
THE STABLE TRACE FORMULA FOR IGUSA VARIETIES, II

ALEXANDER BERTOLONI MELI AND SUG WOO SHIN

Abstract. Assuming the trace formula for Igusa varieties in characteristic p, which is known by
Mack-Crane in the case of Hodge type with good reduction at p, we stabilize the formula via
Kaletha’s theory of rigid inner twists when the reductive group in the Shimura datum is quasi-split
at p. This generalizes our earlier work under more restrictive hypotheses.
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1. Introduction

Igusa [Igu68] introduced Igusa curves to understand the mod p geometry of modular curves when
the level is divisible by powers of p. Over time, generalizations have been given in the setting of
fairly general Shimura varieties (for example, [HT01, Hid04, Man05, CS17, HK19]). Igusa varieties
help us understand the geometry of the Hodge–Tate period morphisms and Mantovan’s product
structure for Shimura varieties. Moreover Igusa varieties have found wide-ranging applications
to the Langlands correspondence, the Kottwitz conjecture, vanishing of cohomology of Shimura
varieties with torsion coefficients, p-adic automorphic forms, and the discrete Hecke orbit conjecture.
(See the introduction of [KS] for more details and references.) Most of these rely on a description
of the `-adic cohomology of Igusa varieties, whose computation is divided into three steps.

Step 1. Adapt the Langlands–Kottwitz method to prove a trace formula computing the cohomology
of Igusa varieties by means of counting fixed points.

Step 2. Stabilize the trace formula from Step 1.
Step 3. Compare the stabilized formula in Step 2 with the stabilized Arthur–Selberg trace for-

mula to describe the cohomology in terms of automorphic representations. An endoscopic
classification is required in general.

For Igusa varieties associated with some simple Shimura varieties, all this has been carried out in
[HT01, Ch.V], where the simple situation made the second step unnecessary. More generally, Step 1
was done in the context of many PEL-type Shimura varieties in [Shi09] and for Hodge-type Shimura
varieties in [MC21], both in the case of good reduction at p (i.e., with hyperspecial level at p). Step 3
was worked out in [Shi11, Shi12, KS] in the minimal generality for intended applications and in
[BM] in many PEL-type cases assuming an endoscopic classification of automorphic representations
and a technical assumption (see [BM, Assumption 4.8]).

The goal of this paper is to complete the technically demanding Step 2 in considerable generality.
The preceding works [Shi10, BM] solved this problem for PEL-type Shimura varieties under tech-
nical hypotheses (see Assumption 5.1 in [BM]). As a follow-up and significant improvement over
[Shi10, BM], this paper deals with arbitrary Shimura varieties, only assuming that the reductive
group in the Shimura datum is quasi-split at p and that Step 1 is valid. (This assumption includes
a reasonable formalism of Igusa varieties along with integral models for Shimura varieties. These
are missing in general.) It is interesting to note that the analogue of Step 2 for Shimura varieties
in [KSZ] also works for arbitrary Shimura data but with hyperspecial level at p (so the reductive
group is assumed to be unramified at p).

We hope that our paper will broaden the prospect for unconditional results. For instance, as
a result of this paper (together with [MC21]), Steps 1 and 2 are complete in the case of Hodge
type with hyperspecial level at p, which led to an unconditional proof of the discrete Hecke orbit
conjecture in [KS].

Our paper is written to be a reliable and relatively self-contained reference on the stable trace
formula for Igusa varieties. For this reason, we have chosen to give a somewhat detailed exposition
with basic definitions and facts spelled out, with an index of notation at the end.

1.1. Igusa varieties. To explain our results more precisely, let us recall the setup for Igusa vari-
eties. When a field k is in the subscript for a mathematical object, it will mean the base change of
it to k. Let (G,X) be a Shimura datum. Denote by E the reflex field of (G,X), which is a finite
extension of Q. In particular G is a connected reductive group over Q such that GR contains an
elliptic maximal torus, and X determines a conjugacy class of cocharacters {µ} of GC. Fix a prime

p and a parahoric model G of GQp over Zp. Set Kp := G(Zp). Write Q̆p for the completion of a
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maximal unramified extension of Qp. The arithmetic Frobenius automorphism on Q̆p is denoted σ.

Let b ∈ G(Q̆p) such that its image in the Kottwitz set B(GQp) lies in the finite subset B(GQp , µ
−1).

Write Jb(Qp) for the group of σ-centralizers of b in G(Q̆p). Fix isomorphisms C ∼= Q` and C ∼= Qp

and suppress them from the notation, but note that E ↪→ C ∼= Qp induces a place p of E over p.
Throughout the paper, we assume that

• GQp is quasi-split.

This condition is used mainly for group-theoretic reasons in this paper. (It should also be helpful to
assume for Step 1.) Removing the condition might be possible but would cause nontrivial changes
that are elusive to us at this time.

Given (G,X, p,G) and b as above and an irreducible algebraic representation ξ of GC, our basic
hypotheses are that there exist

• a natural integral model SKp over OEp for the Shimura variety with level Kp at p (Hy-
pothesis 3.1.3; also see Remark 3.1.4), and
• an Igusa variety Igb → SKp,Fp equipped with an `-adic local system Lξ, which satisfies

certain desiderata (Hypothesis 3.1.6). In particular G(A∞,p) × Jb(Qp) acts on Igb, and
the map Igb → SKp,Fp is equivariant for the G(A∞,p)-action (prime-to-p Hecke action).

These hypotheses are known for Shimura data of Hodge type and a reductive model G, and also in
many cases for Shimura data of abelian type and parahoric models G. See §3.3.8 below.

We define [Hc]b,ξ to be the virtual G(A∞,p) × Jb(Qp)-module equal to the alternating sum
of compactly supported `-adic cohomology of Igb with coefficient sheaf Lξ, cf. §3.1.7 below. A
representation-theoretic description of [Hc]b,ξ essentially amounts to computing the trace

tr (φ∞,pφp|[Hc]b,ξ) ∈ C, φ∞,pφp ∈ C∞c (G(A∞,p)× Jb(Qp)).

1.2. The main theorem. Our main theorem corresponds to Step 2 in the introductory paragraph
above. As a prerequisite, we formulate the expected outcome of Step 1. For simplicity of exposition,
we ignore central character data, z-extensions, and choices of Haar measures even though they are
necessary for stating and proving precise results, which are found in the main text. (It is one of
our improvements over [Shi10, BM] to deal with such technicalities in full.)

Define ΣR-ell(G) to be a set of representatives for stable conjugacy classes in G(Q) which are
elliptic in G(R). Write KPb for the set of b-admissible Kottwitz parameters for (G,X, p,G),
(Definition 3.2.4). To get a feel for KPb in the case of Hodge type, a Kottwitz parameter is
a group-theoretic datum to parametrize an adelic isogeny class of abelian varieties with extra
structure in the mod p Shimura variety SKp(Fp), and the b-admissibility prescribes the isogeny
class of the p-divisible group in terms of b.

Each γ0 ∈ ΣR-ell(G) determines a subset KPb(γ0) ⊂ KPb, which can be thought of as the fiber
over γ0. Each c ∈ KPb(γ0) determines (see §3.2.11 below)

• γc ∈ G(A∞,p) and δc ∈ Jb(Qp) up to conjugacy, which are stably conjugate to γ0, and
• a cohomological invariant α(c) in a finite abelian group.

In particular, orbital integrals OGγc and OJbδc are well defined on the Hecke algebras H(G(A∞,p)) and

H(Jb(Qp)), respectively. Write KPFr
b (γ0) for the subset of c ∈ KPb(γ0) with trivial α(c).

The element b determines a fractional “Newton” cocharacter νb ∈ X∗(Jb)⊗ZQ, which is central

in Jb. Let r ∈ Z>0 be such that rνb ∈ X∗(Jb). For φp ∈ H(Jb(Qp)) and j ∈ rZ, let φ
(j)
p denote

the translate of φp by (jνb)(p). We are finally ready to state the anticipated output of Step 1.
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Conjecture 1.2.1. Given φ∞,p ∈ H(G(A∞,p)) and φp ∈ H(Jb(Qp)), there exists j0 ∈ Z>0 such
that the following holds: for every integer j ≥ j0 divisible by r, we have

tr
(
φ∞,pφ(j)

p |[Hc]b,ξ
)

=
∑

γ0∈ΣR-ell(G)

tr ξ(γ0)
∑

c∈KPFr
b (γ0)

c(c)OGγc(φ
∞,p)OJbδc (φ(j)

p ), (1.2.1)

where c(c) ∈ Q is an explicit constant.

The latest work on this conjecture is Mack-Crane’s thesis [MC21], where it is proved for Hodge-
type data (G,X) and reductive models G (with no constraints on p). This was done by formulating
and proving a suitable analogue of the Langlands–Rapoport conjecture for Igusa varieties, via
[Kis17, KSZ] on the Langlands–Rapoport conjecture for Shimura varieties.

The stabilization problem (Step 2) is to rewrite the right hand side of (1.2.1) in terms of stable

(elliptic) orbital integrals on endoscopic groups of G. To this end, let E♥ell(G) denote a set of

representatives for isomorphism classes of elliptic endoscopic data for G. Each e ∈ E♥ell(G) consists

of a quasi-split group over Q, to be denoted H, and other information. Write STH
ell for the elliptic

part of the stable trace formula for H, which is essentially a sum of stable elliptic orbital integrals
on H. Our main theorem is as follows.

Theorem 1.2.2. Keep the hypotheses in the bullet list of §1.1 and assume Conjecture 1.2.1. For

φ∞,p, φ
(j)
p , and ξ as in the conjecture, there exists h ∈ H(H(A)) such that the following stabilized

formula holds true:

tr
(
φ∞,pφ(j)

p

∣∣[Hc]b,ξ
)

=
∑

e∈E♥ell(G)

ι(e)STH
ell(h),

where ι(e) ∈ Q>0 is an explicit constant.

For the theorem to be useful for a spectral interpretation of [Hc]b,ξ as in (Step 3), a good control
of h is needed at each place of Q. This is possible and built into the construction of h place by
place, to be discussed further in the next subsection.

The reader may have noticed that Theorem 1.2.2 is very similar to the stabilized trace formula
for Shimura varieties in the usual Langlands–Kottwitz method, cf. [KSZ, Thm. 1]. This is not a
coincidence as the starting point (1.2.1) resembles the counterpart for Shimura varieties, cf. [KSZ,
Thm. 2]. In fact, the construction of h away from p proceeds in the same way as in that setting,
but the situation at p is entirely different. The p-part of the picture is also the most complicated
and interesting, not only in Step 2 but in all three steps. Besides various other improvements, our
main novelty lies in the precise stabilization at p through Kaletha’s theory of rigid inner twists and
their relationship with Kaletha–Kottwitz’s extended pure inner twists.

1.3. Sketch of proof. Away from p and ∞, we obtain h from the Langlands–Shelstad transfer
of h. At ∞, the function h is built from the pseudo-coefficients of discrete series representations

associated with ξ. The construction of h at p from φ
(j)
p is the most complicated and interesting,

since this “transfer” does not fit in the usual setup for endoscopy.
We briefly explain how h is constructed at p. The group Jb is an inner twist of a Levi subgroup

Mb of GQp so there exists a map from endoscopic data of Jb to those of GQp . Let ep be an endoscopic
datum for GQp . For each endoscopic datum eb of Jb in the fiber over ep, if Hb (resp. H) denote the

endoscopic groups in the data eb (resp. ep), then we obtain a function φHb
p ∈ H(Hb(Qp)) from φ

(j)
p

by the Langlands–Shelstad transfer. Exploiting the fact that Hb is also a Levi subgroup of H that
is the centralizer group of a Newton cocharacter given by b, the function hp ∈ H(H(Qp)) is then
constructed as a sum of ascents (see Definition 2.7.6) of the φHb

p to H. The existence of ascents
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satisfying the desired orbital integral and trace identities relies on a support condition on φHb
p ,

which is fulfilled if j is sufficiently large. (In this paper we want j to be large only for this purely
group-theoretic reason. Another reason, not needed here but relevant in the proof of Conjecture
1.2.1, is that a large j corresponds to twisting by a high power of Frobenius when applying the
Fujiwara–Varshavsky trace formula to Igusa varieties.)

To complete the proof, one verifies that h as constructed satisfies Theorem 1.2.2 via an extensive
computation using the fundamental equations for endoscopic transfers and ascents (Definition 2.6.4,
Definition 2.7.6). The argument proceeds as in the case for Shimura varieties (see [KSZ, Part 3]),
taking the new phenomena at p into account.

At a technical level, the main novelties in our project arise from the interplay between Kaletha’s
theory of rigid inner twists and the trace formula for Igusa varieties. We must relate on the one hand
the invariant 〈βp[b], sp〉 arising in the p-part of the pre-stabilized trace formula of Igusa varieties and
on the other hand, the invariants 〈inv[zrig](γ, γ0), ṡp〉 arising in Kaletha’s normalization of transfer
factors for rigid inner twists. This comparison is accomplished in §4.3.1 by relating both invariants
to those arising in the theory of B(G) and extended pure inner twists. The previous comparison
in [Shi10] was done with respect to unspecified normalizations of transfer factors (resulting in an
undetermined constant for each eb); the comparison was later made precise in [BM] but under
extra assumptions.

We are able to drop all technical assumptions on G (other than quasi-split at p) by working
with z-extensions, central character data, and Kottwitz parameters (as in [KSZ]) as opposed to
the usual Kottwitz triples. Our precise normalization of local transfer factors using rigid/extended
pure inner twists implies that Theorem 1.2.2 will be suitable for local representation-theoretic
applications such as those of [BM] in cases where Step 3 can be completed.

1.4. A guide for the reader. The structure of the paper should be clear from the table of contents
but we make a few remarks to facilitate easier navigation. On a first reading, all details relating to
z-extensions and central character data can be safely ignored. Section 2 is preliminary and deals
primarily with various notions of endoscopy, inner twists, and their interactions. The reader might
therefore prefer to start at §3 referring back as necessary. The goal of §3 is to state the pre-stabilized
trace formula for the cohomology of Igusa varieties (Conjecture 3.3.5) and formulate the required
geometric and group-theoretic setup.

The stabilization of this formula is carried out in §4 using the preliminaries in §2. The most
technical part of the paper is §4.3, where the contribution to the trace formula at p is stabilized
(§4.3.8). The subsection §4.3.2 is devoted to comparing transfer factors of rigid inner twists with
certain invariants arising in the trace formula of Igusa varieties. The reader may wish to black
box the main result of this subsection (Corollary 4.3.7) on a first read. The full stabilization is
then completed in §4.4 by combining the results at each place to deduce our main formula which
is Theorem 4.4.2.

1.5. Notation and conventions. Let F be a local or global field of characteristic 0, with an
algebraic closure F . Given E/F a Galois extension, we denote the Galois group by ΓE/F . We denote
ΓF/F by ΓF . We let WF denote the absolute Weil group of F . We use the Deligne normalization

of the local Artin map so that uniformizers correspond to geometric Frobenius elements.
When G is a linear algebraic group over F , the connected component of the identity is denoted

by G◦. For a field extension E/F , write GE for the base change of G to E. When F/F0 is a
finite extension, write ResF/F0

G for the Weil restriction of scalars. When F is a number field (e.g.,
F = Q) and v is a place of F , we abbreviate GFv as Gv.
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For G a connected reductive group over F , let ZG and Z(G) denote the center of G , and let
Gder and Gad denote the derived and adjoint groups of G. We let Gsc denote the simply connected
cover of Gder. Write G(F )ss (resp. G(F )sr) for the subset of semi-simple (resp. strongly regular
semi-simple) elements of G(F ). The meaning of strong regularity is that the centralizer is a torus.
For γ ∈ G(F )ss, we write Gγ for the centralizer of γ in G, and Iγ = IGγ for (Gγ)◦. We use the
notation Γ(G(F )) (resp. Σ(G(F ))) for the set of F -conjugacy (resp. stable conjugacy) classes in
G(F ). Recall that the stable conjugacy class of γ ∈ G(F ) is the set of γ′ ∈ G(F ) conjugate to
γ by some g ∈ G(F ) and such that the cohomology class in H1(F,Gγ) of σ 7→ g−1σ(g) lies in
the image of H1(F, Iγ) → H1(F,Gγ). An inner twist of G consists of a triple (G′, ψ, z) such that
ψ : GF → G′

F
is an isomorphism and z ∈ Z1(ΓF , Gad) equals σ 7→ ψ−1 ◦ σ(ψ).

We denote the Langlands dual group of G by Ĝ. As in [KS99, §1.2] the dual group Ĝ always

comes equipped with a ΓF -pinning (T̂ , B̂, {Xα}), an action WF → Aut(Ĝ) that factors through a
finite quotient of WF , and a ΓF -equivariant bijection between the resulting based root datum of

Ĝ and the dual of a based root datum for G (coming from an inner twist to a quasi-split form

equipped with an F -pinning, which induces a pinning for G). This information for Ĝ will be
implicit whenever dual groups appear in this paper. The WF -action is used to form the L-group
LG := ĜoWF . We let Out(Ĝ) denote the quotient of Aut(Ĝ) modulo inner automorphisms. The

action of WF induces a map ρG : WF → Out(Ĝ). For a maximal torus T in G, write R(G,T ) for
the set of roots of TF in GF .

Assume further that F is a local field. Write |·| : F× → C× for the absolute value such that every
uniformizer maps to the inverse cardinality of the residue field of F . When M is an F -rational Levi
subgroup of G, and γ ∈M(F )ss, define the Weyl discriminant DG

M (γ) := det(1−ad(γ))|Lie(G)\Lie(M).

Let S be a finite set of places of Q. We write AS for the ring of adèles away from S, i.e., the

resticted product
∏′
v/∈S Qv. We write AS := AS ⊗Q Q.

When A is a set or a group, 1A means the characteristic function on A or the trivial character
on A (if A is a group); the context will make it clear.

In this paper we commonly abuse notation by confusing an isomorphism class of objects with
a representative of the isomorphism class, and likewise for conjugacy classes etc. Implicit in this
abuse is that the assertions or computations we make about them do not depend on the choice
of the representative. For instance, when computing the orbital integral at γ ∈ G(F )ss with F a
local field, the value is well defined whether γ is a conjugacy class or an arbitrary representative
thereof. However, when it comes to endoscopic data, we do choose a set of representatives for
isomorphism classes in order to avoid confusion stemming from different notions of endoscopic data
and isomorphisms between them.

Acknowledgments. We are grateful to Alex Youcis for numerous comments and suggestions to
improve the paper. We thank Paul Hamacher and Wansu Kim for comments on §3.1 of this
paper. S.W.S. was partially supported by NSF grant DMS-1802039/2101688, NSF RTG grant
DMS-1646385, and a Miller Professorship. A.B.M. was partially supported by NSF grant DMS-
1840234.

2. Preliminaries

Throughout this section, F is a local or global field, and G is a connected reductive group over F .
The characteristic of F is always 0, and we will not repeat this condition every time.

2.1. Rigid inner twists. In this subsection, we recall some facts from the theory of local and
global rigid inner twists as developed in [Kal16, Kal18a, KT].
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2.1.1. The local gerbe. We first describe the local case. Let F be a local field of characteristic 0,
let E/F be a finite Galois extension, and let N be a positive integer. We then define a finite
ΓE/F -module

M rig
E,N := (Z/NZ)[ΓE/F ]0,

where the 0-subscript denotes the elements whose coefficients sum to 0. Let uE/F,N denote the

finite multiplicative group with character group M rig
E,N and let u denote the pro-finite multiplicative

group equal to the inverse limit over E and N of the uE/F,N where the transition maps are induced
by the norm. We have canonical isomorphisms

H1(F, u) = 0,

H2(F, u) =

{
Z/2Z, F = R,
Ẑ, F = non-archimedean.

Choose a cocycle representing the class of −1 in H2(F, u). This cocycle gives rise to a pro-Galois

gerbe Erig
F :

1→ u(F )→ Erig
F → ΓF → 1.

Now let G be a connected reductive group over F and let Z → G denote the data of a mul-

tiplicative group Z and an embedding Z ↪→ Z(G). Let Z1(u → Erig
F , Z → G) denote the set of

continuous cocycles of Erig
F valued in G(F ) whose restriction to u(F ) factors through Z(F ) and

corresponds to an algebraic homomorphism u → Z. Define H1(u → Erig
F , Z → G) to be the quo-

tient of Z1(u → Erig
F , Z → G) by the action of G(F ) as in the normal definition of non-abelian

group cohomology. Since H1(F, u) = 0, the only automorphisms of Erig
F are inner and hence the

set H1(u → Erig
F , Z → G) is independent, up to canonical isomorphism, of the choice of cocycle

representing the class of −1 in H2(F, u).
In this paper, we will work primarily in the case where Z = Z(G). This cohomology set

admits the following Tate–Nakayama morphism. We define Zn to be the pre-image in Z(G)
of (Z(G)/Z(Gder))[n] and set Gn := G/Zn. Note that Z(G1) = Z(G)/Z(Gder) is a torus and
Z(Gn) = Z(G1)/Z(G1)[n]. Moreover, we have Gn = Gad × Z(Gn).

We then set ̂̄G := lim←− Ĝn and define Z( ̂̄G)+ to be the pre-image of Z(Ĝ)ΓF under the natural

map ̂̄G→ Ĝ. We have the formula ̂̄G = Ĝsc × Ĉ∞,
where Ĉ∞ = lim←−

n

Ẑ(Gn). We can identify Ẑ(Gn) with Z(Ĝ)◦. The map Ẑ(Gm)→ Ẑ(Gn) for n | m

becomes the m
n th power map under this identification.

Proposition 2.1.2 ([Kal18b, Equation (3.12)]). We have a canonical morphism

TN : H1(u→ Erig
F , Z(Ĝ)→ G)→ π0(Z( ̂̄G)+)D.

2.1.3. The global gerbe. We now describe the case where F is a global field of characteristic 0. Let V
be the set of places of F and pick a set of lifts V̇ of V to F such that

⋃
v∈V ΓFv is dense in ΓF , where

the chosen lift of v determines the embedding ΓFv ↪→ ΓF . As in [KT, Lem. 3.3.2], we can choose an
increasing sequence (Si)i≥0 of finite subsets of V and an exhaustive tower of finite Galois extensions

(Ei)i≥0 of F such that the sequence (Ei, Si, Ṡi)i≥0 satisfies [Kal18a, Conditions 3.3.1], where Ṡi is

the intersection of the set SEi of places of Ei lying over Si and the image of V̇ in VEi . We then define

the finite ΓEi/F -module M rig

Ei,Ṡi
consisting of the subgroup of (Z/[Ei : F ]Z)[ΓEi/F ×SEi ] containing
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the elements
∑

w,v aw,v[(w, v)] such that
∑

w′ aw′,v =
∑

v′ aw,v′ = 0 for all (w, v) ∈ ΓEi/F ×SEi and

such that aw,v = 0 unless w−1(v) ∈ Ṡi.
Let P rig

E,Ṡi
be the finite multiplicative group over F with character group equal to M rig

Ei,Ṡi
and

let P rig

V̇
:= lim←−P

rig

Ei,Ṡi
. We have H1(F, P rig

V̇
) = 0 from [Kal18a, §3.4]. Further, Kaletha ([Kal18a,

Def. 3.5.4]) constructs a canonical class ξV̇ ∈ H
2(F, P rig

V̇
) that, by choosing a cocycle lift of this

class, gives a Galois gerbe

1→ P rig

V̇
(F )→ Erig

V̇
→ ΓF → 1.

The class ξV̇ does not depend on the sequence (Ei, Si, Ṡi) as long as two sequences yield the

same V̇ . However, it does depend on V̇ as described in [KT, Rem. 3.8.5]. By virtue of the

vanishing of H1(F, P rig

V̇
), the cohomology set H1(P rig

V̇
→ Erig

V̇
, Z → G) is independent, up to

canonical isomorphism, of the choice of cocycle lift of ξV̇ .
As in the local case, there is a Tate–Nakayama morphism

TN : H1(P rig

V̇
→ Erig

V̇
, Z(G)→ G)→ Y

rig

V̇
,

where Y
rig

V̇
is a limit of the linear algebraic objects Y [VF , V̇ ]0,+,Tor(Zn → G) described in [Kal18a,

§§3.7–3.8].

2.1.4. Localization. Let F be a number field. For each place v ∈ V̇ , Kaletha [Kal18a, §3.6] con-
structs a localization map:

locv : H1(P rig

V̇
→ Erig

V̇
, Z(G)→ G)→ H1(uv → Erig

v , Z(G)→ G),

which is compatible with the Tate–Nakayama morphisms in that the following diagram commutes
([Kal18a, Thm. 3.8.1]):

H1(P rig

V̇
→ Erig

V̇
, Z(G)→ G)

⊕
v∈V̇

H1(uv → Erig
v , Z(G)→ G)

Y
rig

V̇

⊕
v∈V̇

π0(Z( ̂̄G)+),

⊕v locv

TN ⊕vTNv

where the direct sum in the upper right corner denotes the subset of the direct product of pointed
sets consisting of families of elements that are trivial at almost every v.

2.1.5. Local rigid inner twists. Let F be a local field of characteristic 0. Given a cocycle z ∈ H1(u→
Erig
F , Z → G), we can post-compose with the map G→ Gad to get a cocycle zad : Erig

F → Gad. This
cocycle is trivial on u and hence factors to give a class of Z1(F,Gad). We have an entirely analogous
map in the case that F is a number field.

Lemma 2.1.6. • If F is local, the above map induces a surjection

H1(u→ Erig
F , Z(G)→ G) � H1(F,Gad).

• If F is global, the above map induces a surjection

H1(P rig

V̇
→ Erig

V̇
, Z(G)→ G) � H1(F,Gad).

Proof. [Kal16, Cor. 3.8] and [Kal18a, Lem. 3.6.1]. �
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Definition 2.1.7. For F a local field of characteristic 0 and G a fixed connected reductive group,
a local rigid inner twist of G is a triple (G′, ψ, z) consisting of

• a connected reductive group G′ defined over F ,
• an isomorphism ψ : GF → G′

F
, and

• a cocycle z ∈ Z1(u→ Erig
F , Z(G)→ G) such that for each σ ∈ ΓF , we have

ψ−1 ◦ σ(ψ) = Int(zad(σ)),

where zad is the projection of z to Gad.

Suppose we have rigid inner twists (G1, ψ1, z1) and (G2, ψ2, z2). Then an isomorphism from
(G1, ψ1, z1) to (G2, ψ2, z2) is a pair (f, g) consisting of

• an element g ∈ G(F ) satisfying z2(w) = gz1(w)w(g−1) for each w ∈ Erig
F , and

• an isomorphism f : G1 → G2 defined over F such that the following diagram commutes

GF G1,F

GF G2,F .

ψ1

Int(g) f

ψ2

Remark 2.1.8. A naive analogue of Definition 2.1.7 gives a notion of a global rigid inner twist for a
connected reductive group over a number field, which yields a local rigid inner twist at each place.
However, this is not the correct notion of global rigid inner twist for our purposes. In particular,
the family of local rigid inner twists one gets from the above process need not have the necessary
coherence properties to give an adequate normalization of local transfer factors. Instead, we first
pass to G∗sc, see §2.5 below.

We need the following compatibilities between inner twists.

Lemma 2.1.9. Let G1, G2, G3 be reductive groups defined over a field F . Suppose that we have a
commutative diagram of isomorphisms ψ1, ψ2, ψ3 defined over F :

G1,F G2,F

G3,F ,

ψ1

ψ3
ψ2

such that w 7→ ψ−1
i ◦ w(ψi) induces an element of Z1(F,Gi,ad).

Let z1, z3 ∈ Z1(F,G1,ad) and z2 ∈ Z1(F,G2,ad) be the 1-cocycles defined by Int(zi(w)) = ψ−1
i ◦

w(ψi). Then we have

ψ−1
1 (z2)z1 = z3.

Proof. Indeed, for w ∈ ΓF , we have

ψ−1
3 ◦ w(ψ3) = ψ−1

1 ◦ ψ
−1
2 ◦ w(ψ2 ◦ ψ1) = ψ−1

1 ◦ Int(z2(w)) ◦ w(ψ1)) = Int(ψ−1
1 (z2(w))z1). (2.1.1)

�

Lemma 2.1.10. Let G1 and G2 be reductive groups defined over a non-archimedean field F . Sup-
pose that we have a F -isomorphism

G1,F

ψ−→ G2,F ,
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and 1-cocycles zi ∈ Z1(u → Erig
F , Z(Gi) → Gi) for i = 1, 2 respectively such that z1|u = z2|u and

w 7→ ψ−1w(ψ) = Int(z1). Then

TN(ψ−1(z2)z1) = ψ−1(TN(z2)) + TN(z1).

Proof. Let S1 ⊂ G1 be a fundamental torus. Since we are working over a non-archimedean local
field, this means that S1 is an elliptic maximal torus. By [Kal16, Cor. 3.7], we have a surjection

H1(u→ Erig
F , Z(G1)→ S1) � H1(u→ Erig

F , Z(G1)→ G1).

Hence, we may modify z1 by a coboundary to get z′1 such that z′1(w) ∈ S1 for each w ∈ Erig
F . We

may similarly modify ψ to get G1,F

ψ′−→ G2,F such that for each w ∈ Erig
F , we have ψ′−1 ◦ w(ψ′) =

Int(z′1(w)).
Now we define S2 := ψ′(S1) and note that S2 is defined over F . Indeed, for each σ ∈ ΓF , we can

lift σ to some w ∈ Erig
F and get for s ∈ S1(F ),

σ(ψ′(s)) = σ(ψ′)(σ(s)) = (ψ′ ◦ Int(z′1(w)))(σ(s)) = ψ′(σ(s)).

Hence, S2 is a fundamental torus of G2 and we can choose z′2 that is cohomologous to z2 and factors

through Z1(u → Erig
F , Z(G2) → S2) → Z1(u → Erig

F , Z(G2) → G2). By construction, we have

ψ′−1(z′2), z′1 ∈ Z1(u → Erig
F , Z(G1) → S1). The Tate–Nakayama map respects the group structure

on cocycles valued in S2. Moreover, ψ′|S1 is defined over F and therefore induces an isomorphism

H1(u → Erig
F , Z(G1) → S1) → H1(u → Erig

F , Z(G2) → S2) compatible with the Tate–Nakayama
maps. We therefore have

TNS1(ψ′
−1

(z′2)z′1) = ψ′
−1

TNS2(z′2) + TNS1(z′1).

Since the equation holds in π0(̂̄S1

+
)D, it is still true upon projection to π0(Z(̂̄G1)+)D. This proves

the lemma. �

2.2. Isocrystals vs local rigid inner twists. In this subsection, we explain how local rigid inner
twists are related to isocrystals at p, cf. [Kal18b].

2.2.1. Review of the Kottwitz set B(G). We recall some facts about the Kottwitz set B(G) for G

a connected reductive group over a finite extension F of Qp. Let F̆ denote the completion of a
maximal unramified extension of F , equipped with the arithmetric Frobenius automorphism σ.
The set B(G) is defined as the quotient of G(F̆ ) by the equivalence relation that b ∼ b′ if there

exists g ∈ G(F̆ ) such that b′ = gbσ(g)−1.

The set B(G) is determined by two important invariants. The first attaches to each b ∈ G(F̆ ),
a slope cocharacter νb ∈ HomF̆ (D, G), where D is the Kottwitz pro-torus with X∗(D) = Q. This
induces a slope morphism

[ν] : B(G)→ (HomF̆ (D, G)/G(F̆ ))〈σ〉.

We also have the Kottwitz morphism

κ : B(G)→ π1(G)ΓF ,

where we note that π1(G)ΓF is canonically isomorphic to X∗(Z(Ĝ)ΓF ).
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These morphisms fit into a commutative diagram as follows, which is functorial in G:

B(G) (HomF̆ (D, G)/G(F̆ ))〈σ〉

π1(G)ΓF π1(G)ΓF
Q ,

[ν]

κ

where the bottom arrow is induced by x 7→ 1
|ΓF ·x|

∑
y∈ΓF ·x

y from π1(G) to π1(G)ΓF
Q .

Given b, we define a reductive group Jb over F by

Jb(R) = {g ∈ G(F̆ ⊗F R) | g = bσ(g)b−1} = {g ∈ G(F̆ ⊗F R) | νb = gνbg
−1},

for any F -algebra R. When R is an F̆ -algebra, the canonical F̆ -algebra map F̆ ⊗ R → R induces

an inclusion ιb : Jb(R)→ G(R). When R = F̆ , this inclusion is equivariant for the standard action

of WF on Jb(F̆ ) and the “b-twisted” action on G(F̆ ) in the sense of [Kot97, (3.3.3)].
Now fix a quasi-split group G∗ that is isomorphic to G over F and an inner twist (G,ψ, zad) of

G∗. Fix also a maximal split torus A∗ of G∗ and let T ∗ denote the maximal torus of G∗ equal to
the centralizer of A∗ in G∗. Fix B∗ a Borel subgroup of G∗ containing T ∗. Let CQ denote the
closed dominant Weyl chamber in X∗(A

∗)Q relative to B.

Given b ∈ G(F̆ ), we can take the morphism

ψ−1 ◦ νb : D→ G∗,

defined over F̆ . As in [Kot97, §4.2], we can take the G∗(F̆ ) conjugacy class of ψ−1 ◦ νb and, since
G∗ is quasi-split, this gives an element of CQ which we denote by νb. One can check this element
does not depend on ψ or the choice of b in its class [b] ∈ B(G). We call the element νb the Newton
point of b (or [b]). We have thus constructed a Newton map

ν : B(G)→ CQ.

The centralizer M∗νb of νb in G∗ is a standard F -rational Levi subgroup of G∗ and an inner form
of Jb. To simplify notation, we henceforth denote M∗νb by Mb. (Beware that Mb need not transfer
to an F -rational Levi subgroup of G, although this will be the case when G itself is quasi-split.)
Following loc. cit. we can choose ψ′ equivalent to ψ such that ψ′ ◦ νb = νb and the restriction gives
an inner twist

ψ′Mb
: Mb,F → Jb,F , (2.2.1)

using the inclusion Jb(R) ↪→ G(R) discussed above.

Following [RZ96, Def. 1.8], for n ∈ Z≥1, we say an element b ∈ G(F̆ ) is n-decent if nνb is a
cocharacter of GF̆ and

bσ(b) . . . σn−1(b) = (nνb)(p).

One can always choose a decent representative of a class [b] ∈ B(G) ([Kot85, §4.3]). If b is n-decent
then it is m-decent for n|m. When G is quasi-split, one can require that νb is defined over F
([Kot85, page 219]).

There is another description of B(G) using Galois gerbes, which we now discuss. The local
Kottwitz gerbe E isoc

F is a pro-Galois gerbe

1→ D(F )→ E isoc
F → ΓF → 1.
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We can then consider the set H1
alg(E isoc

F , G) of continuous cocycles of E isoc
F whose restriction to

D(F ) is induced by an algebraic morphism ν : D → G. We define the subset H1
bas(E isoc

F , G) ⊂
H1

alg(E isoc
F , G) to consist of those classes where the image of ν is contained in Z(G). We have a

canonical bijection
B(G) = H1

alg(E isoc
F , G) ; b 7→ zisoc

b (2.2.2)

given in [Kot97, Appendix B] and described explicitly in [KHW, §2.3] for decent b. There is a
construction of the Kottwitz morphism for H1

alg(E isoc
F , G) (see [Kot14, §11]), again denoted by κ,

and equation (2.2.2) preserves the Kottwitz maps: κ(b) = κ(zisoc
b ). Indeed, one can check this via

the usual strategy of Kottwitz of reducing successively to the Gder = Gsc case, torus case, and Gm

case (cf. [Kot97, §7.6]).

Definition 2.2.2. An extended pure inner twist of G over F consists of a triple (G′, ψ, z), where
z ∈ Z1

alg(E isoc
F , G) and ψ : GF → G′

F
such that ψ−1 ◦ σ(ψ) = Int(zad) for all σ ∈ ΓF .

2.2.3. Rigid inner twists vs extended pure inner twists. Kaletha ([Kal18b, §3.3]) constructs a mor-
phism of Galois gerbes

1 u Erig
F ΓF 1

1 D E isoc
F ΓF 1,

φ φ̃

which induces a map

φ̃∗ : H1
bas(E isoc

F , G)→ H1(u→ Erig
F , Z(G)→ G),

which is well defined on the level of cocycles. In particular, given an extended pure inner twist

(G′, ψ, zisoc), we get a rigid inner twist (G′, ψ, zrig) via pullback by φ̃.

2.3. Endoscopic data. We review the various forms of endoscopy we use in this paper, primarily
summarizing from [BM]. In this subsection, F is a local or global field.

2.3.1. Endoscopic data. We introduce three versions of endoscopic data for G, necessitated by
different notions of inner twist: inner twists classified by H1(F,Gad), pure inner twists classified
by H1(F,G) or extended pure inner twists classified by B(G)bas, and rigid inner twists classified

by H1(u→ Erig
F , Z(G)→ G).

Definition 2.3.2. A standard endoscopic datum for G is a tuple (H,H, s, η) which consists of

• a quasi-split group H over F ,

• an extension H of WF by Ĥ such that the map WF → Out(Ĥ) coincides with ρH ,

• an element s ∈ Z(Ĥ),
• an L-homomorphism η : H → LG,

satisfying the conditions:

(i) we have η(Ĥ) = Z
Ĝ

(s)◦, and

(ii) Int(s) ◦ η = a · η, where a : WF → Z(Ĝ) is a trivial (resp. locally trivial) 1-cocycle when F
is local (resp. global).

Definition 2.3.3. An isomorphism of endoscopic data from (H,H, s, η) to (H ′,H′, s′, η′) is an

element g ∈ Ĝ such that

(i) we have (Int(g) ◦ η)(H) = η′(H′), and
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(ii) Int(g)(η(s)) = η′(s′) modulo Z(Ĝ).

As in [KS99, p.19], an element g ∈ Ĝ giving an automorphism of endoscopic data determines
an automorphism αg ∈ AutF (H). The automorphism of endoscopic data is said to be inner if
αg ∈ Had(F ). We write OutF (H) := AutF (H)/Had(F ). We denote the subgroup of OutF (H)
arising from automorphisms of endoscopic data by OutF (H,H, s, η).

Definition 2.3.4. A refined endoscopic datum is a standard endoscopic datum (H,H, s, η) satisfy-

ing the further requirement that s ∈ Z(Ĥ)ΓF . This implies that condition (ii) is automatically sat-
isfied. For an isomorphism of refined endoscopic data, we require the equality Int(g)(η(s)) = η′(s′)

in η′(Z(Ĥ)Γ) rather than η′(Z(Ĥ))/Z(Ĝ).

We will now define a notion of rigid endoscopy after some preliminaries. Given a standard

endoscopic datum (H,H, s, η), we define a group ̂̄H = lim←− Ĥn where Hn = H/Zn and Zn is the

pre-image in Z(G) of (Z(G)/Z(Gder))[n]. Note that we identify Z(G) with a central subgroup of

H via η. There is a natural map ̂̄H → Ĥ and we define Z( ̂̄H)+ to be the pre-image of Z(Ĥ)ΓF in

Z( ̂̄H).

We claim that η induces a natural map η̄ : ̂̄H → ̂̄G such that the following diagram commutes:̂̄H ̂̄G
Ĥ Ĝ.

η̄

η

By universal property, it suffices to show we have a system of maps Ĥn → Ĝn for each n that

are compatible with η. Let Ĥn
′

be the pre-image of η(Ĥ) under the map Ĝn → Ĝ. Then Ĥn
′

and Ĥn are both central extensions of Ĥ and so it suffices to show they are isomorphic as central

extensions. Choose maximal tori T̂ ⊂ Ĝ and T̂H ⊂ Ĥ such that η(T̂H) = T̂ . Let T̂n and T̂H,n be

the pre-images of T̂ in Ĥn
′

and T̂H in Ĥn, respectively. We have natural maps X∗(T̂n) → X∗(T̂ )

and X∗(T̂H,n)→ X∗(T̂H)→ X∗(T̂ ), and it suffices to show the images of these maps coincide. This

is the case since they are both equal to ker(X∗(T̂ ) → X∗(Ẑn)), where the map X∗(T̂ ) → X∗(Ẑn)

comes from G via the isomorphism of the pinned root datum of Ĝ with the dual of the canonical
based root datum of G.

Definition 2.3.5. A rigid endoscopic datum (H,H, ṡ, η) over a local field F is defined in the same

way as a standard datum (including conditions (i) and (ii)) except the requirement that ṡ ∈ Z( ̂̄H)+.

An isomorphism of rigid endoscopic data from (H1,H1, ṡ1, η1) to (H2,H2, ṡ2, η2) is an element g ∈ Ĝ
such that

(i) (Int(g) ◦ η1)(H1) = η2(H2), and

(ii) the images of ṡi in π0(Z(̂̄Hi)
+) coincide under the isomorphism

π0(Z(̂̄H1)+) −→ π0(Z(̂̄H2)+),

induced by η′−1 ◦ Int(g) ◦ η.

We denote the set of standard (resp. refined, resp. rigid) endoscopic data by E(G), (resp. Eisoc(G),
resp. Erig(G)). The corresponding sets of isomorphism classes of such data are denoted by E (G),
E isoc(G), and E rig(G).

13



An endoscopic datum (of any type) is said to be elliptic if (Z(Ĥ)ΓF )◦ ⊂ Z(Ĝ). This condition
determines the subsets E?

ell(G) ⊂ E?(G) and E ?
ell(G) ⊂ E ?(G) for ? ∈ {∅, isoc, rig}.

2.3.6. Endoscopic data and Levi subgroups. We will need to study the relation between the en-
doscopy of G and its Levi subgroups. Fix a minimal parabolic subgroup P0 ⊂ G and suppose now
that M ⊂ G is a standard Levi subgroup of G. Fix a Borel subgroup B ⊂ P0,F ⊂ GF . We have

a Levi subgroup M̂ ⊂ Ĝ determined by the set of simple roots of Ĝ corresponding to the simple
absolute coroots determining M . We have the following notion of endoscopy for M relative to G.

Definition 2.3.7. An embedded endoscopic datum for G is a tuple (HM ,HM , H,H, s, η), where

• (H,H, s, η) is a refined endoscopic datum of G with a fixed F -pinning (TH , BH , {XH,α})
of H,
• HM is a standard Levi subgroup of H,

• HM is a Levi subgroup of H, namely HM surjects onto WF and its intersection with Ĥ is

a Levi subgroup of Ĥ,

such that ĤM = HM ∩ Ĥ and (HM ,HM , s, η|HM ) is a refined endoscopic datum of M .
An isomorphism of embedded data from (HM ,HM , H,H, s, η) to (H ′M ,H′M , H ′,H′, s′, η′) is a

g ∈ Ĝ, which simultaneously produces isomorphisms

(HM ,HM , s, η)
∼→ (H ′M ,H′M , s′, η′) and (H,H, s, η)

∼→ (H ′,H′, s′, η′).

We denote the set of embedded endoscopic data by Eemb(M,G) and the set of isomorphism classes
by E emb(M,G). An automorphism of embedded endoscopic data is said to be inner if the associated
automorphism of (HM ,HM , s, η) is an inner automorphism of endoscopic data.

We have the natural restrictions X : Eemb(M,G)→ Eisoc(M) and Y emb : Eemb(M,G)→ Eisoc(G).
These induce maps of isomorphism classes, and the map induced by X is a bijection by [BM,
Prop. 2.20]. We recall from [BM, Construction 2.15] that there is a natural map Y : E isoc(M) →
E isoc(G) such that the following diagram commutes

E isoc(G)

E emb(M,G) E isoc(M).

Y emb

X

Y (2.3.1)

Definition 2.3.8. Fix a refined endoscopic datum (H,H, s, η) of G. We define the set
E emb(M,G;H) to be the set of isomorphism classes of embedded endoscopic data whose image
under

Y emb : E emb(M,G)→ E isoc(G) (2.3.2)

is the isomorphism class of (H,H, s, η). We define the set of inner classes of embedded endoscopic
data relative to H, denoted by E i(M,G;H), to be the set of equivalence classes of elements of
Eemb(M,G) whose isomorphism class lies in E emb(M,G;H), where two such data are considered
equivalent if they are isomorphic by an inner isomorphism α of the group H inducing an iso-
morphism of embedded endoscopic data. Note that α need not induce an inner isomorphism of
embedded endoscopic data.
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2.3.9. Endoscopy and semi-simple conjugacy classes. In this section we recall a number of results
that will be of use to us. We largely follow [BM], whose results are based on [Kot86] and [Shi10].
Our notation is chosen to be similar to that of [KSZ]. We assume throughout that F is either a
local or global field and G is such that Gder = Gsc. If M ⊂ G is a Levi subgroup and T ⊂ M
is a maximal torus, we say γ ∈ T (F ) is (G,M)-regular if for each root α ∈ R(G,T ) \ R(M,T ),
we have α(γ) 6= 1. Suppose (H,H, s, η) is an endoscopic datum. Let γH ∈ H(F )ss. Choose a
maximal torus TH ⊂ HF containing γH . We have a transfer TH ∼= T ⊂ GF for a maximal torus

T of G. Write γ ∈ T (F ) for the image of γH . Then γH is said to be (G,H)-regular if for each
α ∈ R(G,T )\R(H,TH), we have α(γ) 6= 1; if γ is a fortiori strongly regular in G(F ) then γH is said
to be G-strongly regular. The definition of (G,M)-regular, (G,H)-regular, and G-strongly regular
elements is independent of all auxiliary choices. We use the subscripts (G,M)-reg, (G,H)-reg, and
G-sr to denote the subsets of such elements. By definition, H(F )G-sr ⊂ H(F )(G,H)-reg ⊂ H(F )ss.

Definition 2.3.10. We define EKisoc(G) to be the set of equivalence classes of pairs (γ, λ) consisting

of γ ∈ G(F )ss and λ ∈ Z(Îγ)ΓF , with Iγ := ZG(γ)◦, where two pairs (γ, λ), (γ′, λ′) are equivalent if

[γ] = [γ′] ∈ Σ(G(F )) and λ corresponds to λ′ under the canonical isomorphism Z(Îγ)ΓF ∼= Z(Îγ′)
ΓF

[Kot86, §3]. We define the subset EKisoc
ell (G) ⊂ EKisoc(G) by the condition that γ ∈ G(F )ell.

For M a Levi subgroup of G, we let EKisoc(M,G) denote the set of equivalence classes of pairs

(γ, λ) consisting of γ ∈ M(F )(G,M)-reg and λ ∈ Z(ÎMγ )ΓF , with IMγ := ZM (γ)◦, where two pairs
(γ, λ), (γ′, λ′) are equivalent if [γ] = [γ′] ∈ Σ(M(F )) and if λ is sent to λ′ under the canonical

isomorphism Z(ÎMγ )ΓF ∼= Z(ÎMγ′ )
ΓF . In particular, EKisoc(M,G) ⊂ EKisoc(M).

Definition 2.3.11. We define E Σisoc(G) to be the set of equivalence classes of tuples
(H,H, s, η, γH) such that (H,H, s, η) ∈ Eisoc(G), γH ∈ H(F )(G,H)-reg, and γH transfers to G(F ).

Two tuples (H,H, s, η, γH) and (H ′,H′, s′, η′, γH′) are equivalent if there is an isomorphism g ∈ Ĝ
of the refined data (H,H, s, η) and (H ′,H′, s′, η′) and if the isomorphism α : H → H ′ induced by
g in the sense of [KS99, p.19] satisfies that [α(γH)] = [γ′H ] ∈ Σ(H ′(F )). We remark that α is only
well-defined up to an inner automorphism of H, but that this does not matter for our purposes
since we are only interested in stable conjugacy. We define the subset E Σisoc

ell (G) ⊂ E Σisoc(G) by
requiring that (H,H, s, η) ∈ Eisoc

ell (G) and γH ∈ H(F )ell.
Write E Σisoc(M,G) for the set of equivalence classes of tuples (HM ,HM , sM , ηM , γHM ) such

that (HM ,HM , sM , ηM ) ∈ Eisoc(M) and γHM is an element of HM (F )(M,HM )-reg that transfers to
an element of M(F )(G,M)-reg. Two tuples (HM ,HM , sM , ηM , γHM ) and (H ′M ,H′M , s′M , η′M , γH′M )

are considered equivalent if there exists an isomorphism m ∈ M̂ of the refined endoscopic data
(HM ,HM , sM , ηM ) and (H ′M ,H′M , s′M , η′M ) such that the associated isomorphism α : HM → H ′M
satisfies that [α(γHM )] = [γH′M ] ∈ Σ(H ′M (F )). Note that E Σisoc(M,G) ⊂ E Σisoc(M).

The analogue of E Σisoc(M,G) defined for embedded endoscopic data is denoted E Σemb(M,G).
By proof of [BM, Prop. 2.20], we have a natural identification E Σemb(M,G) = E Σisoc(M,G).

Define a natural map
E Σisoc(G)→ EKisoc(G), (2.3.3)

as follows. Given (H,H, s, η, γH) ∈ E Σisoc(G), we let γ ∈ G(F ) be a transfer of γH . (Recall
that the existence of the transfer is built into the definition of E Σisoc(G).) Since γH is (G,H)-

regular, we have a canonical ΓF -equivariant isomorphism Z(ÎγH ) ∼= Z(Îγ). In particular, since

s ∈ Z(Ĥ)ΓF ⊂ Z(ÎγH )ΓF , it gives an element λ ∈ Z(Îγ)ΓF . Thereby we obtain (γ, λ) ∈ EKisoc(G).
If (H ′, s′, η′, γH′) is equivalent to (H, s, η, γH), then the construction assigns the same element
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(γ, λ) ∈ EKisoc(G). This map (2.3.3) is a bijection ([BM, Lem. 2.30], cf. [Kot86, Lem. 9.7]).

Analogously we have a bijection E Σisoc
ell (G)

∼−→ EKisoc
ell (G).

Now, since the γ for any (γ, λ) ∈ EKisoc(M,G) is assumed to be (G,M)-regular, we have an
equality IMγ = IGγ . Hence we get an obvious map

EKisoc(M,G)→ EKisoc(G). (2.3.4)

The various objects we have defined fit into a commutative diagram ([BM, Lem. 2.36]):

EKisoc(G) E Σisoc(G) E isoc(G)

EKisoc(M,G) E Σisoc(M,G) E Σemb(M,G) E emb(M,G),

∼

∼

Y e

(2.3.5)

where the middle vertical map takes (HM ,HM , H,H, s, η, γHM ) to (H,H, s, η, γHM ), where γHM is
realized as an element of H(F ) via the inclusion HM ⊂ H.

2.4. Local transfer factors. We review the transfer factors normalized by a rigid endoscopic
datum. In this section we assume that H can be taken to be LH. This is satisfied, for instance,
when Gder is simply connected. In general, one can reduce to this case using z-extensions.

Fix G∗ a quasi-split reductive group over a local field F of characteristic 0 and (G,ψ, zrig) a rigid
inner twist of G∗ over F . Fix also a Whittaker datum w for G, namely a G(F )-conjugacy class
of pairs (B, θ), where B is a Borel subgroup of G defined over F with unipotent radical U , and
θ : U(F )→ C× is a non-degenerate character. Let (H,H, ṡ, η) be a rigid endoscopic datum. As in
[KS99], there is a Whittaker normalized transfer factor

∆[w] : H(F )G-sr ×G∗(F )sr → C.
Specifically, we are using the ∆λ

D normalization of [KS12, §5.5].

2.4.1. Local rigid transfer factors. Following [Kal16, §5.3], we construct a transfer factor

∆[w, zrig] : H(F )G-sr ×G(F )sr → C,
by the formula

∆[w, zrig](γH , γ) = ∆[w](γH , γ
∗)〈inv[zrig](γ∗, γ), ṡ〉−1. (2.4.1)

We explain the notation in the above equation. Choose γ∗ ∈ G∗(F ) such that ψ(gγ∗g−1) = γ for
some g ∈ G∗(F ). Then one checks that if T = ZG∗(γ

∗), then w 7→ g−1zrig(w)w(g) gives a cocycle

in Z1(u → Erig
F , Z(G∗) → T ), whose cohomology class is independent of the choice and denoted

inv[zrig](γ∗, γ). We have a canonical ΓF -equivariant embedding Z(Ĥ) → T̂ which induces a map

Z( ̂̄H)+ → ̂̄T+
. Then the pairing 〈inv[zrig](γ∗, γ), ṡ〉 is the Tate–Nakayama pairing of Proposition

2.1.2, where we identify ṡ with its image in ̂̄T+
.

2.4.2. The (G,H)-regular case. We described our normalization of transfer factors in §2.4.1. In
order to use these factors in the stabilization of the trace formula for the cohomology of Igusa
varieties, we need to extend the transfer factors to functions

∆[w, zrig] : H(F )(G,H)-reg ×G(F )ss → C. (2.4.2)

In [BM21] these factors were defined for refined endoscopic data via an explicit construction of the
invariant inv[z](γ∗, γ) in the non-strongly regular case. This construction could in theory be carried
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out in the rigid setting but to do so compatibly at each localization of a global field would involve

the cohomology of a global gerb that is an “adelic form” of Erig

V̇
. Unfortunately, this would require

a substantial amount of preparation and so we have instead opted for a different approach.
Given a transfer factor defined on H(F )G−sr × G(F )sr, Langlands and Shelstad [LS90, §2.4]

showed that one can extend the transfer factor to the domain H(F )(G,H)-reg×G(F )ss via a limiting
operation. In particular, given (γH , γ) ∈ H(F )(G,H)-reg × G(F )ss such that γH transfers to γ, one
chooses a sequence of pairs (γH,i, γi) ∈ H(F )G−sr×G(F )sr such that γHi transfers to γi and (γHi , γi)
converges to (γH , γ). One then defines

∆[w, zrig](γH , γ) = lim
i→∞

∆[w, zrig](γH,i, γi),

and shows that this limit does not depend on the choice of convergent sequence. The factor ∆[w]
can be extended analogously. We then define 〈inv[zrig](γ∗, γ), ṡ〉 := ∆[w](γH , γ

∗)/∆[w, zrig](γH , γ).
It follows from the continuity of ∆[w] and ∆[w, zrig] and the definition of inv[zrig] on the strongly
regular locus that 〈inv[zrig](γ∗, γ), ṡ〉 does not depend on γH . Of course we set ∆[w, zrig](γH , γ) = 0
if γH does not transfer to γ.

In the case where Gder = Gsc, we can describe inv[zrig](γ∗, γ) for γ ∈ G(F )ss more explicitly.
Then the centralizer of γ∗ in G∗ is connected. So if g ∈ G∗(F ) is such that ψ(gγ∗g−1) = γ, then

w 7→ g−1zrigw(g) gives a cocycle [zrig]γ∗,γ ∈ Z1(u→ Erig
F , Z(G∗)→ Iγ∗). By a continuity argument

analogous to [BM21, Lem. 3.8] but for rigid inner twists, we have that

〈inv[zrig](γ∗, γ), ṡ〉 = 〈[zrig]γ∗,γ , ṡ〉. (2.4.3)

We also record an equivariance property of (any normalization of) transfer factors.

Lemma 2.4.3. There exists a smooth character λH : ZG(F ) → C× such that for all x ∈ ZG(F ),
γH ∈ H(F )(G,H)-reg, and γ ∈ G(F )ss,

∆[w, zrig](xγH , xγ) = λH(x)∆[w, zrig](γH , γ).

Proof. This is [LS90, Lem. 3.5.A]. (The proof is given for strongly regular elements, but obviously
extends to the (G,H)-regular case by the limit formula above.) �

Remark 2.4.4. By [KSZ, Lem. 7.4.6], the restriction of λH to Z◦G(F ) corresponds via class field
theory to the L-morphism

WF → LH
η→ LG→ LZ◦G,

where the last map is dual to the inclusion Z◦G → G.

2.4.5. Comparison of local transfer factors. We describe the relationship between isocrystal and
rigid transfer factors for local F . To do so, we fix zisoc ∈ Z1

bas(E isoc
F , G) and denote by zrig ∈

Z1(u → Erig
F , Z(G) → G) the pullback (see §2.2.3). In analogy with §2.4.1, we can define for

γ∗ ∈ G∗(F )sr and γ ∈ G(F )sr an invariant inv[zisoc](γ∗, γ) ∈ Z1
bas(E isoc

F , T ). Following §2.4.2, this
naturally extends to an invariant map defined on γ∗ ∈ G∗(F )ss and γ ∈ G(F )ss.

Lemma 2.4.6. Choose ṡ ∈ ̂̄T+
and let s ∈ T̂ΓF be the projection of ṡ. Then we have

〈inv[zisoc](γ∗, γ), s〉 = 〈inv[zrig](γ∗, γ), ṡ〉,
which implies

∆[w, zisoc](γH , γ) = ∆[w, zrig](γH , γ).

Proof. This is proven in [Kal18b, p.15] for strongly regular elements. This immediately implies
equality of the transfer factors on all of H(F )(G,H)-reg ×G(F )ss. �
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2.5. Global transfer factors. We recall how a global rigid inner twist gives a decomposition of
the global transfer factor as the product of local transfer factors.

2.5.1. The strongly regular case. Now suppose that F is a number field and that G∗ is a quasi-split
connected reductive group over F . Let ψ : G∗

F
→ GF be an inner twist and (H,H, s, η) a standard

endoscopic datum for G. As in the last section, we assume that H = LH. Let w be a global
Whittaker datum. There is the canonical adelic transfer factor of [LS87, §6] and [KS99, §7.3]

∆A : H(AF )G-sr ×G(AF )sr → C,

characterized as follows. Whenever γH ∈ H(F )G-sr transfers everywhere locally to an element
γ ∈ G(AF ), we have ∆A(γH , γ) = 〈obs(γ)−1, κ〉 in the notation of [KS99, §7.3] (Cor. 7.3.B in
loc. cit.) except that our obs is the inverse of theirs and hence is consistent with [LS87] and [KT]
(see [KT, Remark 4.2.2 ]). If no γH ∈ H(F )G-sr transfers to G(F ), then (H,H, s, η) is irrelevant to
stabilization. (The same assumption is made in [LS87, §6.3].) More precisely, in this case, the stable
orbital integrals on H(F ) will be identically zero in the proof of Lemma 4.4.1 below by the local
transfer identity of orbital integrals. Thus there is no need to consider the global normalization or
canonical adelic transfer factor. Henceforth we assume that some γH ∈ H(F )G-sr transfers G(F ).

For each place v ∈ V , we want to normalize the local transfer factor at v such that the product
over all places of the local transfer factors is ∆A. We follow the process described in [Kal18a,

§4.2] with the only difference being that we work with the set H1(u→ Erig
F , Z(G)→ G) instead of

H1(u→ Erig
F , Z(Gder)→ G).

In particular, we let sad ∈ Ĝad be the image of η(s) in Ĝad and let ssc ∈ Ĝsc be a lift of sad

and sder be the image of ssc in Ĝder. Then for each v ∈ V̇ , we can view sder as an element of

(Ĝv)der and there is a yv ∈ Z(Ĝv) such that sderyv ∈ η(Z(Ĥv)
ΓFv ). Then we can write yv = y′v · y′′v

for y′v ∈ Z((Ĝv)der) and y′′v ∈ Z(Ĝv)
◦. We lift y′v to ẏ′v ∈ Z((Ĝv)sc) and lift y′′v to ẏ′′v ∈ Ĉ∞

via the map Ĉ∞ → Ẑ(Gv,1) = Z(Ĝv)
◦. Then we define ṡv ∈ Z(̂̄Hv) to be the pre-image under

η̄ of (sscẏ
′
v, ẏ
′′
v ) ∈ (Ĝv)sc × Ĉ∞ = ̂̄Gv and observe that ṡv ∈ Z(̂̄Hv)

+. This gives rise to a local
rigid endoscopic datum (Hv,Hv, ṡv, ηv), where Hv is the pre-image of WFv under the projection
H →WF . Note that we have a natural map

Erig(G)→ E(G), (Hv,Hv, ṡv, ηv) 7→ (Hv,Hv, sv, ηv),

where sv is the projection of ṡv to Z(Ĥ)ΓFv . The data (Hv,Hv, sv, ηv) and (Hv,Hv, s, ηv) are

isomorphic in E(G) since sv and s differ by an element of Z(Ĝv).
By Lemma 2.1.6 and after potentially replacing ψ with an inner twist in the same equivalence

class, we can lift the cocycle in Z1(F,G∗ad) corresponding to ψ to a cocycle zrig ∈ Z1(P rig

V̇
→

Erig

V̇
, Z(G∗sc)→ G∗sc). For each v ∈ V̇ , we then let zrig

sc,v be the localization of zrig as in §2.1.4 and let

zrig
v be the image in Z1(uv → Erig

Fv
, Z(G∗)→ G∗). Then (GFv , ψv, z

rig
v ) is a rigid inner twist of G∗Fv .

Finally, we have local transfer factors ∆[wv, z
rig
v ] : H(Fv)G-sr×G(Fv)sr → C. Following the proof

of [Kal18a, Prop. 4.4.1] we get that

∆A(γH , γ) =
∏
v∈V̇

〈zrig
sc,v, ẏ

′
v〉∆[wv, z

rig
v ](γH,v, γv), (2.5.1)

for all (γH , γ) ∈ H(F )sr ×G(F )sr.
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Remark 2.5.2. Suppose that Gder = Gsc. (We always reduce to this case via z-extensions.) Then

Z(Ĝ) is connected, so we can take yv = y′′v , y′v = 1, and ẏ′v = 1 at every v above. Then (2.5.1)

simplifies as 〈zrig
sc,v, ẏ′v〉 = 1 for all v.

2.5.3. The (G,H)-regular case. A semisimple element of H(AF ) is (G,H)-regular if it is at each
place of F . As in the local case, the subscript “(G,H)-reg” means the subset of (G,H)-regular
elements. We define the adelic transfer factor

∆[wv, z
rig
v ] : H(AF )(G,H)-reg ×G(AF )ss → C

by extending (2.5.1) from the strongly regular case. The idea is to take (2.5.1) as a definition when
γH is (G,H)-regular but not strongly G-regular:

∆A(γH , γ) :=
∏
v∈V̇

〈zrig
sc,v, ẏ

′
v〉∆[wv, z

rig
v ](γH,v, γv).

It follows from our definition that the factor ∆A defined on H(AF )(G,H)-reg × G(AF )ss equals the
unique continuous extension of ∆A defined on H(AF )G−sr×G(AF )sr. We have the product formula
∆A(γH , γ) = 〈obs(γ)−1, κ〉 on H(F )(G,H)-reg×G(AF )ss in the notation of [Kot86, (6.10.1)], as follows
from [Art01, Lem. 4.1.(i)] and the fact that the product formula holds in the strongly regular case.
As obs(γ) vanishes on γ ∈ G(F ), we have

∆A(γH , γ) = 1 if γH ∈ H(AF )(G,H)-reg transfers to γ ∈ G(F ).

The equivariance of the local transfer factors (Lemma 2.4.3) implies that there exists a continuous
character λH : ZG(F )\ZG(AF )→ C× such that for γH ∈ H(AF )(G,H)-reg and γ ∈ G(AF )ss,

∆A(xγH , xγ) = λH(x)∆A(γH , γ), x ∈ ZG(AF ).

More precisely, Lemma 2.4.3 tells us that there exists a character λH of ZG(AF ) with the above
property, and we should verify that λH |ZG(F ) is trivial. To check this, fix γH ∈ H(F )G-sr and
its transfer γ ∈ G(F ); such a pair exists by the running assumption from §2.5.1. Observe that
[LS90, §§3.4–3.5] can be adapted to the adelic setting by choosing global a-data and χ-data and
an admissible embedding ZH(γH) → ZG(γ) over F . Then the desired triviality follows from the

fact that a continuous cohomology class a ∈ H1(WF , T̂ ) in loc. cit. gives rise to a character of
T (AF ) that is trivial on T (F ), cf. [Lan97, Thm. 2(b)]. As the global analogue of Remark 2.4.4, the
restriction of λH to Z◦G(F )\Z◦G(AF ) corresponds to the composite L-morphism

WF → LH
η→ LG→ LZ◦G.

2.6. Local transfer. We recall the endoscopic transfer of functions when F is local. This readily
allows us to transfer functions in the adelic setting, possibly away from finitely many places.

Definition 2.6.1. A (local) central character datum is a pair (X, χ), where

• X is a closed subgroup of ZG(F ) equipped with a Haar measure,
• χ : X→ C× is a smooth character.

2.6.2. Fix a Haar measure onG(F ) and a maximal compact subgroupK ofG(F ). WriteH(G,χ−1)
for the space of smooth bi-K-finite functions f on G(F ) which are compactly supported modulo X
and satisfy f(xg) = χ−1(x)f(g) for x ∈ X and g ∈ G(F ). (If F is nonarchimedean, the K-finiteness
is automatic.) In the case X = {1}, we simply write H(G); this is the usual Hecke algebra.

For each f ∈ H(G,χ−1) and γ ∈ G(F )ss, the orbital integral

OGγ (f) =

∫
G◦γ(F )\G(F )

f(g−1γg)dg (2.6.1)
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is defined verbatim as in the case f ∈ H(G), where the quotient measure on G◦γ(F )\G(F ) is taken
with respect to a Haar measure on G◦γ(F ) (which is in practice chosen to be compatible with a Haar

measure on another group). Similarly, the definition of stable orbital integrals SOGγ (f) is unchanged
from the case f ∈ H(G). When G is clear from the context, we drop it from the notation.

For each f ∈ H(G,χ−1) and an irreducible admissible representation π of G(F ) whose central
character on X is χ, we have the linear operator v 7→

∫
G(F )/X f(g)(π(g)v)dg on the underlying space

for π. Its trace has finite value and is to be denoted by

tr X(f |π).

2.6.3. The Langlands–Shelstad transfer. Let e = (H,H, s, η) be an endoscopic datum for G sat-
isfying H = LH. Via the canonical embedding ZG ↪→ ZH , we identify X with a closed sub-
group of ZH(F ). Let λH be as in Lemma 2.4.3. Define a smooth character χH := χλ−1

H on X.
Then (X, χH) is a central character datum for H. Fix Haar measures on G(F ) and H(F ). Let
∆ : H(F )(G,H)-reg×G(F )ss → C be a transfer factor, which is necessarily a nonzero scalar multiple
of the factor (2.4.2). Write G(F )ss/ ∼ for a set of representatives for semisimple conjugacy classes
in G(F ).

Definition 2.6.4. Let f ∈ H(G,χ−1) and fH ∈ H(H,χ−1
H ). We say that fH is a ∆-transfer of f

(with respect to w, zrig, and e) if the following holds:

SOγH (fH) =
∑

γ∈G(F )ss/∼

∆(γH , γ)Oγ(f), γH ∈ H(F )(G,H)-reg.

where the Haar measures implicit in the (stable) orbital integrals are chosen as follows: if the
transfer factor is nonzero, then H◦γH and G◦γ are inner forms, and the Haar measures on H◦γH (F )
and G◦γ(F ) are chosen compatibly in the sense of [Kot88, p.631]. (Within the stable orbital integral,
Haar measures are similarly normalized as in [Kot88, p.638].)

Remark 2.6.5. The definition is unchanged if the equality is restricted to γH ∈ H(F )G-sr, as shown
by [LS90, Lem. 2.4]. The existence of transfer is clearly independent of the normalization (i.e.,
rescaling) of ∆. Since the right hand side is χ−1

H -equivariant in view of Lemma 2.4.3 and the

χ−1-equivariance of f , it is natural to require fH to be χ−1
H -equivariant.

Proposition 2.6.6. Every f ∈ H(G,χ−1) admits a ∆-transfer in the above sense.

Proof. The general case is obtained from the case when X = {1} by averaging (see the proof of
[KSZ, Prop. 7.4.11] for details), so we may assume X = {1}. Then the archimedean case is proven
by [She82], in light of [LS90, Thm. 2.6.A]. In the nonarchimedean case, this is reduced to the
fundamental lemma (Proposition 2.6.8 below) by [Wal97]. The proof of the fundamental lemma
was completed by Ngô [Ngô10], based on earlier works [CL10, Hal95, Wal06]. �

2.6.7. The fundamental lemma. We retain the notation from §2.6.3. Suppose that F is nonar-
chimedean and that G and H are unramified over F . We fix pinnings (B, T, {Xα}) for G and
(BH , TH , {Yα}) for H defined over F . This determines hyperspecial subgroups K ⊂ G(F ) and
KH ⊂ H(F ); see [Wal08, §4.1]. We normalize Haar measures on G(F ) and H(F ) such that K and
KH have volume 1. Define Hur(G,χ−1) to be the space of bi-K-invariant functions which have
compact support modulo X and transform under X by χ−1. Likewise Hur(H,χ−1

H ) is defined. We

have a morphism of unramified Hecke algebras induced by η : LH → LG with respect to (X, χ)
(cf. [KSZ, §7.4.10])

η∗ : Hur(G,χ−1)→ Hur(H,χ−1
H ).

20



Let ∆0 denote the canonical transfer factor for quasi-split groups [LS87, §3.7] (extended to the
(G,H)-regular case by [LS90]).

Proposition 2.6.8. For each f ∈ Hur(G,χ−1), the function η∗(f) is a ∆0-transfer of f .

Proof. This follows from the case X = {1} by averaging with respect to central character data. The
proof when X = {1} is already explained in the proof of Proposition 2.6.6. �

The ∆0 transfer factor is somewhat incompatible with the transfer factors we use because it is
formulated in terms of the the arithmetic normalization the Langlands pairing for tori, whereas we
use the geometric normalization (see [KS12, §4]). Let ∆D denote the version of ∆0 defined with
respect to the geometric normalization of the Langlands pairing. Let V be the virtual representation
of Γ given by X∗(T )C −X∗(TH)C.

Corollary 2.6.9. For each f ∈ Hur(G,χ−1), the function η∗(f) is a ∆D-transfer of f .

Proof. As in the last proposition, we only need to check this for the case X = {1}.
By Proposition 2.6.8, we have that η∗(f) is a ∆0-transfer of f . Temporarily fix an additive

character θF : F → C× and define ∆0[w] := ε(V, θF )∆0 as in [KS99, §5.3]. Then η∗(f)ε(V, θF ) is a
∆0[w]-transfer of f and equivalently η∗(f)ε(V, θF ) is a ∆′0[w]-transfer of f relative to the endoscopic
datum (H,H, s−1, η). (We are “flipping the sign of s” twice here: once by changing the endoscopic
datum and once by changing ∆0[w] to ∆′0[w].)

Now, by [BMN21, Lem. 3.5], we have that η∗(f)ε(V, θF )◦ iH is a ∆D[w−1]-transfer of f ◦ i, where
i is inversion on G(F ) and iH is inversion on H(F ) and w−1 corresponds to replacing θF with θ−1

F .
One checks that i commutes with η∗ and hence that η∗(f)ε(V, ψF ) is ∆D[w−1]-transfer of f . Thus
η∗(f)ε(V, θF )/ε(V, θ−1

F ) is a ∆D-transfer of f . Note that ε(V, θ−1
F ) = ε(V, θF ) det(V )(−1), where

det(V ) is a representation of F× via local class field theory. Since G and H are unramified, V is
an unramified virtual representation. Hence det(V )(−1) = 1, which implies the proposition. �

2.6.10. Lefschetz functions on real groups. This paragraph will be useful for stabilizing the
archimedean terms in the point-counting formula.

Let G be a connected reductive group over R which contains an elliptic maximal torus. Fix Haar
measures on G(R) and ZG(R), thus also on G(R)/ZG(R).

Let ϕ : WR → LG be a discrete L-parameter. Write Π∞(ϕ) for the discrete L-packet associated
with ϕ by [Lan89]. Let ωϕ : ZG(R)→ C× be the common central character for members of Π∞(ϕ).
There is a group-theoretic recipe for ωϕ as in §2 of loc. cit. (where it is denoted by χϕ). We will
work with the central character datum (ZG(R), ωϕ); this will go well with the main global central
character datum of this paper described in Example 3.3.3 below.

We introduce an averaged Lefschetz function

favg
ϕ :=

1

|Π∞(ϕ)|
∑

π∈Π∞(ϕ)

fπ ∈ H(G(R), ω−1
ϕ ), (2.6.2)

where fπ denotes a pseudo-coefficient for π à la Clozel–Delorme [CD90]. Even though favg
ϕ is not

uniquely defined, invariant distributions on G(R) have well-defined values at favg
ϕ thanks to the

following characterizing property: the trace of favg
ϕ against an irreducible tempered representation

π of G(R) with central character ωφ is 0 unless π ∈ Π∞(ϕ), in which case the trace equals 1.
An important example arises from an irreducible algebraic representation ξ of GC. By restric-

tion, ξ induces a continuous central character ωξ : ZG(R)→ C×. Moreover, ξ determines a discrete

L-parameter ϕξ : WR → LG whose L-packet Π∞(ϕξ) consists of irreducible discrete series repre-
sentations whose central and infinitesimal characters are the same as the contragredient of ξ. Note
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that ωϕξ = ω−1
ξ . In this case, we set

favg
ξ := favg

ϕ , Π∞(ξ) := Π∞(ϕξ).

2.7. Acceptable elements and acceptable functions. Let F be a non-archimedean local field
with a uniformizer $, and ν : D→ G a fractional cocharacter over F . Write Mν for the centralizer
of ν in G, which is a Levi subgroup of G. We have a unique F -rational parabolic subgroup Pν
(resp. P op

ν ) of G with Mν as a Levi factor such that every root α of AMν with root group in the
unipotent radical Nν of Pν (resp. P op

ν ) satisfies 〈α, ν〉 < 0 (resp. 〈α, ν〉 > 0). Let (X, χ) be a central
character datum of G, which can also be viewed as a central character datum of Mν .

Definition 2.7.1. An element γ ∈ Mν(F ) is said to ν-acceptable (or acceptable when ν is clear
from the context) if the adjoint action of γ on LieNν(F ) is dilating, namely if |λ| > 1 for every
eigenvalue λ of the action. By Hacc(Mν) ⊂ H(Mν) and Hacc(Mν , χ

−1) ⊂ H(Mν , χ
−1) we denote

the subspaces of functions supported on acceptable elements.

Let J be an inner form of Mν over F , equipped with an Mν(F )-conjugacy class of isomorphisms
i : JF ' Mν,F . Via the canonical isomorphism Z(J) ∼= Z(Mν) over F , we can view (X, χ) as a

central character datum of J . Since the acceptability of γ ∈ Mν(F ) depends only on its Mν(F )-
conjugacy class, the following definition depends on i only though its Mν(F )-conjugacy class.

Definition 2.7.2. An element δ ∈ J(F ) is said to acceptable if i(δ) ∈ Mν(F ) is acceptable. The
spaces Hacc(J) and Hacc(J, χ

−1) are defined as in Definition 2.7.1.

Example 2.7.3. In the setting of §2.2.1, we can take ν = νb in G∗. Then Mν = Mb, and J = Jb
is an inner twist of Mb via (2.2.1).

2.7.4. Choose r ∈ Z≥1 such that rν is a cocharacter of G (i.e., factors through the projection
D→ Gm). For φ ∈ H(Mν) and j ∈ rZ, we define the following translates of φ:

φ(j) ∈ H(Mν) by φ(j)(γ) = φ((jν)($)−1γ).

For φ ∈ H(J) and j ∈ rZ, the same formula defines φ(j) ∈ H(J).

Lemma 2.7.5. Given φ ∈ H(Mν), there exists j0 ∈ Z such that φ(j) ∈ Hacc(Mν) for every j ∈ rZ
with j ≥ j0. The same holds true if Mν is replaced with J .

Proof. This follows from the facts that rν($) is acceptable and that φ has compact support. �

When P ⊂ G is an F -rational parabolic subgroup with a Levi factor M , write δP : M(F )→ C×
for the modulus character. Let JP denote the normalized Jacquet module functor from smooth
representations of G(F ) to those of M(F ).

Definition 2.7.6. Let φ ∈ Hacc(Mν). We say that f ∈ H(G) is a ν-ascent of φ if

(i) for every g ∈ G(F )ss, we have Og(f) = 0 unless g is conjugate in G(F ) to a ν-acceptable
element m ∈Mν(F ), in which case

OGg (f) = δPν (m)−1/2OMν
m (φ).

(ii) tr (f |π) = tr (φ|JP op
ν

(π)) for admissible representations π of G(F ).

Lemma 2.7.7. Every φ ∈ Hacc(Mν) admits a ν-ascent f ∈ H(G). Moreover, statement (i) of
Definition 2.7.6 holds with stable orbital integrals in place of orbital integrals.

Proof. This is [KS, Lem. 3.1.2, Cor. 3.1.3]. �
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Remark 2.7.8. When extracting spectral information from the stabilized trace formula of this paper,
e.g., as in [Shi11, KS], it is important to understand the interaction between ν-ascent and constant
terms/endoscopy. This is studied in [KS, §3].

2.7.9. Local endoscopic refinements. In this subsection, we use the notion of acceptability to define
refinements of E Σemb(M,G). We continue to assume F is a non-archimedean local field and we
further assume that G = G∗ is quasi-split and that G∗der is simply connected.

Fix [b] ∈ B(G). Since G is quasi-split, we can choose a decent representative b ∈ G(F̆ ) such
that νb is defined over F . (See the proof of [Kot85, Prop. 6.2].)

Definition 2.7.10. We let EKisoc
eff (Jb, G) denote the set of equivalence classes of pairs (δ, λ) such

that δ ∈ Jb(F ) is νb-acceptable and transfers to a (G,Mb)-regular semisimple element of G(F )

and λ ∈ Z(Îδ)
ΓF . Via endoscopic transfer of conjugacy classes from Jb to Mb, we can identify

EKisoc
eff (Jb, G) with a subset of EKisoc(Mb, G) via the map (δ, λ) 7→ (γ, λ′), where λ′ is the image of

λ under the canonical isomorphism Z(Îδ) ∼= Z(ÎMb
γ ).

Via the bijections in Diagram (2.3.5), we get a subset E Σisoc
eff (Jb, G) ⊂ E Σisoc(Mb, G) in bijection

with EKisoc
eff (Jb, G). We define E Σisoc

eff (G) as the image of E Σisoc
eff (Jb, G) under the map

E Σisoc(Mb, G)→ E Σisoc(G).

We have a natural projection

E Σisoc(Mb, G)→ E isoc(Mb),

and we denote the image of E Σisoc
eff (Jb, G) by E isoc

eff (Jb, G).

Analogously, we can define E Σemb
eff (Jb, G) and E emb

eff (Jb, G) and we have

E Σemb
eff (Jb, G) ∼= E Σisoc

eff (Jb, G),

and
E emb

eff (Jb, G) ∼= E isoc
eff (Jb, G).

Definition 2.7.11. Fix an equivalence class e = (H,H, s, η) ∈ E isoc(G). Relative to this fixed
class, we define the sets

E isoc
eff (Jb, G;H) := Y −1(e) ∩ E isoc

eff (Jb, G),

E emb
eff (Jb, G;H) := E emb

eff (Jb, G) ∩ E emb(Mb, G;H).

We also define E Σemb
eff (Jb, G;H) to be the pre-image of E emb

eff (Jb, G;H) under the projection

E Σemb(Mb, G;H) → E emb(Mb, G;H). We define E i
eff(Jb, G;H) to be the set of inner classes

of embedded endoscopic whose isomorphism class lies in E emb(Mb, G;H).

We now reinterpret the set E isoc
eff (Jb, G) in terms of transfer of maximal tori instead of transfer

of semisimple conjugacy classes, as the former is in practice easier to work with.

Lemma 2.7.12. An element (Hb,Hb, sb, ηb) ∈ E isoc(Mb) is contained in E isoc
eff (Jb, G) if and only

if there exist maximal tori THb
, TMb

, TJb defined over F of Hb,Mb, Jb respectively such that each
torus transfers to the others.

Proof. This is [BM, Lem. 2.41]. �

We now fix a representative (H,H, s, η) ∈ Eisoc(G) of the class e. Following the discussion in
[BM, §2.7], we can choose a set of representatives Xe

b(H) of E i
eff(Jb, G;H) such that their image

under Y emb is the datum (H,H, s, η). We then have the following lemma.
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Lemma 2.7.13. Suppose that [(Hb,Hb, H,H, s, η1, γHb
)] ∈ E Σemb

eff (Mb, G;H) and (H,H, s, η, γH)
project to the same class in E Σisoc

eff (G). Then there exist

• a unique (H ′b,H′b, H,H, s, η2) ∈ Xe
b(H) and

• a (G,Hb)-regular, νb-acceptable, semisimple γH′b ∈ Σ(H ′b(F ))

such that

• (H ′b,H′b, H,H, s, η2, γH′b) projects to [(Hb,Hb, H,H, s, η1, γHb
)] and

• γH′b and γH are stably conjugate in H(F ) under the natural inclusion H ′b(F ) ⊂ H(F ).

Proof. This is [BM, Lem. 2.42] (cf. [Shi10, Lem. 6.2]). �

2.8. z-extensions. Let F be local or global in this subsection. The content here allows us to
reduce questions about general endoscopic data to the case where H = LH.

Definition 2.8.1. A z-extension of G over F is a central extension of reductive groups over F

1→ Z1 → G1 → G→ 1 (2.8.1)

with the property that G1 has simply connected derived subgroup, and that Z1
∼=
∏
i ResFi/QGm

for finite extensions Fi over F .

2.8.2. z-extensions and endoscopic data. A fixed pinning for G induces a pinning for G1 via pull-

back. Dual to G1 → G is a morphism of dual groups Ĝ→ Ĝ1. We can arrange that the ΓF -pinnings

for Ĝ and Ĝ1 are compatible with the latter map. This map uniquely extends to an L-morphism
ζG1 : LG→ LG1 such that ζG1 |WF

is the identity map.
A z-extension of G as in (2.8.1) and an endoscopic datum e = (H,H, s, η) determine a central

extension over F

1→ Z1 → H1 → H → 1 (2.8.2)

and an endoscopic datum e1 = (H1,
LH1, s1, η1) for G1 with s1 = ζG1(s) with the following proper-

ties (see [KSZ, Lem. 7.2.6, 7.2.9]):

(i) The canonical embeddings ZG → ZH and ZG1 → ZH1 fit in a row-exact commutative
diagram of F -groups, where the rows come from (2.8.1) and (2.8.2):

1 // Z1
// ZG1

//

��

ZG

��

// 1

1 // Z1
// ZH1

// ZH // 1.

(2.8.3)

(ii) There exists an L-morphism ζH1 which extends the embedding Ĥ → Ĥ1 dual to H1 → H
and makes the following diagram commute:

H
ζH1 //

η

��

LH1

η1

��
LG

ζG1 // LG1.

(iii) If e is a refined datum then so is e1.

For each H as above, we are fixing a pinning (TH , BH , {XαH}) defined over F . This induces a
pinning (TH1 , BH1 , {XαH ,1}) for H1 over F by pullback.
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2.8.3. z-extensions and embedded endoscopic data. Let M ⊂ G be a standard Levi subgroup. Given
a z-extension (2.8.1) and an embedded endoscopic datum (HM ,HM , H,H, s, η) for G (Definition
2.3.7), we use e1 to construct an embedded endoscopic datum for G1 as follows. Take HM,1 to be

the preimage of HM in H1 in (2.8.2). Define HM,1 to be the subgroup of LH1 generated by HM
and Z(Ĥ1). Then (HM,1,HM,1, H1,

LH1, s1, η1) ∈ Eemb(M1, G1).

3. Igusa varieties

We are going to formulate a conjectural trace formula for Igusa varieties in the case of general
Shimura data with parahoric level at p, assuming some hypothetical construction of integral models
and Igusa varieties. We are in favor of this somewhat axiomatic approach because, as long as the
conjectural trace formula is taken for granted, we do not need further assumptions (e.g., Shimura
data can be arbitrary). Thus the results of this paper will become unconditional in more cases as
we make further progress on the hypotheses. The state of the art is reviewed in §3.3.8 below.

3.1. The general setup.

Definition 3.1.1. An integral Shimura datum is a quadruple (G,X, p,G), where

• (G,X) is a Shimura datum satisfying Deligne’s axioms [Del79, (2.1.1.1)–(2.1.1.3)],
• p is a prime number,
• G is a parahoric model of GQp .

In particular G is a connected reductive group over Q such that GR contains an elliptic maximal
torus. We write Kp := G(Zp), which is a parahoric subgroup of G(Qp). The datum (G,X)
determines a conjugacy class [µX ] of Hodge cocharacters Gm → GC, cf. [Del79, 1.1.1, 1.1.11].
Denote by E := E(G,X) ⊂ C the field of definition of [µX ], namely the reflex field. By abuse of
notation, we still write [µX ] for the element of π1(G) determined by [µX ].

3.1.2. Henceforth we fix a datum as above. Fix a prime ` not equal to p. We also fix isomorphisms
ιp : Qp ' C, ι : Q` ' C, and an embedding Q ↪→ C. We have induced embeddings Q ↪→ Qp,

Q ↪→ Q`, and E ↪→ Qp. This determines a prime p of E above p. Write k := k(p) for the residue

field at p. Its algebraic closure k can be identified with the residue field of Qp. Fix a cocharacter

µp : Gm → GQp
in the conjugacy class ι−1

p [µX ].

We have a projective system of varieties ShKp = {ShKpKp} over E (which can be viewed as
a scheme over E since the transition maps are finite), where Kp runs over neat open compact
subgroups of G(A∞,p). The Shimura variety ShKp is equipped with a natural Hecke action of
G(A∞,p). The following existence of integral models is a prerequisite for the definition of Igusa
varieties. (Compare with the more precise statement [Pap18, Conj. 3.4].)

Hypothesis 3.1.3. The E-scheme ShKp extends to a natural OEp-scheme SKp = {SKpKp} with a
right G(A∞,p)-action (in the sense of [Del79, 2.7.1]) such that the G(A∞,p)-action on SKp extends
that on ShKp .

Remark 3.1.4. Often the meaning of “natural” can be made precise on the one hand by a unique
characterization and on the other hand by a natural construction (e.g., taking closure in a Siegel
modular variety and normalization when possible). See §3.3.8 below for known results and refer-
ences. However a precise notion is unnecessary for our purpose. All we want is some construction
of integral models SKp over which Igusa varieties may be defined such that Hypothesis 3.1.6 and
Conjecture 3.3.5 below are satisfied.
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3.1.5. We assume Hypothesis 3.1.3 in the sense above. Set SKp,k
:= SKp ×OEp

k. Let ξ be an

irreducible algebraic representation of G over C. Write Zac for the anti-cuspidal part of Z◦G, which
is a Q-subtorus of Z◦G. (See [KSZ, Def. 1.5.4].) Henceforth we assume that

ξ factors through the projection G→ G/Zac. (3.1.1)

Then a lisse `-adic sheaf Lξ can be constructed on SKp = {SKpKp} following [KSZ, §1.5].

Let b ∈ G(Q̆p) and write [b] ∈ B(GQp) for the image of b. Caraiani–Scholze [CS17, CS] and
related works (e.g., [HK19]) suggest the following for Igusa varieties.

Hypothesis 3.1.6. Assume that [b] ∈ B(GQp , µ
−1
p ).

(i) There exist
• a scheme Igb over k equipped with a right G(A∞,p)× Jb(Qp)-action and
• a G(A∞,p)-equivariant morphism ςb : Igb → SKp,k

.

For every b′ ∈ G(Q̆p) with [b] = [b′], there is a G(A∞,p) × Jb(Qp)-equivariant isomor-
phism Igb ' Igb′ carrying ς∗bLξ to ς∗b′Lξ.

(ii) We have the following data after possibly changing b to another element (which is in

particular decent) in its σ-conjugacy class inside G(Q̆p). There exists a projective system

Igb = (Igb,m,Kp)m,Kp , m ∈ Z≥0, Kp ⊂ G(A∞,p) neat compact open,

consisting of smooth finite-type varieties over k (definable over a common finite extension
of k) with finite étale transition maps, equipped with a right G(A∞,p)× Jb(Qp)-action on

Igb (in the sense of [Del79, 2.7.1]). Moreover there are k-morphisms ςb,m,Kp : Igb,m,Kp →
SKpKp which are compatible with the transition maps as m and Kp vary, as well as a
G(A∞,p)× Jb(Qp)-equivariant isomorphism

Igb ' (lim←− Igb,m,Kp)perf, (3.1.2)

such that ςb coincides with the limit of ςb,m,Kp over m,Kp after perfection.

3.1.7. We want to understand the cohomology of H i(Igb, ς
∗
bLξ) as a G(A∞,p) × Jb(Qp)-module,

which is an admissible module thanks to the preceding hypothesis. By the hypothesis, we can
choose b as in (ii) and consider the cohomology of Igb,m,Kp instead. By Poincaré duality, we may
switch to cohomology with compact support, as the latter is more directly related to the fixed-point
formula for varieties. Therefore we define

[Hc]b,ξ :=
∑
i≥0

(−1)i
(
lim−→ ιH i

c(Igb,m,Kp , ς∗b,m,KpLξ)
)
∈ Groth(G(A∞,p)× Jb(Qp)),

where we applied ι to switch from `-adic coefficients to C-coefficients. A priori only G(A∞,p)× Sb
acts on the right hand side, but it uniquely extends to a G(A∞,p)×Jb(Qp)-action thanks to (3.1.2)
and the fact that Igb already admits a G(A∞,p) × Jb(Qp)-action. We would like to describe a
conjectural formula for the trace

tr (φ∞,pφp|[Hc]b,ξ) ∈ C, φ∞,pφp ∈ C∞c (G(A∞,p)× Jb(Qp)).

3.2. Kottwitz parameters and Kottwitz invariants. To state a conjectural trace formula,
we introduce some more notions and notation. We make the following technical hypothesis on G
from here throughout the paper, as we anticipate extra subtlety (e.g., regarding the formalism of
Kottwitz parameters) without the condition.

Hypothesis 3.2.1. The group GQp is quasi-split.
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3.2.2. According to §2.2, we can choose b to be decent without affecting [b], and such that νb is
defined over Qp thanks to Hypothesis 3.2.1. Then for a sufficiently divisible r ∈ Z>0, we have that

b ∈ G(Qpr) and that rνb is a cocharacter over Qp. Fix such a b ∈ G(Q̆p) from now on.

3.2.3. Galois cohomology. Let I → G be a morphism of reductive groups over Q. Let S be a finite
set of places of Q. We define

D(I,G;AS) := ker(H1(AS , I)→ H1(AS , G)),

E(I,G;AS) := ker(H1
ab(AS , I)→ H1

ab(AS , G)).

Note that D(I,G;AS) is a pointed set and E(I,G;AS) is an abelian group. When S0 ⊂ S, there
is an obvious map D(I,G;AS) → D(I,G;AS0) and likewise for E. Replacing AS with Qv for a
place v of Q, we define D(I,G;Qv) and E(I,G;Qv). The canonical and functorial isomorphism
H1

ab(Qv, G) ∼= π1(G)Γv ,tor induces a canonical isomorphism

E(I,G;Qv) ∼= ker(π1(I)Γv ,tor → π1(G)Γv ,tor).

We have natural restricted product decompositions

D(I,G;AS) =
∏′
v/∈S D(I,G;Qv), E(I,G;AS) =

∏′
v/∈S E(I,G;Qv),

coming from similar decompositions for H1 and H1
ab, see . [KSZ, (1.1.6.1),(1.1.6.2)], where ′ means

that we only consider elements in the product whose components are trivial for all but finitely
many v. We have the abelianization map

ab1 : D(I,G;AS)→ E(I,G;AS),

which is compatible with the analogous local abelianization map over Qv via the product decom-
position. The map ab1 is a bijection if S contains the infinite place ∞.

Now assume that I is a reductive subgroup of G over Q containing a maximal torus of G. The
two abelian groups E(I,G;A/Q) and K(I/Q) are defined in [Lab99, §1.8] and [Kot86, §4]. There is
a natural map

E(I,G;A)→ E(I,G;A/Q).

By [KSZ, Prop. 1.7.3, Cor. 1.7.4], E(I,G;A/Q) and K(I/Q) are finite and in Pontryagin duality
with each other via a natural pairing

〈 , 〉 : E(I,G;A/Q)× K(I/Q)→ C×.

Now let I → G be a morphism of connected reductive groups over Qp, inducing the map B(I) →
B(G). We have b ∈ G(Q̆p) as before. Define the subset

Dp(I,G; b) ⊂ B(I)

to be the preimage of [b] ∈ B(G).

Definition 3.2.4. A b-admissible Kottwitz parameter is a triple c = (γ0, a, [b]), where

• γ0 ∈ G(Q)R-ell; write I0 := (Gγ0)◦,
• a ∈ D(I0, G;A∞,p),
• [b] ∈ Dp(I0, G; b).

Write KPb for the set of b-admissible Kottwitz parameters. Given c ∈ KPb, if we choose a
representative b ∈ I0(Q̆p) of [b] then γ−1

0 bσ(γ0) = γ−1
0 bγ0 = b in G(Q̆p). Therefore γ0 lies in the

subgroup Jb(Qp) of G(Q̆p). We say that c is acceptable if γ0 is a νb-acceptable element of Jb(Qp)
(Definition 2.7.2, Example 2.7.3). This notion is independent of the choice of b ([MC21, 4.3.10]).

27



Remark 3.2.5. Our b-admissible Kottwitz parameter is a Kottwitz parameter in the sense of [KSZ,
§1.6]. The point is that the condition KP0 therein is satisfied since [b] ∈ B(GQp , µ

−1
p ), which

implies that κG([b]) = −[µX ].

3.2.6. From Kottwitz parameters to b-classical Kottwitz parameters. By a b-classical Kottwitz pa-
rameter (which was called a “Kottwitz triple” in [Shi09, Shi10]), we mean a triple (γ0; γ, δ), where

• γ0 ∈ G(Q)R-ell,

• γ ∈ Γ(G(A∞,p)) which is conjugate to γ0 in G(A∞,p),
• δ ∈ Γ(Jb(Qp)) which is conjugate to γ0 in G(Q̆p) via Jb(Qp) ⊂ G(Q̆p).

Denote by CKPb the set of b-classical Kottwitz parameters. We construct a natural map

KPb → CKPb, (γ0, a, [b]) 7→ (γ0, γa, δ[b]) (3.2.1)

as follows. Let (γ0, a, [b]) ∈ KPb. We already remarked that γ0 ∈ Jb(Qp) for a representative

b ∈ I0(Q̆p) of [b]. Since [b] = [b] in B(G), we have a well-defined Jb(Qp)-conjugacy class of Qp-
isomorphisms Jb ' Jb. Therefore γ0 ∈ Jb(Qp) determines a conjugacy class of δ[b] ∈ Jb(Qp). Now

since a has trivial image in H1(A∞,p, G), it is represented by a cocycle τ 7→ g−1τ(g) for some

g ∈ G(A∞,p). Then γa := gγ0g
−1 ∈ G(A∞,p). By construction (γ0, γa, δ[b]) ∈ CKPb, which is easily

checked to be independent of the choice of b and g.

Lemma 3.2.7. If Gder = Gsc then the map (3.2.1) is a bijection.

Proof. We construct the inverse map. Let (γ0, γ, δ) ∈ CKPb. Choose g ∈ G(A∞,p) such that

gγ0g
−1 = γ. Then the cocycle τ 7→ g−1τ(g) ∈ Gγ0(A∞,p) defines an element a ∈ D(I0, G,A∞,p);

the point is that Gγ0 = I0, namely Gγ0 is connected, since Gder = Gsc. Now write δ = cγ0c
−1 for

some c ∈ G(Q̆p), and put b := c−1bσ(c). It follows from δb = bσ(δ) that b centralizes γ0 in G, so

b ∈ I0(Q̆p). It is routine to check that (γ0, a, [b]) is well defined and belongs to KPb, and that the
map (γ0, γ, δ) 7→ (γ0, a, [b]) is converse to (3.2.1). �

Lemma 3.2.8. If (γ0, a, [b]) ∈ KPb is acceptable then [b] is basic in B(I0).

Proof. It is enough to verify the equivalent assertion that νb is central in I0, or that I0 is contained
in the centralizer of νb in G. This is [MC21, Lem. 2.2.5]. (We remark that the argument therein uses

Hypothesis 3.2.1 to ensure that the G(Q̆p)-conjugacy class of νb contains a fractional cocharacter
defined over Qp, see [MC21, §2.2.1].) �

3.2.9. Kottwitz invariant. To each Kottwitz parameter c, we assign a Kottwitz invariant α(c) fol-
lowing [KSZ, §1.7] (or [MC21, §4.3]). The facts in §3.2.3 will be used freely.

Write (βv(c))v 6=p,∞ for the image of a under the composite map

D(I0, G;A∞,p) ' E(I0, G;A∞,p) '
⊕
v 6=p,∞

ker(π1(I0)Γv ,tor → π1(G)Γv ,tor).

Choose a lift β̃v(c) ∈ ker(π1(I0) → π1(G)) of βv(c) for each v 6= p,∞; if βv(c) = 0 then simply

put β̃v(c) := 0. At v = p, set βp(c) := κI0([b]) ∈ π1(I0)Γp . Then βp(c) maps to −[µX ] ∈ π1(G)Γp

under the natural map π1(I0)→ π1(G). So we can pick a lift β̃p(c) ∈ π1(I0) whose image in π1(G)
is −[µX ]. At v = ∞, since γ0 is R-elliptic, we can choose an elliptic maximal torus T∞ of GR
containing γ0. Then T∞ ⊂ I0,R, and there exists h : ResC/RGm → GR in X factoring through T∞.
The latter gives rise to a cocharacter µh : Gm → T∞. Define β∞(c) ∈ π1(I0)Γ∞ to be the image of
µh under

X∗(T ) = π1(T )→ π1(I0)→ π1(I0)Γ∞ .
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Then β∞(c) is independent of the choice of h ∈ X, and has the same image in π1(G)Γ∞ as [µX ] ∈
π1(G). Thus we can choose a lift β̃∞(c) ∈ π1(I0) mapping to [µX ] ∈ π1(G).

In §4 below, we will often write

β̃∞,p(γ0, a), β̃p(γ0, [b]), β̃∞(γ0) for β̃∞,p(c), β̃∞(c), β̃∞(c), respectively,

and similarly for their analogues without tildes. For instance, this indicates that [b] does not enter

the construction of β̃∞,p(γ0, a). In fact, the definitions of β̃∞,p(γ0, a), β̃p(γ0, [b]), β̃∞(γ0) are of a
local nature and extend in an obvious manner to γ0 in G(A∞,p), G(Qp), and G(R)ell, respectively.
(We need not require γ0 ∈ G(Q).)

Put K(c) := ker(π1(I0)→ π1(G)) and E(c) := E(I0, G;A/Q). Define

β̃(c) :=
∑
v

β̃v(c) ∈ K(c).

In our situation, K(c)Γ is a torsion abelian group and equipped with a surjection (see [KSZ,
Prop. 1.7.3, §1.7.5])

K(c)Γ = K(c)Γ,tor → E(c).

The Kottwitz invariant α(c) ∈ E(c) is defined to be the image of β̃(c), which is independent of the

choice of the lifts β̃v in the construction.

3.2.10. Local inner twists of I0. Starting from acceptable c = (γ0, a, [b]) ∈ KPb, let us construct lo-
cal and global inner twists of I0 as in [KSZ, §1.7.11]. The image of a ∈ H1(A∞,p, I0) inH1(A∞,p, Iad

0 )
determines an inner twist Iv of I0 over Qv at each place v 6= p,∞ of Q, which is none other than
the centralizer of γa in GQv (up to inner automorphisms). By Lemma 3.2.8, [b] ∈ B(I0,Qp) maps

into the basic subset B(Iad
0,Qp), which is in bijection with H1(Qp, I

ad
0 ). Hence [b] gives rise to an

inner twist Ip of I0,Qp . At ∞, the choice of (T∞, h) as in §3.2.9 gives a Cartan involution Int(h(i))
on (I0/ZG)R. Thus we obtain an inner twist I∞ of I0,R such that I∞/ZG,R is R-anisotropic.

If α(c) is trivial, then by [KSZ, Prop. 1.7.12], there exists an inner twist Ic of I0 over Q such that
Ic,Qv is isomorphic to Iv as an inner twist of I0,Qv at every place v.

3.2.11. Summary. We have assigned the following data to each c = (γ0, a, [b]) ∈ KPb:

• semisimple conjugacy classes γa ∈ Γ(G(A∞,p)) and δ[b] ∈ Γ(Jb(Qp)),
• a finite abelian group E(c) = E(I0, G;A/Q),
• the Kottwitz invariant α(c) ∈ E(c) and local invariants βv(c) ∈ π1(I0)Γv ,
• local inner twists Iv of I0,Qv if c is acceptable; also an inner twist Ic of I0 over Q localizing

to Iv if α(c) is trivial.

3.3. The trace formula for Igusa varieties. Continuing from the preceding subsection, we
maintain Hypotheses 3.1.3, 3.1.6, and 3.2.1.

Definition 3.3.1. A central character datum for G is a pair (X, χ), where

• X = X∞X∞ is a closed subgroup of Z(A∞) × Z(R) equipped with a Haar measure on X,
such that X∞ ⊃ AG,∞ and that Z(Q)X is closed in Z(A),
• χ : X→ C× is a continuous character which is trivial on XQ := X ∩ Z(Q).

Example 3.3.2. An irreducible algebraic representation ξ of GC determines a central character
ωξ : Z(R)→ C×. The following pair is a central character datum:

(X0, χ0) := (AG,∞, ω
−1
ξ |AG,∞) (3.3.1)
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Example 3.3.3. Let ξ, ωξ be as above. Assume (3.1.1). Let K ⊂ G(A∞) be a neat open compact
subgroup. Set

X∞ := Z(A∞) ∩K, X∞ := Z(R), χ∞ := 1, χ∞ := ω−1
ξ . (3.3.2)

Then (X, χ) := (X∞X∞, χ
∞χ∞) is a central character datum. The only nontrivial point is that χ

is trivial on XQ, namely that ωξ is trivial on Z(Q) ∩K; this follows from [KSZ, Lem. 1.5.7].

3.3.4. Notation for the trace formula. We introduce the following notation.

• (X, χ) is the central character datum of Example 3.3.3.
• ΣR-ell(G) is the set of semisimple conjugacy classes in G(Q) which are elliptic in G(R).
• ΣR-ell(G)/XQ is the set of XQ-orbits in ΣR-ell(G) under the multiplication action.
• Fix a sufficiently divisible r ∈ Z>0 such that b is r-decent.
• Hacc(Jb(Qp)) is defined as in §2.7 by using ν = νb and viewing Jb as an inner form of Mb.

• For φ ∈ H(Jb(Qp)) and j ∈ rZ, define the translates φ(j) as in §2.7.

For each γ0 ∈ G(Q)R-ell,

• KPFr
b (γ0) is the set of Kottwitz parameters c whose first entry is equal to γ0 (not just

stably conjugate) and such that α(c) is trivial,
• ιG(γ0) := |(Gγ0/G

◦
γ0

)(Q)| ∈ Z>0,

• c2(γ0) := | ker(ker1(Q, I0)→ ker1(Q, G))| ∈ Z>0.

We fix Haar measures on G(A∞,p), Jb(Qp), I0(A∞,p), and I0(Qp). Suppose that c ∈ KPFr
b (γ0) is

acceptable. Recall the Q-group Ic from §3.2.10. Equip Ic(A∞) with the Haar measure compatible
with that on I0(A∞), and Ic(Q) with the counting measure. Define

c1(c) := vol(Ic(Q)\Ic(A∞)/X∞).

Let (γ, δ) ∈ Γ(G(A∞,p)) × Γ(Jb(Qp)) be the image of c under (3.2.1). Since γ is stably conjugate
to γ0, we see that G◦γ is an inner form of I0 over Qv for v 6= p,∞. So the Haar measure on
I0(A∞,p) determines a Haar measure on G◦γ(A∞,p). Similarly J◦b,δ(Qp) is equipped with a unique

Haar measure compatibly with I0(Qp), provided that the following claim is true: that J◦b,δ is an
inner form of I0 over Qp if δ is acceptable. Let us verify the claim. By taking a z-extension G1 of

G over Q, we reduce to the case where Gder = Gsc. (Lift γ0 to γ0,1 ∈ G1(Q), b to b1 ∈ G1(Q̆p),
and then b to b1 ∈ Dp(I0,1, G1; b1) via Lemma 4.3.10 below; just like γ0 and b determine δ, we use
γ0,1 and b1 to give δ1 ∈ Jb1(Qp). With these data, it suffices to check the claim on the level of G1.)
The property of having simply connected derived subgroup is inherited by the Levi subgroup Mb of
GQp , thus also by the inner form Jb of Mb. In particular, centralizers of semisimple elements in Mb

and Jb are connected. Since Mb is a quasi-split inner form of Jb, we can transfer δ ∈ Jb(Qp)ss to
some δ∗ ∈Mb(Qp)ss. Then Jb,δ is an inner form of Mb,δ∗ . On the other hand, δ∗ is νb-acceptable

since δ is νb-acceptable, so Mb,δ∗ = Gδ∗ . Now δ∗ is conjugate to γ0 in G(Qp), so Gδ∗ is an inner
form of I0,Qp . The claim is proved.

We define orbital integrals using the measures above, cf. (2.6.1),

OGγ (φ∞,p) =

∫
G◦γ(A∞,p)\G(A∞,p)

φ∞,p(x−1γx)dx, φ∞,p ∈ H(G(A∞,p)),

OJbδ (φp) =

∫
J◦b,δ(Qp)\Jb(Qp)

φp(y
−1δy)dy, φp ∈ H(Jb(Qp)).

We are ready to state the conjectural trace formula for Igusa varieties. The condition on φ∞,p

and φp below comes from compatibility with the central character datum (X, χ) fixed above.
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Conjecture 3.3.5. Given φ∞,p ∈ H(G(A∞,p)) and φp ∈ H(Jb(Qp)) which are invariant under

the translation by X∞,p and Xp respectively, there exists j0 = j0(φ∞,p, φp) ∈ Z>0 such that φ
(j0)
p ∈

Hacc(Jb(Qp)) and the following holds: for every integer j ≥ j0 divisible by r,

tr X∞
(
φ∞,pφ(j)

p |[Hc]b,ξ
)

=
∑

γ0∈ΣR-ell(G)/XQ

c2(γ0)tr ξ(γ0)

ῑG(γ0)

∑
c∈KPFr

b (γ0)

c1(c)OGγa(φ∞,p)OJbδ[b](φ
(j)
p ), (3.3.3)

where γa and δ[b] denote the image of c under the map (3.2.1).

3.3.6. First simplification. Let us point out how Conjecture 3.3.5 simplifies when Z◦G is a cuspidal
torus. In this case, Zac = {1} so assumption (3.1.1) is vacuous; moreover, Z◦(Q) is discrete in
Z◦(A∞). (See [KSZ, Def. 1.6.4, Lem. 1.5.5].) Therefore XQ = Z(Q) ∩K is a finite subgroup of K,
which must be trivial since K is neat. Hence the first sum in (3.3.3) is simply over γ0 ∈ ΣR-ell(G).

In this case, it is convenient to view formula (3.3.3) with respect to the central character datum
(X0, χ0) = (AG,∞, ωξ|AG,∞) from Example 3.3.2, which does not depend on K. To see that (3.3.3)
relative to (X, χ) is equivalent to the same formula relative to (X0, χ0), it is enough to observe that
XQ = X0,Q = {1} and that the volume of X appearing on both sides gets canceled out. (The volume
is implicit in the constant c1(c) as well as the trace on the left hand side.)

3.3.7. Second simplification. We still assume that ZG is a cuspidal torus, and in addition that
Gder = Gsc. The simplifications in §3.3.6 remain valid. Moreover the second sum of (3.3.3) can be
taken over classical b-admissible Kottwitz parameters via Lemma 3.2.7.

3.3.8. Known results. Let (G,X, p,G) be an integral Shimura datum such that

• (G,X) is of abelian type,
• G is a reductive model of GQp (so Kp = G(Zp) is hyperspecial).

The construction of canonical integral models (Hypothesis 3.1.3) has been carried out by [Kis10,
KMP16] for p > 2 and p = 2, respectively. Now we restrict (G,X) to a Shimura datum of
Hodge type. Then ZG is a cuspidal torus, so we are in the simple case of §3.3.6. Assumption
(3.1.1) is vacuous as mentioned in §3.3.6. The Igusa varieties satisfying Hypothesis 3.1.6 have been
constructed by [CS17, HK19] (also see [KS, §6]). In this situation, Mack-Crane [MC21] proves
Conjecture 3.3.5, generalizing from the case of PEL-type A or C ([Shi09]):

Theorem 3.3.9 (Mack-Crane). Conjecture 3.3.5 holds true when (G,X) is of Hodge type and G is
a reductive model.

We go back to consider (G,X) of abelian type and allow G to be a general parahoric model. Here
is progress towards Hypothesis 3.1.3 in this case: The integral models are constructed in [KP18,
PR] under certain technical assumptions. See [Pap, PR] for results on a unique characterization.
Hypothesis 3.1.6 is known by [HK19] over the integral models of [KP18] if (G,X) is of Hodge type.
Conjecture 3.3.5 is open in this generality.

Remark 3.3.10. We cautiously expect that future progress on Conjecture 3.3.5 would follow the
model of [MC21], namely by proving the “Langlands–Rapoport (LR) conjecture for Igusa varieties”.
In the notation and terminology of loc. cit., this conjecture, proven by [MC21] under the hypothesis
of Theorem 3.3.9, asserts that there exists a G(A∞,p)× Jb(Qp)-equivariant bijection

Igb(k) ∼=
∐
φ

Iφ(Q)\τ (G(A∞,p)× Jb(Qp)), (3.3.4)

where the disjoint union is over a set of representatives for isomorphism classes of b-admissible
morphisms; the symbol \τ means that the left quotient is twisted by an element τ(φ) ∈ Iad

φ (A∞).
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Moreover [MC21] establishes this bijection for a family of τ(φ) satisfying further conditions, in a
way exactly analogous to the Langlands–Rapoport-τ conjecture of [KSZ]. (See [MC21, Thm. 3.6.2]
for the precise statement.) In light of recent progress [KSZ, Zho20, vH] on the LR conjecture for
Shimura varieties, it may be possible to extend the LR conjecture for Igusa varieties and Theorem
3.3.9 to the case where (G,X) is of abelian type and G is a reductive model, and perhaps some
cases of parahoric G as well.

4. Stabilization

Assuming Conjecture 3.3.5 on the trace formula for Igusa varieties (cf. Theorem 3.3.9), we
stabilize the trace formula. The main theorem is Theorem 4.4.2.

4.1. Initial steps.

4.1.1. Haar measures. For every connected reductive group G′ over Q appearing in this section
(e.g., G, G1, H, H1 in §4.1.2 and §4.1.3), unless it is said otherwise, we equip G′(A) with the
canonical measure [Ono66, §2] and G′(Q) with the counting measure. Denote by AG′ the maximal
Q-split torus in ZG′ . On AG′,∞ := AG′(R)0, which is isomorphic to (R×>0)rankAG′ , we put the
multiplicative Lebesgue measure.

Let (X′, χ′) be a central character datum for G′. This comes with a Haar measure on X′. Set

τX′(G
′) := vol(G′(Q)\G′(A)/X′),

for the unique invariant measure on the double coset determined by the measures on G′(A), G′(Q),
and X′. When X′ = AG′,∞, the number τX′(G

′) is the usual Tamagawa number.

4.1.2. Setup. We assume Hypotheses 3.1.3 and 3.1.6 as well as (3.1.1). We retain the notation of
§3, and most importantly, assume Conjecture 3.3.5.

Choose a quasi-split group G∗ over Q that is an inner form of G and fix an inner twist ψ : G∗Q →
GQ which gives a cocycle z ∈ Z1(Q, G∗ad). We lift z to zrig ∈ Z1(P rig

V̇
→ Erig

V̇
, Z(G∗sc)→ G∗sc).

Fix a pinning (T ∗, B∗, {Xα}) for G∗ defined over Q. Write U∗ for the unipotent radical of B∗

and fix a continuous nondegenerate character θ∗ : U∗(Q)\U∗(A) → C×. In particular, (B∗, θ∗)
determines a global Whittaker datum w.

Fix a z-extension 1 → Z1 → G1 → G → 1 over Q. Applying §2.8.2 to H = G∗, we obtain
a z-extension 1 → Z1 → G∗1 → G∗ → 1. We pull back the pinning for G∗ to obtain a pinning
(T ∗1 , B

∗
1 , {Xα,1}) for G∗1 over Q. The unipotent radical of B∗1 is Q-isomorphic to U∗, so we have a

Whittaker datum w1 for G∗1 coming from (B∗1 , θ
∗). Note that G∗sc = G∗1,sc = G∗1,der. Following the

discussion in §2.5, zrig gives a family of elements zrig
sc,1,v for each place v of Q as well as local rigid

inner twists (G1,v, ψ1,v, z
rig
1,v) of G∗1. Moreover we can lift the Shimura datum (G,X) to (G1, X1)

such that the map G1 → G induces a morphism of Shimura data (G1, X1) → (G,X). Thus the
conjugacy class of cocharacters [µX1 ] is carried to [µX ] under G1 → G.

We have a central character datum (X, χ) from Example 3.3.3. Take X1 ⊂ ZG1(A) to be the
preimage of X, and define χ1 : X1,Q\X1 → C× by pulling back χ. We choose a unique Haar measure
on X1 such that τX(G) = τX1(G1). Then (X1, χ1) is a central character datum for G1.

4.1.3. Setup for endoscopic data. Choose a subset E♥ell(G) ⊂ Eell(G), which is a set of representa-

tives for Eell(G). For each e = (H,H, s, η) ∈ E♥ell(G), we fix some choices in preparation for the
stabilization. We apply §2.8.2 to obtain a z-extension

1→ Z1 → H1 → H → 1
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and an endoscopic datum e1 = (H1,
LH1, s1, η1) ∈ E(G1). We denote the set of such data by

E♥ell(G1). Following the procedure in §2.5, in light of Remark 2.5.2, we construct a local rigid

endoscopic datum ė1 = (H1,v,
LH1,v, ṡ1,v, η1,v) for G1,v while taking ẏ′1,v = 1 (and fixing a choice of

y′′1,v) at each place v of Q. Along the way, we choose s1,sc, thus also s1,der ∈ Ĝ1,der. We denote the

set of ė1 obtained in this way by E♥,rigv (G1).
Define XH1 to be the image of X1 under the canonical embedding ZG1(A) → ZH1(A). So

X1 = XH1 canonically by construction, and XH1 is the preimage of X ⊂ ZG(A) ⊂ ZH(A) in
ZH1(A) via the diagram (2.8.3). There is also a decomposition XH1 = X∞H1

XH1,∞. Concretely
XH1,∞ = ZH1(R), and X∞H1

is the preimage of ZG(A∞) ∩K.

The pullback of χ : XQ\X→ C× via XH1 → X will be still denoted by χ. Write

λH1 : ZG1(Q)\ZG1(A)→ C×

for the character as in §2.5.3, with H1, G1 playing the roles of H,G. We transport the Haar measure
from X1 to XH1 via X1 = XH1 . Thereby consider the central character datum (XH1 , χH1) for H1,
where χH1 : XH1,Q\XH1 → C× is given by

χH1 := χ · λH1 |−1
X1
.

We can view (X, χ) in §4.1.2 as a central character datum for H via the canonical embedding
ZG → ZH . We have the equality [KSZ, Lem. 8.2.2]

τXH1
(H1) = τX(H). (4.1.1)

4.1.4. Transfer factors. For each (H1,
LH1, s1, η1) ∈ E♥ell(G1) we choose a decomposition of the

canonical global transfer factor ∆A : H1(AF )(G1,H1)-reg ×G1(AF )ss → C as

∆A(γH1 , γ1) =
∏
v

∆[w1, z
rig
1,v](γH1,v, γ1,v),

which is possible by (2.5.1) and the choice ẏ′1,v = 1 in §4.1.3. For simplicity, we will often write

∆v = ∆[w1, z
rig
1,v], and ∆∞,p :=

∏
v 6=∞,p ∆v.

4.1.5. The first step. Let c = (γ0, a, [b]) ∈ KPb. For each place v of Q, define the Kottwitz sign

ev(c) := e(Iv) ∈ {±1}, e(c) :=
∏
v

ev(c),

where Iv is the inner form of I0,Qv in §3.2.10. We also write

e∞,p(γ0, a) :=
∏

v 6=p,∞
e(Iv), ep(γ0, [b]) := e(Ip), e∞(γ0); = e(I∞)

to make it clear what the signs exactly depend on.

Lemma 4.1.6. If α(c) is trivial, then

e(c) = 1, c1(c)c2(γ0) = τX(G) · |K(I0/Q)| · vol(Z(R)\I∞(R))−1.

Proof. If α(c) is trivial then e(c) =
∏
v e(Ic,Qv) = 1 in light of §3.2.10 and the product formula for

Kottwitz signs. The latter equality is [KSZ, Lem. 8.1.3]. �
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The first equality of the lemma implies that∑
κ∈K(I0/Q)

e(c)〈α(c), κ〉−1 =

{
|K(I0/Q)|, if α(c) is trivial,

0, otherwise.
(4.1.2)

We are assuming Conjecture 3.3.5. Fix φ∞,p, φp, and j as in the conjecture throughout this section.
For each c = (γ0, a, [b]) ∈ KPb and κ ∈ K(I0/Q), set

N(γ0, κ, a, [b], j) := 〈α(γ0, a, [b]), κ〉−1e(γ0, a, [b])
OGγa(φ∞,p)OJbδ[b](φ

(j)
p )tr ξ(γ0)

vol(Z(R)\I∞(R))
. (4.1.3)

Lemma 4.1.7. In the setting of Conjecture 3.3.5, equation (3.3.3) can be rewritten as

tr X∞
(
φ∞,pφ(j)

p |[Hc]b,ξ
)

= τX(G)
∑
γ0

ιG(γ0)−1
∑
κ

∑
(a,[b])

N(γ0, κ, a, [b], j), (4.1.4)

where the sums run over γ0 ∈ ΣR-ell(G)/XQ, κ ∈ K(I0/Q), and (a, [b]) ∈ D(I0, G;A∞,p) ×
Dp(I0, G; b), respectively.

Proof. We apply Lemma 4.1.7 and (4.1.2) to (3.3.3). Then tr X∞
(
φ∞,pφ

(j)
p |[Hc]b,ξ

)
equals∑

γ0

c2(γ0)tr ξ(γ0)

ῑG(γ0)

∑
c∈KPFr

b (γ0)

c1(c)OGγa(φ∞,p)OJbδ[b](φ
(j)
p )

=
∑
γ0

τX(G)

ιG(γ0)

∑
c∈KPb(γ0)

∑
κ

e(c)〈α(c), κ〉−1
OGγa(φ∞,p)OJbδ[b](φ

(j)
p )tr ξ(γ0)

vol(Z(R)\I∞(R))
,

where γ0 ∈ ΣR-ell(G)/XQ and κ ∈ K(I0/Q). Hence (4.1.4) holds in view of the definition (4.1.3). �

4.2. Stabilization away from p. This and the following subsections are devoted to orbital integral
identities, for one datum (H,H, s, η) ∈ E♥ell(G) at a time. The choices made in §4.1.3 will be used
freely.

4.2.1. Stabilization away from p and ∞. To transfer φ∞,p ∈ H(G(A∞,p), (χ∞,p)−1) to a function
on H1(A∞,p), we appeal to the usual Langlands–Shelstad transfer.

Lemma 4.2.2. There exists h∞,p1 ∈ H(H1(A∞,p), (χ∞,pH1
)−1) with the following property. For each

γH1 ∈ H1(A∞,p)(G1,H1)-reg, if γH1 has no image in G1(A∞,p) then SOγH1
(h∞,p1 ) = 0. If γH1 has

γ0,1 ∈ G1(A∞,p)ss as image, then writing γ0 ∈ G(A∞,p)ss for the projection of γ0,1, we have

SOH1
γH1

(h∞,p1 ) = ∆∞,p(γH1 , γ0,1)
∑

a∈D(I0,G;A∞,p)

〈β̃∞,p(γ0, a), κ〉−1e∞,p(γ0, a)OGγa(φ∞,p).

Proof. We may assume that φ∞,p =
∏
v 6=∞,p φv with φv ∈ H(G(Qv), χ

−1
v ). Choose a lift γ0,1 ∈

G1(A∞,p) of γ0 and denote the centralizer of γ0,1 in G1 by I0,1 (which is connected since G1,sc =
G1,der. Then the idea is to obtain the ∆∞,p-transfer h∞,p1 of φ∞,p by applying the Langlands–
Shelstad transfer and the fundamental lemma from G1 to H1 at each v 6= ∞, p (§2.6.3, §2.6.7),
and then go between G1 and G via the canonical bijection D(I0,1, G1;A∞,p) ∼= D(I0, G;A∞,p). See
[KSZ, §8.2.3] for the details, where the setup is identical (except that a normalization of transfer
factors is not specified therein). �
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4.2.3. Stabilization at ∞. Let us construct the function h1,∞ as a suitable linear combination of
averaged Lefschetz functions following [Kot90, §7], dividing into two cases.

Case 1. No elliptic maximal torus of GR is a transfer of a torus of HR. In this case, we simply set
h1,∞ := 0.

Case 2. An elliptic maximal torus T∞ of GR is a transfer of a torus TH∞ of HR. (We caution
that TH∞ is not the base change to R of TH in §4.1.3.) We fix such T∞ and TH∞ , thus also their
preimages T1,∞ in G1,R and TH1

∞ in H1,R. (Then TH1
∞ is an elliptic maximal torus in H1,R.) We fix

an isomorphism j1 : TH1
∞,C

∼→ T1,∞,C, which is canonical up to the action by the Weyl group Ω1 of

T1,∞,C in G1,C. We also choose a Borel subgroup B′1 of G1,C containing T1,∞,C. This determines a
Borel subgroup B′H1

of H1,C via j1. Let

∆j1,B′1
: TH1
∞ (R)(G,H)-reg × T1,∞(R)→ C

denote Shelstad’s transfer factor [She82, §3]. (We are following the convention of [Kot90, p.184].)
Write C∞ ∈ C× for the unique constant such that on (G1, H1)-regular elements,

∆∞ = C∞ ·∆j1,B′1
, (4.2.1)

where ∆∞ = ∆[w1, z
rig
1,∞] by our earlier convention. Write ξ1 for the representation of G1 that

is pulled back from ξ via the surjection G1 → G. Write ϕξ1 : WR → LG1 for the associated L-

parameter as in §2.6.10, and ΦH1(ξ1) for the isomorphism classes of L-parameters ϕH1 : WR → LH1

such that η1 ◦ ϕH1
∼= ϕξ1 . We have an injective map [Kot90, p.185]

ω∗ : ΦH1(ξ1)→ Ω1,

determined by the choice of j1 and B′1 above. Recall from §4.1.2 that we fixed a Shimura datum
(G1, X1). Choose h1 ∈ X1 factoring through T1,∞, which gives rise to a cocharacter µh1 : Gm →
T1,∞,C. On the other hand, we can transport ṡ1,∞ ∈ Z(̂̄H1)+ to T̂1,∞ via

Z(̂̄H1)+ → T̂H1,∞
j1∼= T̂1,∞.

Thus we can evaluate the pairing 〈µh1 , ṡ1,∞〉. Finally, define 1

h1,∞ := C∞(−1)q(G)〈µh1 , ṡ1,∞〉−1
∑

ϕH1
∈ΦH1

(ξ1)

det(ω∗(ϕH1))favg
ϕH1

∈ H(H1(R), χ−1
H1,∞),

where the averaged Lefschetz function favg
ϕH1

is as in §2.6.10. The χ−1
H1,∞-equivariance is verified as

in [KSZ, §8.2.5].

Lemma 4.2.4. If γH1 ∈ H1(R)ss is non-elliptic or non-(G1, H1)-regular then SOH1
γH1

(h1,∞) = 0. For

γH1 ∈ H1(R)ell which is (G1, H1)-regular, there exists a transfer γ0,1 ∈ G1(R)ell; writing γ0 ∈ G(R)
for the image of γ0,1, we have

SOH1
γH,1

(h1,∞) = ∆∞(γH1 , γ0,1)vol(Z(R)\I∞(R))−1〈β̃∞(γ0), κ̃〉−1e∞(I∞)tr ξ(γ0).

Proof. This is shown in [KSZ, §8.2.5] by extending from [Kot90, §7] via z-extensions, with h1,∞
defined without the constant C∞, when the transfer factor is normalized as ∆j1,B′1

. Our case is

immediate from it, in light of (4.2.1). �

1We have put an inverse over the pairings in the definition of h1,∞ and in the formula of Lemma 4.2.4, while
there is no inverse in [KSZ, §8.2.5]. The difference stems from our use of the Deligne normalization of transfer factors
unlike loc. cit., cf. §2.4.
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Remark 4.2.5. The constant C∞ can be pinned down by a spectral pairing. More precisely, fix ϕH1

as above and choose j1 and B′1 such that (j1, B
′
1, B

′
H1

) is aligned with ϕH1 in the sense of [Kot90,

p.184]. Write π′ for the discrete series representation of G1(R) corresponding to B′1. Then the
spectral transfer factor ∆(ϕH , π

′) equals 1 with respect to ∆j1,B′1
, whereas ∆(ϕH , π

′) = e(G)〈ṡ, π̇′〉
with respect to ∆[w1, z

rig
1,∞] by [Kal16, Prop. 5.10] (in the notation thereof). Hence C∞ = e(G)〈ṡ, π̇′〉

in this case.

4.3. Stabilization at p. After some preliminaries, we begin to stabilize the terms at p in §4.3.8.
The reader may jump to §4.3.8 and refer to the preceding materials as needed.

4.3.1. Endoscopy at p. For each datum (H1,p,H1,p, ṡ1,p, η1,p) ∈ E♥,rigp (G1) we project ṡ1,p to

Z(Ĥ1,p)
ΓQp to get a refined datum (H1,p,H1,p, s1,p, η1,p) ∈ Eisoc(G1,p). Denote the set of these

refined data by E♥,isoc
p (G1). We caution the reader that s1,p is the projection of ṡ1,p to Z(Ĥ1,p)

ΓQp

which need not equal the image of s1 in Z(Ĥ1,p) under the identification Z(Ĥ1) = Z(Ĥ1,p). The

inner twist (G1,p, ψ1,p, z
rig
1,p) induces a unique L-isomorphism LG∗1,p

∼= LG1,p preserving the fixed
pinnings. Hence the above endoscopic data may be considered associated with either G1,p or G∗1,p.

Following [KS, Lem. 5.3.8], we choose a lift b1 ∈ G1(Qpr) of b such that νb1 is defined over Qp

and projects to νb. We fix A∗1, T
∗
1 , B

∗
1 as in §2.2.1, and then get a Levi subgroup Mb1 ⊂ G∗1,p that

is an inner form of Jb1 . Our fixed pinning of G∗1 and non-degenerate character θ∗ restrict to give a
Whittaker datum wb1 of Mb1 .

As in §2.7.9, consider the set E i
eff(Jb1 , G

∗
1,p;H1,p). We will now choose a set E♥b1

(H1,p) of repre-

sentatives for E i
eff(Jb1 , G

∗
1,p;H1,p). Following [BM, §2.7], we choose E♥b1

(H1,p) so that each represen-

tative maps to (H1,p,H1,p, s1,p, η1,p) under Y emb on the level of data (not just up to equivalence).
Moreover, we require Hb1 to be a standard Levi subgroup of H1,p relative to BH1 .

Given this data, we produce for each element of E♥b1
(H1,p) a Qp-homomorphism D ν−→ H1,p.

For (Hb1 ,Hb1 , H1,p,H1,p, s1,p, ηb1) ∈ E♥b1
(H1,p), we can choose a maximal torus T ′1 ⊂ Mb1 such

that TH1 transfers to T ′1. Hence we have a canonical isomorphism TH1
∼= T ′1 (up to our choice of

pinnings). We then define ν as the composition

D
νb1−−→ AMb1

⊂ T ′1 ∼= TH1 ⊂ H1,p.

It is easy to check that this does not depend on our choice of T ′1.

By replacing s1,p everywhere with ṡ1,p and forgetting H1,p,H1,p, we get from E♥b1
(H1,p) a set

E♥,rigb1
(H1,p) ⊂ Erig(Mb1).

4.3.2. Comparison of transfer factors. Recall that we have equipped G∗1,p with the data of a rigid

inner twist (G1,p, ψ1,p, z
rig
1,p). As discussed in §2.2.1, there exists g ∈ G∗1(Qpr) = G∗1(Qp) such that

the restriction of Int(g) ◦ψ1,p to Mb1 gives an inner twist ψb1 : Mb1,Qp
→ Jb1,Qp

. In particular, we

have the following commutative diagram of maps defined over Qp.

G∗
1,Qp

G1,Qp

Mb1,Qp
Jb1,Qp

.

Int(g)◦ψ1,p

ψb1

ιb1
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The map ιb1 gives an isomorphism onto its image and satisfies ιb1 ◦ σ(ι−1
b1

) = Int(b1) since ιb1 is

equivariant for the standard action of WQp on Jb1 and the twisted action on G1 (see §2.2.1). Then

b1 lifts to a cocycle in zisoc
b1
∈ Z1(E isoc

Qp , G1) (as in (2.2.2)) and by pullback we get a cocycle zrig,′
b1

of

Erig
Qp valued in G1. For ease of notation, we denote Int(g) ◦ ψ1,p by ψ1,p,(g). Let

zrig
1,p,(g) ∈ Z

1(Erig
Qp , G

∗
1,Qp

) be given by w 7→ ψ−1
1,p(g)−1zrig

1,p(w)w(ψ−1
1,p(g))

and note that ψ−1
1,p,(g) ◦ w(ψ1,p,(g)) = Int(zrig

1,p,(g)(w)) as automorphisms of G∗
1,Qp

. Then define

zrig
b1

(w) := ψ−1
1,p,(g)(z

rig,′
b1

(w))zrig
1,p,(g)(w) for w ∈ Erig

Qp .

We have the following lemma.

Lemma 4.3.3. The triple (Jb1 , ψb1 , z
rig
b1

) is a rigid inner twist of Mb1.

Proof. It is routine to check that zrig
b1

is an algebraic 1-cocycle of Erig
Qp valued in G∗

1,Qp
. We have a

commutative diagram:

Mb1,Qp
im(ιb1)

Jb1,Qp
.

ψb1

ψ1,p,(g)

ι−1
b1

By equation (2.1.1) of Lemma 2.1.9, we have that zrig
b1

(w) = ψ−1
b1
◦ w(ψb1) as automorphisms of

Mb1,Qp
. Since ψ−1

b1
◦w(ψb1) ∈Mb1,ad(Qp), it follows that zrig

b1
(w) commutes with Z(Mb1) and hence

factors through Mb1 . �

Remark 4.3.4. We note that in general, it will not be possible to express Jb1 as an extended pure
inner twist of Mb1 .

We temporarily fix a νb1-acceptable, semisimple element γ0,1 ∈ G1(Qp) as well as an element
b1 ∈ I0,1(Qpr) that is a decent representative of a class [b1] ∈ B(I0,1) that maps to [b1] ∈ B(G1).
We suppose further that there exists γ1 ∈ Mb1(Qp) such that ψ1,p(γ1) is stably conjugate to γ0,1.
By §3.2.6, have an associated conjugacy class δ[b1] ∈ Γ(Jb1(Qp)) and by assumption, (ιb1 ◦ψb1)(γ1)

and ιb1(δ[b1]) are stably conjugate in G1. It follows from [Shi09, Lem. 3.6] that γ1 and ψ−1
b1

(δ[b1])
are stably conjugate in Mb1 .

Lemma 4.3.5. We have the equality:

〈inv[zrig
1,p](γ1, γ0,1), ṡ1,p〉〈inv[zrig

b1
](γ1, δ[b1]), ṡ1,p〉−1 = 〈βp(γ0,1, [b1]), s1,p〉,

where s1,p is the image of ṡ1,p in Z(Ĥ)ΓQp .

Proof. We recall that βp(γ0,1, [b1]) is defined to be κI0,1([b1]) and that there is c ∈ G1(Q̆p) such

that b1 = c−1b1σ(c) and ιb1(δ[b1]) = cγ0,1c
−1. In fact, since b1 and b1 are n-decent for some

sufficiently divisible n, it follows from [RZ96, Corollary 1.10] that c ∈ G1(Qpn) ⊂ G1(Qur
p ). We

fix d1 ∈ Mb1(Qp) satisfying ψb1(d1γ1d
−1
1 ) = δ[b1], noting that such a d1 exists by the discussion

immediately before this lemma. Putting d2 := ψ−1
1,p,(g)(c

−1)d1, we check that

ψ1,p,(g)(d2γ1d
−1
2 ) = c−1ψ1,p,(g)(d1γ1d

−1
1 )c = c−1ιb1(ψb1(d1γ1d

−1
1 ))c = c−1ιb1(δ[b1])c = γ0,1.
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The element b1 corresponds to an algebraic 1-cocycle zisoc
b1
∈ Z1

alg(E isoc
Qp , G1) and as in 2.2.1, we

have κG1(b1) = κG1(zisoc
b1

). Similarly, b1 corresponds to a zisoc
b1
∈ Z1

alg(E isoc
Qp , I0,1) and this cocycle

satisfies zisoc
b1

(w) = c−1zisoc
b1

(w)w(c) for each w ∈ E isoc
Qp . This pulls back to a cocycle zrig

b1
∈ Z1(u →

Erig
Qp , Z(I0,1) → I0,1). By, the aforementioned preservation of Kottwitz maps, Lemma 2.4.6, and

equation (2.4.3) we have

〈βp(γ0,1, [b1]), s1,p〉 = 〈zisoc
b1 , s1,p〉 = 〈zrig

b1
, ṡ1,p〉 = 〈inv[zrig,′

b1
](γ0,1, δ[b1]), ṡ1,p〉.

Finally, observe that from νb1-acceptability, the various centralizers Iγ1 , I0,1, Iδ1 are all inner
forms and we have a commutative diagram

Iγ1,Qp
I0,1,Qp

Iδ[b1],Qp
.

ψ1,p,(g)◦Int(d2)

ψb1
◦Int(d1)

ι−1
b1
◦Int(c)

By construction, the cocycles [zrig
1,p]γ1,γ0,1 , [z

rig
b1

]γ1,δ[b1]
, zrig
b1

(notation is as in (2.4.3)) are those cor-

responding to the above maps via w 7→ ψ−1 ◦ w(ψ), starting from the horizontal map and then
counterclockwise. Moreover, we claim the following equality of these cocycles

(ψ1,p,(g) ◦ Int(d2))−1(zrig
b1

)[zrig
1,p]γ1,γ0,1 = [zrig

b1
]γ1,δ[b1]

. (4.3.1)

Before verifying this claim, we first note that by definition of d2,

ψ1,p,(g) ◦ Int(d2) = Int(c−1) ◦ ψ1,p,(g) ◦ Int(d1). (4.3.2)

Now, expanding the right-hand side of (4.3.1) gives

[zrig
b1

]γ1,δ[b1]
(w) = d−1

1 zrig
b1

(w)w(d1) = d−1
1 ψ−1

1,p,(g)(z
rig,′
b1

(w))zrig
1,p,(g)(w)w(d1).

We then apply ψ1,p,(g) ◦ Int(d2) using (4.3.2) to get

c−1zrig,′
b1

(w)ψ1,p,(g)(z
rig
1,p,(g)(w)w(d1)d−1

1 )c.

On the other hand, expanding the left-hand side of (4.3.1) and applying ψ1,p,(g) ◦ Int(d2) gives

zrig
b1

(w)(ψ1,p,(g) ◦ Int(d2))([zrig
1,p]γ1,γ0,1(w)) = c−1zrig,′

b1
(w)w(c)ψ1,p,(g)(z

rig
1,p,(g)(w)w(d2)d−1

2 ). (4.3.3)

Observe that we have
ψ1,p,(g)(d

−1
2 ) = ψ1,p,(g)(d

−1
1 )c,

and

ψ1,p,(g)(w(d2)) = (ψ1,p,(g) ◦ w(ψ−1
1,p,(g)))(w(c−1))ψ1,p,(g)(w(d1))

= ψ1,p,(g)(z
rig
1,p,(g)(w))−1w(c−1)ψ1,p,(g)(z

rig,(g)
1,p (w))ψ1,p,(g)(w(d1))

so that after cancellation, the right-hand side of (4.3.3) equals

c−1zrig,′
b1

(w)ψ1,p,(g)(z
rig
1,p,(g)(w)w(d1)d−1

1 )c.

Hence (4.3.1) is proved.
From equations (4.3.1) and (2.4.3), it follows that

(ψ1,p,(g) ◦ Int(d2))−1(inv[zrig,′
b1

](γ0,1, δ[b1]))inv[zrig
1,p](γ1, γ0,1) = inv[zrig

b1
](γ1, δ[b1]). (4.3.4)

Thereby we obtain the desired equality using Lemma 2.1.10. �
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Lemma 4.3.6. Let (Hb1 ,Hb1 , H1,p,H1,p, s1,p, ηb1) ∈ E♥b1
(H1,p). Suppose γHb1

∈ Hb1(Qp)ss is

(G∗1, H1,p)-regular and γ1 ∈Mb1(Qp)ss. We have the following equality of transfer factors

|DG∗1
Mb1

(γ1)|
1
2
p |DH1,p

Hb1
(γHb1

)|−
1
2

p ∆[wb1 ](γHb1
, γ1) = ∆[w1](γHb1

, γ1).

(See §1.5 for the definition of Weyl discriminants appearing on the left hand side.)

Proof. This is [BM, Prop. 5.3], cf. [Wal97, Lem. 6.5]. �

Corollary 4.3.7. Let (Hb1 ,Hb1 , H1,p,H1,p, ṡ1,p, ηb1) ∈ E♥,rigb1
(H1,p). Using the same notation as

Lemma 4.3.5, we have the following equality:

∆[w1, z
rig
1,p](γHb1

, γ0,1) = 〈βp(γ0,1, [b1]), s1,p)〉|D
G∗1
Mb1

(γ1)|
1
2
p |DH1,p

Hb1
(γHb1

)|−
1
2

p ∆[wb1 , z
rig
b1

](γHb1
, δ[b1]).

Proof. This follows from Lemmas 4.3.5 and 4.3.6 and equation (2.4.1). �

4.3.8. Stabilization at p. We now return to the notation of §4.1. For each datum (H,H, s, η) ∈
E♥ell(G) we can localize at p to get a standard endoscopic datum in E(GQp). We denote the set of

data produced in this way by E♥p (G). We then define the set E Σ♥p (G) as {(e, γHp) : e ∈ E♥p (G), γHp ∈
Σ(Hp)(G,Hp)-reg}. Following (2.3.3) (cf. [Kot86, Lem. 9.7]), we get a map E Σ♥p (GQp)→ EK(GQp).

Remark 4.3.9. To orient the reader, we compare the set E Σ♥p (GQp) to the sets appearing in §4.3.1

such as E♥b1
(H1,p). The point is that given a standard endoscopic datum (H,H, s, η) of G over Q,

we can get a local endoscopic datum at p in two ways. One way is to simply base-change to Qp

as we have done in this subsection. This produces a standard endoscopic datum over Qp that may

not be refined since s need not lie in Z(Ĥ)ΓQp . This endoscopic datum is the one mostly closely
related to the “p-part” of (4.1.4) since our s will yield a κ ∈ K(I0/Q).

On the other hand, one can localize (H,H, s, η) as in 2.5.1 to produce a rigid endoscopic datum
(Hp,Hp, ṡp, ηp) over Qp. This rigid endoscopic datum yields a refined endoscopic datum by pro-

jection of ṡp to Z(Ĥp)
ΓQp . This is essentially the approach followed in §4.3.1 and is the one that

yields an appropriately normalized local transfer factor from the perspective of endoscopy for rigid
inner forms.

The goal is then to compare these two notions of local endoscopy. This is accomplished by
combining Corollary 4.3.7 with equation 4.3.6. (This is reminiscent of the stabilization at p for

Shimura varieties in [Kot90, §7]. The stabilization there is carried out at first when s ∈ Z(Ĥp)
ΓQp ;

the general case is reduced to this case by translating s by an element of Z(Ĝ), which introduces
a factor analogous to our µh1(y1,pg

−1) showing up below.)

We now fix a datum e∗p = (Hp,Hp, s∗p, ηp) ∈ E♥p (G) and γHp ∈ Σ(Hp)(G,Hp)-reg. We use the
∗ superscript to distinguish s∗p from the elements s1,p of §4.3.1. The image under this map is

to be denoted by (γ0, κ) ∈ EK(GQp). Our fixed datum e∗p yields a lift of κ denoted κ̃ ∈ Z(Î0)
corresponding to s∗p via the construction of [Kot86, Lem. 9.7]. Choose a lift γ0,1 ∈ G1(Qp) of
γ0. We also have an endoscopic datum (H1,p,H1,p, s

∗
1,p, η1,p) of G1,Qp , corresponding to e∗p via the

construction in §2.8.2. This yields an element κ̃1 ∈ Z(Î0,1) which equals the image of κ̃ under the

map Z(Î0)→ Z(Î0,1).
Our goal in this subsection is to rewrite the expression

∆p(γH1,p , γ0,1)
∑

[b]∈D(I0,G,b)

〈β̃p(γ0, [b]), κ̃〉−1ep(γ0, [b])O
Jb
δ[b]

(φ(j)
p ), (4.3.5)
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where ∆p = ∆[w1, z
rig
1,p], in terms of stable orbital integrals on endoscopic groups of G1,p.

Henceforth, we simplify the notation by dropping the superscript (j) from φp and assume that
φp ∈ Hacc(Jb(Qp)). Our first task is to lift (4.3.5) from G to G1.

Lemma 4.3.10. We have a canonical bijection

D(I0,1, G1,b1) = D(I0, G,b),

as well as a row-exact commutative diagram

1 π1(Z1) π1(I0,1) π1(I0) 1

π1(Z1)ΓQp π1(I0,1)ΓQp π1(I0)ΓQp 1ε

induced by the exact sequence 1→ Z1 → I0,1 → I0 → 1.

Proof. The second fact is standard and follows from [Kot84, (1.8.1)]. We now prove that the nat-
ural map D(I0,1, G1,b1) → D(I0, G,b) is a bijection. By [Kot97, §4.5] and [Kot14, Prop. 10.4],
B(Z1) acts transitively on each fiber of the maps B(I0,1) → B(I0) and B(G1) → B(G). The
action is equivariant for the map B(I0,1) → B(G). Moreover, the stabilizer of each fiber is
given by ker(H1(Qp, I0,1) → H1(Qp, I0)) and ker(H1(Qp, G1) → H1(Qp, G)) respectively. Since
H1(Qp, Z1) = {1}, these stabilizers are trivial. This implies the desired result. �

Each [b] ∈ D(I0, G,b) gives an element [b1] ∈ D(I0,1, G1,b1) by Lemma 4.3.10. Define β1,p =
κI0,1([b1]) ∈ π1(I0,1)ΓQp . It follows from the diagram in Lemma 4.3.10 that β1,p ∈ π1(I0,1)ΓQp lifts

to an element β̃1,p ∈ π1(I0,1) which projects to β̃p ∈ π1(I0). By construction, we have 〈β̃1,p, κ̃1〉 =

〈β̃p, κ̃〉. Since Ip and I1,p have the same adjoint group, the Kottwitz signs match: ep(γ0, [b]) =

ep(γ0,1, [b1]) (see [Kot83]). Moreover OJbδ[b](φp) = O
Jb1
δ[b1]

(φ1,p), where φ1,p ∈ Hacc(Jb1 ,1X1,p) is the

pullback of φp under the map Jb1(Qp)→ Jb(Qp). Since φp is invariant under Xp, the function φ1,p

is invariant under its preimage X1,p in Jb1(Qp).
Hence, by the equalities of the previous paragraph, the expression in (4.3.5) becomes

∆p(γH1,p , γ0,1)
∑

[b1]∈D(I0,1,G1,b1)

〈β̃1,p, κ̃1〉−1ep(γ0,1, [b1])O
Jb1
δ[b1]

(φ1,p).

Recall from §4.1.3 that we had s1,der ∈ Ĝ1,der and chose y′1,p = 1 so that y1,p = y′′1,p in the

definition of ṡ1,p as in §2.5. Let g ∈ Z(Ĝ1) be such that κ̃1 = s1,derg. Recall that s1,p is defined as the

projection of ṡ1,p to Z(Ĥ1)ΓQp and that η̄1(ṡ1,p) = (ssc, ẏ1,p), where η̄1 : ̂̄H1 → ̂̄G1 is as in Definition

2.3.4. It follows that we have η1(s1,p) = s1,dery1,p = κ̃1g
−1y1,p. Moreover g−1y1,p ∈ Z(Ĝ1), so

〈β̃1,p, κ̃1〉 = 〈β1,p, η1(s1,p)〉µh1(y−1
1,pg). (4.3.6)

Now suppose that there exists eb1 = (Hb1 ,Hb1 , H1,p,H1,p, ṡ1,p, ηb1) ∈ E♥,rigb1
(H1,p) as well as

γHb1
∈ Σ(Hb1(Qp)) that transfers to δ1 ∈ Σ(Jb1(Qp)) and whose image in Σ(H1,p(Qp)) is γH1,p .

Write ∆b1 for the transfer factor ∆[wb1 , z
rig
b1

]. (This is different from ∆p.) Then substituting the

above equality and applying Corollary 4.3.7, the preceding formula for (4.3.5) becomes∑
[b1]∈D(I0,1,G1,b1)

µh1(y1,pg
−1)∆b1(γHb1

, δ1)|DH1,p

Hb1
(γHb1

)|−
1
2

p |D
G∗1
Mb1

(γ1)|
1
2
p ep(γ0,1, [b1])O

Jb1
δ[b1]

(φ1,p).
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Following [Shi10, §6.3], we define a character δ̄P (ν̄b1
) : Jb1(Qp) → C× such that δ̄P (ν̄b1

)(δ
′
1) =

δP (ν̄b1
)(γ
′
1), where δP (ν̄b1

) : Mb1(Qp) → C× is the modulus character for P (ν̄b1) and δ′1 ∈ Jb1(Qp)

and γ′1 ∈Mb1(Qp) are semi-simple elements with matching stable conjugacy class. We then define

φ0
1,p := φ1,p · δ̄

1
2

P (ν̄b1
) ∈ Hacc(Jb1(Qp),1X1,p).

Let φ
Hb1
p ∈ H(Hb1(Qp), χ

−1
Hb1

) be a ∆b1-transfer of φ0
1,p to Hb1 as in Proposition 2.6.6. In fact,

since the set of ν-acceptable elements is open, closed, and invariant under stable conjugacy, we can

and do choose φ
Hb1
p ∈ Hacc(Hb1(Qp), χ

−1
Hb1

) by multiplying with the characteristic function on the

set of ν-acceptable elements. We have∑
[b1]

µh1(y1,pg
−1)∆b1(γHb1

, δ1)|DH1,p

Hb1
(γHb1

)|−
1
2

p |D
G∗1
Mb1

(γ1)|
1
2
p ep(γ0,1, [b1])O

Jb1
δ[b1]

(φ1,p)

=
∑
[b1]

µh1(y1,pg
−1)∆b1(γHb1

, δ1)|DH1,p

Hb1
(γHb1

)|−
1
2

p ep(γ0,1, [b1])O
Jb1
δ[b1]

(φ0
1,p)

= µh1(y1,pg
−1)|DH1,p

Hb1
(γHb1

)|−
1
2

p SO
Hb1
γHb1

(φ
Hb1
p ),

where the sums run over [b1] ∈ D(I0,1, G1,b1). The first equality above holds because either δ[b1]

is not νb1-acceptable (in which case O
Jb1
δ[b1]

(φ1,p) = 0 = O
Jb1
δ[b1]

(φ0
1,p) ), or it is acceptable and then so

is γ1, which implies |DG∗1
Mb1

(γ1)| = δP (νb1
)(γ1) by [Shi10, Lem. 3.4].

Finally, we need to rewrite this expression in terms of stable orbital integrals of H1,p. By
Lemma 2.7.7 generalized to the central character setting as in [KS, §3.5], there exists a ν-ascent

f
eb1
b1
∈ H(H1,p(Qp), χ

−1
H1,p

) of φ
Hb1
p . (We are inserting the superscript to emphasize the dependence

on eb1 .) The central character should indeed be χ−1
H1,p

as one can see from comparing Lemmas 4.3.6

and 2.4.3. We then have

|DH1,p

Hb1
(γHb1

)|−
1
2

p SO
Hb1
γHb1

(φ
Hb1
p ) = SO

H1,p
γH1,p

(f
eb1
b1

).

In conclusion, we have proven that

µh1(y1,pg
−1)SO

H1,p
γH1,p

(f
eb1
b1

) = ∆b1(γH1,p , γ0,1)
∑

[b]∈D(I0,G,b)

〈β̃p(γ0, [b]), κ̃〉−1ep([b])O
Jb
δ[b]

(φp). (4.3.7)

We repeat the construction of f
eb1
b1

for each eb1 ∈ E♥,rigb1
(H1,p) and define

h1,p :=
∑

eb1
∈E♥,rigb1

(H1,p)

µh1(y1,pg
−1)f

eb1
b1
∈ H(H1,p(Qp), λH1,p).

Proposition 4.3.11. For each (G1, H1)-regular γH1,p ∈ Σ(H1,p(Qp)), we have

SOγH1,p
(h1,p) = ∆p(γH1,p , γ0,1)

∑
[b]∈D(I0,G,b)

〈β̃p(γ0, [b]), κ̃〉−1ep([b])O
Jb
δ[b]

(φp),

if (H1,H1, s1, η1, γH1,p) ∈ E Σisoc
eff (G1) and otherwise,

SOγH1,p
(h1,p) = 0.
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Proof. We suppose first that (H1,H1, s1, η1, γH1,p) /∈ E Σisoc
eff (G1) and suppose for contradiction that

SOγH1,p
(f

eb1
b1

) 6= 0 for some f
eb1
b1

corresponding to an element of E♥,rigb1
(H1,p). Then by the definition

of f
eb1
b1

(Definition 2.7.6) we must have that γH1,p is stably conjugate in H1,p to some ν-acceptable
γHb1

∈ Hb1 . The class of

(Hb1 ,Hb1 , H1,p,H1,p, s1,p, ηb1 , γHb1
) in E Σemb(Mb1 , G1)

cannot lie in E Σemb
eff (Jb1 , G1), since otherwise the image in E Σisoc(G1) would lie in E Σisoc

eff (G1). This
means (see the paragraph below Definition 2.7.10) that the corresponding class of EKisoc(Mb1 , G1)
does not lie in EKisoc

eff (Jb1 , G1). Let (γ, λ) be a representative of this class in EKisoc(Mb1 , G1). Then
either the stable conjugacy class of γ does not transfer to Jb1 or it transfers to an element that is

not νb1-acceptable. Either way, we have SOγH1,p
(f

eb1
b1

) = 0 since f
eb1
b1

is the transfer of a function

on Jb1 supported on acceptable elements.
We now consider the case that (H1,H1, s1, η1, γH1,p) ∈ E Σisoc

eff (G1). By Equation (4.3.7), it
suffices to show that

SO
H1,p
γH1,p

(f
eb1
b1

) 6= 0 for a unique eb1 ∈ E♥,rigb1
(H1,p),

and that for each eb1 , there is a unique νb1-acceptable γHb1
∈ Σ(Hb1(Qp)) that is stably conjugate

to γH1,p in H1,p(Qp). To this end, suppose

• eb1 , e
′
b1
∈ E♥,rigb1

(H1,p),

• γHb1
∈ Σ(Hb1(Qp)) (resp. γH′b1

∈ Σ(H ′b1
(Qp))) is ν-acceptable relative to eb1 (resp. e′b1

),

• γHb1
and γH′b1

are both stably conjugate to γH1,p in H1,p.

The tuple underlying e′b1
is labeled in the obvious way as for eb1 . Then the tuples

(Hb1 ,Hb1 , H1,p,H1,p, s1,p, η1,p) and (H ′b1
,H′b1

, H1,p,H1,p, s1,p, η
′
1,p) (4.3.8)

must project to elements of E Σemb
eff (Jb1 , G1) or otherwise the contributions to the integral

SO
H1,p
γH1,p

(f
eb1
b1

) are zero by the previous part of the proof. Now consider the two classes in

EKisoc(Mb1) that we get via the maps

E Σemb
eff (Jb1 , G1)→ E Σisoc(Mb1)→ EKisoc(Mb1)

and let (γ, λ) and (γ′, λ′) be representatives of these classes. Since both γHb1
and γ′H′b1

are conjugate

to γH1,p in H1,p(Qp), we have that γ and γ′ are stably conjugate in G1(Qp) by (2.3.5). Then, by
[Shi10, Lem. 3.5] (since γ, γ′ are νb1-acceptable), we have that γ and γ′ are stably conjugate in
Mb1 . This implies that (γ, λ) and (γ′, λ′) are in the same class in EKisoc(Mb1 , G1) and hence that
the classes of the two tuples (4.3.8) in E Σemb

eff (Jb1 , G1) are equal. Then by Lemma 2.7.13, we must
have that H ′b1

= Hb1 and that γHb1
and γ′H′b1

are stably conjugate in Hb1 . This completes the

proof. �

4.4. Final steps. For each e = (H,H, s, η) ∈ E♥ell(G), we have e1 = (H1,
LH1, s1, η1) ∈ E♥ell(G1). In

the last subsection,we constructed the functions h∞,p1 , h1,∞, and h1,p. Take

h1 := h∞,p1 h1,∞h1,p ∈ H(H1(A), χ−1
H1

).

For each γH1 ∈ H1(Q), write StabXH1
(γH1) for the group of x ∈ XH1,Q such that xγH1 is stably

conjugate to γH1 . This has an obvious analogue with H in place of H1. For h′1 ∈ H(H1(A), χ−1
H1

),
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we define
STH1

ell,χH1
(h) := τXH1

(H1)
∑
γH1

|StabXH1
(γH1)|−1SOγH1

(h′1), (4.4.1)

where the sum runs over Σell,XH1
(H1). We recall from [KSZ, Lem. 8.3.8] that for every γH1 ∈

H1(Q)(G1,H1)-reg, if we write γH ∈ H(Q) for the image of γH1 then

|StabXH1
(γH1)| = |StabXH (γH)| ιH(γH), (4.4.2)

where ιH(γH) is as in §3.3.4. Put λ(e) := |Out(e)| ∈ Z>0 and define the coefficient

ι(e) := τ(G)τ(H)−1λ(e)−1 = τX(G)τX(H)−1λ(e)−1 ∈ Q>0. (4.4.3)

Recalling the notation from §2.3 (with F = Q), we have a composite map

E Σisoc(G1)
(2.3.3)−→ EKisoc(G1)→ EKisoc(G), (4.4.4)

where the second map is induced by the projection G1 → G. By EKisoc(G)KPb
we denote the subset

of (γ0, λ) ∈ EKisoc(G) such that there exists an acceptable Kottwitz parameter (γ0, [a], b) ∈ KPb

(see Definition 3.2.4).

Lemma 4.4.1. Let γH1 ∈ H1(Q)ss and assume that γH1 is elliptic in H1(Q). If either

(i) (e1, γH1) /∈ E Σisoc(G1) (namely γH1 /∈ H1(Q)(G1,H1)-reg, or γH1 ∈ H1(Q)(G1,H1)-reg but does
not transfer to G1(Q)), or

(ii) the image of (e1, γH1) under (4.4.4) lies outside EKisoc(G)KPb
, then

SOγH1
(h1) = 0.

If (e1, γH1) belongs to E Σisoc(G1) and has image (γ0, κ) ∈ EKisoc(G)KPb
, then

SOγH1
(h1) =

∑
(a,[b])

N(γ0, κ, a, [b], j),

where the sum runs over D(I0, G;A∞,p)×Dp(I0, G; b).

Proof. We begin with proving the second assertion. In that case, (e1, γH1) transfers to (γ0,1, κ̃1) ∈
EKisoc(G1). Moreover (e1, γH1,p) ∈ E Σisoc

eff (G1) by definition, and γ0,1, γ0 are elliptic in G1(R), G(R),
respectively. The formula for SOγH1

(h1) then follows from the defining formula (4.1.3) and the

equality 〈α(γ0, a, [b]), κ〉 = 〈β(γ0, a, [b]), κ̃〉 as well as the local formulas: Lemmas 4.2.2, 4.2.4, and
Proposition 4.3.11.

To check the first assertion, we may assume that γH1 ∈ H1(Q) is (G1, H1)-regular and transfers
over R to an element of G1(R)ell by Lemma 4.2.4. In light of Lemma 4.2.2, we may also assume that
γH1 transfers over A∞,p to an element of G1(A∞,p), as we already see that SOγH1

(h1) = 0 otherwise.

By Hypothesis 3.2.1, γH1 transfers to an element of G1(Qp) as well. Now that γH1 transfers locally
everywhere to an element of G1(A), the argument of [Kot90, p.188] (using R-ellipticity) shows that
γH1 transfers to an element γ0,1 ∈ G1(Q). In particular, (e1, γH1) /∈ E Σisoc(G1), and its image in
EKisoc(G1) is (γ0,1, λ1) for some λ1. Write (γ0, λ) ∈ EKisoc(G) for the image of (γ0,1, λ1).

It remains to show that, assuming SOγH1
(h1) 6= 0, the element γ0 can be extended to an accept-

able parameter in KPb. It suffices to verify that γ0,1 can be extended to an acceptable parameter
(γ0,1, [a1], b1) ∈ KPb1 . We have already seen that γ0,1 is R-elliptic. We can take [a1] to be trivial.
Finally, let us find b1 as desired from Proposition 4.3.11. Since SOγH1

(h1,p) 6= 0, the proposition

tells us that there exists (δ1, λ
′
1) ∈ EKisoc

eff (Jb1 , G1) corresponding to (e1, γH1). Indeed, we can
find b1 ∈ Dp(I0,1, G1; b1) from δ1 ∈ Jb1(Qp) using the bijection from Dp(I0,1, G1; b1) to the set
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of conjugacy classes in Jb1(Qp) which become stably conjugate to γ0,1 in G(Qp). (This bijection
uses G1,sc = G1,der. See the proof of [KSZ, Prop. 7.4.16].) The proof of the first assertion is
complete. �

Theorem 4.4.2. Assume that Conjecture 3.3.5 is true. Then (3.3.3) may be rewritten as

tr
(
φ∞,pφ(j)

p

∣∣ιHc(Igb,Lξ)
)

=
∑

e∈E♥ell(G)

ι(e)STH1
ell,χe

1
(h1).

Proof. This last step in the stabilization is nearly identical to the proof of [KSZ, Thm. 8.3.10] but
we provide some details for completeness. We define the set

E Σ∼ell(G) := {(e, γH) : e ∈ E♥ell(G), γH ∈ Σ(H(F ))ell,(G,H)-reg},
on which x ∈ XQ = X ∩ Z(Q) acts by (e, γH) 7→ (e, xγH). Write E Σ∼ell,X(G) for the quotient set
by this action. Similarly, ΣKell,X(G) is the quotient of ΣKell(G) by the multiplication action of XQ.

The natural map Ẽ : E Σ∼ell(G) → ΣKell(G), which is constructed in the same way as (2.3.3), is

XQ-equivariant, thus induces a map ẼX : E Σ∼ell,X(G) → ΣKell,X(G). (See also [KSZ, §8.3.1], where

the same maps Ẽ and ẼX are defined.)
The right hand side of the theorem is computed as follows. We start by plugging in (4.4.1),

(4.4.3) and (4.1.1), where γH1 ∈ H1(Q) denotes an arbitrary lift of γH ∈ H(Q) in the second, third,
and fourth lines (each summand is indpendent of the choice of γH1):

τXH (G)
∑

e∈E♥ell(G)

λ(e)−1
∑

γH1
∈Σell,XH1

(H1)

|StabXH1
(γH1)|−1SOγH1

(h1)

(4.4.2)
== τXH (G)

∑
e∈E♥ell(G)

λ(e)−1
∑

γH∈Σell,X(H)

ιH(γH)−1SOγH1
(h1)

Lem. 4.4.1
== τX(G)

∑
(e,γH)∈EΣ∼ell,X(G)

λ(e)−1ιH(γH)−1SOγH1
(h1)

Lem. 4.4.1
== τX(G)

∑
(γ0,κ)∈ΣKell,X(G)

∑
(e,γH )∈EΣ∼

ell,X
(G)

ẼX:(e,γH )7→(γ0,κ)

λ(e)−1ιH(γH)−1SOγH1
(h1)

== τX(G)
∑

(γ0,κ)∈ΣKell,X(G)

γ0: R-elliptic

∑
a∈D(I0,G;Ap

f
)

[b]∈Dp(I0,G;b)

ιG(γ0)−1N(γ0, κ, a, [b], j).

More precisely, the second and third equalities follow from re-parameterizing the sums and imposing
additional conditions on γH based on the vanishing condition (i) in Lemma 4.4.1. The last equality
is obtained from Lemma 4.4.1 (the last assertion and vanishing condition (ii)) as well as [KSZ,
Cor. 8.3.5] (which relates ιG(γ0)−1 to a sum of λ(e)−1ιH(γH)−1). �
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Glossary

α(c) Kottwitz invariant associated to b-admissible Kottwitz parameter c 28
βv(c) term in construction of Kottwitz invariant α(c) 29

β̃v(c) term in construction of Kottwitz invariant α(c) 28

B(G) Kottwitz set of Frobenius conjugacy classes of G(Q̆p) 10
c b-admissible Kottwitz parameter 27
c1(c) vol(Ic(Q)\Ic(A∞)/X∞) 30
c2(γ0) | ker(ker1(Q, I0)→ ker1(Q, G))| ∈ Z>0 30
CKPb set of b-classical Kottwitz parameters 28
CQ closed dominant Weyl chamber 11
D pro-torus with character group Q 11
∆0 canonical local transfer factor for G∗ 21
∆A canonical adelic transfer factor 33
δPν (m) modulus character 22
∆[w] Whittaker normalized transfer factor for G∗ 16
∆[w, zrig] local transfer factor for G with rigid normalization 16
D(I,G;AS) ker(H1(AS , I)→ H1(AS , G)) 27
Dp(I,G; b) pre-image of [b] under B(I)→ B(G) 27

E♥b1
(H1,p) representatives of E emb

eff (Jb1 , G
∗
1,p;H1,p) 36

E♥ell(G) set of representatives of Eell(G) 32
E emb

eff (Jb, G;H) 23
E emb

eff (Jb, G) 23
E emb(M,G) set of isomorphism classes of embedded endoscopic data 14
Eemb(M,G) set of embedded endoscopic data 14
E emb(M,G;H) isomorphism classes of embedded endoscopic data relative to (H,H, s, η) 14
E (G) set of isomorphism classes of standard endoscopic data 13
E(G) set of standard endoscopic data 13
E(I,G;AS) ker(H1

ab(AS , I)→ H1
ab(AS , G)) 27

E i(M,G;H) inner isomorphism classes of embedded endoscopic data 14
E isoc
F local Kottwitz gerbe 11

E isoc
eff (Jb, G) 23

E isoc
eff (Jb, G;H) 23

EKisoc
eff (Jb, G) 23

EKisoc(G) 15
EKisoc(M,G) 15

Erig
F local rigid gerbe 7

E♥,rigv (G1) localizations of E♥ell(G1) using rigid inner twists 33

Erig

V̇
global rigid gerbe 8

E Σemb
eff (Jb, G) 23

E Σemb(M,G) 15
E Σisoc

eff (G) 23
E Σisoc

eff (Jb, G) 23
E Σisoc(M,G) 15
favg
ϕ averaged Lefschetz function 21̂̄G inverse limit of Ĝn 7
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ΓE/F Galois group of the extension E/F 5
ΓF absolute Galois group of F 5
Γ(G(F )) set of conjugacy classes in G(F ) 6
Gn G/Zn 7̂̄H inverse limit of Ĥn, where Hn = H/Zn and Zn ⊂ Z(G) 13
Hacc(Mν , χ

−1) subspace of Hecke algebra supported on ν-acceptable elements 22
H(F )(G,H)-reg (G,H)-regular elements of H(F ) 15
H(F )G-sr G-strongly regular elements of H(F ) 15
H(F )ss semi-simple elements of H(F ) 15
Hur(G,χ−1) unramified Hecke algebra relative to (X, χ) 20
Igb Igusa variety 26
inv[zisoc] invariant used in isocrystal normalization of local transfer factors 17
inv[zrig] invariant used in rigid normalization of local transfer factors 16

Jb connected reductive group associated to b ∈ G(F̆ ) 11
JP op

ν
(π) Jacquet module 22

κ Kottwitz map from B(G) to π1(G)ΓF 10
K(I/Q) Kottwitz group 27
KPb set of b-admissible Kottwitz parameters 27
λH character arising interaction of transfer factors and Z(G) 17

Mb Levi subgroup of G∗ associated to b ∈ G(F̆ ) 11
Mν centralizer of cocharacter ν in G 22

M rig

Ei,Ṡi
finite Galois module associated to global rigid gerbe 7

M rig
E,N finite Galois module associated to local rigid gerbe 7

[ν] slope morphism from B(G) to (HomF̆ (D, G)/G(F̆ ))〈σ〉 10
ν Newton map from B(G) to CQ 11

νb slope cocharacter attached to b ∈ G(F̆ ) 10
OGγ (f) orbital integral 19

φ(j) translate of φ 22

P rig

E,Ṡi
multiplicative group with character group M rig

Ei,Ṡi
8

P rig

V̇
inverse limit of P rig

E,Ṡi
8

ρG Map ρG : WF → Out(Ĝ) induced by action of WF on Ĝ 6
ShKp Shimura variety with parahoric level structure at p 25
ςb map from Igb to SKp,k

26

Σ(G(F )) set of stable conjugacy classes in G(F ) 6
Lξ lisse `-adic sheaf on SKp 26
SKp integral model of ShKp 25
SOGγ (f) stable orbital integral 20

ṡv element arising in compatible normalization ∆[wv, z
rig
v ] at each place v 18

τX′(G
′) vol(G′(Q)\G′(A)/X′) 32

TN Tate–Nakayama morphism for H1 of local or global rigid gerbes 7
u pro-finite group associated with local rigid gerbe 7

uE/F,N multiplicative group with character group M rig
E,N 7
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(X, χ) central character datum 19

ẏ′v element arising in compatible normalization of ∆[wv, z
rig
v ] at each place v 18

Zac anti-cuspidal part of Z◦G 26

Z( ̂̄G)+ pre-image in Z( ̂̄G) of Z(Ĝ)ΓF 7

Z( ̂̄H)+ pre-image of Z(Ĥ)ΓF in Z( ̂̄H) 13
zisoc algebraic 1-cocycle of local Kottwitz gerbe 17
Zn pre-image in Z(G) of (Z(G)/Z(Gder))[n] 13
zrig algebraic 1-cocycle of rigid gerbe 12
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