twists [Xu16, pp.1802–1804], N (π̃i) should be independent of lifts of
πi and i. In this case, we obtain a well-defined nilpotent conjugacy class N (π) ∈ Nilp

Ĥ
. We may

temporarily consider all possible N (π̃i) and corresponding nilpotent conjugacy classes of Ĥ.
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Example 3.6. In this example, we use results from §2.15.1.
(i) If G = GLn and H = Gder = SLn, it follows from [HS12, Ch.12] that N (π̃) is well-defined.

For instance, π is generic only if N (π̃) is trivial as π has to be the restriction of a generic
representation of GLn(k).

(ii) Let G = GLn and H = PGLn. We may regard π as an irreducible representation of GLn(k)
as the natural map GLn(k)→ PGLn(k) is surjective. Its restriction to SLn(k) gives rise to
πi above. Therefore, N (π̃i) is well-defined and independent of i, and it is the same class
as N (π) when we regard π as an irreducible representation of GLn(k).

(iii) Suppose G = ResF
′

Q GLn for a totally real field F ′. Let H ⊂ G be the inverse image of Gm

under the determinant map G → ResF
′

Q Gm. (The dual group Ĥ can be described as in
[DLP19, Prop. 2.6].) If k = Qv for a finite place v and π is as above, then N (π̃) is again
well-defined. This example is related to Hilbert modular varieties when n = 2.

Example 3.7. We make use of the results described in Section 2.15.2. Consider quasi-split H =
GSp2n,GOη

2n,GUn with G = Sp2n,SO
η
2n,Un. Let π be an irreducible representation of H(k). All

the irreducible summands of the restriction of π to G(k) are contained in a single L-packet Πϕ, up
to Oη

2n(k)-conjugation in the second case as in [Art13]. (Since the irreducible summands are in the
same H(k)-orbit, this follows from the fact that the L-packet of π, up to Oη

2n(k)-conjugation in the
orthogonal case, is preserved under conjugation by H(k)-conjugation. Indeed, the stable character
of an L-packet for G(k) does not change under the H(k)-conjugation.) As the restriction from
H(k) to G(k) commutes with the Aubert involution, N (π) is well-defined and determined by the
common L-parameter of the summands of the restriction of π̂. (For unitary groups, G ̸= Hder but
this construction provides the same nilpotent conjugacy class as before.)

Suppose moreover that G and H are unramified over v and that Gder → H extends to a map of
reductive models over the ring of integers Ok. If π is unramified, there exists unique i such that πi
is unramified.3 There exists an unramified lift π̃i, unique up to an unramified twist. The nilpotent
conjugacy class N (π̃i) is independent of unramified lifts, so it would be reasonable to define N (π)
to be the corresponding nilpotent conjugacy class of H.

3.8. Definition of the main invariants. In this subsection we define certain (half-)integral in-
variants, which measure the distance from the middle degree (which can be a half-integer in general)
to the degree of interest in our vanishing conjectures below.

Let G a connected reductive group over a number field F . Fix a minimal F -rational parabolic
subgroup P0 and its Levi subgroup M0. Let T be a maximal torus contained in M0. Define

G∞ := (ResFQG)×Q R =
∏
y|∞Gy,

and define T∞ likewise. Write AG for the maximal Q-split torus in the center of ResFQG, and AG,R
for its base change to R. We take A = AG,R to define invariants such as q♭(G∞) = q(G∞/AG,R) in

§2.4. Let N ∈ Nilp
Ĝ∞

and λ ∈ X∗(T∞)+ = X∗(T̂∞)+. We define an invariant

a
(2)
G (N , λ) := max

L⊂G∞
q♭(L) ∈ 1

2Z≥0, (3.2)

where L =
∏
y|∞ Ly runs over the θ-stable Levi subgroups of G∞ =

∏
y|∞Gy such that N (L̂y) = N

for all y|∞ and such that Cent
Ĝ∞

(λ) contains a Ĝ∞-conjugate of L̂. The above number will enter

3As all the summands are conjugate under G(k), each summand is unramified with respect to some hyperspecial
subgroup.
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our conjecture on the range of non-vanishing degrees for the L2-cohomology of locally symmetric

spaces whose coefficient sheaf is determined by λ. In case there is no such L, we set a
(2)
G (N ) := −∞.

For Shimura varieties, we choose A = AGR as in Example 2.5; this differs from the above choice
of A in general. Using the notation from that example, we define a variant

a
(2)
G (N , λ) := max

L⊂G∞
q(L) = max

L⊂G∞
q(L/AGR) ∈ 1

2Z≥0. (3.3)

Remark 3.9. The definitions (3.2) and (3.3) are motivated by the relative Lie algebra computation
in Lemma 2.7. Compare with Theorem 4.9 below.

We return to locally symmetric spaces and the choice A = AG,R. The analogue of a
(2)
G (N , λ) for

ordinary or compactly supported cohomology is motivated by Franke’s formula and requires more
preparation. Write WG∞ = NG∞(T∞)/T∞ for the (absolute) Weyl group. For each w ∈ WG∞ and

λ ∈ X∗(T̂∞)+ set
w ⋆ λ := w(λ+ ρ)− ρ.

Given an F -rational Levi M of G, write WM∞
G∞

for the set of minimal-length representatives in the

Weyl group WG∞ for NG∞(M∞)/M∞. So WM∞
G∞

consists of w ∈WG∞ such that w−1 sends positive
roots in M∞ into the set of positive roots of G∞. Define

aG(N , λ) := max
(M,LM ,w)

(
a
(2)
M (NM , w ⋆ λ) + q(G∞/AG,R)− q(M∞/AM,R)− l(w)

)
∈ 1

2Z≥0, (3.4)

where M is an F -rational Levi of G, LM =
∏
y|∞ LM,y is a θ-stable Levi of M∞, and w ∈ WM∞

G∞
such that

(i) NM (L̂M,y) 7→ N under the natural map Nilp
M̂∞
→ Nilp

Ĝ∞
for all y|∞,

(ii) Cent
M̂∞

(w ⋆ λ) contains an M̂∞-conjugate of L̂M ,

(iii) −Re ([w(λ+ρ)])a∗M,C belongs to the set W (λ+ρ)c defined in [Wal97, 4.6–4.7]; in particular

[w(λ+ ρ)]a∗M pairs non-positively with each positive root in G,

(iv) the restriction of w(λ + ρ) to the maximal split subtorus of each fundamental maximal
torus in Mder

∞ is trivial.

Again if no triple (M,LM , w) as above exists, then set aG(N , λ) := −∞.

Remark 3.10. The definition (3.4) is motivated by Franke’s spectral sequence [Fra98, Thm. 19.I].
See also [Wal97, p.151, Cor.]; condition (iv) is a necessary condition for the cohomology in the
formula of loc. cit. to be non-vanishing. We also mention that the above definition could be

tweaked by requiring that NM (L̂M,y) ≤ N in (i) if NM (L̂M,y) is viewed as an element of Nilp
Ĝ∞

,

to account for the fact that the assignment of (generalized) A-parameters need not commute with
parabolic induction of non-unitary representations. However we do not know of an example where
this changes the value of aG(N , λ).

Lemma 3.11. Assume that either N = 0 or that λ is regular. Then

aG(N , λ) = a
(2)
G (N , λ) = 1

2 l
♭
0(G∞).

Proof. By assumption, the only L allowed in (3.2) is a fundamental maximal torus, say T∞. Hence

a
(2)
G (N , λ) = q♭(T∞) = 1

2 l
♭
0(G∞).

To see that aG(N , λ) = a
(2)
G (N , λ), we need to verify that the quantity in (3.4) for each

(M,LM , w) is bounded by 1
2 l
♭
0(G∞). If N = 0 then NM = 0 and LM must be a fundamental

maximal torus of M∞. The same holds for NM and LM if λ is regular for G∞, since w ⋆ λ is then
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regular for M by [Sch94, Lem. 4.9]. It follows that a
(2)
M (NM , λ) = 1

2 l
♭
0(M∞). Hence we will be done

if we show
1
2 l
♭
0(M∞) + q(G∞/AG,R)− q(M∞/AM,R)− l(w) ≤ l♭0(G∞),

or equivalently, by the definition of q0(·),
l(w) ≥ q0(G∞)− q0(M∞).

This is exactly [LS04, (4.1)], and their proof carries over after reconciling the notation (e.g., our
G∞,M∞, λ correspond to their G,MA,Λ) and the conditions: their condition (a) is satisfied by
our (iii) above, and while their condition (b) is not applicable in our setting, what we need is only
its consequence that their ν ′ vanishes; the latter is provided by our condition (iv). □

Example 3.12. In case the nilpotent orbit N is regular, only M = G can contribute to (3.4).
We need that Cent

Ĝ
(λ) meets N , for the formulas in (3.2) and (3.4) to be non-vacuous. Since the

centralizer of a regular unipotent element is a product of ZG and a unipotent subgroup (see [Spr66,

Lem. 4.3]), it follows that λ is a central cocharacter of Ĝ. If so, a
(2)
G (N , λ) = aG(N , λ) = q♭(G∞).

Example 3.13. In this example and the next, let G = GLn over F = Q with P0 the upper
triangular Borel subgroup andM0 = T the diagonal maximal torus; we concentrate on λ = 0. Here
we take n = 3, and N to be the orbit of a regular nilpotent element in the Levi subgroup GL2×GL1.
The θ-stable Levi subgroups of GL3 are either GL3 itself or of the form GL1 × ResF/QGL1, so

a
(2)
G (N , 0) = −∞. The maximum in (3.4) is realized by M = LM = GL2 × GL1 and w such that
w ⋆ 0 = wρ− ρ = (0,−1, 1) ∈ X∗(T∞) in the standard coordinate. Namely aG(N , 0) equals

a
(2)
M (NM , w ⋆ λ) + q(G∞/AG,R)− q(M∞/AM,R)− l(w) = 0 + 5

2 − 1− 1 = 1
2 .

Example 3.14. Now let G = GL4. Consider N arising from a regular unipotent element in

GL2×GL2. Then L = ResC/RGL2 contributes to (3.2) and we can compute a
(2)
G (N , 0) = q♭(L) = 3

2 .
In (3.4) the maximum is realized by not only (M,LM , w) = (G,L, 1) but also by M = LM =
GL2 ×GL2 and w is a length 2 element such that w ⋆ 0 ∈ {(0,−2, 1, 1), (−1,−1, 2, 0)}. Indeed, in
the latter case we have

a
(2)
M (NM , w ⋆ λ) + q(G∞/AG,R)− q(M∞/AM,R)− l(w) = 1 + 9

2 − 2− 2 = 3
2 .

Question 3.15. If a
(2)
G (N , λ) ≥ 0, i.e., if the maximum in (3.2) is not vacuous, then do we have

aG(N , λ) = a
(2)
G (N , λ)?

In other words, the question is whether the maximum in (3.4) is attained by the M = G case.
Small evidence is provided by Lemma 3.11 and Examples 3.12–3.14, but the authors do not know
in general.

4. Vanishing range for the L2-cohomology of locally symmetric spaces

4.1. The conjectures: char 0 coefficients. We maintain the notation from §3.8. Fix a maximal
compact subgroup K∞ of G∞(R). For neat open compact subgroups K ⊂ G(A∞

F ) define the locally
symmetric space of level K:

YG,K := G(F )\G(AF )/KK◦
∞AG(R)◦. (4.1)

Let p be a prime of F where G is unramified, andKp ⊂ G(Fp) a hyperspecial subgroup. Write Tp :=
C[Kp\G(Fp)/Kp] for the unramified Hecke algebra. Write H i

(2), H
i, and H i

c for the L
2-cohomology,

the ordinary (singular) cohomology, and cohomology with compact support, respectively, in degree
i ∈ Z≥0.
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Fix a Borel subgroup B and a maximal torus T of (ResFQG) ×Q Q such that B ⊃ T . Let

λ ∈ X∗(T )+ be a dominant weight of a maximal torus, which gives rise to an irreducible highest
weight representation Eλ and a complex local system Eλ over the system of locally symmetric spaces
YG,K . Then the colimit

H i
⋆(YG,Kp , Eλ) := lim−→

Kp

H i
⋆(YG,KpKp , Eλ), ⋆ ∈ {(2), ∅, c}

over sufficiently small open compact subgroups Kp ⊂ G(Ap,∞
F ) is a Tp-module with a commuting

G(Ap,∞)-action. Similarly we define a G(A∞
F )-module H i

⋆(YG, Eλ) by taking colimit over Kp ⊂
G(Fp) as well as K

p.
Let mp be a maximal ideal of Tp. This corresponds to a C-algebra morphism Tp → C, an

unramified L-parameter ϕ0p :WFp → LG, and an unramified representation π0p of G(Fp). Set

Nmp := N (π0p).

Suppose that ϕ0p = ϕψ0
p
for some ψ0

p ∈ Ψe(Gp), or more generally for some ψ0
p ∈ Ψ′

e(Gp) if axiom

(A1) is in effect (which provides us with the set Ψ′
e(Gp)); this is a harmless assumption as we

remarked in §3.1. Then we can define N ur(π0p) in terms of ψ0
p |SLA2 as in §3.1. Lemma 3.2 (and its

extension via character twists) tells us that Nmp = N ur(π0p).
Write Lfun for the set of F -rational Levi subgroups M up to conjugacy such that M∞ contains

a fundamental maximal torus of G∞; if G∞ contains an elliptic maximal torus then Lfun = {G}.
As in §3.8 we use A = AG,R to define q♭(G∞) = q(G∞/AG,R).

Conjecture 4.2 (unramified at p). If H i
(2)(YG,Kp , Eλ)mp ̸= 0 then

q♭(G∞)− aG(Nmp , λ) ≤ i ≤ q♭(G∞) + a
(2)
G (Nmp , λ).

For H i and H i
c, a naive expectation is that the inequality holds only on one side. Since we have

not gathered enough evidence, we state it as a question; see also Conjecture 6.8 below.

Question 4.3. Are the following true?

H i(YG,Kp , Eλ)mp = 0 for i < q♭(G∞)− aG(Nmp , λ),

H i
c(YG,Kp , Eλ)mp = 0 for i > q♭(G∞) + aG(Nmp , λ)

Now let us consider an arbitrary prime p, an arbitrary irreducible smooth representation π0p of
G(Fp) and arbitrary level at p. Set

a
(2)
G (π0p , λ) := max

N≤N (π0
p)
a
(2)
G (N , λ).

We are not insisting on N = N (π0p) because the local A-parameter at p that is Aubert dual to ϕπ̂0
p

(in the notation of §3.1) need not globalize to a global A-parameter which is cohomological at ∞
(and has infinitesimal character determined by λ); other local A-parameters ψp such that π0p ∈ Πψp

are expected to satisfy Nψp ≤ N (π0p) in light of (CO′(π)).

Conjecture 4.4 (arbitrary at p). If π0p ∈ Irr(Gp) appears as a subquotient of H i
(2)(YG, Eλ) as a

G(Fp)-module then

q♭(G∞)− a(2)G (π0p , λ) ≤ i ≤ q♭(G∞) + a
(2)
G (π0p , λ).
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Remark 4.5. (i) One can contemplate an analogous conjecture by localizing at a maximal ideal
of either the Bernstein center of GFp or the spectral Bernstein center à la Fargues–Scholze
(the latter localization is equivalently done with respect to a semisimple L-parameter), but
the resulting inequalities would be coarser in general.

(ii) If G is unramified at p and π0p is unramified with respect to a hyperspecial subgroup Kp,

then Conjecture 4.4 for π0p is true if and only if Conjecture 4.2 for the maximal ideal

corresponding to π0p is true by taking Kp-invariants.

Example 4.6. Conjecture 4.4 and Lemma 3.11 imply the following statements.

(i) If λ is regular, H i
(2)(YG, Eλ) = 0 for i ̸∈ [q0(G∞), q0(G∞) + l♭0(G)]. This special case can be

shown unconditionally by using Vogan–Zuckerman’s classification of unitary cohomological
representations; no axioms on A-parameters are needed. Indeed, when λ is regular, the
classification [VZ84, Thm. 5.3] tells us that only automorphic representations which are
essentially tempered at ∞ contribute. (More precisely, in the notation of loc. cit., the
Lie algebra l must be a Cartan subalgebra, which implies Aq(λ) is tempered.) Then we
obtain the desired degree bound from either [VZ84, Thm. 5.5] or [BW00, III.5]. (For the
contribution from the continuous spectrum, one directly verifies (4.8) without recourse to
A-parameters.)

(ii) If π0p is A-generic and appears in H i
(2)(YG, Eλ), then i ∈ [q0(G∞), q0(G∞) + l♭0(G)].

Remark 4.7. In [LS04, Gro13], it is shown that if λ is regular, H i(YG, Eλ) = 0 for i < q0(G∞).
Hence, Question 4.3 has a positive answer in this case. The A-generic case of Question 4.3 also
has an affirmative answer for all quasi-split classical groups, conditionally on twisted weighted
fundamental lemma, cf. [Kosa] for an announcement of a related result.

4.8. L2-cohomology in the case of classical groups. Let mp, π
0
p , ϕ

0
p be as in the paragraph

above Conjecture 4.2.

Theorem 4.9. Assume that H i
(2)(YG,Kp , Eλ)mp ̸= 0 and that axioms (A1+)–(A3+) hold for G.

Then

(i) There exists a unique ψp ∈ Ψ′
e(Gp) such that π0p ∈ Πψp and Nψp = Nmp.

(ii) q♭(G∞)− a(2)G (Nmp , λ) ≤ i ≤ q♭(G∞) + a
(2)
G (Nmp , λ).

Proof. We point out at the outset that the uniqueness of ψp in (i) follows from the axioms. So part
(i) is mainly about the existence of ψp as in the statement.

Write χ : AG(R)◦ → R×
>0 for the inverse of the central character of Eλ restricted to AG(R)◦. Put

K̃◦
∞ := AG(R)◦K◦

∞. From [BC83, 4.2, Eq.(5),(6)] (adapted from semisimple groups in the classical
setting to reductive groups in the adelic setting as in [Fra98, Thm. 3 and 4], taking ρ there to be
a positive constant function) we have a Tp-equivariant decomposition

H∗
(2)(YG,Kp , Eλ) = H∗(g, K̃◦

∞;L2
disc,χ([G])

Kp ⊗ Eλ)⊕H∗(g, K̃◦
∞;L2

cont,χ([G])
Kp ⊗ Eλ).

We simply write H∗
disc,λ and H∗

cont,λ for the two summands. By assumption at least one of them is

nonzero when localized at mp. Suppose (H
∗
disc,λ)mp ̸= 0. Decomposing L2

disc,χ([G]) into irreducibles,
we obtain

0 ̸= (H∗
disc,λ)mp =

⊕
π⊂L2

disc,χ([G])

mππ
p,∞ ⊗ (π

Kp
p )mp ⊗H∗(g, K̃◦

∞, π∞ ⊗ Eλ). (4.2)

The relative Lie algebra cohomology is nonzero only if π∞ has the infinitesimal character dual to
that of Eλ; in particular π∞ must be regular C-algebraic. Applying axiom (A3) in the form of
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(2.6), we can replace the sum over π with a double sum over ψ ∈ Ψχ(G) and π ∈ Πψ. (To simplify
notation we do not underline ψ.) Consider each pair (ψ, π) such that the corresponding summand
is nonzero. By axiom (A2), we have ψy ∈ Ψera(Gy) and πy ∈ Πψy = ΠAJ

ψy
for all y|∞. So we can

write πy = π(ψy, Qy) in the notation of §2.4. Then L :=
∏
y|∞ LQy is a θ-stable Levi of G∞. By

Lemma 2.7,

i ∈
[
q♭(G∞)− q♭(L), q♭(G∞) + q♭(L)

]
. (4.3)

We saw in §2.4 that the unipotent conjugacy class in Ĝ arising from a regular unipotent element

of L̂Qy coincides with the one arising from ψy|SLA2 ; denote the unipotent conjugacy class by Nψy .
On the other hand, (π

Kp
p )mp ̸= 0 implies that πp = π0p . Since πp ∈ Πψp , we have π0p ∈ Πϕψp by

(A2a). By definition π0p ∈ Πϕ0p so ϕψp = ϕ0p. By the injectivity in (A1), Nψp = Nmp ; assertion (i)

is proved at this point. Since ψ|SLA2 , ψp|SLA2 , and ψy|SLA2 are Ĝ-conjugate for each infinite place y,

cf. axiom (A1), we see that Nψy = Nmp . By the definition of a
(2)
G (·, ·) and Lemma 2.8 (the lemma

ensures that L contributes to the right hand side of (3.2)), we have

0 ≤ q♭(L) ≤ a(2)G (Nψy , λ) = a
(2)
G (Nmp , λ). (4.4)

Together with (4.3), this tells us that the bound in (ii) holds true.
Now suppose that (H∗

cont,λ)mp ̸= 0. As in [BC83, Prop. 4.4] we decompose

H i
cont,λ = ⊕(P,πM )mπMH

i(g, K̃◦
∞;L∞

P,πM
⊗ Eλ)Kp , (4.5)

where P runs over a set of conjugacy classes of proper cuspidal parabolic subgroups with Levi
decomposition P = MN such that M∞ contains a fundamental maximal torus of G∞ (i.e., M ∈
Lfun), πM is a subspace of L2

disc,χM
([M ]) for a character χM : AM (R)◦ → R×

>0 to be defined in a
moment, and L∞

P,πM
is a family of normalized parabolic inductions from πM twisted by a family of

unitary characters. To define χM , note that there is a natural map AM (R)◦ → AG(R)◦ dual to the

map X∗
F (G)→ X∗

F (M) induced byM ↪→ G. We obtain χM from χ via AM (R)◦ → AG(R)◦
χ→ R×

>0.
(The reader may compare with a similar construction in [Art13, p.122].)

Let us introduce some more notation. Put A◦
M∞

:= AM∞(R)◦. We have a product decomposition

M∞ = A◦
M∞
× 0M∞, cf. [BC83, §3.3]. (Our A◦

M∞
, 0M∞ correspond to their A,M .) Let KM∞ be a

maximal compact subgroup of M∞(R), thus contained in 0M∞(R). Let h be a Cartan subalgebra
of 0m∞, so that h⊕ aM∞ is the Lie algebra of a maximal torus T∞ of G∞. We fix a Borel subgroup
B of G∞,C in P∞,C containing T∞,C. We may assume that λ ∈ X∗(T∞) is B-dominant. Denote by

ρ ∈ X∗(T∞)Q the half sum of B-positive roots. Write aGM∞
for the kernel of the map aM∞ → aG

dual to X∗
F (G) → X∗

R(G∞) → X∗
R(M∞). Similarly put A◦,G

M∞
:= ker(A◦

M∞
→ AG(R)◦). Denote by

a∗M∞/G the linear dual of aGM∞
, and a∗,+M∞/G for the positive chamber with respect to P . We have a

continuous family of unitary characters Ciµ for µ ∈ a∗,+M∞/G, and a∗,+M∞/G is equipped with a measure

dµ; see [BC83, §4.3]. (The precise definition does not matter to us.)
Going back to (4.5), if the summand for (P, πM ) is nonzero then [BC83, Thm. 3.4] tells us that

there exists a unique element w ∈WP∞ satisfying

w(λ+ ρ)|
A◦,G
M∞

= 0, χπM,∞ = χ−w(λ+ρ)|h , (4.6)
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which has length l(w) = 1
2 dimN∞, and that

H•+l(w)(g, K̃◦
∞;L∞

P,πM
⊗ Eλ)

= n-indGP (π
∞
M )⊗H•(0m,K◦

M∞ , πM,∞ ⊗ EM∞
w⋆λ )⊗H

•(aGM∞ ,
∫ ⊕
a∗+
M∞/G

Ciµdµ),

The cohomology of aGM∞
is supported on degrees [0, dim aM∞ − dim aG]. In order to prove that the

non-vanishing degrees of (H i
cont,λ)mp satisfy (ii) of the theorem: for each πM as above satisfying the

two conditions

(a)
(
n-ind

Gp

Pp
(πM,p)

Kp
)
mp
̸= 0, (b) Hj(0m,K◦

M∞ , πM,∞ ⊗ EM∞
w(λ+ρ)−ρ) ̸= 0,

it suffices to show that

q♭(G∞)− a(2)G (Nmp , λ)− l(w) ≤ j ≤ q♭(G∞) + a
(2)
G (Nmp , λ)− l(w)− (dimAM∞ − dimAG). (4.7)

Thanks to (4.6), the formula of [BW00, III.3.3] (after reconciling the notation) tells us that

H•+l(w)(g, K̃◦
∞, n-ind

G∞
P∞

(πM,∞)⊗ Eλ) = H•(0m,K◦
M∞ , πM,∞ ⊗ EM∞

w⋆λ )⊗ ∧
•a∗M∞/G,

so the proof of (4.7) boils down to verifying the implication that

H i(g, K̃◦
∞, n-ind

G∞
P∞

(πM,∞)⊗ Eλ) ̸= 0 (4.8)

=⇒ i ∈
[
q♭(G∞)− a(2)G (Nmp , λ), q

♭(G∞) + a
(2)
G (Nmp , λ)

]
.

From Lemma 2.7 and the definition of a
(2)
G (Nψp , λ), we will be done if the unitary induction

n-indG∞
P∞

(πM,∞) contains a constituent of the form π(ψ∞, Q∞) for some ψ∞ and Q∞ =
∏
y|∞Qy

such that

• N (L̂Qy) = Nmp for each y|∞,

• a Ĝ∞-conjugate of L̂Q∞ is contained in Cent
Ĝ∞

(λ).

Since the second bullet point follows from Lemma 2.8, it is enough to show that n-indG∞
P∞

(πM,∞)
nontrivially intersects the A-packet Πψ∞ for some ψ∞ =

∏
y|∞ ψy ∈ Ψera(G∞) such that Nψy = Nmp

for all y|∞. Indeed, (A2d) tells us that Πψ∞ = ΠAJ
ψ∞

, and every member π(ψ∞, Q∞) of ΠAJ
ψ∞

satisfies

N (L̂Qy) = Nψy for y|∞ (see §2.4).
To this end, write ψM ∈ ΨχM (M) for a global parameter whose packet contains πM ; here we are

appealing to axiom (A3+). In particular πM,p ∈ ΠψM,p and πM,y ∈ ΠψM,y , and NψM,p = NψM,y for

each y|∞. We deduce from (a) above that ψM,p ∈ Ψ′
e(Mp) maps to ψp under LM ↪→ LG and that

π0p ∈ Πψp ; thus NψM,p maps to Nψp , which equals Nmp in view of (a). We have shown assertion (i)
at this point.

Take ψ∞ ∈ Ψ(G∞) to be the image of the parameter ψM,∞. Then NψM,y maps to Nψy , hence
Nmp = Nψy for y|∞. By axiom (A2e), all constituents of n-indG∞

P∞
(πM,∞) show up in Πψ∞ . The

non-vanishing condition in (4.8) tells us that Πψ∞ contains a cohomological representation. Hence
ψ∞ ∈ Ψera(G∞) by axiom (A2c), so the proof of part (ii) is finished. □

Remark 4.10. The argument is much simpler if Lfun(G) = {G}, e.g., if G∞ contains an elliptic
maximal torus. In that case, H∗

cont,λ = 0 as can be seen from (4.5) since G contains no proper

cuspidal parabolic subgroup, cf. [BC83, Thm. 3.4(c)].
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Theorem 4.11. Assume that axioms (A1+)–(A3+) hold for G. Let p be a finite prime of F and
suppose that π0p ∈ Irr(Gp) satisfies axiom (CO′(π0p)). If π0p appears as a subquotient of H i

(2)(YG, Eλ)
as a G(Fp)-module for i ∈ Z≥0 then we have

q♭(G)− a(2)G (π0p , λ) ≤ i ≤ q♭(G) + a
(2)
G (π0p , λ).

Proof. Since the argument is mostly the same as for Theorem 4.9, we simply point out the main dif-
ferences. Again we decompose H∗

(2)(YG, Eλ) = H∗
disc,λ ⊕H∗

cont,λ (without taking the Kp-invariants).

If π0p appears in H∗
disc,λ, we have a global parameter ψ such that π0p ∈ Πψp and such that Πψ∞

contains π∞ = ⊗y|∞π(ψy, Qy) which satisfies the bound (4.3) for L =
∏
y LQy . Now the key point

is that Nψp ≤ N (π0p) by (CO′(π0p)), therefore we obtain the following analogue of (4.4):

0 ≤ q♭(L) ≤ a(2)G (Nψy , λ) ≤ a
(2)
G (π0p , λ).

This finishes the proof when π0p shows up in H∗
disc,λ.

In the other case when π0p is a subquotient ofH
∗
cont,λ, we change condition (a) to the new condition

(a′) that π0p is a subquotient of n-ind
Gp

Pp
(πM,p). Other than that, the argument remains unchanged

until the second last paragraph in the proof of Theorem 4.9, except that a
(2)
G (Nψp , λ) should be

changed to a
(2)
G (πp, λ) and that we need to show Nψy ≤ N (π0p) instead of Nψy = Nψp .

To obtain Nψy ≤ N (π0p), we proceed as in the last paragraph in the proof of Theorem 4.9 but

apply axiom (A2e) also at p to observe that π0p ∈ Πψp , where ψp is the parameter for Gp coming from

ψM,p. We still have the relation Nψp = Nψy for y|∞. In addition, Nψp ≤ N (π0p) from (CO′(π0p)).

Hence Nψy ≤ N (π0p) as desired. □

Corollary 4.12. Conjectures 4.2 and 4.4) hold true if G is an inner form of GLn that is split at
p. Assuming that the twisted weighted fundamental lemma is valid (see §2.15.2), Conjectures 4.2
and 4.4 are true for all quasi-split classical groups.

Proof. For inner forms of GLn and quasi-split classical groups, axioms (A1+)–(A3+) hold true as
explained in §2.15.1 and §2.15.2. Hence Conjecture 4.2 is an immediate consequence of Theorem
4.9. As for Conjecture 4.4, we need to check (CO′(πp)) in addition. Since the latter is true for
quasi-split classical groups (see §3.3), Conjecture 4.4 is verified in these cases. □

One can extend above results along central morphisms. Let us discuss only the following simple
instance; for relevant examples, see Example 6.12 below.

Corollary 4.13. Let G be a connected reductive group over Q such that Gder ≃ ResFQSp2n for a
totally real field F and n ∈ Z≥1; if n ≥ 2, assume that the twisted weighted fundamental lemma is
valid. If π0p ∈ Irr(Gp) appears as a subquotient of H i

(2)(YG,C) as a G(Qp)-module for i ∈ Z≥0 then

q♭(G)−max
π0
p,j

max
N≤N (π0

p,j)
a
(2)
G (N , 0) ≤ i ≤ q♭(G) + max

π0
p,j

max
N≤N (π0

p,j)
a
(2)
G (N , 0),

where π0p,j are irreducible summands of the restriction of π0p to Gder(Qp) as in §3.5. The ℓ-adic
analogue also holds.

The same statements hold if Sp2n is replaced by a quasi-split special unitary group for a CM
quadratic extension E ⊃ F (assuming the twisted weighted fundamental lemma is valid).
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Proof. As in the proof of Theorem 4.9, [Fra98, Thm. 3 and 4] imply that

H i
(2)(YG,C) ∼= H i(g, K̃◦

∞;L2([G])) ∼= H i(g, K̃◦
∞;L2

disc([G]))⊕H i(g, K̃◦
∞;L2

cont([G])),

H i
(2)(YGder

,C) ∼= H i(gder,K
◦
∞;L2([Gder])) ∼= H i(gder,K

◦
∞;L2

disc([Gder]))⊕H i(gder,K
◦
∞;L2

cont([Gder])).

By Remark 4.10,

H i(gder,K
◦
∞;L2

cont([Gder])) = H i(g, K̃◦
∞;L2

cont([G])) = 0.

Note also that for ∗ ∈ {∅, disc}

L2
∗([G]) =

⊕̂
ω
L2
∗([G], ω),

where ω run through unitary characters of the compact abelian group [ZG] = ZG(A)/ZG(Q)AG(R)◦
and L2

∗([G], ω) is the ω-isotypic part. If π0p appears as a subquotient of H i
(2)(YG,C), then there

exists a cohomological discrete automorphic representation π ⊂ L2
disc([G], ω) with πp

∼= π0p for some

ω that is trivial on ZG(R)◦. As in [LS19, §5], the space L2([G], ω) is the induction of

L2(G(Q)\ZG(A)G(Q)Gder(A), ω) ∼= L2(Gder(Q)\Gder(A), ω1)

from ZG(A)G(Q)Gder(A) to G(A), where ω1 is the restriction of ω to [ZGder
]. Moreover, the same

holds for the discrete spectrum as ZG(A)G(Q)Gder(A)\G(A) is an abelian compact group [LS19,
Prop. 3.3.3]. Therefore, π|Gder(A), which is the Hilbert direct sum of irreducible representations,

contains a discrete automorphic representation π′ with π′p
∼= π0p,j for some j [LS19, Prop. 2.3.3

and Lem. 5.1.1]. Furthermore, π′∞ is a summand of π∞|Gder(R) and in particular cohomological by
[NP21, Prop. 4]. We have the Künneth formula

H•(g, K̃◦
∞, π∞) ∼= H•(gder, (Gder(R) ∩K∞)◦, π∞)⊗H•(a′,C),

once we choose a splitting

g = gder ⊕ (LieAG(R))C ⊕ (Lie (ZG(R) ∩K))C ⊕ a′

for some a′ ⊂ g, and H i′(gder, (Gder(R) ∩K∞)◦, π′∞) is nonzero for some i′.
Therefore, if the case G = Gder is verified, we have

q♭(Gder)− max
N≤N (π0

p,j)
a
(2)
G (N , 0) ≤ i′ ≤ q♭(Gder) + max

N≤N (π0
p,j)

a
(2)
G (N , 0).

As q♭(G) = q♭(Gder) + dim a′, the case of G follows.
It remains to verify the case G = Gder. If G is the Weil restriction of Sp2n, n ≥ 2, it follows from

Corollary 4.12. Now suppose G = ResFQSL2 = ResFQSp2 or a quasi-split special unitary group. We

already know the case G = ResFQGL2 or a quasi-split unitary group by Corollary 4.12. As in the
previous argument, there exists a cohomological discrete automorphic representation π of Gder(A)
with πp ∼= π0p and central character ω1 that is trivial on ZGder

(R). Arguing similarly as in the proof
of [LS19, Thm. 5.2.2], we can find a discrete automorphic representation π̃ of G(A) lifting π that
is trivial on ZG(R). Then the Künneth formula as above implies that π̃ is cohomological, and in
turn, the case of SL2 and quasi-split special unitary groups. □
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5. Torsion and ℓ-adic coefficients

5.1. Assignment of nilpotent conjugacy classes: torsion and ℓ-adic coefficients. In the
cases coefficients are torsion, even formulating a similar conjectural statement is a nontrivial task
for several reasons. One reason is that the Aubert–Zelevinsky involution may not preserve irre-
ducible representations, and another is that there is no precise form of the mod ℓ local Langlands
correspondence even in a conjectural form. In fact, even the case of Qℓ-coefficients is subtle.

For instance, upon choosing an isomorphism ι : C ∼= Qℓ, we can translate Question 4.3 into the
ℓ-adic setting. However, it depends on ι a priori. More precisely, if mp arises from a Qℓ-valued

character, then the invariant Nmp relies on the local Langlands correspondence with Qℓ-coefficients,

which depends on ι. The following axiom says it is actually independent of ι. 4

(A2++) (A2+) holds, and moreover ϕπ|SLD2 for each π ∈ Irr(G(Fp)) is invariant under any field

automorphism σ : C
∼=−→ C in the following sense: ϕπ|SLD2 is conjugate to ϕπσ |SLD2 . If

σ(q1/2) = q1/2, then ϕσπ is conjugate to ϕπσ .

In fact, more canonically, it is expected that (Cϕπ)
σ is conjugate to Cϕπσ for every σ ∈ Aut(C);

see [Ima24, Conj. 2.4], for instance. In particular, as is well-known, (A2++) is true for general
linear groups [ST14, (3.2)], [Ima24, Corollary 2.12]. We will discuss the case of quasi-split classical
groups in the next subsection.

In the rest of this subsection, we assume (A2++) holds. We want to use it as a crutch to attach a
nilpotent conjugacy class to mod ℓ representations of G(Fp). To get around the lack of mod ℓ local
Langlands in a precise form, we proceed in the following ad hoc manner. Let πp be an irreducible

smooth Fℓ-representation of G(Fp) with ℓ prime to p. According to [DHKM, Prop. 4.9], there

exists an irreducible integral smooth Qℓ-representation π̃p whose mod ℓ reduction contains πp as a
subquotient. We then work with the nilpotent conjugacy class N (π̃p) in characteristic 0. However
π̃p may not be unique, and we will consider all possible such lifts.

Remark 5.2. If the Fargues–Scholze semisimple L-parameter of πp is of weakly Langlands–Shahidi
type in the sense of [HL, Def. 6.2] and the semisimplification of the ℓ-adic L-parameters agree
with those of Fargues–Scholze, then the mod ℓ reduction of ϕπ̃p must have the trivial monodromy.
Therefore, such a πp is A-generic in the sense that N (π̃p) are all trivial.

Example 5.3. Suppose G(Fp) is a general linear group. In this case, the mod ℓ local Langlands
correspondence is constructed by Vignéras [Vig01]; let us denote the resulting Weil–Deligne pa-
rameter of πp by ϕVπp with the conjugacy class of nilpotent operator N (ϕVπp). It is also known that

a suitable modification of Aubert–Zelevinsky involution πp 7→ π̂p preserving irreducible representa-
tions exists. Moreover, the local Langlands correspondence is compatible with reduction modulo ℓ
up to Aubert–Zelevinsky involution in the following sense [Vig01, 1.8.5]: any πp has the form Jℓ(π̃p)
for some π̃p, where Jℓ(−) is the “most generic” subquotient of the mod ℓ reduction [Vig01, 1.8.4]
(see also [Vig98, V.9.2]), and ϕVπ̂p is equivalent to the mod ℓ reduction of ϕ̂̃πp

when πp ∼= Jℓ(π̃p).

If πp is a subquotient of the mod ℓ reduction of some irreducible π̃p but not isomorphic to
J := Jℓ(π̃p), then the nilpotent orbit N (ϕVπ̂p) is larger in the closure ordering than N (ϕV

Ĵ
), which

is the mod ℓ reduction of N (ϕ̂̃πp
) as above. Indeed, this follows from the displayed equality in the

4Compare with the recent elegant result of Scholze that the map from the spectral Bernstein center to the Bernstein
center, and hence Fargues–Scholze semisimple L-parameters, is independent of ℓ [Sch, Cor. 6.2].
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proof of [MS14, Lem. 9.41], for instance.5 Therefore, including such π̃p in consideration does not
change the nilpotent conjugacy class as long as we look at the maximal one.

We conclude that it is reasonable to define N (πp) to be the nilpotent conjugacy class N (ϕVπ̂p) in

characteristic ℓ. The L-parameter ϕ is of weakly Langlands–Shahidi type if and only if there is no
possible nontrivial monodromy. In particular, there is a unique irreducible representation πp whose
semisimplified L-parameter is ϕ and it is A-generic in the sense that N (πp) is trivial.

Remark 5.4. One may also try to work with maximal ideals of (local) unramified Hecke algebras.
Note that two non-isomorphic unramified irreducible representations can have the same mod ℓ
Satake parameter, and the relation with the above consideration is more subtle than the non-
torsion case. A related issue is that even in the case of general linear groups, there could be
multiple “maximal” nilpotent operators for a given representation of the Weil group.

Let us also recall that if G(Fp) is a general linear group, the generic condition in [Kosb] means
there is no possible nontrivial monodromy. In particular, there is a unique corresponding unramified
representation and any its irreducible lift is generic (and its mod ℓ reduction is automatically
irreducible).

5.5. Invariance of L-parameters for quasi-split classical groups. For simplicity of notation,
let F denote a nonarchimedan local field of characteristic 0 for the rest of §5. Assume G is GLN ,
split symplectic, or qusai-split orthogonal/unitary over F . We are going to use results from Section
2.15.2 to verify (A2++) in this case. In particular, when G is a classical group, the twisted weighted
fundamental lemma is assumed to be able to assign local L-parameters ϕπ to π ∈ Irr(G(F ).

Let σ ∈ Aut(C). Suppose σ(q1/2) = −q1/2. We let η = ησ denote the unramified character

sending any Frobenius lift to −1 ∈ Z(Ĝ) ⊂ Ĝ if G = GLN , odd orthogonal, or unitary. Note that

−1 = 2ρ(−1) ∈ Z(Ĝ)WF if G = GLeven, odd orthogonal, or even unitary and 2ρ(−1) is trivial

otherwise. If σ(q1/2) = q1/2, we let η be trivial.

Theorem 5.6. Let σ ∈ Aut(C) and π ∈ Irr(G(F )).

(i) If σ(q1/2) = q1/2, ϕπσ is conjugate to ϕσπ.

(ii) Suppose σ(q1/2) = −q1/2. If G is GLodd, symplectic, even orthogonal, or odd unitary, then
ϕπσ is conjugate to ϕσπ. If G is GLeven, odd orthogonal, or even unitary, ϕπσ is conjugate
to ηϕσπ.

In other words, C-parameters Cϕπσ and (Cϕπ)
σ agree. Moreover, if πst denotes the standard rep-

resentation with unique irreducible quotient π, then πσst is the standard representation with unique
irreducible quotient πσ.

Corollary 5.7. N (πσ) = N (π).

Proof. Observe that (π̂)σ = π̂σ (since the Aubert involution can be defined only via the un-
normalized version of parabolic induction and Jacquet modules) and that the twist by the central
character has no effect. □

5.7.1. General linear groups. As already mentioned, Aut(C)-invariance of C-parameters for general
linear groups is well-known [ST14, (3.2)], [Ima24, Cor. 2.12]. Therefore, the nontrivial claim is that
Aut(C) respects standard modules. Any standard module has the form

π1|−|s1 × · · · × πr|−|sr := n-ind(π1|−|s1 ⊠ · · ·⊠ πr|−|sr),
5We pass from Z(m) to L(m) as we are taking the Zelevinsky involution. Note also that the inequality there

has to be reversed as the partition µm [MS14, Def. 9.14] is the dual to the partition we are interested in via the
order-preserving correspondence between nilpotent orbits and partitions.
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where π1, . . . , πr are (unitary) tempered representations and s1 > · · · > sr are real numbers, and
each πi has the form

πi = ∆i1 × · · · ×∆iji := n-ind(∆i1 ⊠ · · ·⊠∆iji),

where ∆∗∗ is a discrete series corresponding to a segment; see [Zel80, §3, §9].
On the other hand, recall that for any sequence of segments ∆1, . . . ,∆m, the representation

∆1 × · · · × ∆m has a unique irreducible quotient if ∆i does not precede ∆j for any i < j, and
∆1× · · · ×∆m is irreducible if ∆i and ∆j are not linked for any i < j. If ∆i and ∆j are linked and
∆i does not precede ∆j , then ∆i×∆j is a standard representation with two irreducible constituents.

Lemma 5.8. If ∆i does not precede ∆j for any i < j, then ∆1 × · · · × ∆m is isomorphic to a
standard representation.

Proof. Suppose ∆i and ∆i+1 are not linked, then the full normalized parabolic induction does not
change by swapping ∆i and ∆i+1 as ∆i ×∆i+1

∼= ∆i+1 ×∆i. Therefore, it is possible to arrange
the sequence so that ∆i = ρ|−|si with ρi unitary and s1 ≥ · · · ≥ sr. Its induction is a standard
representation. □

When we take the normalized induction using σ(q1/2) in place of q1/2 (so the square root of the

modulus character δ
1/2
P is replaced with σ(δ

1/2
P ), where P is the standard parabolic from which one

is inducing), we write π1 ×σ · · · ×σ πr instead; if σ(q1/2) = q1/2, this is simply π1 × · · · × πr.
Lemma 5.9. The representation

(π1|−|s1)σ ×σ · · · ×σ (πr|−|sr)σ =

(∆11|−|s1)σ ×σ · · · ×σ (∆1j1 |−|s1)σ ×σ · · · ×σ (∆r1|−|sr)σ ×σ · · · ×σ (∆rjr |−|sr)σ

is isomorphic to a standard representation.

Proof. Suppose ∆ij is a representation of GLnij with N =
∑
nij . Then,

(π1|−|s1)σ ×σ · · · ×σ (πr|−|sr)σ =

ηN−n11(∆11|−|s1)σ × · · · × ηN−nij (∆ij |−|si)σ × · · · × ηN−nrjr (∆rjr |−|sr)σ.

The L-parameter of ηN−nij (∆ij |−|si)σ is ηN−1ϕσ∆ij |−|si . In particular, (π1|−|s1)σ×σ · · ·×σ(πr|−|sr)σ

is fully induced from an essentially discrete series. Moreover, ηN−ni1j1 (∆i1j1 |−|si1 )σ does not

precede ηN−ni2j2 (∆i2j2 |−|si2 )σ for any (i1, j1) < (i2, j2) in the lexicographic order. Therefore
(π1|−|s1)σ ×σ · · · ×σ (πr|−|sr)σ is standard by Lemma 5.8. □

5.9.1. Irreducibility criterion. From now on, let G be a split symplectic, a quasi-split orthogonal,
or a quasi-split unitary group; in the even orthogonal case, we will actually work with full (discon-
nected) orthogonal groups following the convention of [AGI+], for example. We need the following
well-known irreducibility criterion for certain parabolically induced representations. It is also a
special case of a general form of the standard module conjecture, which is known for many groups.

Lemma 5.10. Assume that the twisted weighted fundamental lemma is true (to access results in
[Art13, Mok15], cf. §2.15.2). Suppose G is not a unitary group. Let π be a discrete series of a
general linear group corresponding to a segment [ρ, . . . , ρ|−|r−1], r ∈ Z>0. Suppose an L-parameter

ϕ : WF × SL2 → Ĝ ↪→ GLN is the direct sum of irreducible self-dual representations. For τ ∈ Πϕ
and s ∈ R, the representation

π|−|s ⋊ τ := n-ind(π|−|s ⊠ τ)
is irreducible in one of the following cases:
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(i) ρ|−|(r−1)/2 is not self-dual.
(ii) 2s /∈ Z.

In particular, π|−|s ⋊ τ ∼= π∨|−|−s ⋊ τ in these cases.
An analogous claim holds for quasi-split unitary groups G, with “conjugate self-dual” in place of

“self-dual”.

Proof. Assume s ̸= 0. By repeatedly applying [Mui05, Lem. 2.1, Lem. 2.4], which also makes sense
for unitary groups, we reduce the proof to the two cases: (a) where τ is a discrete series of a smaller
group of the same type as G, and (b) the case with τ replaced by a self-dual (or conjugate-self-dual)
discrete series of a general linear group. Case (a) is [Mui04, Thm. 2.2] or [Tad13, App. A] whose
basic assumption (BA), as in Mœglin–Tadić’s classification of discrete series, is verified in [Mœg14,
§3, §7], [Xu17, Prop. 3.2, Cor. 9.1, Thm. 11.1], conditionally on [Art13] (see also [Tad13, Rem. 2.2]).
Case (b) is clear once interpreted using segments.

If s = 0, the claim follows from the structure of tempered L-packets, or the classification of
tempered representations [Tad13, Thm. 5.3]. □

Proof of Theorem 5.6. First suppose that both ϕπ and ϕσπ are tempered. Then, [ST14, Prop. 5.2]
implies the claim (note that the L-homomorphism in loc. cit. involves a half-integral twist in the
case of even orthogonal groups as in [ST14, §4.2]). 6

To simplify the notation, assume G is not a unitary group. To discuss a general π, we recall that

any L-parameter ϕ : WF × SLD2 → Ĝ ↪→ GLN can be written as

ϕ = ϕ′ ⊕ ϕ0 ⊕ (ϕ′)∨,

where ϕ0 is the direct sum of irreducible self-dual representations of the type specified by G and ϕ′

is the direct sum of irreducible representations that are either non-self-dual or self-dual of different
type. Note that ϕ′ may not be unique. The summand ϕ0 gives rise to an absolutely tempered
L-parameter of a smaller group of the same type, and it is known that #Πϕ = #Πϕ0 .

Assume ϕ′ = ϕ1|−|s1⊕· · ·⊕ϕr|−|sr with ϕi irreducible tempered and s1 ≥ s2 ≥ · · · ≥ sr ≥ 0. Let
πi denote the essentially discrete series representation corresponding to ϕi|−|si . Then π1× · · · × πr
is a standard representation of a general linear group, and in fact

π1 × · · · × πr ⋊ τ, τ ∈ Πϕ0 ,

is a standard representation of G. Their unique irreducible quotients have the L-parameter ϕ and
these quotients are non-isomorphic to each other by looking at Jacquet modules. Therefore, these
quotients exhaust the L-packet Πϕ.

Let 1 ≤ i ≤ r. Suppose either ϕi is not self-dual or 2si /∈ Z. If (ϕi|−|si)σ is a twist of a
tempered L-parameter by a negative power of |−|, let π′i denote the dual of πσi , which corresponds
to (ϕi(|−|si)σ,∨. Otherwise, we let π′i := πσi . If ϕi is self-dual and 2si ∈ Z, then

(ϕi|−|si)σ = ϕσi (|−|1/2σ )2si

with ϕσi being tempered. Here, |−|1/2σ is defined using σ(q1/2). We set π′i := πσi in this case as well.

Note that if we write ϕπσi = ϕ′i|−|s
′
i with ϕ′i tempered, then the following holds: ϕi is self-dual and

2si ∈ Z, if and only if ϕ′i, ηϕ
′
i are self-dual and 2s′i ∈ Z. (Of course, ϕ′i is self-dual if and only if ηϕ′i

is self-dual, since η2 = 1.)

6In fact there is a gap in the proof of [ST14, Prop. 5.2] when ϕσπ is not tempered (which does happen in general),
in which case the endoscopic character identity therein is not guaranteed unless, for example, ϕσπ is shown to be a
standard module. Our proof here can be viewed as filling in the gap in the case at hand.
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By Lemma 5.10, the full normalized parabolic induction does not change by replacing πσi by π′i:

πσ1 ×σ · · · ×σ πσr ⋊σ τ
σ ∼= π′1 ×σ · · · ×σ π′r ⋊σ τ

σ.

By Lemma 5.9, πσ1 ×σ · · · ×σ πσr is isomorphic to a standard representation. The L-parameter of

its unique quotient is the direct sum of ηN
′−1(ϕi|−|si)σ with N ′ := dimϕ′. By the first paragraph

of the proof, τσ itself is tempered and has the L-parameter ϕσ0 for symplectic and even orthogonal
cases, and ηϕσ0 for the odd orthogonal case.

Finally, observe that if G is symplectic or even orthogonal, then

πσ1 ×σ · · · ×σ πσr ⋊σ τ
σ ∼= ηN

′+1(πσ1 ×σ · · · ×σ πσr )⋊ τσ

and if G is odd orthogonal,

πσ1 ×σ · · · ×σ πσr ⋊σ τ
σ ∼= ηN

′
(πσ1 ×σ · · · ×σ πσr )⋊ τσ.

We conclude that these are standard and the L-parameters of their irreducible quotients are ϕσ, ηϕσ

respectively.
The case of unitary groups is similar. □

6. Vanishing range for the cohomology of Shimura varieties and moduli spaces of
local shtukas

6.1. Global Shimura varieties. Let (G,X) be a Shimura datum, or a little more generally, con-
sider a connected reductive groupG overQ and aG(R)-conjugacy classX of a group homomorphism
h : ResCRGm → GR satisfying

(SV1) The cocharacter µh(z) := hC(z, 1) is minuscule, and
(SV2) Ad(h(i)) is a Cartan involution of Gad

R .

The pair (G,X) need not be a Shimura datum in that we are not imposing (2.1.1.3) but only
(2.1.1.1)–(2.1.1.2) of [Del79]; the latter corresponds to our (SV1)–(SV2).

As before, AGR denotes the maximal R-split subtorus of ZG,R. The centralizer CentGR(h) is
connected (it becomes a Levi subgroup of G over C) and Cent(h)/ZG,R is anisotropic by (SV2);
we drop the subscript GR when the context is clear. The map π0(AGR(R)) → π0(Cent(h)(R)) is
surjective by Matsumoto’s theorem, cf. [Tim22].

Let K◦
h denote the unique7maximal compact subgroup of Cent(h)(R)◦, equivalently, the identity

component of the maximal compact subgroup of Cent(h)(R). It is a maximal connected compact
subgroup of G(R) and the image of K◦

h in Gad(R) is a maximal compact subgroup of Gad(R)◦.
Lemma 6.2.

Cent(h)(R) = AGR(R)K
◦
h.

In particular, the conjugacy class X of h identifies with the quotient of G(R)/AGR(R)◦K◦
h by the

action of the finite abelian group π0(AGR(R)) = AGR(R)/AGR(R)◦. Moreover, all the connected
components of both spaces are isomorphic.

Proof. We first show that ZG(R) is contained in AGR(R)K◦
h. As ZG is contained in any maximal

torus T of Cent(h) and AGR(R)→ π0(T (R)) is surjective, given z ∈ ZG(R), we can find a ∈ AGR(R)
such that a, z are in the same connected component of T (R). Thus, we may assume z ∈ T (R)◦.
Recall that T (R)◦ is the product of AGR(R)◦ and the maximal connected compact subgroup K◦

T of
T (R). So, we may further assume that z ∈ K◦

T . But K
◦
T is contained in K◦

h.
The claim now follows as the quotient Cent(h)(R)/ZG(R) is connected and compact. □

7The surjection ZCent(h)×Cent(h)der → Cent(h) induces a surjection ZCent(h)(R)◦×Cent(h)der(R)◦ → Cent(h)(R)◦

and Cent(h)der(R)◦ is compact.
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For neat open compact subgroups K ⊂ G(A∞), set

ShK := ShK(G,X) := G(Q)\G(A)/(K ×AGR(R)K
◦
h)
∼= G(Q)\(X ×G(A∞))/K.

In the case of Shimura data, this is the Shimura variety. We use the same notation in general, that
is, when [Del79, (2.1.1.3)] is not assumed. It has the structure of a complex variety, and we let
d := dimShK denote the complex dimension.

Choose a prime p. The colimit

H i
⋆(ShKp ,C) := lim−→

Kp

H i
⋆(ShKpKp ,C), ⋆ ∈ {(2), ∅, c}

over open compact subgroups Kp ⊂ G(Ap,∞) is a Tp-module with a commuting G(Ap,∞)-action.
Similarly, we define a G(A∞)-module H i

⋆(Sh,C) by taking colimit over Kp ⊂ G(Qp) as well as K
p.

Recall also that, by the Zucker conjecture proven by Looijenga and Saper–Stern, [Loo88, SS90].
H i

(2)(ShK ,C) is isomorphic to the intersection cohomology of the Baily–Borel–Satake minimal com-

pactification Sh∗K
IHi(ShK ,C) := H i(Sh∗K , j!∗C),

where j : ShK ↪→ Sh∗K denotes the open immersion into the compactification.

Lemma 6.3.

H i
(2)(ShK ,C) ∼=

⊕
π

H i(g, AGR(R)
◦K◦

h, π∞)⊗ (π∞)K ,

where π ⊂ L2
disc([G]) such that AGR(R) acts trivially on π∞. It is also isomorphic to⊕

π

H i(g,Cent(h)(R), π∞)⊗ (π∞)K ,

where there is no assumption on π ⊂ L2
disc([G]).

Proof. The first part follows from the second: use that if H i(g,Cent(h)(R), π∞) is nonzero then
the central character of π∞ is trivial on AGR(R) ⊂ Cent(h)(R) and, in which case,

H i(g,Cent(h)(R), π∞) ∼= H i(g, AGR(R)
◦K◦

h, π∞)

by the definition of relative Lie algebra cohomology.
For the second claim, by slight variants of [Fra98, Thm. 3 and 4], there is an identification

H i
(2)(ShK ,C) ∼= H i(g,Cent(h)(R), L2(G(Q)\G(A)/AGR(R)

◦K)).

(We are replacing AG(R)◦ by AGR(R)◦; this is harmless in the argument. Note also that Franke
[Fra98, p.184] allows any open subgroup of a maximal compact subgroup K∞, and in particular we
take it to be the unique maximal compact subgroup of AGR(R)K◦

h, which together with AGR(R)◦
generates Cent(h)(R).) By [BC83], cf. Remark 4.10, this is isomorphic to

H i(g,Cent(h)(R), L2
disc(G(Q)\G(A)/AGR(R)

◦K)).

As in the first paragraph of the proof, this is isomorphic to

H i(g,Cent(h)(R), L2
disc([G])

K) = H i(g,Cent(h)(R), L2
disc(G(Q)\G(A)/AG(R)◦K))

as the discrete spectrum is the Hilbert direct sum of irreducible representation with finite multi-
plicities. □
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Remark 6.4. The underlying manifolds of Shimura varieties are not exactly locally symmetric spaces
but they can be related as follows. The pullback H i

(2)(ShK ,C) → H i
(2)(YG,K ,C) along the natural

proper maps YG,K → ShK are compatible with natural maps

H i(g,Cent(h)(R), π∞)⊗ (π∞)K → H i(g, AG(R)◦K◦
h, π∞)⊗ (π∞)K .

In fact, if AG(R) acts trivially on π∞, we have the Künneth formula (cf. proof of Lemma 2.7),

H•(g, AG(R)◦K◦
h, π∞) ∼= H•(g0,Cent(h), π∞)⊗ ∧•a′∗,

where a′ is the canonical complement of (LieAGR)C in (LieZG)C and g = g0 ⊕ a′ is the induced
decomposition. In particular, after passing to the colimit over K, if πp appears in H

i
(2)(Sh,C) then

πp appears in Hj
(2)(YG,C) for j ∈ [i, i + dimAGR − dimAG]. The invariants for YG and Sh are

related as follows.

q♭(G∞)− a(2)G (Nψ∞ , 0) = d− a(2)G (Nψ∞ , 0),

q♭(G∞) + a
(2)
G (Nψ∞ , 0) = d+ a

(2)
G (Nψ∞ , 0) + dimAGR − dimAG.

We would like to reformulate Conjectures 4.2 and 4.4 for Shimura varieties, using the following
result of Arthur. The conjugacy class of µh, which depends only on (G,X), determines a unique ele-

ment of X∗(T̂ ) dominant for B̂, which we denote by µ. Let r−µ denote an irreducible representation

of Ĝ with highest weight conjugate to the character corresponding to −µ.8

Proposition 6.5 (cf. [Art89, Prop. 9.1]). For each cohomological Arthur parameter ψ∞ of G∞,

the largest weight of r−µ ◦ ψ∞ as a representation of GA
m is equal to a

(2)
G (Nψ∞ , 0). In other words,

a
(2)
G (Nψ∞ , 0) = ⟨ψ∞|GA

m
, µ⟩

if the representative ψ∞ is chosen so that ψ∞|GA
m

is dominant. More generally, for any N ∈ Nilp
Ĝ

and the corresponding map f : SL2 → Ĝ (see §3.1) with f |Gm dominant,

a
(2)
G (N , 0) = ⟨f |Gm , µ⟩.

Proof. By definition, a
(2)
G (Nψ∞ , 0) = q(L) for a θ-stable Levi L such that ψ∞|SLA2 is principal in L̂.

Then ψ∞|GA
m

= 2ρL [NP21, Prop. 1]. As µ is dominant, (SV1) and (SV2) together imply that

q(L) = ⟨2ρL, µ⟩ as in Example 2.5. The second part is similar. □

From now on, a representative of any L-parameter ϕ is chosen such that ϕ|GD
m

is dominant.

Lemma 6.6. For any N1,N2 ∈ Nilp
Ĝ
with N1 ≤ N2, let f1, f2 : SL2 → Ĝ denote the corresponding

morphisms (§3.1) and choose them such that f1|Gm , f2|Gm are dominant. Then

⟨f1|Gm , µ⟩ ≤ ⟨f2|Gm , µ⟩

Proof. Let Vµ denote the underlying vector space of the representation rµ with highest weight µ.
We first reduce the claim to the case of GL(Vµ) with the standard representation. It is clear that
rµ induces a map Nilp

Ĝ
→ NilpGL(Vµ)

9 and that

rµ(N1) ≤ rµ(N2).

8For our purpose, the sign is not essential but this sign is more natural if we consider the Galois action on the
cohomology of Shimura varieties as in the Kottwitz conjecture.

9Since rµ and r−µ induce the same map on nilpotent conjugacy classes, we work with rµ for convenience.
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The weight decomposition of Vµ determines a maximal torus Tµ ⊂ GL(Vµ) and it is also possible
to extend it to a Borel pair (Tµ, Bµ) of GL(Vµ) such that f1|Gm , f2|Gm are dominant. Note also
that µ is induced by the cocharacter of Tµ corresponding to the highest weight. These are enough
to reduce to the case of GL(Vµ).

In the case Ĝ = GL(Vµ), it is well-known that nilpotent orbits correspond to partitions of
dimVµ and the order N1 ≤ N2 corresponds to the dominance order of partitions. This implies
that f1|Gm ≤ f2|Gm as cocharacter of X∗(Tµ) with dominance order. As µ is dominant, the claim
immediately follows. □

Conjecture 4.4 implies the following via Proposition 6.5 in light of Remark 6.4:

Conjecture 6.7. Let πp be an irreducible smooth representation of G(Qp). If πp is a subquotient,
equivalently a summand, of

H i
(2)(Sh,C) ∼= IHi(Sh,C),

then d− ⟨ϕπ̂p |GD
m
, µ⟩ ≤ i ≤ d+ ⟨ϕπ̂p |GD

m
, µ⟩.

Given this reformulation, we expect the following along the line of Question 4.3.

Conjecture 6.8. (i) If πp is a subquotient of H i(Sh,C), then i ≥ d− ⟨ϕπ̂p |GD
m
, µ⟩.

(ii) If πp is a subquotient of H i
c(Sh,C), then i ≤ d+ ⟨ϕπ̂p |GD

m
, µ⟩.

Remark 6.9. Assuming (A2++), one can formulate the ℓ-adic version of the above statements;
L2-cohomology with ℓ-adic coefficients itself does not make sense, but the intersection cohomology
does. Statements (i) and (ii) are related via the Poincaré duality and the behavior of L-parameters
under taking contragredients, which is expected to coincide with composing with the Chevalley
involution.

Corollary 4.12 and Theorem 5.6 also imply that

Corollary 6.10. Conjecture 6.7 and its ℓ-adic analogue hold true for (G,X) if G is

• an inner form of GL2 that is split at p, or
• a quasi-split classical group,

with the twisted weighted fundamental lemma assumed in the last case. (See §2.15.2.)

Similarly, Corollary 4.13 implies the following.

Corollary 6.11. Suppose Gder ≃ ResFQSp2n for a totally real field F and n ∈ Z≥1; if n ≥ 2, assume
that the twisted weighted fundamental lemma is valid. If πp ∈ Irr(Gp) appears as a summand of
H i

(2)(ShK ,C) as a G(Qp)-module for i ∈ Z≥0 then

d−max
πp,j
⟨ϕπ̂p,j |GD

m
, µ⟩ ≤ i ≤ d+max

πp,j
⟨ϕπ̂p,j |GD

m
, µ⟩,

where πp,j are irreducible summands of the restriction of πp to Gder(Qp) as in §3.5.
The same statement holds if Sp2n is replaced by quasi-split special unitary groups associated with

CM extensions E ⊃ F (assuming the twisted weighted fundamental lemma is valid).

Example 6.12. (i) The Hilbert modular varieties are associated with groups G = ResFQGL2

for totally real fields F , or the subgroups H as in Example 3.6. The representation r−µ
is the tensor product of standard representations of GL2. If πv is unramified with Satake
parameter αv, βv satisfying αv/βv /∈ {qv, q−1

v } for a place v dividing p, then our argument
implies that πv appears only in the middle degree. This case is unconditional.
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(ii) More generally, the Hilbert–Siegel varieties are associated with groupsG = G(ResFQSp2n) or

ResFQGSp2n, F totally real. As we saw in Example 3.7, π̂p,j are in the same L-packet. The
representation r−µ restricts to the tensor product of the spin representations of Spin2n+1 ⊂
GSpin2n+1 = ĜSp2n.

(iii) The even quasi-split unitary Shimura varieties are associated with ResFQU
∗
2n,E/F or its

similitude group for CM quadratic extensions E over totally real F . Its signature is (n, n)
at all real places of F , and r−µ is the tensor product of the n-th exterior powers of the
standard representations of GL2n.

Remark 6.13. For Hilbert modular varieties and unitary Shimura varieties, the statement like “non-
CAP cuspidal automorphic representations appear only in the middle degree” has been known under
several assumptions (see [RW24, Conj. 7.5] for a more general conjecture made precise along this
line). Such automorphic representations are generic, hence A-generic, (at least) at split places,
and it is a special case of Conjectures 6.7. The case of GSp4 is unconditionally proven in [RW24,
Prop. 8.2] as well. The generic case of Conjectures 6.7, 6.8 without global condition was also known
in some special situations [Clo93, HT01].

6.14. A torsion analogue and known results. Specializing to the A-generic case, i.e., the case
where ϕπ̂p |GD

m
is trivial, Conjecture 6.7 implies that πp appears only in the middle degree.

Torsion analogues of such specializations to the (A-)generic case have been studied extensively
these years [CS17, CS24, Kosb, dSS, HL, DvHKZ]. The papers [Boy19], [CT23, Theorem B,
Theorem 7.5.2] contain results beyond the generic case as well.

Let us formulate a general conjecture in the torsion case. We only consider the constant coeffi-
cients, which would also imply the case of non-constant coefficients with the same vanishing range,
cf. [CS17, Rem. 1.7.1]. For sharper estimate, let us only refer to [LS12, LS13].

Conjecture 6.15. Let ℓ ̸= p and assume that (A2++) holds.10 Let πp be an irreducible smooth

Fℓ-representation of G(Qp).

(i) If πp is a subquotient of H i(Sh,Fℓ), then

i ≥ d−max
π̃p
⟨ϕ̂̃πp |GD

m
, µ⟩,

where π̃p run through irreducible integral smooth Qℓ-representations whose mod ℓ reduction
contain πp as subquotients.

(ii) If πp is a subquotient of H i
c(Sh,Fℓ), then i ≤ d+maxπ̃p⟨ϕ̂̃πp |GD

m
, µ⟩.

Example 6.16. Suppose ShK is a unitary Shimura variety of PEL type. Assume GQp is the
product of general linear groups over Qp. If πp is an unramified irreducible principal series whose
L-parameter is of weakly Langlands–Shahidi type, then (a version of) Conjecture 6.15 is shown in
[Kosb, dSS]; the argument works also for, not necessarily unramified, irreducible principal series.
Later works [HL, DvHKZ] allow more general groups and p, but the representation π is assumed
to be of Langlands–Shahidi type.

Example 6.17. Another extreme is the case πv is a supercuspidal representation of a general linear
group for some finite place v|p. Any lift of such a πv, in the sense that πv appears as a subquotient
of the reduction, is supercuspidal and πv is A-generic. In fact, we expect that πv appears only in

10In fact, the conjecture (for a given class of πp) makes sense once we have a notion of L-parameters for a suitable

class of Qℓ-representations of G(Qp). Results in literature will be understood in this way.
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the middle degree. Such results were obtained in [Fuj06, Shi15, IM20] for certain unitary Shimura
varieties of PEL type.

Example 6.18. Assume ShK is of Harris–Taylor type with a CM field F ⊃ F+ as in [HT01, Boy09],
and let p be any prime such that every finite place v of F+ above p splits over F . The result of
Boyer [Boy09] can be understood as a finite level version of Conjecture 6.15 for any irreducible
unramified representation π of G(Qp) after taking (derived) Kp-invariant of the conjecture for a
hyperspecial subgroup Kp and unipotent L-parameters. Note that r−µ in this case is essentially
the standard representation of a general linear group.

Example 6.19. Assume (G,X) is attached to a central quaternion algebra B over a totally real
field F in the sense that G = ResFQB

×, and let p be any odd prime that completely splits in F
and splits B. Conjecture 6.15 for unipotent L-parameters implies the result of Caraiani–Tamiozzo
[CT23, Theorem 7.1.6, Theorem 7.5.2 (2)] by taking Kp-invariants as in the preceding example.

6.20. Local analogues. Let G be a connected reductive group over a nonarchimedean local field F
whose residue characteristic is not ℓ, b an element of the Kottwitz set B(G), and {µ} the conjugacy
class of a cocharacter of GF . This datum determines the moduli space of G-shtukas Sht(G, b, µ)K
for open compact subgroups K ⊂ G(F ), defined over the completion of the maximal unramified
extension of the reflex field. Using the geometric Satake correspondence, Fargues–Scholze define
the compactly supported cohomology of the “IC sheaf” with Qℓ-coefficients

RΓc(Sht(G, b, µ)K , ICµ) ∈ D(Gb(F )),

where D(Gb(F )) is the derived ∞-category of smooth Zℓ-representations of the group Gb(F ) at-
tached to b; we will ignore the action of the Weil group of the reflex field. This is denoted as fK♮S ′W
in [FS, Prop. IX.3.2]. If µ is minuscule, Sht(G, b, µ)K,C is a smooth rigid-analytic variety over C of

dimension d = ⟨2ρG, µ⟩ for an algebraically closed nonarchimedean extension C of F̂ , and

RΓc(Sht(G, b, µ)K , ICµ) ∼= RΓc(Sht(G, b, µ)K,C ,Qℓ)[d].

By passing to the colimit, we may also consider

RΓc(Sht(G, b, µ)∞, ICµ) := lim−→
K

RΓc(Sht(G, b, µ)K , ICµ) ∈ D(Gb(F )×G(F )).

Before formulating the local conjectures, we need to discuss axioms we assume. If the valuation
ring of F has mixed characteristic and if (A2++), or rather a stronger version mentioned there,
holds, then the ℓ-adic C-parameter is canonically defined. Our previous axioms are global in nature,
and we prefer to make a different axiom including the case of equal characteristic.

(ℓ-LLC) Fix q1/2 ∈ Qℓ. For each b ∈ B(G) and each irreducible smooth representation πb of Gb(F ),

an L-parameter ϕπb : WF × SL2 → Ĝ⋊WF defined over Qℓ is attached.

We do not attempt to characterize the parametrization πb 7→ ϕπb . In fact, it is expected that
a canonical C-parameter Cϕπb : WF × SL2 → CG is attached to πb independently of the choice of

q1/2, which should determine the L-parameter ϕπb upon choosing q1/2, cf. §2.3.
We will write νb for the slope morphism of b, regarded as an element of X∗(T̂ )+Q. The following

is our main local conjecture. The torsion case, at least with minuscule µ, can be formulated in a
way similar to Conjecture 6.15.

Conjecture 6.21. Assume (ℓ-LLC). Let π, πb be irreducible smooth representations of G(F ), Gb(F )
respectively.
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(i) For any integer

i /∈ [⟨2ρG, νb⟩, ⟨2ρG, νb⟩+ ⟨ϕπ̂|GD
m
, µ− νb⟩],

π is not a subquotient of H i(RΓc(Sht(G, b, µ)∞, ICµ)).
(ii) For any integer

i /∈ [⟨2ρG, νb⟩, ⟨2ρG, νb⟩+ ⟨ϕπ̂b |GD
m
+ 2ρG − 2ρGb , µ− νb⟩],

πb is not a subquotient of H i(RΓc(Sht(G, b, µ)K , ICµ)).

Remark 6.22. The lower bound ⟨2ρG, νb⟩ is independently conjectured by David Hansen. In the case
µ is minuscule and b is basic, the lower bound follows from the conjecture of Hansen and Scholze
that local Shimura varieties are Stein [Hanb, Conj. 1.10]. The lower bound for a general b follows
from the categorical local Langlands conjecture of Fargues–Scholze [FS, Conj. I.10.2] together with
a conjecture for generalized coherent Springer sheaves [Hana, Prop. 3.2.2]. We found the conjectural
upper bounds for basic b as local analogues of the global conjecture, and for general b based on
some computations inspired by the categorical local Langlands.

Remark 6.23. As in [Kosb], there would be another constraint for a representation π of G(F )
to contribute to RΓc(Sht(G, b, µ)∞, ICµ) if Gb is not quasi-split. A minimal requirement is that
ϕssπ = C ◦ ϕssπb for some irreducible smooth representation πb of Gb(F ) and the Chevalley involution

C : LG → LG, and this indeed holds when the semisimplified L-parameters agree with those of
Fargues–Scholze.

Example 6.24. Assume b is basic and ϕπ, ϕπb are supercuspidal. It has been conjectured that
such π, πb appear only in degree 0. Known results include [Mie10], [Ito13, IM, Mie], [Hanb]. It is
a special case of Conjecture 6.21 as π̂ = π, π̂b = πb and the L-parameters are trivial on GD

m in this
case.

Example 6.25. In the case of GSp4 and GU1,2, Ito and Mieda [Ito13, Mie] have observed that
supercuspidal representations whose L-parameter are not supercuspidal appear outside the middle
degree. Their computation (or the vanishing result [IM]) is consistent with Conjecture 6.21.

Example 6.26. In the Lubin–Tate case (and the Drinfeld case by the Faltings isomorphism),
Boyer gives a complete description of cohomology [Boy09, Théorème 2.3.5] (in the case of mixed
characteristic). His result is consistent with Conjecture 6.21.

Example 6.27. Suppose that π, πb are the trivial representations of G(F ), Gb(F ). It is expected
that ϕπ̂|GD

m
= 2ρG and ϕπ̂b |GD

m
= 2ρGb . Hence, the upper bound is ⟨2ρG, µ⟩ in both cases. If µ is

minuscule, this upper bound follows from the ℓ-cohomological dimension of Sht(G, b, µ)K .

6.28. A relation between the local and global conjectures. The local conjecture implies
the conjecture for global Shimura varieties, with the help of Mantovan’s formula. Choose an
embedding Q ↪→ Qp. Fix a Shimura datum (G,X) with dominant cocharacter µ as before and put
d := ⟨2ρG, µ⟩, which equals the complex dimension of the associated Shimura variety (at any finite
level). For each b ∈ B(GQp , µ

−1), we have the Igusa variety Igb of dimension db := ⟨2ρG, νb⟩. To
simplify the discussion, we assume the following version of Mantovan’s formula based on the work
of Hamann–Li [HL].

Hypothesis 6.29. For each sufficiently small open compact subgroup Kp ⊂ G(A∞,p), the com-
pactly supported cohomology RΓc(ShKp ,Qℓ)[d] admits a finite filtration in the derived∞-category
D(G(Qp)) whose graded pieces are, for b ∈ B(GQp , µ

−1),

RΓc(Sht(GQp , b, µ)∞,Qℓ)[d]⊗LCc(Gb(Qp)) RΓc−∂(Ig
b,Qℓ)[2db],
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where RΓc−∂ denotes the partially compactly supported cohomology defined using a partial com-
pactification gb : Ig

b ↪→ Igb∗ into an affine scheme Igb∗ that is the perfection of the limit of open
immersions Igbm ↪→ Igb∗m at finite levels. More precisely, we define

RΓc−∂(Ig
b,Qℓ) := (R lim←−

m

RΓ(Igb∗, gb!Z/ℓmZ))⊗LZℓ Qℓ,

where the derived limit is taken in D(Gb(Qp)).

Remark 6.30. With Fℓ-coefficients, Hypothesis 6.29 is proven in [HL, Thm. 1.12] for the PEL case of
type A and C under a mild assumption, and in [DvHKZ, Thm 8.5.7, proof of Thm. 8.6.2, Prop. 4.1.6]
for the compact case of Hodge type under a mild assumption. (In general, the existence of a partial
compactification gb : Ig

b ↪→ Igb∗ as above is a hypothesis in itself.) In fact, the argument also lifts
to the case with coefficients in Z/ℓmZ for any m ≥ 1 in a compatible way. Using the notation of
[FS], we can write each graded piece as i∗1Tµib!RΓ(Ig

b∗, gb!Z/ℓmZ), up to shift and twist, so [FS,
IX.2.2] implies that R lim←−mRΓc(ShKp ,Z/ℓmZ)[d] admits a filtration with graded pieces

R lim←−
m

i∗1Tµib!RΓ(Ig
b∗, gb!Z/ℓmZ) ∼= i∗1Tµib!R lim←−

m

RΓ(Igb∗, gb!Z/ℓmZ),

up to shift and twist. Observe that R lim←−mRΓc(ShKp ,Z/ℓmZ) is RΓc(ShKp ,Zℓ) as the derived limit

is taken in D(G(Qp)). Inverting ℓ and extending the scalars, we have verified Hypothesis 6.29 in
these situations.

Proposition 6.31. Let (G,X), µ be as above. Conjecture 6.21 (i) for all b ∈ B(GQp , µ
−1) and

Hypothesis 6.29 imply the ℓ-adic analogue of Conjecture 6.8 (ii).

Proof. By the Artin vanishing and limit arguments,

RΓc−∂(Ig
b,Qℓ)[2db]

lives in D[−2db,−db](Gb(Qp)). Therefore, Conjecture 6.21 (i) implies that, for any irreducible smooth
representation π and an integer i > ⟨ϕπ̂|GD

m
, µ− νb⟩, π is not a subquotient of

H i(RΓc(Sht(G, b, µ)(GQp ,b,µ),∞,Qℓ)[d]⊗LCc(Gb(Qp)) RΓc−∂(Ig
b,Qℓ)[2db]).

Then, Hypothesis 6.29 implies that π is not a subquotient of

Hd+i
c (ShKp ,Qℓ)

for any i > ⟨ϕπ̂|GD
m
, µ⟩. □

Example 6.32. Consider the setting of [Kosb]. In particular, G is a unitary similitude group for
a CM quadratic extension E of a totally real field F , and p splits completely in E.

(i) In the compact case, any generic unramified representation πp of G(Qp) appears only in

the middle degree cohomology Hd(Sh,Qℓ). This is a special case of the ℓ-adic analogue of
Conjecture 6.7 and follows from the above discussion, Poincaré duality, and the Qℓ-version
of [Kosb, Thm. 1.1], which can be shown by a similar (and simpler) argument, cf. Remark
6.23. This case is related to purity and was known to some extent [CS17, Rem. 1.8],
e.g. [HT01, Cor. VI.2.7].

(ii) In the quasi-split (hence non-compact) case, any generic unramified πp appears only in

H≤d
c (Sh,Qℓ), and dually only in H≥d(Sh,Qℓ). This is a special case of the ℓ-adic analogue

of Conjecture 6.8 and holds by the same reasoning as (i). Recall that Corollary 6.11 says
πp appears only in IHd(Sh,Qℓ), conditionally on twisted weighted fundamental lemma.
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[Mui05] Goran Muić. Reducibility of standard representations. Pacific J. Math., 222(1):133–168, 2005.

[MW89] C. Mœglin and J.-L. Waldspurger. Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4),
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