
COHOMOLOGY OF IGUSA CURVES – A SURVEY

SUG WOO SHIN

Abstract. We illustrate the strategy to compute the `-adic cohomology of Igusa varieties in the
setup of ordinary modular curves, with updates on the literature towards a genrealization.

1. Introduction

Igusa curves were introduced by Igusa [Igu68] to understand the mod p geometry of modular
curves when the level is divisible by p, for each prime p. As a generalization, we have Igusa varieties
in the setup of Shimura varieties of Hodge type thanks to [HT01, Man05, Ham17, Zha, HK19] Igusa
varieties shed light on the mod p and p-adic geometry of Shimura varieties via the so-called product
structure. Moreover they play a vital role in the applications to the Langlands correspondence,
vanishing results on the cohomology of Shimura varieties, and p-adic automorphic forms. We refer
to [KS, §1] for a detailed introduction to Igusa varieties and further references. For an application
to (an extension of) the Kottwitz conjecture on the cohomology of Rapoport–Zink spaces, see
[Shi12, BM].

A fundamental problem on Igusa varieties is to compute their `-adic cohomology (with or without
compact support) for primes ` 6= p. To this end, the Langlands–Kottwitz (LK) method for Shimura
varieties has been adapted to Igusa varieties in [HT01, Shi09, MC21], at least when the level
structure at p is hyperspecial. (In [HT01], one can go a little further.) While there are excellent
exposotions1 on the LK method for modular curves (with good reduction mod p) by Clozel [Clo93,
§3] and Scholze [Sch11, §5], in addition to Langlands’s original papers [Lan73, Lan76], there is no
counterpart for Igusa curves. The goal of this article is to spell out the LK method for Igusa curves
in a somewhat informal style, thereby to serve as a friendly entry point for the subject.
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RTG grant DMS-1646385. He is grateful to Takuya Yamauchi and Kazuki Morimoto for inviting
him to speak on cohomology of Igusa varieties at the RIMS conference “Automorphic forms, Au-
tomorphic representations, Galois representations, and its related topics” in January 25–29, 2021.
The present article works out the details of that talk in the simpler setup of elliptic modular curves.
The author thanks Yoichi Mieda for giving him an opportunity to present the contents as part of
the “Berkeley-Tokyo lectures on Number Theory”, January 12–15, 2021.

Notation and Conventions. When R is a commutative ring with unity, we often use R to mean
SpecR when there is no danger of confusion. For example, a scheme X over R means a scheme
over SpecR, and X ×R S means X ×SpecR SpecS when a ring homomorphism R→ S is given. By
(Set) (resp. (Sch/R)) we denote the category of sets (resp. schemes over R). We also write XS for
X ×R S if R → S is clear from the context. Similarly if X is a scheme, we write (Sch/X) for the

Date: July 4, 2021.
1There are also several valuable surveys on the LK method for more general Shimura varieties with different

emphases, such as [BR94, Clo93, GN09, Zhu20].
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category of schemes over X. Write Ẑp := lim←−(N,p)=1
Z/NZ and A∞,p := Ẑp ⊗Z Q for the ring of

adèles away from ∞, p. By C∞c (X), we mean the space of smooth compactly supported functions
on a locally compact group X (with values in C or Q`).

2. Modular curves

Let N ∈ Z≥3. Consider the moduli functor

YN : (Sch/Z[1/N ]) −→ (Set)

sending S to the set of isomorphism classes of pairs (E,α), where E is an elliptic curve over S, and

α : (Z/NZ)2 ∼→ E[N ] is an isomorphism of group schemes over S.

Theorem 2.1 (Igusa, Deligne–Rapoport). The functor YN is represented by a smooth affine curve
over Z[1/N ].

We keep writing YN for the curve it represents. Denote by E → YN the universal elliptic curve.
Consider the following inverse limit

YC := lim←−
N≥3

YN ×Z[1/N ] C,

which exists in the category of C-schemes as the transition maps are finite étale. We have

π0(YC) := lim←−
N≥3

π0(YN,C) = lim←−
N≥3

(Z/NZ)× = Ẑ×. (2.1)

From now on, fix a prime p once and for all. We restrict the level N to integers coprime to
p. Recall that an elliptic curve E over a field k of characteristic p is said to be supersingular if
#E[p](k) = 1. Otherwise E is said to be ordinary, in which case #E[p](k) = p. Accordingly we
have a partition of the topological space

YN,Fp = Y ord
N,Fp

∐
Y ss
N,Fp , (2.2)

where Y ord
N,Fp (resp. Y ss

N,Fp) is the subset of x ∈ YN,Fp such that the fiber Ex is an ordinary (resp. su-

persingular) elliptic curve. Thus we can view Y ord
N,Fp as an open subscheme of YN,Fp (and Y ss

N,Fp as a

closed 0-dimensional subscheme). As N ∈ Z≥3 varies over prime-to-p integers, the transition maps
are finite étale and compatible with the partition (2.2).

In this survey we will concentrate on the ordinary case though there is a parallel story in the
supersingular case.

Remark 2.2. The stratification (2.2) admits a vast generalization to general Shimura varieties. The
reader is referred to excellent articles such as [Man20, HR17].

3. Igusa curves

We keep fixing a prime p and let N ≥ 3 be an integer coprime to p. We still write E for
the universal elliptic curve over Y ord

N,Fp . For each integer m ≥ 1, we have the slope filtration

0→ E [pm]◦ → E [pm]→ E [pm]ét → 0 such that E [pm]ét is the maximal étale quotient. We introduce
the Igusa functor of level Npm as

Igord
N,m : (Sch/Y ord

N,Fp) −→ (Set), S 7→ {(j ét
m, j

◦
m)}, (3.1)

where j ét
m : Z/pmZ ∼→ E [pm]ét

S and j◦m : µpm
∼→ E [pm]◦S are isomorphisms of groups schemes over S.

A fundamental theorem by Igusa (reproduced by Katz–Mazur) is the following.

2



Theorem 3.1. The functor Igord
N,m is represented by a scheme, which is an étale GL1(Z/pmZ) ×

GL1(Z/pmZ)-torsor over Y ord
N,Fp.

As N ∈ Z≥3 and m ∈ Z≥0 vary, {Igord
N,m} forms a projective system with finite étale transition

maps, equippd with a prime-to-p Hecke action of GL2(A∞,p) defined in the same way for modular
curves. Define a Qp-group J := GL1 ×GL1, so that J(Qp) = Q×p ×Q×p is the automorphism group

of Qp/Zp × µp∞ in the isogeny category of p-divisible groups. The obvious action of Z×p × Z×p on

Igord
N,m by translating (j ét

m, j
◦
m) induces an action on

H i
c(Ig

ord
∞ ,Q`) := lim−→

N≥3, (N,p)=1,
m≥1

H i
c(Ig

ord
N,m,Fp

,Q`), i ≥ 0, (3.2)

which uniquely extends to an action of J(Qp). (Mantovan [Man05] proved that the action extends.
The same also follows from Caraiani–Scholze’s approach [CS17, CS].) The J(Qp)-action turns out
to commute with the GL2(A∞,p)-action. Finite-dimensionality of cohomology for each N and m
tells us that H i

c(Ig
ord
∞ ,Q`) is an admissible representation of GL2(A∞,p)×J(Qp). Now we can state

the goal of this article:

Goal: Compute (3.2) as a representation of GL2(A∞,p)× J(Qp).

Caraiani and Scholze [CS17, CS] defined another version of Igusa varieties directly at level Np∞.
In our case, their definition specializes to the following functor, where (Perf/Y ord

N,Fp) means the

category of perfect schemes over Y ord
N,Fp :

Igord
N,∞ : (Perf/Y ord

N,Fp) −→ (Set),

sending S to the set of isomorphisms Qp/Zp × µp∞
∼→ E [p∞]S between p-divisible groups over S.

This can be compared with the scheme

Igord
N,∞ := lim←−

m≥1

Igord
N,m,

where the “level-decreasing” transition maps are finite étale. As Igord
N,∞ form a projective system

with finite étale transition maps as N varies, we can take the limit scheme Igord
∞ .

Theorem 3.2 (Caraiani–Scholze). The functor Igord
N,∞ is represented by a perfect scheme over Y ord

N,Fp
and canonically isomorphic to the perfection of Igord

N,∞.

Since perfection does not affect topological information such as étale cohomology or the set of
Fp-points, we can use either Igord

N,∞ or Igord
N,∞. Since the former is built out of finite-level Igusa

curves, it is useful for applying a fixed point formula. On the other hand, Igord
N,∞ is a little more

convenient for defining group actions and describing the Fp-points.

Remark 3.3. We can define Igss
N,∞ and Igss

N,∞ in analogy with the ordinary case. Then Igss
N,∞ is

already perfect and Igss
N,∞ = Igss

N,∞.

3



4. Fp-points of Igusa curves

In order to achieve the aforementioned goal via a fixed-point formula, we need to describe the
set of Fp-points of Igusa curves

Igord
∞ (Fp) = lim←−

(N,p)=1, N≥3

Igord
∞ (Fp) = lim←−

(N,p)=1, N≥3

Igord
∞ (Fp)

with the GL2(A∞,p)× J(Qp)-action.

Let us set up some more notation. Write Z̆p := W (Fp) and Q̆p := W (Fp)[1/p]. Denote by Ell0

the set of isogeny classes of elliptic curves over Fp. Those of ordinary elliptic curves define a subset

Ell0,ord. We identify Ell0,ord with a set of representatives by fixing a representative in each isogeny
class.

When E is an elliptic curve over Fp, define

• I(E) := (EndFp(E)⊗Z Q)×,

• T p(E) := lim←−(N,p)=1
E[N ](Fp),

• T̆p(E) to be the covariant Dieudonné module of E[p∞].

As we are concerned with the ordinary case, I(E) = F× for an imaginary quadratic field F . (As

an algebraic group over Q, I(E) = ResF/QGm.) A standard fact is that T pE is a free Ẑp-module

of rank 2, and T̆pE is free of rank 2 over Z̆p (which is the Z̆p-linear dual of H1
cris(E/Z̆p)). At p, we

have the extra structure of semi-linear maps F−1, V −1 on T̆pE such that F−1V −1 = V −1F−1 = p.

(The minus sign comes from the covariant convention.) It is useful to think of T pE as a Ẑp-lattice

in the free A∞,p-module V pE := T pE ⊗Z Q of rank 2. Similarly T̆pE is an F−1, V −1-invariant

lattice in V̆pE := T̆pE ⊗Z Q. (We have linear extensions of F−1, V −1 to self-bijections on V̆pE.)

Now we start our analysis of Fp-points from (3.1).

Igord
∞ (Fp) =


E : elliptic curve/Fp,
α : (Ẑp)2 ∼→ T pE,

j : Qp/Zp × µp∞
∼→ E[p∞]

 / '

=
∐

E0∈Ell0,ord

{
(E,α, j) as above,
s.t. ∃ an isogeny f : E → E0

}
/ '

=
∐

E0∈Ell0,ord

I(E0)\


(Lp, φp, Lp, φp) :

Lp ⊂ V pE0 is a Ẑp-lattice, φp : (Ẑp)2 ∼→ Lp,

Lp ⊂ V̆pE0 is an F−1, V −1-invariant Z̆p-lattice,

φp : Z̆2
p
∼→ Lp carries (1, p−1)σ on Z̆2

p to F on Lp.

 .

In the last expression, φp and φp are respectively Ẑp-linear and Z̆p-linear. Each equality above is
natural and equivariant with respect to the natural action of G(A∞,p) × J(Qp). To see the last
equality, one starts from (E,α, j) and chooses an isogeny f : E → E0. Then take Lp = f(T pE)

and Lp = f(T̆pE). We leave it as an exercise to give φp and φp from (E,α, j) and to show that the
left quotient by I(E0) cancels out the choice of f (so that the quotient set is independent of the
choice).
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To proceed, we give more convenient parametrizations of (Lp, φp) and (Lp, φp). We describe the
right GL2(A∞,p)-set (which is a torsor for the action)

Xp(E0) := {(Lp, φp) as above} = {(A∞,p)2 ∼→ V pE0},
where GL2(A∞,p) acts on the last set through its natural action on (A∞,p)2. To obtain the inverse

map, notice that an isomorphism (A∞,p)2 ∼→ V pE0 determines (Lp, φp) by restriction to (Ẑp)2. The
above identification is also equivariant for the left action of I(E0), which naturally acts on V pE0.

Similarly we have a bijection of right J(Qp)-sets (which are J(Qp)-torsors)

X̆p(E0) := {(Lp, φp) as above} = {(Q̆p)
2 ∼→ V̆pE0, s.t. (1, p−1)σ ↔ F},

where J(Qp) acts as automorphisms of the isocrystal ((Q̆p)
2, (1, p−1)σ) associated with the p-

divisible group Qp/Zp × µp∞ . The above equality is equivariant for the left action of I(E0), which

acts as automorphisms of the isocrystal (V̆pE0, F ).
The progress so far may be summarized as follows. As right GL2(A∞,p)× J(Qp)-sets,

Igord
∞ (Fp) =

∐
E0∈Ell0,ord

I(E0)\ (Xp(E0)×Xp(E0)) . (4.1)

By choosing a base point, we can identify the right GL2(A∞,p) × J(Qp)-torsor Xp(E0) × Xp(E0)
with GL2(A∞,p)× J(Qp) equipped with an embedding of groups

I(E0) ↪→ GL2(A∞,p)× J(Qp),

well defined up to GL2(A∞,p) × J(Qp)-conjugacy. On the other hand, a special case of Honda–

Tate theory over Fp (cf. [HT01, V.2] or [Shi09, §8]) tells us that Ell0,ord is in bijection with the
set IQF(p)(p) of imaginary quadratic fields (up to isomorphism) in whic p splits, where we assign

End(E)⊗ZQ (which is an imaginary quadratic field since E is ordinary) to each E ∈ Ell0,ord. Thus
we can rewrite (4.1) as follows.

Proposition 4.1. As right GL2(A∞,p)× J(Qp)-sets,

Igord
∞ (Fp) =

∐
F∈IQF(p)

F×\ (GL2(A∞,p)× J(Qp)) ,

where the quotient is taken with respect to the embedding of I(E0) = F× above.

Remark 4.2. Mack-Crane [MC21] recently obtained the analogue for Igusa varieties in the setup of
Hodge-type Shimura varieties with hyperspecial level at p, generalizing [Shi09] on the PEL case.

5. From Fp-points to the trace formula

Before we go from Proposition 4.1 to compute the `-adic cohomology, we need some preparation.
Let N ≥ 3 and m ≥ 1. Define

Kp = Kp(N) := ker(GL2(Ẑp)→ GL2(Ẑp/N Ẑp)) ⊂ GL2(A∞,p),
Kp = Kp,m := (1 + pmZp)× (1 + pmZp) ⊂ J(Qp).

Then Igord
N,m = Igord

∞ /Kp ×Kp. Let

gp ∈ GL2(A∞,p), gp = (gp,1, gp,2) ∈ J(Qp) = Q×p ×Q×p .

We say that gp is acceptable if the additive p-adic valuations satisfy the inequality vp(gp,1) > vp(gp,2).
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Write 1KpgpKp and 1KpgpKp for the characteristic functions on the corresponding double cosets,
viewed as elements of Hecke algebras for GL2(A∞,p) and J(Qp), respectively. Let [KpgpKp] and

[KpgpKp] denote the double coset operators on the set of Fp-points or cohomology of Igord
N,m. Denote

by Hc the alternating sum
∑

i≥0(−1)iH i
c in the Grothendieck group of representations. To achieve

the goal stated in §3, we compute

tr
(
1KpgpKp × 1KpgpKp | Hc(Ig

ord
∞ ,Q`)

)
,

which is equal to (the volume of Kp ×Kp times)

tr
(

[KpgpKp]× [KpgpKp] | Hc(Ig
ord
N,m,Fp

,Q`)
)
. (5.1)

Let Fix(A|B) denote the set of fixed points of an operator A acting on a mathematical object B.
We apply the fixed-point formula for non-proper varieties à la Fujiwara and Varshavsky2 to obtain
the following.

(5.1) = #Fix
(

[KpgpKp]× [KpgpKp] | Igord
N,m(Fp)

)
Prop. 4.1

== #Fix

[KpgpKp]× [KpgpKp] |
∑

F∈IQF(p)

F×\ (GL2(A∞,p)× J(Qp)) /K
p ×Kp

 .

The details are omitted, but this is turned into the following via the combinatorial lemma of [Mil92,
§5]:

=
∑

F∈IQF(p)

∑
a∈F×

#
(
F×\(Y p(a)× Y̆p(a))

)
, (5.2)

where

Y p(a) := {yp ∈ GL2(A∞,p)/Kp : ypgp = ayp in GL2(A∞,p)/Kp}
=

{
yp ∈ GL2(A∞,p)/Kp : (yp)−1ayp ∈ KpgpKp

}
,

Y̆p(a) := {yp ∈ J(Qp)/Kp : ypgp = ayp in J(Qp)/Kp}
=

{
yp ∈ J(Qp)/Kp : y−1

p ayp ∈ KpgpKp

}
.

Of course y−1
p ayp = a in our setup since J(Qp) is abelian, but we chose to write y−1

p ayp since this
is the correct expression for general Igusa varieties where J is not a torus. Thus we can rewrite
(5.2) as

=
∑

F∈IQF(p)

∑
a∈F×

∫
F×\GL2(A∞,p)×J(Qp)

1KpgpKp((yp)−1ayp)× 1KpgpKp(y
−1
p ayp)d(yp, yp).

Since the integrand depends only on the F×A∞-coset of (yp, yp), we can rewrite
∫
F×\GL2(A∞,p)×J(Qp)

as vol(F×\F×A∞)
∫
F×\GL2(A∞,p)×J(Qp), and then express the integral as an orbital integral at a:

=
∑

F∈IQF(p)

∑
a∈F×

vol(F×\F×A∞)OGL2(A∞,p)
a (1KpgpKp)O

J(Qp)
a (1KpgpKp).

2To apply this formula, we need to twist the double coset operator by a sufficiently high power of Frobenius. In
this article we will gloss over this point, but this turns out to be harmless for computing the cohomology. See [HT01,
V.1] or [Shi09, §6] for details.
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Now we reparametrize the pairs (F, a) in the sum. We will view J(Qp) = GL1(Qp) × GL1(Qp)
as the diagonal subgroup of GL2(Qp) below. Recall that an element γ0 ∈ GL2(Q) is said to be
R-elliptic if γ0 is either central or has imaginary eigenvalues. We use the symbol ∼ to designate
the conjugacy relation. Then

Lemma 5.1. There is a natural bijection between the following two sets:

(i) {(F, a) : F ∈ IQF(p), a ∈ F×, s.t. a is conjugate to an acceptable element of J(Qp)},
(ii) C := {(γ0, δ) : γ0 ∈ GL2(Q)/ ∼ R-elliptic, δ ∈ J(Qp)/ ∼ acceptable},

given as follows. For each pair (F, a), write a = (a1, a2) ∈ F×Qp
∼= Q×p ×Q×p ; then vp(a1) 6= vp(a2) by

the condition on a. The pair is sent to (a, δ), where δ = (a1, a2) if vp(a1) > vp(a2), and δ = (a2, a1)
otherwise.

Proof. Left as an exercise. �

We apply the lemma to the preceding formula to obtain

(5.1) =
∑

(γ0,δ)∈C

vol(F×\F×A∞)OGL2(A∞,p)
γ0 (1KpgpKp)O

J(Qp)
δ (1KpgpKp).

As we can take finite linear combinations of test functions of the form 1KpgpKp (resp. 1KpgpKp), we
arrive at the following.

Theorem 5.2. Let fp ∈ C∞c (GL2(A∞,p)), f ′p ∈ C∞c (J(Qp)), and assume that f ′p is supported on
acceptable elements. Then

tr
(
fp × f ′p | Hc(Ig

ord
∞ ,Q`)

)
=

∑
(γ0,δ)∈C

vol(F×\F×A∞)OGL2(A∞,p)
γ0 (fp)O

J(Qp)
δ (f ′p).

6. `-adic cohomology of Igusa curves

To achieve the goal stated in §3, the final step is to extract spectral information about the
cohomology from the trace formula above. We need some input from the theory of automorphic
forms. There are two key ingredients, local and global, which we state without proofs but include
references. We fix an isomorphism ι : Q`

∼= C to identify Q` and C coefficients of representations.

(Local) There exists a “transfer” from f ′p ∈ C∞c (J(Qp)), supported on acceptable elements, to
fp ∈ C∞c (GL2(Qp)) such that for every semisimple element γ ∈ GL2(Qp),

O
GL2(Qp)
γ (fp) =

{
O
J(Qp)
δ (f ′p), if ∃ acceptable δ ∈ J(Qp) s.t. δ ∼ γ,

0, otherwise.
(6.1)

Moreover a character identity is satisfied by f ′p and fp:

trπp(fp) = tr (JNop(πp)⊗ δ1/2
P (Qp))(f

′
p), ∀πp : irred. adm. representation of GL2(Qp), (6.2)

where P is the upper triangular Borel subgroup of GL2, Nop is the unipotent radical of the opposite
parabolic of P , δP (Qp) is the modulus character on P (Qp), and JNop is the normalized Jacquet
module relative to Nop from representations of GL2(Qp) to those of J(Qp). We remark that [Shi10,
Lem. 3.9] proves this local fact in a more general setup. (See the proof of [KS, Lem. 3.1.2] for a
small correction to the statement and proof of [Shi10, Lem. 3.9].)
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(Global) There exists an Euler–Poincaré function f∞ ∈ C∞c (GL2(R)/R×>0), which encodes the
“weight 2 condition” for classical modular forms in the following sense: for each irreducible unitary
representation π∞ of GL2(R) whose central character is trivial on R×>0,

trπ∞(f∞) =


−1, if π∞ is the weight 2 discrete series representation,

1, if π∞ = χ ◦ det for χ = 1 or χ = sgn,

0, otherwise.

(6.3)

Here we have written sgn for the sign character on R×. Moreover, a simiple trace formula of the
following form holds:

tr
(
fpfpf∞|L2

disc(GL2(Q)\GL2(A)/R×>0)
)

(6.4)

=
∑

γ∈GL2(Q)/∼
R-elliptic

(volume) ·OGL2(A∞)
γ (fpfp) + (error terms).

When γ is noncentral so that it generates an imaginary quadratic field F over Q, the volume term
is precisely vol(F×\F×A∞) that we saw before. (The existence of f∞ and the simple trace formula
are respectively due to Clozel–Delorme [CD85] and Arthur [Art89] in quite a general setup.)

Write A1(GL2) for the set of 1-dimensional automorphic representations π of GL2(A) such that
π∞ ∈ {1, sgn ◦ det}. By Awt 2(GL2) we denote the set of cuspidal automorphic representations
π of GL2(A) arising from weight 2 modular forms. By ( )ss, we mean the semisimplification of a
representation with respect to the given action.

Theorem 6.1. As GL2(A∞,p)× J(Qp)-representations, we have:

H2
c (Igord

∞ ,Q`) =
⊕

π∈A1(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp)),

H1
c (Igord

∞ ,Q`)
ss =

⊕
π∈Awt 2(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp)) + (error terms),

H0
c (Igord

∞ ,Q`) = 0.

Remark 6.2. One can think of δ
1/2
P (Qp) as “raising weight by 1”. So when πp is tempered (thus so

is JNop(πp)), we expect JNop(πp) ⊗ δ1/2
P (Qp) to appear in H1

c (except that H i
c need not be pure of

weight i due to non-properness). When dimπp = 1 (nontempered), JNop(πp) is not unitary but

has “weight 1”, so JNop(πp) ⊗ δ1/2
P (Qp) is expected to contribute to H2

c . To make the use of weight

precise, the point is that Igord
∞ is defined over Fp (not just Fp) and the geometric Frobenius action

coincides with the action of (1, p) ∈ J(Qp). Notice that indeed δ
1/2
P (Qp)((1, p)) = p.

Remark 6.3. The error terms in H1
c arise from spectral interpretation of the geometric error terms

(on the proper Levi subgroup GL1 × GL1 of GL2) in (6.4) as can be seen in the proof below. We
invite the reader to explicitly describe the error terms in H1

c .

Remark 6.4. The top-degree cohomology with compact support classsifies the set of irreducible com-
ponents; in our setup, this coincides with the set of connected components by (formal) smoothnes.
We leave it to the reader to notice the following: the description of H2

c (Igord
∞ ,Q`) implies that

π0(Igord
∞ ) is in GL2(A∞,p)× J(Qp)-equivariant bijection with π0(YC) = Ẑ×, cf. (2.1).
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Proof. Since Igord
N,m is affine of dimension 1, we have H i

c(Ig
ord
∞ ,Q`) = 0 unless i ∈ {1, 2}. To

understand
H2
c (Igord

∞ ,Q`)−H1
c (Igord

∞ ,Q`)

in the Grothendieck group of admissible GL2(A∞,p)×J(Qp)-representations, we rewrite the formula
in Theorem 5.2 in terms of automorphic representations.

tr
(
fp × f ′p | Hc(Ig

ord
∞ ,Q`)

)
=

∑
(γ0,δ)∈C

vol(F×\F×A∞)OGL2(A∞,p)
γ0 (fp)O

J(Qp)
δ (f ′p)

(6.1)
==

∑
γ0∈GL2(Q)/∼

vol(F×\F×A∞)OGL2(A∞,p)
γ0 (fp)O

GL2(Qp)
δ (fp)

(6.4)
== tr

(
fpfpf∞ | L2

disc(GL2(Q)\GL2(A)/R×>0)
)

+ (error terms)

(6.2)
== tr

(
fpf ′pf∞ | JNop

(
L2

disc(GL2(Q)\GL2(A)/R×>0)
)
⊗ δ1/2

P (Qp)

)
+ (error terms)

(6.3)
== tr

fpf ′p | ∑
π∈A1(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp))


−tr

fpf ′p | ∑
π∈Awt 2(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp))

 + (error terms)

At this point, we can remove the assumption that f ′p is supported on acceptable elements. In-
deed, [Shi09, Lem. 6.4] tells us that the trace identity between the first and last expressions in
the displayed formula above holds for all fp and all f ′p. Therefore, we have the identity in the
Grothendieck group

H2
c (Igord

∞ ,Q`)−H1
c (Igord

∞ ,Q`) (6.5)

=
∑

π∈A1(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp))−

∑
π∈Awt 2(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp)) + (error terms).

To separate H2
c from H1

c , the basic idea is that there is no cancellation between H2
c and H1

c since
the geometric Frobenius action (encoded by (1, p) ∈ J(Qp); see Remark 6.2) has weight=2 in H2

c

and weight≤ 1 in H1
c . There are at least a couple of ways to proceed.

(i) Show that the geometric Frobenius action has weight=2 in the first summation and <2
apart from it. (This method generalizes to study the top-degree Hc, or dually H0, of Igusa
varieties in the Hodge-type setting, as carried out in [KS].)

(ii) Verify that everything in the error terms has the negative sign. (This is harder to generalize
to higher dimensions when there are many cohomological degrees.)

Either way, we obtain

H2
c (Igord

∞ ,Q`) =
∑

π∈A1(GL2)

π∞,p ⊗ (JNop(πp)⊗ δ1/2
P (Qp))

in the Grothendieck group. Since distinct 1-dimensional representations of GL2(A∞,p) × J(Qp)
have no extensions between each other, we obtain the formula for H2

c in the theorem. From this,
we can compute H1

c up to semisimplification from (6.5). �
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Finally we remark that endoscopy complicates the whole computation when considering general
Igusa varieties, just like endoscopy intervenes in the computation of cohomology of Shimura vari-
eties. See [Shi20] for an illustrative account of endoscopic calculation for Igusa varieties associated
with certain unitary similitude groups. Endoscopy does not show up in the present artcile only
because we are restricting to the GL2-case.
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