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Abstract. This paper aims to recast the theory of theta correspondence in the geometric context of abelian
schemes and nondegenerate line bundles, which replace the role of symplectic vector spaces, continuing our
previous work. We start by formulating the notion of reductive dual pairs which fit well with our notion of
Weil representations and metaplectic group functors constructed in the earlier work. When specialized to the
case of base scheme SpecFp, our work provides an experimental framework for a mod p theta correspondence
for p-adic reductive groups. In the case of type II pairs, two results are obtained on the structure of mod p
Weil representations. First, the Weil representation turns out to have few quotients, which tells us that the
naive analogue of the classical theta correspondence is hopeless and would demand a new approach. Second,
a weak analogue of the unramified version of Howe’s conjecture still holds.

1. Introduction

1.1. Basic ingredients. 1 In §1.1 of [Shi], we mentioned that the following are needed to formulate the
classical theta correspondence. That paper studied (i), (ii) and (iii) in the context of abelian schemes and
nondegenerate line bundles. Once (iii) is obtained from (i) and (ii) and realized on explicit models, it is
often harmless to forget (i) and (ii).

(i) a p-adic Heisenberg group arising from a symplectic vector space (V, 〈·, ·〉) over Qp,
(ii) Stone Von Neumann theorem and Schur’s lemma for representations of the Heisenberg group,

(iii) the Weil representations of the p-adic metaplectic group Mp(V, 〈·, ·〉), and
(iv) reductive dual pairs in Sp(V, 〈·, ·〉).

Our first goal is to give a definition of (iv), in a general setting, which goes well with our earlier construction
of (i), (ii) and (iii). This will get us ready for exploring the “theta correspondence” in a broader context, in
particular for representations of p-adic reductive groups on Fp-vector spaces.

In fact when formulating the theta correspondence, one also needs a lemma amounting to the classical
fact that two elements in the metaplectic group commute if and only if their images in the symplectic group
commute. In the study of type II correspondence (§§5.4-5.5) the lemma is easy to prove. Although we
conjecture that the lemma is true in general, we have not been able to confirm it. (See §5.3 for detail.)

1.2. Mod l and mod p theta correspondences. There have been a few attempts (e.g. Minguez
([Min08b]) to extend the local theta correspondence for p-adic groups to Fl-vector spaces (rather than
C-vector spaces) when l 6= p. In fact, the basic objects like (i)-(iv) above all carry over from C to Fl rather
easily, basically by replacing C with Fl everywhere. Nevertheless, finding the correct formulation of mod
l theta correspondence may be a hard task. Minguez observed that already in the type II case, the naive
analogue of Howe’s conjecture (§5.1) on the bijectivity of the local theta correspondence does not hold (if
l is not a “banal” prime). Still, one has a good starting point for investigating a suitable mod l theta
correspondence. By contrast, perhaps there has not been much prospect for a mod p theta correspondence
for p-adic groups as (i)-(iv) were missing to our knowledge (before [Shi]).

1.3. Reductive dual pairs. We are naturally led to build a new definition of reductive dual pairs (marked
as (iv) above) which fits well into the geometric picture and coincides with the usual notion in the classical
case (S = SpecC). Recall that the usual way to construct a reductive dual pair (of type I) is as follows: a

1The author’s work was supported by The National Science Foundation during his stay at the Institute for Advanced Study
under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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Hermitian space (W1, 〈·, ·〉1) and a skew-Hermitian space (W2, 〈·, ·〉2), say over Qp, give rise to a symplectic
space (W1 ⊗Qp W2, 〈·, ·〉). Then the natural embedding

Aut(W1, 〈·, ·〉1)×Aut(W2, 〈·, ·〉2) ↪→ Sp(W1 ⊗W2, 〈·, ·〉)
realizes (Aut(W1, 〈·, ·〉1),Aut(W2, 〈·, ·〉2)) as a reductive dual pair in the symplectic group. Our idea is
basically to consider (A2, L2) instead of (W2, 〈·, ·〉2), where A2 is an abelian scheme and L2 is a nondegenerate
line bundle over A2. Or more precisely, (W2, 〈·, ·〉2) is replaced with (VpA2, ê

L2), consisting of the rational
p-adic Tate module of A and the L2-Weil pairing. Once we make sense of (A,L) := (W1 ⊗ A2, 〈·, ·〉1 ⊗ L2)
as an abelian scheme with a line bundle, we will be able to think of Aut(W1, 〈·, ·〉1) and Aut(VpA2, ê

L2
p ) as

a reductive dual pair in Sp(VpA, ê
L
p ).

From the representation theoretic viewpoint, it may not be always desirable that Sp(VpA, ê
L
p ) (which is

viewed as a sheaf on the base scheme S of A) varies when A moves in a family of abelian varieties, though
this may be an interesting phenomenon (especially in mixed characteristic). Thus we introduce a level
structure which is an isomorphism from VpA onto a fixed object with compatible symplectic structure. In
particular, it induces an isomorphism from Sp(VpA, ê

L
p ) onto a fixed symplectic group. When A is over C,

a level structure provides a way to recover the classical notion of (i)-(iv) from our construction. When A
is over Fp, a level structure is an isomorphism from VpA onto VpΣ for a fixed p-divisible group Σ. The
group Sp(VpA, ê

L
p ) is now different from the usual symplectic group. (For instance, if A is ordinary then

Sp(VpA, ê
L
p ) is isomorphic to a general linear group.)

In fact level structures alone are usually insufficient. To consider all possible reductive dual pairs, we need
to also consider an endomorphism structure for A as well. In other words, the formalism of reductive dual
pairs naturally requires a PEL structure2 on A, modulo the fact that we prefer a nondegenerate line bundle
to a polarization. Often the geometric literature restricts attention to ample line bundles, but it is worth
pointing out that we do need to treat nondegenerate line bundles in order to deal with all reductive dual
pairs. The reason is that L may not be ample even if L2 is ample, in the above notation. As an aside, we
recall that Howe asked in [How79, Rem §5.(c)] whether the reductive dual pairs have something do to with
the data defining PEL Shimura varieties. Our paper provides a partial answer to his question by pulling
them close to each other.

This completes a geometric construction of the basic objects which are needed to consider the theta
correspondence, which recovers the classical objects if we work over SpecC. As a consequence, we broaden
the scope of the theta correspondence. When the base scheme is SpecFp, this gets us ready for exploring a
mod p theta correspondence. (See §1.4 below.)

1.4. A mod p theta correspondence for p-adic groups. There would be two approaches to the theta
correspondence for Fp-representations of p-adic groups. The first way is to realize the classical theta corre-

spondence on Qp-representations (whenever possible), prove that certain Zp-structure is preserved, and then
take modulo p. However, this may not be the most natural approach. In the context of the p-adic Langlands
program, it is more natural to consider the mod p of a unitary Banach representation than the mod p of a
classical admissible representation of a p-adic group. Unfortunately we do not have a p-adic Banach version
of the Weil representation on a p-adic vector space, and this approach cannot be taken.

The second approach is based on the mod p Weil representation constructed in this article, which is natural
from the geometric viewpoint. Although we have the notion of reductive dual pairs, the difficulty here is
that it is not even clear how to formulate useful and plausible conjectures. The mod p Weil representations
have few quotients, and the naive analogue of Howe’s conjecture breaks down completely. Nevertheless, we
also prove a positive result, namely that a weak analogue of the unramified theta correspondence can be
shown for certain type II pairs. See §§5.4-5.5 for more detail.

It is worth recalling from [Shi] that the mod p versions of the Heisenberg group and the Heisenberg/Weil
representation can be constructed from a p-divisible group with a symplectic pairing, without any use of
(A,L). When the p-divisible group is ordinary, the Schrodinger model exists and provides a shortcut to
the Weil representation and the theta correspondence (Example 4.2), with few prerequisites. We use the
ordinary Schrodinger model in §5.

2P=Polarization, E=Endomorphism, L=Level structure
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1.5. Further developments and speculations. The geometric interpretation of the reductive dual pairs
may be of some use in the classical theta correspondence. We mentioned some idea in [Shi, §1.5]. As for
a conjectural mod p theta correspondence for p-adic groups, it is imperative to come up with a sensible
statement replacing Howe’s conjecture. To do so, a first step would be to collect many computational
examples. We restricted ourselves to type II pairs and ordinary p-divisible groups in §5 but the story would
be even more exciting for type I pairs and supersingular p-divisible groups. Eventually the proposed mod
p correspondence for p-adic groups should be compatible with the global theta correspondence for mod
p automorphic forms (whenever it becomes available) and interact reasonably with the mod p Langlands
program. Still not many tools are available in the mod p representations theory of p-adic groups. It would
be nice if our work eventually adds another weapon in constructing and classifying representations.

1.6. Organization. The organization of the paper is simple. Section 2 recollects basic materials on Her-
mitian and skew-Hermitian pairings (for which [MVW87] is a comprehensive reference) and adapt them to
rational Tate modules. In §3 and §4 we define geometric analogues of classical reductive dual pairs of type
I and II and give examples. The last section 5 reviews Howe’s conjecture in two versions, tests the validity
of their analogues in the setting of type II mod p theta correspondence, and ends with a brief speculation.

1.7. Acknowledgments. As this paper is a natural continuation of [Shi], I express my gratitude again to
all the people in the acknowledgments of that paper. Part of this work was completed during my stay at
the Institute for Advanced Study. I thank for its generous support.

1.8. Notation and Convention. When S is a scheme, denote by (Sch/S) the category of S-schemes. Most
of the time we work with schemes and ind schemes over S (often with group structure), in which case ×
always means a fiber product over S. Underlined notation such as Hom, Aut and End is used to denote a
sheaf or a functor whereas Hom, Aut and End denote the corresponding set, group and a ring. When X is an
abelian variety or a p-divisible group, we write End0(X) for End(X)⊗Z Q (equivalently the endomorphism
ring in the category in which isogenies are inverted).

The same notation as in the previous paper [Shi] will also be used here. For the reader’s convenience, we
recall some of the notation with reference points in that paper.

• A is an abelian scheme over S, and L is a nondegenerate line bundle.
• λL : A→ A∨ is the morphism given by x 7→ T ∗xL⊗ L−1 on points. (§2)
• TA (resp. V A) are (resp. ind-) group scheme versions of the (resp. rational) Tate module for A.

(§3.1)
• êL,Weil : V A× V A→ VGm is the L-Weil pairing. (§3.4)
• êL : V A×V A→ Gm is the commutator pairing of the Heisenberg group, satisfying [◦êL,Weil = êL,Weil

via the natural map [ : VGm → Gm. (§3.4)
• Mp(V A, êL) and Sp(V A, êL) are metaplectic and symplectic groups, defined as group functors on

(Sch/S). (§5.1)

2. Hermitian and skew-Hermitian pairings

This section contains preliminaries to be used later as a reference. It is recommended that the reader skip
§2 and come back as needed. Throughout this section,

• F0 is a field,
• D is a finite dimensional division algebra over F0, so that E := Z(D) ⊃ F0,
• ∗ is an involution on D acting as the identity on F0,
• F := E∗=1, so that F0 ⊂ F ⊂ E and 1 ≤ [E : F ] ≤ 2.

If E = F (resp. E ) F ) then ∗ is an involution of the first (resp. second) kind.

2.1. Basic definitions and properties.

Definition 2.1. Let ε ∈ {±1}. Let V (resp. W ) be a left (resp. right) D-module. We say that a
nondegenerate bilinear map 〈·, ·〉 : V × V → D a left (D, ∗)-linear ε-Hermitian pairing if

〈v′, v〉 = ε · 〈v, v′〉∗ 〈dv, d′v′〉 = d〈v, v′〉(d′)∗, d, d′ ∈ D, v, v′ ∈ D. (2.1)
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Similarly, a nondegenerate bilinear map 〈·, ·〉 : W ×W → D is a right (D, ∗)-linear ε-Hermitian pairing if

〈w′, w〉 = ε · 〈w,w′〉∗, 〈dw, d′w′〉 = d∗〈w,w′〉d′, d, d′ ∈ D, w,w′ ∈ D.
Often we say Hermitian (resp. skew-Hermitian) in place of ε-Hermitian if ε = 1 (resp. ε = −1).

With the above notation, define an F -group Aut(V, 〈·, ·〉) by the rule

Aut(V, 〈·, ·〉)(R) = {g ∈ EndR(V ⊗F R)|〈gv, gv′〉 = 〈v, v′〉, ∀v, v′ ∈ V }
for each F -algebra R. An F -group Aut(W, 〈·, ·〉) is defined similarly. When the context makes it clear
whether (W, 〈·, ·〉) is unitary, symplectic or orthogonal, we will often write U, Sp, O in place of Aut.

Definition 2.2. Let ε, V and W be as above. A nondegenerate F0-bilinear map (·, ·) : V × V → F0 is a
left (D, ∗)-ε-Hermitian F0-valued pairing on V if

(v′, v) = ε · (v, v′)∗ (dv, v′) = (v, d∗v′), d ∈ D, v, v′ ∈ D. (2.2)

A right (D, ∗)-ε-Hermitian F0-valued pairing on W is defined similarly. When F0 is clear from the context,
we will omit the reference to F0. (Note that different brackets are used in (2.1) and (2.2).)

Define an F0-group

Aut(V, (·, ·))(R) = {g ∈ EndR(V ⊗F0 R)|(gv, gv′) = (v, v′), ∀v, v′ ∈ V }
for F0-algebras R. Set trD/F0

:= trE/F0
◦ trD/E where trD/E is the reduced trace. Let ResF/F0

denote the
Weil restriction of scalars. The following lemma is obvious.

Lemma 2.3. If 〈·, ·〉 : V ×V → D (resp. 〈·, ·〉 : W×W → D) is a left (resp. right) (D, ∗)-linear ε-Hermitian
pairing then trD/F0

◦ 〈·, ·〉 is a left (resp. right) (D, ∗)-ε-Hermitian F0-valued pairing. Further, there is a
canonical isomorphism

ResF/F0
(Aut(V, 〈·, ·〉)) ' Aut(V, trD/F0

◦ 〈·, ·〉).

Remark 2.4. In fact the lemma is true if trD/F0
is replaced by any nondegenerate F0-linear pairing tD/F0

:
D ×D → F0.

Lemma 2.5. There is a natural bijection between the two sets consisting of

(i) left (D, ∗)-linear ε-Hermitian pairings 〈·, ·〉 on V and
(ii) left (D, ∗)-ε-Hermitian F0-valued pairings (·, ·) on V , respectively,

induced by 〈·, ·〉 7→ trD/F0
◦ 〈·, ·〉. Moreover the same map induces a bijection on the sets of isomorphism

classes of (i) and (ii).

Proof. The first bijectivity is deduced from the following claim: for any given (·, ·), there exists a unique
〈·, ·〉 such that

(v, v′) = trD/F0
(〈v, v′〉), v, v′ ∈ V.

To prove the claim, for each pair v, v′ ∈ V define 〈v, v′〉 to be the unique element δ ∈ D such that trD/F0
(dδ) =

(dv, v′) for all d ∈ D. (Such a δ uniquely exists since the trace pairing is nondegenerate.) Then it is a routine
check that 〈·, ·〉 is (D, ∗)-linear and ε-Hermitian. To verify the uniqueness of 〈·, ·〉, it is enough to note that
trD/F0

◦ 〈·, ·〉 = trD/F0
◦ 〈·, ·〉′ implies 〈·, ·〉 = 〈·, ·〉′ as the trace pairing is nondegenerate.

Let us show the bijectivity on the level of isomorphism classes. Let γ ∈ AutD(V ). What need to be
proved is the equivalence that

trD/F0
〈γv, γv′〉 = trD/F0

〈v, v′〉, ∀v, v′ ∈ V ⇔ 〈γv, γv′〉 = 〈v, v′〉 ∀v, v′ ∈ V.
The implication ⇐ is obvious. To see ⇒, substitute dv for v to obtain

trD/F0
(d〈γv, γv′〉) = trD/F0

(d〈v, v′〉), ∀v, v′ ∈ V, ∀d ∈ D.
The latter implies 〈γv, γv′〉 = 〈v, v′〉 as the trace pairing is nondegenerate. �

So far F0 has been any field. Let us put ourselves in the adelic situation in the case of F0 = Q.

Lemma 2.6. There is a bijection between the two sets consisting of

(i) left (D ⊗Q A∞, ∗)-linear ε-Hermitian pairings 〈·, ·〉 on V ⊗Q A∞ and
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(ii) left (D ⊗Q A∞, ∗)-ε-Hermitian A∞-valued pairings (·, ·) on V ⊗Q A∞, respectively,

induced by 〈·, ·〉 7→ trD/Q ◦ 〈·, ·〉. The same map induces a bijection on the sets of isomorphism classes.

Proof. The method of proof is the same as for Lemma 2.5. �

2.2. Hermitian pairings on V A. Let F0 = Q and (D, ∗) be as before. Let A be an abelian scheme over
S equipped with a D-action via a Q-algebra morphism i : D ↪→ End0

S(A). Let D ⊗Q VGm denote the
ind-group scheme over S representing the group functor T 7→ D⊗Q VGm(T ) on (Sch/S). To show that it is
representable, choose a Q-basis {ei}i∈I of D and write ejek =

∑
i∈I aijkei with aijk ∈ Q. Then D ⊗Q VGm

is isomorphic as a group functor to the ind-scheme
∏
i∈I VGm equipped with group law∏

j∈I
VGm(T )×

∏
k∈I

VGm(T ) 7→
∏
i∈I

VGm(T )

((γj)j∈I , (γk)k∈I) 7→

∑
j,k

(γjγk)
aijk


i∈I

.

Note that VGm(T ) is a Q-module (even an A∞-module), thus (γjγk)
aijk makes sense. There is an obvious

trace map trD/Q : D ⊗Q VGm 7→ VGm given by

(D ⊗Q VGm)(T ) = D ⊗Q VGm(T )
trD/Q⊗id→ Q⊗Q VGm(T ) = VGm(T ).

Let

ẽ : V A× V A→ D ⊗Q VGm and e : V A× V A→ VGm

be morphisms of S-group schemes which are bilinear in both arguments and nondegenerate in the obvious
sense. We say that ẽ is a (D, ∗)-linear ε-Hermitian pairing if (2.1) holds on scheme-valued points of V A
(with 〈·, ·〉 replaced by ẽ). Similarly e is said to be a (D, ∗)-ε-Hermitian pairing if (2.2) holds for e. (In our
convention the D-action on an abelian scheme is always a left action, so the word “left” will be omitted.)

Lemma 2.7. There is a bijection between the two sets consisting of isomorphism classes of

(i) (D, ∗)-linear ε-Hermitian pairings ẽ : V A× V A→ D ⊗Q VGm and
(ii) (D, ∗)-ε-Hermitian pairings e : V A× V A→ VGm, respectively,

induced by ẽ 7→ trD/Q ◦ ẽ.

Proof. The proof is omitted as it is an adaptation of the proof of Lemma 2.5 to the scheme-theoretic setting
and the essential idea is unchanged. �

2.3. Hermitian pairings on VpA. Now consider the p-adic case where F0 = Qp. Thus D is a finite
dimensional division Qp-algebra. We define D⊗Qp VpGm and the trace map trD/Qp

: D⊗Qp VpGm → VpGm

analogously as before.

Lemma 2.8. There is a bijection between the two sets consisting of isomorphism classes of

(i) (D, ∗)-linear ε-Hermitian pairings ẽ : VpA× VpA→ D ⊗Qp VpGm and
(ii) (D, ∗)-ε-Hermitian pairings e : VpA× VpA→ VpGm, respectively,

induced by ẽ 7→ trD/Qp
◦ ẽ.

Proof. Essentially the same as the proof of Lemma 2.7. �

3. Reductive dual pairs of Type I

To achieve our goal of formulating a candidate theta correspondence, we need to bring classical reductive
dual pairs into our context. This will take up sections 3 and 4. Rather than pursuing an abstract definition,
we give an explicit construction of reductive dual pairs. When the base S is SpecC we essentially recover
the classical dual pairs. In sections 3 and 4 we always assume that W1, W2 are nonzero D-modules and that
A2 has positive dimension unless specified otherwise.
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3.1. Classical reductive dual pairs of type I. As the p-adic case is similar, we only recall the number
field case. Let

• F0 be a finite extension field of Q,
• D, ∗, E, F be as at the start of §2.
• W be a finite dimensional F0-vector space of even dimension,
• 〈·, ·〉 : W ×W → F0 be a non-degenerate alternating F0-linear pairing.

Recall ([How79, §5], [MVW87, 1.19-1.20]) that a type I reductive dual pair arises from the following data.

• a right D-module W1 and a left D-module W2,
• a right (D, ∗)-linear Hermitian pairing 〈·, ·〉1 : W1 ×W1 → D,
• a left (D, ∗)-linear skew-Hermitian pairing 〈·, ·〉2 : W2 ×W2 → D

such that there is an F0-vector space isomorphism W1 ⊗D W2 'W under which we have

〈w1 ⊗ w2, w
′
1 ⊗ w′2〉 = trD/F0

(〈w1, w
′
1〉∗1〈w2, w

′
2〉2) (3.1)

for all w1, w
′
1 ∈ W1 and w2, w

′
2 ∈ W2. For i = 1, 2, define Gi := AutD(Wi, 〈·, ·〉i). The groups G1 and G2

form a reductive dual pair in SpF0
(W, 〈·, ·, 〉). If ∗ is of the first kind, G1 is an orthogonal group and G2 a

symplectic group. Otherwise G1 and G2 are unitary groups.

3.2. Setup for a geometric analogue. Consider the following data.

• S is a locally noetherian scheme,
• a finite dimensional division algebra D with involution ∗ whose center is finite over Q,
• F0 is a field contained in D∗=1,
• a pair (W1, 〈·, ·〉1) where

– W1 is a finite right D-module,
– 〈·, ·〉1 : W1 ×W1 → D is a (D, ∗)-linear Hermitian pairing and

• a triple (A2, L2, ι2) where
– A2 is an abelian variety over S,
– L2 is a nondegenerate symmetric line bundle over A2 of index i(L2),
– ι2 : D ↪→ End0(A2) such that ‡λL2

(ι2(d)) = ι2(d
∗) for all d ∈ D, where ‡λL2

is the map

φ 7→ λ−1L φ̂λL.

The aim of §3.2 is to construct (A,L) with respect to which (W1, 〈·, ·〉1) and (A2, L2, ι2) define a reductive
dual pair in a suitable sense, in analogy with §3.1.

Remark 3.1. Note that the triple (A2, L2, ι2) is almost the datum in a moduli problem for abelian varieties
(cf. [Mum67, §9]). However we assume neither that ∗ is positive nor that L2 is ample.

Lemma 3.2. êL2,Weil : V A2 × V A2 → VGm is a (D ⊗Q A∞, ∗)-skew-Hermitian pairing.

Proof. It is a standard fact that êL2,Weil is A∞-linear and alternating. So it is enough to verify that

êL2,Weil(ι2(d)v, v′) = êL2,Weil(v, ι2(d
∗)v′), ∀d ∈ D, v, v′ ∈ V A2(T ).

Let e : V A× V A∨ → VGm denote the canonical pairing. Then êL2,Weil(v, v′) = e(v, λL2v
′). Thus

êL2,Weil(v, ι2(d
∗)v′) = e(v, λL2(λ−1L2

ι2(d)∨λL2)v′) = e(v, ι2(d)∨λL2v
′) = e(ι2(d)v, λL2v

′) = êL2,Weil(ι2(d)v, v′).

�

Corollary 3.3. There exists a (D ⊗Q A∞, ∗)-linear skew-Hermitian pairing

ẽL2,Weil : V A2 × V A2 → D ⊗Q VGm

such that êL2,Weil = trD/Q ◦ ẽL2,Weil.

Proof. Immediate from the last lemma and Lemma 2.7. �

In order to proceed we make the following hypothesis on (W1, 〈·, ·〉1) from now on, which seems to be
harmless in practice. (For instance the case of standard orthogonal pairing or hermitian pairing of signature
(p, q) can be captured, and L has a simple form in this case as in (3.3) below.)
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Hypothesis 3.4. There are a D-basis {εi}i∈I of W1 and {αi,j ∈ Q|i, j ∈ I}, {βi,j ∈ D|i, j ∈ I} such that
W1 = ⊕i∈Iεi ·D and 〈εi, εj〉1 = αi,jβ

∗
i,jβi,j .

Since 〈εi, εj〉1 = 〈εj , εi〉∗1, we may and will arrange that αi,j = αj,i and βi,j = βj,i. By scaling {εi}i∈I we
may and will assume that αi,j ∈ Z and βi,j ∈ OD.

We are ready to construct (A,L). Set

A :=
∏
i∈I

A2

L :=
⊗
i∈I

p∗i ι2(βi,i)∗L⊗αi,i

2 ⊗
⊗
j∈I
j 6=i

p∗i ι2(βi,j)
∗L
−⊗αi,j

2

⊗⊗
i,j∈I
i<j

(pi, pj)
∗m∗ι2(βi,j)

∗L
⊗αi,j

2 (3.2)

ι : F0 ↪→ End0(A) induced by ι2

Example 3.5. When βi,j = 1 for all i, j ∈ I (which can be always achieved when D = Q for instance), (3.2)
simplifies as

L :=
⊗
i∈I

(
p∗iL

⊗(αi,i−
∑

j 6=i αi,j)

2

)
⊗
⊗
i,j∈I
i<j

(pi, pj)
∗m∗L

⊗αi,j

2 .

Further, suppose that 〈, ·, ·〉1 is a standard orthogonal or hermitian pairing in the following sense: there is a
partition I = I1

∐
I2 such that 〈εi, εj〉1 = 0 unless i = j, and 〈εi, εi〉 is equal to 1 (resp. −1) if i ∈ I1 (resp.

i ∈ I2). Then one can take βi,j = 1 for all i, j ∈ I, αi,j = 0 if i 6= j and αi,i = (−1)a−1 if i ∈ Ia. Then we
simply have L is simply the exterior tensor product

L = (L2)
�|I1| � (L−12 )�|I2|. (3.3)

We define 〈·, ·〉∗1 ⊗ ẽL2,Weil : V A× V A = (
∏
i∈I V A2)× (

∏
j∈I V A2)→ D ⊗ VGm by

((vi)i∈I , (v
′
j)j∈I) 7→

∏
i,j∈I
〈εi, εj〉∗1 · ẽL2,Weil(vi, v

′
j)

where vi, v
′
i ∈ V A2(T ) for each S-scheme T . In fact there is no need for ∗ in the above formula as 〈εi, εj〉∗1 =

〈εi, εj〉1. Nevertheless we keep ∗ in order to remember the correct D-linear action. (cf. (3.1))

Lemma 3.6. êL,Weil = trD/Q(〈·, ·〉1 ⊗ ẽL2,Weil).

Proof. Let v = (vi)i∈I , v
′ = (v′j)j∈I be in V A(T ). Then

êL,Weil(v, v′) =
∏
i∈I

êL2,Weil(ι2(βi,i)(vi), ι2(βi,i)(v
′
i))

αi,i
∏
j 6=i

êL2,Weil(ι2(βi,j)(vi), ι2(βi,j)(v
′
i))
−αi,j


×
∏
i<j

êL2,Weil(ι2(βi,j)(vi + vj), ι2(βi,j)(v
′
i + v′j))

αi,j

=
∏
i,j∈I

êL2,Weil(ι2(βi,j)(vi), ι2(βi,j)(v
′
j))

αi,j

=
∏
i,j∈I

trD/Q

(
ẽL2,Weil(ι2(β

∗
i,jβi,j)(vi), (v

′
j))

αi,j

)
=

∏
i,j∈I

trD/Q

(
(αi,jβ

∗
i,jβi,j) · ẽL2,Weil(vi, v

′
j)
)

= trD/Q

∏
i,j∈I

(
〈εi, εj〉1 · ẽL2,Weil(vi, v

′
j)
)

�
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Remark 3.7. The definition of L certainly depends on the choice of basis {ei}i∈I , and possibly αi,j and βi,j
as well. The isogeny class of (A,L, ι) should be independent of such choices but we do not check it here.

Remark 3.8. It would have been more natural to have defined A as the S-group scheme representing T 7→
OD⊗ZA2(T ). We did not take this approach because we have not found a natural definition of L to go with
such a definition of A.

Lemma 3.9. L is symmetric and nondegenerate.

Proof. We have (−1)∗L ' L because the multiplication by −1 commutes with m and pi’s. To see L is
nondegenerate, it suffices to show that Ls is nondegenerate for each s ∈ S, so the proof is reduced to

the case where S = Spec k. We may even assume that k = k. It is enough to verify that êLs,Weil
l is a

nondegenerate pairing for a prime l, which we choose to be prime to char(k). Note that êLs
l is a symplectic

form on the constant group scheme VlA, which can be thought of as a symplectic Ql-vector space. Since
〈·, ·〉1 and ẽL2,Weil are nondegenerate by the initial assumption, Lemma 3.6 implies that êL,Weil, in particular

êL,Weil
l , is nondegenerate. �

Remark 3.10. Even if L2 is ample, L may not be ample. To see this, suppose that S = SpecC, that D =
F0 = Q, and that (W1, 〈·, ·〉1) is an orthogonal space. In the notation of [Mum74, §2], write L2 = L(H2, α2)
and L = L(H,α) for nondegenerate hermitian forms H2 and H. They are related via H = 〈·, ·〉1 ⊗H2. If
L2 is ample then H2 is positive definite. However, unless 〈·, ·〉1 is positive definite (for instance unless I2
is empty in Example 3.5), H is not positive definite and thus L is not ample. This remark explains one
major reason why we did not restrict to ample line bundles in developing the theory of Heisenberg groups
and representations in [Shi].

Keeping Remark 3.8 in mind, it is clear how to define an action of α ∈ EndD(W1) as a Q-isogeny on A.
For each i ∈ I, write α(εi) =

∑
j∈I εj · dji for some dji ∈ D. Then α acts on A =

∏
i∈I A2 by

(xi)i∈I 7→

∏
j∈I

ι2(dji)(xj))


i∈I

. (3.4)

On the other hand, each β ∈ End(V A2) acts on V A =
∏
i∈I V A2 by diagonal action. This induces a map of

ring-valued functors on (Sch/S)

EndD(W1)× End(V A2)→ End(V A). (3.5)

(As usual, EndD(W1) is viewed as the constant ring scheme over S associated with EndD(W1).) By restricting
to the automorphisms preserving pairings, we obtain the following lemma, whose proof is not difficult.

Lemma 3.11. The map (3.5) induces a map of group functors on (Sch/S)

AutD(W1, 〈·, ·〉1)×Aut(V A2, ẽ
L2,Weil, ι2)→ Sp(V A, êL, ι) ↪→ Sp(V A, êL)

which is an injection on AutD(W1, 〈·, ·〉1)× {1} and {1} ×Aut(V A2, ê
L2 , ι2).

Proof. The injectivity is straightforward. In the rest of the proof we check that the image lands in
Sp(V A, êL, ι) (not just in End(V A)). Let β ∈ Aut(V A2, ê

L2 , ι2), v, v
′ ∈ V A and write v = (vi)i∈I and

v′ = (v′j)j∈I . Then

êL,Weil(β(v), β(v′)) = trD/Q

∏
i,j

〈εi, εj〉1 · ẽL2,Weil((β(vi))i∈I , (β(v′j))j∈I)



= trD/Q

∏
i,j

〈εi, εj〉1 · ẽL2,Weil((vi)i∈I , (v
′
j)j∈I)

 = êL,Weil(v, v′).
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Now consider α ∈ EndD(W1) and write α(εi) =
∑

j∈I εj · dji as above. Let k, l ∈ I. It is enough to consider

“basis elements” v, v′ with vi = 0 and v′j = 0 for all i 6= k and j 6= l. Then êL,Weil(α(v), α(v′)) equals

trD/Q

∏
i,j

〈εi, εj〉∗1 · ẽL2,Weil(dikvk, djlv
′
l)

 = trD/Q

∏
i,j

〈εi, εj〉∗1dikẽL2,Weil(vk, v
′
l)d
∗
jl



= trD/Q

∏
i,j

〈εidik, εjdjl〉∗1 · ẽL2,Weil(vk, v
′
l)

 = trD/Q

(
〈α(εk), α(εl)〉∗1 · ẽL2,Weil(vk, v

′
l)
)

= trD/Q

(
〈εk, εl〉∗1 · ẽL2,Weil(vk, v

′
l)
)

= êL,Weil(v, v′).

�

3.3. Level structure. We wish to view Lemma 3.11 as presenting the analogue of a classical reductive dual
pair. This is more than an analogy when there is a level structure, as treated in [Shi, §6] from which we
import notation. To begin with, assume that S is a Q-scheme. A nontrivial morphism of group schemes
ψ : A∞ → Gm over S (where A∞ is a constant group scheme) plays the role of additive character. Let
〈·, ·〉2,ψ denote the pairing W2 ⊗ A∞ ×W2 ⊗ A∞ → Gm obtained from 〈·, ·〉2 and ψ in the obvious manner.
Similarly 〈·, ·〉ψ : V ⊗ A∞ × V ⊗ A∞ → Gm is defined. Let

α2 : (W2 ⊗ A∞)S ' V A2

be a D ⊗Q A∞-linear isomorphism (of ind-group schemes over S) compatible with (D ⊗Q A∞, ∗)-skew Her-
mitian pairings 〈·, ·〉2,ψ and êL2 . As we have V A ' W1 ⊗D V A2 by construction, the isomorphism α2

induces

α : V A ' (W1 ⊗D W2)⊗Q A∞

matching êL and 〈·, ·〉ψ. Then α2 and α induce

Aut(V A2, ẽ
L2,Weil, ι2) ' AutD(W2 ⊗ A∞, 〈·, ·〉2)S = G2 ×F0 S

Aut(V A, êL, ι) ' SpF0
(W ⊗ A∞, 〈·, ·〉)S = G×F0 S.

Using the above isomorphisms along with Lemma 3.11, one precisely recovers the classical reductive dual
pair of §3.1. Now when S is an Fp-scheme, the level structure in the second case of [Shi, §6.5] can be likewise
adapted to produce a “dual pair”, which is classical outside p but looks different at the p-components.

3.4. The p-adic case. Only in §3.4 (and in §4.3) we change the notation from §3.2. Let F0 be a finite
extension of Qp. Let D be a division Qp-algebra with involution ∗ such that F0 ⊂ D∗=1 and dimQp D <∞.
Let W1 be a finite right D-module, and let 〈·, ·〉1 : W1 × W1 → D be a (D, ∗)-Hermitian pairing. Let
(A2, L2, ι2) be as in §3.2, except that we take ι2 : D ↪→ End0(A2) ⊗Q Qp. The contents of the previous
subsection carries over with obvious changes. For instance, the analogue of Lemma 3.11 produces a dual
pair

AutD(W1, 〈·, ·〉1)×Aut(VpA2, ẽ
L2,Weil, ι2)→ Sp(VpA, ê

L
p , ι) ↪→ Sp(VpA, ê

L
p )

which is injective on AutD(W1, 〈·, ·〉1)× {1} and {1} ×Aut(VpA2, ẽ
L2,Weil, ι2).

When S = SpecFp (and p 6= 2 for safety), we can formulate everything also only in terms of p-divisible
groups using [Shi, §6.4]. As this is not part of the classical theory, we provide some examples in this
unfamiliar territory. Let D1/2 be a quaternion division algebra with center Qp and Σ1/2 a simple p-divisible

group over Fp with slope 1/2. It is well known that End0(Σ1/2) ' D1/2.

Example 3.12. Let S = SpecFp, (W1, 〈·, ·〉1) be an orthogonal Qp-vector space of dimension g1 and Σ2 =
(Σ1/2)

g2 . Then the resulting dual pair may be identified with

O(W1, 〈·, ·〉1)× Spg2(D1/2)→ Spg1g2(D1/2).
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Example 3.13. Let S = SpecFp and E be a quadratic extension of Qp with 1 6= ∗ ∈ Gal(E/Qp). Let
(W1, 〈·, ·〉1) be a Hermitian E-vector space of dimension g1. Let Σ2 = (Σ1/2)

g2 be equipped with ι2 : E ↪→
End0(Σ2) and a Qp-linear nondegenerate pairing 〈·, ·〉0 : Σ2×Σ2 → µp∞ such that 〈ex, y〉2 = 〈x, e∗y〉2 for all
e ∈ E and x, y ∈ Σ2. Let 〈·, ·〉 be the pairing on VpΣ2 obtained from 〈·, ·〉0 as in [Shi, §6.3]. This produces a
dual pair

U(W1, 〈·, ·〉1)× U(VpΣ2, 〈·, ·〉, ι2)→ Spg1g2(D1/2),

where U(VpΣ2, 〈·, ·〉, ι2) is an inner form of the quasi-split unitary group in g2 variables over Qp.

4. Reductive dual pairs of type II

4.1. Classical reductive dual pairs of type II. We only recall the number field case as the p-adic case
is completely analogous. Let

• F0 be a finite extension field of Q,
• W be a finite dimensional F0-vector space of even dimension,
• 〈·, ·〉 : W ×W → F0 be a non-degenerate alternating F0-linear pairing.

Recall ([How79, §5], [MVW87, 1.19-1.20]) that a type II dual reductive pair arises from the following data.

• a division algebra D whose center E contains F0,
• a right D-module W1 and a left D-module W2,

such that W1 ⊗D W2 embeds into W as a maximal isotropic subspace for 〈·, ·〉. For i = 1, 2, define Gi :=
GLD(Wi). (Namely Gi(R) = GLD⊗F0

R(Wi ⊗F0 R) for any F0-algebra R.) The two groups G1 and G2 form

a reductive dual pair of type II in SpF0
(W, 〈·, ·, 〉).

4.2. Setup for a geometric analogue. Consider the data at the start of §3.2. We further assume that

• ∗ is an involution of the first kind,
• W1 = ⊕g1i=1εi ·D is a finite right D-module,
• an orthogonal pairing 〈·, ·〉1 is chosen for W1 such that Hypothesis 3.4 is satisfied,
• there is a complete polarization V A2 ' V ′2×V ′′2 with respect to êL2 (so that V ′2 and V ′′2 are isotropic)

such that V ′2 and V ′′2 are stable under the action of ι2(D).

Construct (A,L, ι) exactly as in §3.2. Then we have V A ' W1 ⊗D V A2, where êL,Weil is matched with
trD/Q(〈·, ·〉1 ⊗ ẽL2,Weil). As we explained in that subsection, there is a map (3.5). On the other hand,
there is a map Aut(V ′2 , ι2) ↪→ Aut(V ′2 , ι2) × Aut(V ′′2 , ι2) given by α 7→ (α, α∨), where α∨ comes from the
duality between V ′2 and V ′′2 via êL2 . Composing with Aut(V ′2 , ι2)× Aut(V ′′2 , ι2) ↪→ Aut(V A2, ι2), we obtain
Aut(V ′2 , ι2) ↪→ Aut(V A2, ι2). Moreover, the image lies in Aut(V A2, ê

L2 , ι2). Together with (3.5), we have

AutD(W1)×Aut(V ′2 , ι2)→ AutD(W1)×Aut(V A2, ê
L2 , ι2)→ Aut(V A, ι). (4.1)

Lemma 4.1. The map (4.1) induces a map of group functors on (Sch/S)

AutD(W1)×Aut(V ′2 , ι2)→ Sp(V A, êL, ι) ↪→ Sp(V A, êL)

injective on AutD(W1)× {1} and {1} ×Aut(V ′2 , ι2).

Proof. The essentially same argument as in the proof of Lemma 3.11 works here. �

4.3. The p-adic case. Let F0, F and D be as in §3.4. Just like we adapted §3.2 to §3.4, we can rework §4.2
in the p-adic case. When S = SpecFp (p 6= 2), things can be reformulated in terms of p-divisible groups. We
would like to elaborate on this point, as the special case of ordinary p-divisible groups will be investigated
further in §§5.4-5.5. (Similarly the situation of type I pairs can be recast in terms of p-divisible groups.)

• W1 = ⊕g1i=1εi ·D is a finite right D-module,

• (Σ′2, ι
′
2) is a p-divisible group over Fp with a Qp-algebra map ι′2 : D ↪→ End0(Σ′2).

• Σ′ = (Σ′2)
g1 , Σ := (Σ′)∨ × Σ′.

• ι′ : D ↪→ End0(Σ′) is induced by the diagonal action via ι′2.
• ι : D ↪→ End0(Σ) is the composition of ι′ with End0(Σ′) ↪→ End0(Σ) given by β 7→ (β, β∨).
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Let α ∈ AutD(W1). For 1 ≤ i ≤ g1, α(εi) =
∑g1

j=1 εj · dji for some dji ∈ D. Make α act on Σ′ in the

isogeny category of p-divisible groups by the same formula as (3.4). This induces AutD(W1) ↪→ Aut0(Σ′, ι′) '
Aut(VpΣ

′, ι′). Together with the diagonal action Aut(VpΣ
′
2, ι
′
2) ↪→ Aut(VpΣ

′, ι′), this induces a morphism of
group functors

AutD(W1)×Aut(VpΣ
′
2, ι
′
2)→ Aut(VpΣ

′, ι′). (4.2)

This is essentially the desired local type II pair. However Σ′ is (in general) neither self-dual nor equipped
with a symplectic pairing, without which there is no construction of the Weil representation. Thus we
interpret the latter automorphism group in terms of (Σ, ι).

Consider any F0-linear (via ι) symplectic pairing 〈·, ·〉 : VpΣ × VpΣ → F0 ⊗Qp Vpµp∞ for which Vp(Σ
′)∨

and VpΣ
′ are totally isotropic. Then 〈·, ·〉 induces δ : Aut(VpΣ

′) ' Aut(Vp(Σ
′)∨) so that the two ele-

ments corresponding via δ are an adjoint pair with respect to 〈·, ·〉. Then (δ, id) defines an embedding
Aut(VpΣ

′, ι′) ↪→ Aut(VpΣ, 〈·, ·〉, ι). Composing with (4.2), obtain

AutD(W1)×Aut(VpΣ
′
2, ι
′
2)→ Aut(VpΣ, 〈·, ·〉, ι) ↪→ Aut(VpΣ, 〈·, ·〉) (4.3)

injective on AutD(W1)× {1} and {1} ×Aut(VpΣ
′
2, ι
′
2).

Example 4.2. Let S = SpecFp. Let [D : F0] = d, dimDW1 = n1 ≥ 1. The height of Σ′2 is dn2 for some
n2 ≥ 1. Suppose that Σ′2 (thus also Σ′) is étale, in which case we may view VpΣ

′
2 simply as a left D-module

W2, and VpΣ
′ as a left D-module W1 ⊗D W2. Then (4.2) may be identified with

GLD(W1)×GLD(W2)→ GLF0(W1 ⊗D W2).

Let us explicitly describe the restriction of the Weil representation via the above map.
For simplicity, assume D = F0 = Qp for now. We can find 〈·, ·〉 starting from a perfect pairing 〈·, ·〉0 :

Σ× Σ→ µp∞ . The Schrodinger model is

ω = C∞c (W1 ⊗Qp W2,Fp)

equipped with the action of an ind Fp-group scheme P (which is analogous to the Siegel parabolic subgroup)
as in [Shi, Cor 7.7]. Put G1 := GLQp(W1), G2 := GLQp(W2). We need not recall the definition of P
here. It is enough to record that by restricting via G1 × G2 → GLQp(W1 ⊗Qp W2) ↪→ P , we obtain a
G1 ×G2-representation ω|G1×G2 satisfying

((g1, g2) · φ)(w1 ⊗ w2) = φ(g−11 w1 ⊗ g−12 w2), φ ∈ C∞c (W1 ⊗Qp W2,Fp).

By identifying G1 = GLQp(W∨1 ) via g1 7→ (g−11 )∨ and using the canonical isomorphism W1 ⊗Qp W2 '
HomQp(W∨1 ,W2), we can also view ω|G1×G2 as a representation given by

((g1, g2) · φ)(f) = φ(g−12 fg1), φ ∈ C∞c (HomQp(W∨1 ,W2),Fp), f ∈ HomQp(W∨1 ,W2). (4.4)

More generally, when the assumption that D = F0 = Qp is dropped, we have G1 = GLD(W∨1 ), G2 =

GLD(W2) and ω|G1×G2 is a representation on C∞c (HomD(W∨1 ,W2),Fp) given by the same formula as (4.4).

5. A remark on mod p theta correspondence

The last section begins with some recollection of classical conjectures and results (§§5.1-5.2), which could
be omitted but were included for the reader’s convenience. Then we take the liberty to speculate on the
possibility of a theta correspondence for p-adic groups when the coefficient field is Fp. There are one
negative and one positive results. A somewhat surprising fact, though it is easy to prove, is that the naive
analogue of Howe’s conjecture on the bijective correspondence is almost vacuous already for the (GL1, GL1)-
pair (Proposition 5.9). On the other hand, we verify that a weak analogue of Howe’s unramified theta
correspondence still works for type II pairs (Theorem 5.14).

OftenGi will denote the group of F -points rather than the underlying algebraic group by abuse of notation.
Now F0 and F are finite extensions of Qp (rather than Q).
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5.1. Review of Howe’s conjecture. Let (G1, G2) be a (classical) reductive dual pair of type 1 or 2 as in
§3.1 or §4.1 which comes with an inclusion

G1 ×G2 ↪→ SpF0
(W, 〈·, ·〉).

Write G̃1 (resp. G̃2) for the preimage of G1 × {1} (resp. {1} × G2) via the classical double covering

S̃pF0
(W, 〈·, ·〉) → SpF0

(W, 〈·, ·〉). The subgroup of S̃pF0
(W, 〈·, ·〉) generated by G̃1 and G̃2 is denoted G̃1G̃2.

It is known ([MVW87, Ch2,III.1]) that

Lemma 5.1. Let g̃1, g̃2 ∈ S̃pF0
(W, 〈·, ·〉) with images g1, g2 in SpF0

(W, 〈·, ·〉), respectively. If g1g2 = g2g1
then g̃1g̃2 = g̃2g̃1.

In particular, G̃1 and G̃2 are centralizing each other in S̃pF0
(W, 〈·, ·〉). Thus the pullback of the Weil

representation via

G̃1 × G̃2
product→ G̃1G̃2 ↪→ S̃pF0

(W, 〈·, ·〉)

makes a good sense and is going to be written as ω|
G̃1×G̃2

. Define

R(G̃1G̃2) = {π1 ⊗ π2 ∈ Irr(G̃1 × G̃2) |Hom
G̃1×G̃2

(ω|
G̃1×G̃2

, π1 ⊗ π2) 6= 0}.

For i = 1, 2, let R(G̃i) denote the image of R(G̃1G̃2) in Irr(G̃i) under the projection π1 ⊗ π2 7→ πi. The
following theorem was conjectured by Howe in [How79, §6] (also see [MVW87, III.2]). Parts (i) and (ii) were
established by Waldspurger ([Wal90]) and Minguez ([Min08a]), respectively.

Theorem 5.2. Suppose that either

(i) F has residue field characteristic different from 2 or
(ii) (G1, G2) is a type 2 pair.

Then R(G̃1G̃2) is a graph of bijection in R(G̃1)×R(G̃2).

Remark 5.3. Note that we only consider F as a finite extension of Qp. The function field case of the
conjecture is known to be true except type I pairs with charF = 2.

5.2. Howe’s conjecture in the unramified case. This subsection follows [How79, §7], where the reader
can find more detail. Assume that F is an unramified extension of F0, that G1, G2 are unramified groups,
that D splits over F , and that the residue field characteristic of F is odd. Then there exists an OF0-lattice

Λ ⊂ W which is self-dual with respect to 〈·, ·〉. Set J := SpOF0
(Λ, 〈·, ·〉) and J̃ to be the preimage of J

in S̃pF0
(W, 〈·, ·〉). Then J̃ ' J × {1,−1}. Let Ki ⊂ Gi be a hyperspecial maximal compact subgroup for

i = 1, 2. By conjugation one can assume that K1,K2 ⊂ J . Thereby the inclusions Ki ↪→ G̃i are obtained.
Following Howe, define for i = 1, 2,

R(G̃i,Ki) := {πi ∈ Irr(G̃i) : πKi
i 6= 0}

R(G̃1G̃2,K1K2) := {(π1, π2) ∈ R(G̃1G̃2) : πKi
i 6= 0, i = 1, 2}.

Let H (G̃i//Ki) denote the Hecke algebra of Ki-bi-invariant C-valued functions on G̃i. Each element of

H (G̃i//Ki) defines an endomorphism of (ω|
G̃1×G̃2

)K1K2 .

Theorem 5.4. ([How79, Thm 7.1], cf. [MVW87, §5])

(i) R(G̃1G̃2,K1K2) is a graph of bijection in R(G̃1,K1)×R(G̃2,K2).

(ii) Suppose (π1, π2) ∈ R(G̃1G̃2). Then π1 ∈ R(G̃1,K1) if and only if π2 ∈ R(G̃2,K2).

(iii) The images of H (G̃i,Ki) in EndC((ω|
G̃1×G̃2

)K1K2) are the same for i = 1, 2.
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5.3. Commuting elements in the metaplectic group. In order to formulate a theta correspondence in
our geometric context, it is fundamental to have the analogue of Lemma 5.1 for Mp(VpA, ê

L
p ) and Sp(VpA, ê

L
p ).

We will state this as a hypothesis. Recall from [Shi, §5.1, §5.5] that for (A,L) (as in this article) there is a
natural sequence of group functors on (Sch/S)

1→ Gm → Mp(VpA, ê
L
p )→ Sp(VpA, ê

L
p )→ 1,

whose T -valued points yield an exact sequence of groups for each S-scheme T . For a p-divisible group Σ
with a perfect alternating pairing 〈·, ·〉 : Σ× Σ→ µp∞ over S there is a similar sequence

1→ Gm → Mp(VpΣ, 〈·, ·〉)→ Sp(VpΣ, 〈·, ·〉)→ 1.

Hypothesis 5.5. Let g̃1, g̃2 ∈ Mp(VpA, ê
L
p )(T ) for an S-scheme T . If the images of g̃1 and g̃2 in Sp(VpA, ê

L
p )(T )

commute then g̃1g̃2 = g̃2g̃1. The same holds with (VpΣ, 〈·, ·〉) in place of (VpA, ê
L
p ).

The same analogue for Mp(V A, êL) should follow from the hypothesis at every prime p. In this subsection
we focus on one prime p at a time. Although it is tempting to conjecture that the hypothesis is always true,
we do not have good evidence other than analogy with the case of classical dual pairs. Nevertheless in some
simple cases we can show:

Lemma 5.6. Hypothesis 5.5 holds true

(i) for Mp(VpA, ê
L
p )(T ) if p is invertible in S and there is a level structure η : Vp ' VpA for a symplectic

Q-vector space Vp with 〈·, ·〉ψ : Vp × Vp → Gm (cf. §3.3, [Shi, §6.2]), or
(ii) for Mp(VpΣ, 〈·, ·〉) if S is an Fp-scheme and Σ is an ordinary p-divisible group over Fp, or

(iii) for Mp(VpA, ê
L
p )(T ) if S and (Σ, 〈·, ·〉) are as in (ii) and there is a level structure ζ : VpΣ ' VpA

(cf. [Shi, §6.3]).

Proof. We may assume that T is connected. In case (i), Mp(VpA, ê
L
p ) may be identified with the classi-

cal metaplectic group Mp(Vp, 〈·, ·〉ψ) (as a constant group scheme), for which the assertion is well known
([MVW87, Ch 2, Lem II.5]). In case (ii), the proof is obvious as Mp(VpΣ, 〈·, ·〉) ' Gm × Sp(VpΣ, 〈·, ·〉) ([Shi,
Cor 7.8]). It is easy to deduce (iii) from (ii). �

In the notation of Lemmas 3.11 and 4.1, let G̃1 (resp. G̃2) denote the pullback of Mp(VpA, ê
L) along

AutD(W1, 〈·, ·〉1) × {1} ↪→ Sp(VpA, ê
L) (resp. {1} × Aut(VpA2, ẽ

L2,Weil, ι2) ↪→ Sp(VpA, ê
L)) for type I pairs

and along AutD(W1)× {1} → Sp(VpA, ê
L) (resp. {1} × Aut(V ′2 , ι2)→ Sp(VpA, ê

L)) for type II pairs. Thus

G̃1 and G̃2 are subgroup functors of Mp(VpA, ê
L). We have a similar definition of G̃1 and G̃2 in the setting

of p-divisible groups, cf. (4.3).

Corollary 5.7. Suppose that Hypothesis 5.5 is true for (A,L) or (Σ, 〈·, ·〉). (For instance suppose that one

of the conditions of Lemma 5.6 holds.) Then G̃1 and G̃2 defined above commute.

Proof. This is immediate since the images of G̃1 and G̃2 in Sp(VpA, ê
L
p ) commute by construction. �

Remark 5.8. Deligne informed us that Hypothesis 5.5 is false for an arbitrary metaplectic group. More

precisely, let G be a connected reductive group, say over Qp. Let G̃ → G(Qp) be an arbitrary metaplectic

extension of G(Qp) by Gm or µn for some n ≥ 2. Then there are counterexamples where g̃1, g̃2 commute in G̃
but their images in G(Qp) do note commute. In this regard, the double covering of a symplectic group may
be somewhat special, and we are hoping that its generalization Mp(VpA, ê

L
p ) also has this special property.

5.4. Quotients of the mod p Weil representation of a p-adic metaplectic group. Here we explore a
mod p analogue of Howe’s conjecture for p-adic groups. A mod l analogue of Howe’s conjecture for a prime
l 6= p was considered in [Min08b]. Interestingly Minguez observed that there is a counterexample to the
naive analogue of Theorem 5.2 in the mod l setting when l is not a so-called banal prime.

In the mod p case the problem is even more serious. The naive analogue of Theorem 5.2 hopelessly
fails already in the case of the most elementary type II pair (GL1(Qp), GL1(Qp)). To study this case,

put k := Fp and recall that recall that ω = C∞c (Qp, k) is a representation of GL1(Qp) × GL1(Qp) such

that ((g1, g2) · φ)(g) = φ(g−12 gg1) (Example (4.2)). For our purpose it suffices to consider the first copy of
GL1(Qp), and we will view ω as a GL1(Qp)-representation as such.
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Proposition 5.9. Let V be a nonzero finite dimensional smooth representation of GL1(Qp).

(i) Any k[GL1(Qp)]-linear map C∞c (Q×p , k)→ V is zero for each V .
(ii) Any nonzero k[GL1(Qp)]-linear map ω = C∞c (Qp, k) → V has 1-dimensional image which is the

trivial representation of GL1(Qp).

Proof. (i) Let ξ : C∞c (Q×p , k)→ V be a k[GL1(Qp)]-linear map. It suffices to prove that there exists N ≥ 1

such that ξ(chara(1+pnZp)) = 0 for all a ∈ Q×p and all n ≥ N . As V is smooth, there exists m ≥ 1 such
that 1 + pmZp acts trivially on V . Take any n ≥ m. Let b0, ..., bp−1 be any coset representatives for
(1 + pnZp)/(1 + pn+1Zp). Then

ξ(chara(1+pnZp)) =

p−1∑
i=0

ξ(charabi(1+pn+1Zp)) =

p−1∑
i=0

b−1i · ξ(chara(1+pn+1Zp)) =

p−1∑
i=0

ξ(chara(1+pn+1Zp)) = 0.

(ii) Let 1 denotes the trivial representation of GL1(Qp). The map ω → 1 by φ 7→ φ(0) induces an exact
sequence of k[GL1(Qp)]-modules

0→ C∞c (Q×p , k)→ ω → 1→ 0.

This and the assertion (i) imply (ii). �

Remark 5.10. If k = C then any continuous character χ : Q×p → C× is realized as a quotient of C∞c (Q×p ,C)

(with multiplicity one). If µ is a C-valued Haar measure on Q×p then φ 7→
∫
Q×p φ(x)χ−1(x)dµ exhibits

a nonzero map in HomQ×p (C∞c (Q×p ,C), χ). See [MVW87, Ch 3, Lem 2.3] for the study of quotients of

C∞c (GLn(Qp),C), where a C-valued Haar measure on GLn(Qp) is indispensable. The case k = Fp is special

due to the lack of an Fp-valued Haar measure. Indeed, the argument of Proposition 5.9.(i) essentially proves

the nonexistence of an Fp-valued Haar measure on any pro-p subgroup of Q×p .

The above proposition tells us that in the mod p setting, there are no interesting naive analogues of

R(G̃1G̃2) and R(G̃1G̃2,K1K2). We do not know how to overcome this difficulty and make a plausible
conjecture in a similar spirit as Howe’s conjecture: Even if we allow π1 and π2 to be reducible representations
of finite length, the mod p Weil representation still has few quotients of the form π1⊗π2. It is not immediately
clear whether replacing Hom with Ext would help.

5.5. A weak analogue of Howe’s conjecture in the unramified case. Despite the negative result of
§5.4, we would like to ask (cf. Remark 5.15)

Question 5.11. Is a suitable analogue of Theorem 5.4 true in the mod p case?

The aim of this subsection is to verify a weak analogue of Theorem 5.4.(iii) for ordinary type II pairs.
More precisely we will show that the Weil representation admits a finite filtration whose quotients have the
property described in Theorem 5.4.(iii). (In fact we prove slightly more; see Theorem 5.14 below.) Our
argument was inspired by [MVW87] and [Min08a].

Assume that n1 ≥ n2 ≥ 1. Let us set up some notation.

• F is a finite extension of Qp with valuation vF : F× → Z; its ring of integers is OF .
• Gi := GLni(F ), Ki := GLni(OF ) for i = 1, 2.
• Hr := GLr(F ), Ur := GLr(OF ) (where 0 ≤ r ≤ n2), agreeing H0 = U0 = {1}.
• Mni−r,r := Hni−r ×Hr, Kni−r,r := Uni−r × Ur.
• Ti is the diagonal maximal torus of Gi for i = 1, 2.
• Sr is the diagonal maximal torus of Hr.
• B1 (resp. B2) is the Borel subgroup of upper (resp. lower) triangular matrices in G1 (resp. G2).
• B+

r (resp. B−r ) is the Borel subgroup of upper (resp. lower) triangular matrices in Hr.
• Φi is the set of Bi-positive roots of Ti in Gi for i = 1, 2.
• Φ+

r (resp. Φ−r ) is the set of B+
r -positive (resp. B−r -positive) roots of Tr in Hr.

• All Hecke algebras and spaces of functions (e.g. C∞(G1)) will have coefficients in k = Fp. The
reference to k will be omitted most of the time.
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Let ω|G1×G2 denote the restricted Weil representation at the end of Example 4.2 (with D = F ). By choosing
a basis of W∨1 and W2 in that example, we can identify ω|G1×G2 = C∞c (Mn1,n2(F ), k) with G1 ×G2-action
described by

((g1, g2)φ)(x) = φ(g−12 xg1), ∀x ∈Mn1,n2(F ).

For 0 ≤ r ≤ n2 + 1, let Ωr denote the k-subspace of ω|G1×G2 consisting of functions supported on
n1 × n2-matrices of rank ≥ r. Then there is a G1 ×G2-stable filtration

{0} = Ωn2+1 ( Ωn2 ( Ωn2−1 ( · · · ( Ω1 ( Ω0 = ω|G1×G2 .

Then the space of K1 ×K2-invariant vectors on quotients are equipped with Hecke actions

H (G1,K1)×H (G2,K2)→ Endk((Ωr/Ωr+1)
K1×K2). (5.1)

For 0 ≤ r ≤ n, let µr denote the Hr ×Hr-representation on C∞c (Hr, k), where the action is given by

((h1, h2) · φ)(h) = φ(h−12 hh1).

Observe that µUr×Ur
r = C∞c (Ur\Hr/Ur, k) comes equipped with a natural action of H (Hr, Ur)×H (Hr, Ur).

Let # denote the order 2 automorphism of H (Hr, Ur) induced by g 7→ g−1 on Hr.

Lemma 5.12. For every f ∈H (Hr, Ur), the actions of (f, 1) and (1, f#) on µUr×Ur
r are the same.

Proof. Take V1 = V2 = 1 in [Her, Prop 6.2]. Note that our action of Hk(Hr, Ur)×{1} is a left action, which
differs from Herzig’s right action by f 7→ f#. �

Lemma 5.13. For every 0 ≤ r ≤ n2, there is an isomorphism of G1 ×G2-representations

Ωr/Ωr+1 ' IndG1×G2

P+
n2−r,r×P

−
n2−r,r

(1⊗ µr).

Proof. It is enough to observe that Lemme 1.3 and the paragraph above Définition 2.1 of [Min08a] carry
over to the case of Fp-coefficients. Note that our G1 (resp. G2) is his G′m (resp. Gn). �

There are partial Satake transforms (as SM
G of [Her, §2.3])

Si : H (Gi,Ki) ↪→H (Mni−r,r,Kni−r,r), i = 1, 2

defined with respect to Bi. (In other words, require the P of [Her, §2.3] to contain Bi.) Define

S−r := {t ∈ Sr : vF (α(t)) ≤ 0, ∀α ∈ Φ+
r } (5.2)

and also S+
r , using Φ−r in place of Φ+

r . Let H −
Sr

denote the subalgebra of HSr(1) = C∞((GL1(F )/GL1(OF ))r)

consisting of functions whose supports are contained in S−r . Similarly define H +
Sr

, H −
T1

, and H +
T2

replacing

Φ+
r in (5.2) respectively with Φ−r , the set of B1∩Mn1−r,r-positive roots, and the set of B2∩Mn2−r,r-positive

roots. Consider the diagram

H (Mni−r,r,Kni−r,r)
∃!Ti //___

∼
��

H (Hr, Ur)

∼
��

H ∗
Ti

// H ∗
Sr

(5.3)

where ∗ = − if i = 1 and ∗ = + if i = 2. The vertical maps are the Satake isomorphisms of [Her11] with
respect to Bi ∩Mni−r,r and B∗r . The bottom horizontal arrow is induced by the inclusion

Sr = GL1(F )r ↪→ Ti = GL1(F )ni , (x1, ..., xr) 7→ (x1, ..., xr, 1, ..., 1).

Then there exists a unique map Ti which makes the diagram commute. Now consider

H (G1,K1)
S1 // H (Mn1−r,r,Kn1−r,r)

T1 // H (Hr, Ur)

#

��

∼ // H −
Sr

#
��

H (G2,K2)
S2 // H (Mn2−r,r,Kn2−r,r)

T2 // H (Hr, Ur)
∼ // H +

Sr

(5.4)
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The third arrow in each row is the same as in the right vertical arrow of (5.3). The rightmost vertical map
of (5.4) is induced by t 7→ t−1 on Sr and denoted # by abuse of notation. Obviously the right rectangle
commutes.

Theorem 5.14. (i) Let fi ∈H (Gi,Ki), i = 1, 2. If f1 and f2 have the same image in H +
Sr

via (5.4)
then (f1, 1) and (1, f2) have the same image via (5.1).

(ii) The composite maps H (G1,K1)→H −
Sr

and H (G2,K2)→H +
Sr

are surjective.

(iii) H (G1,K1)× {1} and {1} ×H (G2,K2) have the same image in Endk((Ωr/Ωr+1)
K1×K2).

Proof. (i) Recall that Ωr/Ωr+1 ' IndG1×G2

P+
n2−r,r×P

−
n2−r,r

(1⊗ µr) from Lemma 5.13. By sending φ of the induced

representation to φ(1), we obtain an isomorphism of k-vector spaces (cf. (2.12) of [Her])

(Ωr/Ωr+1)
K1×K2 ∼→ (1⊗ µr)Kn1−r,r×Kn2−r,r .

By [Her, Lem 2.13], the above map is equivariant for the action of
∏2
i=1 H (Gi,Ki), if the latter acts on the

right hand side through
∏2
i=1 H (Mni−r,r,Kni−r,r) via (S1,S2). Since the action of

∏2
i=1Mni−r,r on 1⊗µr

factors through its projections ontoHr×Hr, we see that
∏2
i=1 H (Mni−r,r,Kni−r,r) acts through H (Hr, Ur)×

H (Hr, Ur) via (T1,T2). At this point, observe that the assumption of (i) implies that T1(S1(f1)) maps
to T2(S2(f2)) via #. Lemma 5.12 shows that T1(S1(f1)) and T2(S2(f2)) have the same action on (1 ⊗
µr)

Kn1−r,r×Kn2−r,r .
(ii) The image of S1, mapped to H −

T1
via (5.3) consists exactly of

φ ∈ C∞c (T1), suppφ ⊂ {t ∈ T1 : vF (α(t)) ≤ 0, ∀α ∈ Φ1}.
Clearly the set of such φ maps onto H −

Sr
via (5.3), noting that Φ1 restricts to Φ+

r via Sr ↪→ T1. Therefore

H (G1,K1)→H −
Sr

is onto. The same argument shows that H (G2,K2)→H +
Sr

is onto as well.
(iii) This is immediate from (i) and (ii). �

Remark 5.15. A variant of Question 5.11 can be asked, replacing the hyperspecial subgroups by either the
maximal pro-p subgroups of Iwahori subgroups or the congruence subgroups consisting of elements which
are 1 modulo p. For instance, one can ask whether one gets a correspondence of “Serre weights”.

Remark 5.16. Let us conclude with a speculative remark. Our belief is that the conjectural mod p theta
correspondence for p-adic groups should be compatible with the conjectural (global) theta correspondence for
mod p automorphic forms. However it is not easy to make sense of this, as no satisfactory representation-
theoretic approach seems available to study mod p automorphic forms in general. Some anomalies are
discussed in [Ser96], for instance.

References

[Her] F. Herzig, The classification of irreducible admissible mod p representations of a p-adic GLn, to appear in Invent.
Math., http://www.math.ias.edu/~herzig/.

[Her11] Florian Herzig, A Satake isomorphism in characteristic p, Compos. Math. 147 (2011), no. 1, 263–283. MR 2771132
[How79] R. Howe, θ-series and invariant theory, Proc. of Symp. in Pure Math., vol. 33.1, AMS, Amer. Math. Soc., 1979,

pp. 275–285.
[Min08a] A. Minguez, Correspondance de Howe explicite: paires duales de type II, Ann. Scient. Ec. Norm. Sup. 41 (2008),

715–739.
[Min08b] , l-modular local theta correspondence: dual pairs of type II, RIMS kyokuroku (2008).
[Mum67] D. Mumford, On the equations defining abelian varieties. II, Invent. Math. 3 (1967), 75–135.
[Mum74] , Abelian varieties, 2nd ed., Oxford University Press, London, 1974.
[MVW87] C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondance de howe sur un corps p-adique, LNM, no. 1281,

Springer-Verlag, 1987.
[Ser96] J.-P. Serre, Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), 281–299.
[Shi] S. W. Shin, Abelian varieties and the Weil representations, http://math.uchicago.edu/~swshin/AV-Weil.pdf.
[Wal90] J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p 6= 2, Israel Math.
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