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Introduction

Congruences between automorphic forms have been an essential tool in num-
ber theory since Ramanujan’s discovery of congruences for the τ -function,
for instance in Iwasawa theory and the Langlands program. Over time, sev-
eral approaches to congruences have been developed via Fourier coefficients,
geometry of Shimura varieties, Hida theory, eigenvarieties, cohomology the-
ories, trace formula, and automorphy lifting.

In this paper we construct novel congruences between automorphic forms
in quite a general setting using type theory of p-adic groups, generalizing the
argument in [Sch18, §7] for certain quaternionic automorphic forms. More
precisely, we produce congruences mod pm (in the sense of Theorem A below)
between arbitrary automorphic forms of general reductive groups G over
totally real number fields that are compact modulo center at infinity with
automorphic forms that are supercuspidal at p under the assumption that p
is larger than the Coxeter number of the absolute Weyl group of G. In order
to obtain these congruences, we prove various results about supercuspidal
types that we expect to be helpful for a wide array of applications beyond
those explored in this paper.
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Global results

In order to describe our global results in more details, let G be a con-

nected reductive group over a totally real field F whose R-points are compact

modulo center under every real embedding. Fix an open compact subgroup

Up ⊂ G(A∞,p
F ). Let Up ⊂

∏
w|pG(Fw) be an open compact subgroup, let A

denote a commutative ring with unity, and ψp : Up → A× a smooth char-

acter that yields an action of Up on A. Write M(UpUp, A) for the space

of A-valued automorphic forms of level UpUp equivariant for the Up-action

on A via ψp. See §3 below for the precise definition of this space and the

Hecke algebra T(UpUp, A) acting on it. When A = Zp and ψp is trivial, the

corresponding space is denoted by M(UpUp,Zp). Now for each m ∈ Z≥1,

put Am := Zp[T ]/(1 + T + T 2 + · · · + T pm−1). There is an obvious ring

isomorphism Am/(T − 1) � Z/pmZ induced by T �→ 1.

Our main global theorem is the following, where Cox(G) ∈ Z≥1 denotes

the maximum of the Coxeter numbers of the irreducible subsystems of the

absolute root system for G. (The table of Coxeter numbers is given above

Proposition 2.1.2. If G is a torus, set Cox(G) = 1.).

Theorem A (Theorem 3.1.1). Assume p > Cox(G). Then there exist

• a basis of compact open neighborhoods {Up,m}m≥1 of 1 ∈
∏

w|pG(Fw)

such that Up,m′ is normal in Up,m whenever m′ ≥ m, and

• a smooth character ψm : Up,m → A×
m for each m ≥ 1,

such that we have isomorphisms of Zp/(p
m)-modules (where the Up,m-action

in M( · ) is trivial on the left hand side and through ψm on the right hand

side)

(A.i) M(UpUp,m,Zp/(p
m)) � (M(UpUp,m, Am/(T − 1)))

that are compatible with the action of TS(UpUp,m,Zp/(p
m)) on both sides

via the Zp-algebra isomorphism

(A.ii) TS(UpUp,m,Zp/(p
m)) � TS(UpUp,m, Am/(T − 1)).

Moreover, every automorphic representation of G(AF ) that contributes to

(M(UpUp,m, Am))⊗Zp
Qp

is supercuspidal at all places above p.
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When G is a definite unitary group which splits at p, Theorem A was ob-
tained for all primes p via Bushnell–Kutzko types independently by Kegang
Liu. The proof will appear in his forthcoming work on generalizing some of
the main constructions in [Sch18] from GL2 to GLn.

In fact it is technically convenient to allow self-direct sums on both
sides of (A.i), see Theorem 3.1.1 below. We also prove the analogue of the
theorem for non-constant coefficients instead of the constant coefficient Zp.
See Theorem 3.2.1 for the precise statement. The normal subgroup property
of {Up,m}m≥1 in Theorem A is not used in the applications in this paper,
but might be helpful in some settings, e.g., see [EP20, §4].

Notice that (A.i) is a congruence modulo an arbitrary power of p be-
tween the space M(UpUp,m,Zp) that represents automorphic forms of ar-
bitrary level (as one can choose smaller Up and larger m) and the space
M(UpUp,m, Am) representing automorphic forms that are supercuspidal at
p. As such we expect Theorem A to be widely applicable, by reducing a ques-
tion about automorphic representations to the case when a local component
is supercuspidal, for instance in the construction of automorphic Galois rep-
resentations as observed in [Sch18, Rem. 7.4]. Indeed we illustrate such an
application in §3.3 to reprove the construction of p-adic Galois representa-
tions associated with regular C-algebraic conjugate self-dual automorphic
representations Π of GLN over a CM field, by reducing to the analogous
result of [Clo91, HT01] which assumes that Π has a discrete series repre-
sentation at a finite prime. (Compare with Theorems 3.3.1 and 3.3.3.) We
achieve this via the congruences of Theorem A, assuming p > N (which
should be unnecessary if Liu’s result mentioned above is applied). Although
this kind of argument is standard (cf. [Tay91, 1.3]), we supply details as a
guide to utilize our theorem in an interesting context.

We also mention a related result of Emerton–Paškūnas [EP20, Thm. 5.1]
that in the spectrum of a localized Hecke algebra of a definite unitary group,
the points arising from automorphic representations with supercuspidal com-
ponents at p are Zariski dense (when p is a prime such that the unitary group
is isomorphic to a general linear group locally at p). They start from the
notion of “capture” [CDP14, §2.4], which can be powered by type theory
for GLn due to Bushnell–Kutzko. While their theorem and our Theorem A
do not imply each other, Paškūnas suggested to us that our local Theorem
C below should provide sufficient input for their argument to go through
for general G as above. We confirm his suggestion to extend their density
result.

To explain the statement, we assume that the center of G has the same
Q-rank and R-rank as in [EP20, §5]. Define the completed cohomology
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(cf. (3.4.1))

H̃0(Up) := lim←−
m≥1

lim−→
Up

M(UpUp,Zp/(p
m)),

where the second limit is over open compact subgroups of G(F ⊗QQp). The
space H̃0(Up) is acted on by the “big” Hecke algebra TS(Up) defined as a
projective limit of TS(UpUp,Zp/(p

m)) over Up and m. Let m be an open
maximal ideal of TS(UpUp,Zp/(p

m)) for the profinite topology. It follows
from the definition that classical forms are dense in H̃0(Up), which consists
of p-adic automorphic forms, but we show that the density statement still
holds when the component at p is required to be supercuspidal. (See §3.4
below for undefined notions and the precise formulation.)

Theorem B (cf. Corollary 3.4.7 and Theorem 3.4.9). Assume p > Cox(G).
Then classical automorphic forms with fixed weight which are supercuspi-
dal at p form a dense subspace in H̃0(Up). In the spectrum of the m-adic
completion of TS(Up), such classical automorphic forms are Zariski dense.

This theorem has a potential application to a torsion and p-adic functo-
riality result following the outline of [EP20, §5.2] when a classical Langlands
functoriality from a group G1 to another group G2 is available for auto-
morphic representations on G1 which are supercuspidal at p. (We thank
Paškūnas for pointing this out to us.) For a Jacquet–Langlands-type ex-
ample, let G1 and G2 be the unit groups of central quaternion algebras
over Q with G1 unramified at p but G2 ramified at p, and assume that
the set of ramified primes away from p for G1 is contained in that for G2.
Then loc. cit. constructs a transfer from G1 to G2 on the level of completed
cohomology, overcoming the local obstruction at p in the classical Jacquet–
Langlands that principal series of G1(Qp) do not transfer to G2(Qp). See
[Eme14, 3.3.2] for a related discussion. (A similar transfer of torsion classes
for Shimura curves is obtained in [Sch18, Cor. 7.3] by a somewhat different
argument based on a version of Theorem A; this approach should extend to
more general groups by using our Theorem A and its variants.)

Paškūnas kindly wrote Appendix C for us in which he shows that the big
Hecke algebras are Noetherian in the setup of definite unitary groups. He also
constructs automorphic Galois representations for Hecke eigensystems in the
completed cohomology only from the analogous result by Clozel [Clo91] via
the density result of [EP20]. In particular this gives yet another argument
to remove the local hypothesis from [Clo91], which has the advantage that
no restriction on p is required, as it is the case for Bushnell–Kutzko’s type
theory for GLn. For general reductive groups, we hope that Theorem B will
be similarly useful.
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Local results

The data in Theorem A are constructed via a new variant of types for
representations of p-adic groups that we call omni-supercuspidal types. The
aim of the theory of types is to classify complex smooth irreducible rep-
resentations of p-adic groups up to some natural equivalence in terms of
representations of compact open subgroups. Theorems about the existence
of s-types (types that single out precisely one Bernstein component s) lie
at the heart of many results in the representation theory of p-adic groups
and play an important role in the construction of an explicit local Lang-
lands correspondence and the study of its fine structure. The idea of omni-
supercuspidal types is that it is harmless for some applications if a type cuts
out a potentially large family of supercuspidal representations, not just a sin-
gle supercuspidal Bernstein component, but that it is important to control
the shape of the types better.

Let us elaborate. For our global application, we need to be able to choose
the compact open subgroups arbitrarily small in our types. It is also desir-
able to require the representation of our compact open subgroup detecting
supercuspidality to be one-dimensional. Unfortunately the irreducible rep-
resentations of the compact open subgroups that form s-types have neither
properties in general. Nevertheless, using the theory of s-types, we show
that there exists a plethora of omni-supercuspidal types that satisfy the
two desiderata and therefore exhibit a much easier structure than s-types.
For readers who are mainly interested in determining if a certain represen-
tation is supercuspidal, our omni-supercuspidal types (Definition 2.2.1 and
Theorem 2.2.15) and the supercuspidal types arising from our intermediate
result, Proposition 2.2.4, allow therefore significantly more flexibility and
easier detection.

To be more precise, let us introduce some notation. Let F be a finite
extension of Qp, and G a connected reductive group over F with dimG ≥ 1.
A supercuspidal type for G(F ) means a pair (U, ρ), where ρ is an irreducible
smooth complex representation of an open compact subgroup U of G(F )
such that every irreducible smooth complex representation π of G(F ) for
which π|U contains ρ is supercuspidal. Note that a supercuspidal type may
pick out several Bernstein components.

We define an omni-supercuspidal type of level pm (with m ∈ Z≥1) to
be a pair (U, λ), where λ is a smooth Z/pmZ-valued character on an open
compact subgroup U of G(F ) such that (U, χ ◦ λ) is a supercuspidal type
for every nontrivial character χ : Z/pmZ → C∗. The flexibility allowed
for χ is extremely helpful for producing congruences of automorphic forms.
Our main novelty is a constructive proof of the following theorem about
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the existence of such omni-supercuspidal types, where Cox(G) is defined as
before.

Theorem C (Theorem 2.2.15). Suppose p > Cox(G). Then there exists
an infinite sequence of omni-supercuspidal types {(Um, λm)}m∈Z≥1

such that
(Um, λm) has level pm and {Um}m∈Z≥1

forms a basis of open neighborhoods
of 1 and such that Um′ is normal in Um whenever m′ ≥ m.

Our proof provides an explicit description of Um and λm using the Moy–
Prasad filtration. To give an outline of our approach, suppose for simplicity
of exposition that G is an absolutely simple group. (The reduction to this
case is carried out in the proof of Theorem 2.2.15.) ThenG is tamely ramified
thanks to the assumption that p > Cox(G). Let T be a tamely ramified
elliptic maximal torus of G, and φ : T (F ) → C∗ a smooth character of
depth r ∈ R>0 that is G-generic of depth r in the sense of [Yu01, §9]. We
call such a triple (T, r, φ) a 0-toral datum.

Then our approach is to show (a) that there is an infinite supply of 0-
toral data (with same torus T ) with r → ∞ and (b) that each 0-toral datum
gives rise to an omni-supercuspidal type whose level grows along with r.
(For general G we consider 1-toral data, introduced in Definition 1.2.1, as
there may not be enough 0-toral data.)

To prove the abundance of 0-toral data (Proposition 2.1.2 below; see
Proposition 2.1.6 for a result on 1-toral data), we exhibit a G-generic element
(of some depth) in the dual of the Lie algebra of T . After reducing to the
case that G is quasi-split, we construct T by giving a favorable Galois 1-
cocycle to twist a maximally split maximal torus. To exhibit a G-generic
element, we use the Moy–Prasad filtration and eventually demonstrate a
solution to a certain system of equations; here an additional difficulty comes
from a Galois-equivariance condition. While we treat most cases uniformly,
we carry out some explicit computations for types D2N+1 and E6 that can
be found in Appendices A and B.

The second step is to construct omni-supercuspidal types from 0-toral
data. By making some additional choices one can enlarge the 0-toral datum
to an input for the construction of Adler ([Adl98]) and Yu ([Yu01]). The
construction of Adler and Yu yields then a supercuspidal type (K, ρ) such

that the compact induction c-ind
G(F )
K ρ is irreducible and supercuspidal. Un-

fortunately, ρ may not be a character, and the groups K (as r and φ vary)
do not form a basis of open neighborhoods because K ⊃ T (F ). However, ρ
restricted to the Moy–Prasad filtration subgroup Gy,r ⊂ K, where y denotes
the point of the Bruhat–Tits building of G corresponding to T , is given by
a character φ̂. We show that (Gy,r, φ̂) is a supercuspidal type (which in the
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0-toral datum case essentially follows from Adler ([Adl98]), but we also treat
the more complicated 1-toral datum case, see Proposition 2.2.4). The char-
acter φ̂ can also be defined on the larger group Gy, r

2
+, and φ̂|Gy, r

2
+
factors

through a surjective Z/pmZ-valued character λ, where m is proportional
to r. Finally we deduce that (G(F )y, r

2
+, λ) is an omni-supercuspidal type of

level pm.
Let us remark on the case when F is a local function field in characteristic

p. In fact we prove most intermediate results for arbitrary nonarchimedean
local fields. In particular Proposition 2.2.4 also holds for local function fields.
This proposition of independent interest provides a rather small compact
open subgroup together with a character (the pair (Gy,r, φ̂) in the case
of 0-toral data) detecting supercuspidality. It is only in the last crucial
step when moving from these one-dimensional supercuspidal types to omni-
supercuspidal types that we require the field F to have characteristic zero.
The reason is that for function fields F every element of G(F )y, r

2
+/G(F )y,r+

has order p (as the quotient is a vector space over a finite field) while we re-
quire elements of order pm for our construction of omni-supercuspidal types
in order to achieve that λ surjects onto Z/pmZ.

From the local results to the global results

We sketch how to obtain Theorem A from Theorem C by adopting an
idea from [Sch18, §7].1 We use the notation from Theorem A and assume
for simplicity that F = Q. From Theorem C we obtain a sequence of omni-
supercuspidal types (Up,m, λm)m∈Z≥1

of level pm for the p-adic group G×Q

Qp. We define the character ψm to be the composite map

ψm : Up,m
λm� Z/pmZ ↪→ A×

m,

where the second map sends a mod pm to T a. Then ψm mod (T − 1) is the
trivial character on Am/(T − 1) � Zp/(p

m), giving the isomorphism (A.i)
of Theorem A, which can be checked to be Hecke equivariant. The omni-
supercuspidal property of (Up,m, ψm) implies that M(UpUp,m, Am) ⊗Zp

Qp

is accounted for by automorphic representations with supercuspidal com-
ponents at p. In fact this consideration initially motivated our definition of
omni-supercuspidal types.

1This is a variant of the older idea to produce congruences of group cohomology
via two coefficient modules which contain common factors modulo pm. See [Tay88,
p.5] for instance.
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Another approach to omni-supercuspidal types (Appendix D)

After the paper had been submitted for publication, Beuzart-Plessis dis-
covered another proof of our main local Theorem C based on the ideas of
[BP16], where he proves the existence of supercuspidal representations. This
is the content of Appendix D.

Beuzart-Plessis’ approach and ours are complementary. His argument
has the advantage that it is simpler and requires no constraints on p. Even
though his proof is non-constructive, the existence statement of Theorem C
is enough to imply Theorems A and B (without conditions on p). In contrast,
our proof gives us a large supply of explicit omni-supercuspidal types, i.e.,
we know precisely which supercuspidal representations contain our omni-
supercuspidal types and what their Langlands parameters are. In particu-
lar, our explicit approach leads to a congruence with an automorphic rep-
resentation whose local component is not only supercuspidal but satisfies
other (e.g., endoscopic) properties. Such an additional control is expected
to be useful for global applications (when the group is not a form of GLn).
Moreover, our approach yields results in type theory of independent inter-
est.

Guide for the reader

The structure of the paper should be clear from the table of contents, but
we guide the reader to navigate more easily. At a first reading, the reader
might want to concentrate on 0-toral data (§1.1) and skip 1-toral data (§1.2)
as this will significantly reduce notational burden while not sacrificing too
much of the main theorems. (See Remark 2.2.17 and the beginning of §1.2.)

One may treat the abundance of 0-toral data for absolutely simple groups
(proved in §2.1 together with Appendices A and B) as a black box even
though this is the basic engine of our method. The main takeaway is Propo-
sition 2.1.2. If the reader wants to get a sense of its proof, a good idea might
be to focus on the split type A case (Case 2 of the proof of Proposition 2.1.2).
Section 2.2 is devoted to the main construction of this paper, namely how
to go from 0-toral (and 1-toral) data to omni-supercuspidal types. The key
technical input is Proposition 2.2.4. This is a result of independent interest
in type theory and implies the subsequent lemmas in its own momentum,
paving the way to the main local theorem (Theorem 2.2.15).

If the reader is merely interested in global applications, it is possible
to go through only basic local definitions and start in §3, taking Theorem
2.2.15 on faith. Sections 3.1 and 3.2 are concerned with the application of
Theorem 2.2.15 to build congruences between automorphic forms. While
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§3.3 only reproves a known result on construction of Galois representations,
we hope that the reader will find the details helpful for their own applica-
tions. Another application is given in §3.4 to show that the supercuspidal
part is dense in the completed cohomology in a suitable sense. In Appendix
C, the themes of §3.3 and §3.4 intersect: Paškūnas explains how the den-
sity statement can be used to construct automorphic Galois representations
via congruences. Appendix D explains another approach to the main local
theorem independently from the main text.

Notation and conventions

We assume some familiarity with [Yu01] in that we do not recall every
definition or notion used in [Yu01] (e.g. Bruhat–Tits buildings, Moy–Prasad
subgroups). However we do provide precise reference points for various facts
we import from the paper.

The symbol for the trivial representation (of any group) is 1. Write Z>0

(resp. Z≥0) for the set of positive (resp. nonnegative) integers.
Every reductive group is assumed to be connected and nontrivial (so

that dim ≥ 1) in the main text without further comments.
Let k be a field. Let k (resp. ksep) denote an algebraic (resp. separable)

closure of k. When considering algebraic field extensions of k, we consider
them inside the algebraic closure k, which we implicitly fix once and for all.
(For instance, this applies when k is the base field F of the main text, which
is local in the first two sections and global in the last section.) Let X be an
affine k-scheme, and k′/k be a field extension and k′′ a subfield of k. Then we
write X ×k k

′ or Xk′ for the base change X ×spec(k) spec(k
′), and Resk/k′′X

for the Weil restriction of scalars (which is represented by a k′′-scheme).
Let F be a nonarchimedean local field. Then we write OF for the ring of

integers and kF for the residue field. We use v : F → Q ∪ {∞} to designate
the additive p-adic valuation map sending uniformizers of F to 1, and we
write | · |F : F× → R×

>0 for the modulus character sending uniformizers to
(#kF )

−1. We fix a nontrivial additive character Ψ on F which is nontrivial on
OF but trivial on elements with positive valuations. If E is a finite extension
of F , then we can extend Ψ to E. We fix such an extension and denote it
by Ψ as well.

Let G be a reductive group over F (connected by the aforementioned
convention). We say G is tamely ramified (over F ) if some maximal torus of
G splits over a tamely ramified extension of F . We write Gad for the adjoint
quotient of G, and g for the Lie algebra of G. By Z(G) we mean the center
of G. Denote the absolute Weyl group of G by W = WG, and its Coxeter



Congruences of algebraic automorphic forms 361

number by Cox(G). For a (not necessarily maximal) split torus T ⊂ G, we
denote by Φ(G,T ) the set of (F -rational) roots of G with respect to T . For
each α ∈ Φ(G,T ) we write α̌ : Gm → T for the corresponding coroot, and
gα for the subspace of g on which T acts via α.

We write B(G,F ) for the (enlarged) Bruhat–Tits building of G over
F . When F ′ is a finite tamely ramified extension of F , and T a maxi-
mally F ′-split maximal torus of GF ′ (defined over F ′), we write A (T, F ′)
for the apartment of T over F ′. Both B(G,F ) and A (T, F ′) are embed-
ded in B(G,F ′) so their intersection as in D2 of §1.1 below makes sense.
Given a point y ∈ B(G,F ′) and s ∈ R≥0 (resp. s ∈ R), let G(F ′)y,s (resp.
g(F ′)y,s) denote the Moy–Prasad filtration in G(F ′) (resp. g(F ′)). All Moy–
Prasad filtrations are normalized with respect to the fixed valuation v. Write
G(F ′)y,s+ := ∪r>sG(F ′)y,r and g(F ′)y,s+ := ∪r>sg(F

′)y,r. Moreover, we de-
note by [y] the image of the point y in the reduced Bruhat–Tits building, and
we write G(F ′)[y] for the stabilizer of [y] in G(F ′) (under the action of G(F ′)
on the reduced Bruhat–Tits building). We often abbreviate G(F )y,s, g(F )y,s,
etc as Gy,s, gy,s, etc, when F is the base field. Similarly we may abuse nota-
tion and write g for g(F ). We denote by g∗ the F -linear dual of g(F ), and
write g∗y,s for its Moy–Prasad filtration submodule at y of depth s. More
generally, if V is an F ′-vector space, then V ∗ denotes its F ′-linear dual. Let
K be an open and closed subgroup of G(F ′). For a smooth representation ρ

of K, we write c-ind
G(F ′)
K ρ for the compactly induced representation, defined

to be the subspace of the usual induction consisting of smooth functions on
G(F ′) whose supports are compact modulo K.

Let A denote the ring of adèles of Q. Write Ak := A ⊗Q k when k is a
finite extension of Q. When S is a set of places of k, we denote by AS

k the
subring of elements in Ak whose components are zero at the places in S.
E.g. A∞

k denotes the ring of finite adèles over k.
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1. Construction of supercuspidal types

Let F be a nonarchimedean local field with residue field kF . The charac-

teristic of kF is a prime p > 0. Let G be a connected reductive group over

F . (Most results in the first two sections hold in this generality, sometimes

under the condition that p exceeds the Coxeter number of G, except that

some key statements in §2.2 require char(F ) = 0.) To fix the idea, every rep-

resentation is considered on a C-vector space in the first two sections, but

everything goes through without change with an algebraically closed field of

characteristic zero (e.g. Qp) as the coefficient field. In §3 we will thus freely

import results from the earlier sections with arbitrary algebraically closed

coefficient fields of characteristic zero.

Definition 1.0.1. Let ρ be a smooth finite-dimensional representation of

an open compact subgroup U ⊂ G(F ). We call such a pair (U, ρ) a super-

cuspidal type if every irreducible smooth representation π of G(F ) with

HomU (ρ, π) �= {0} is supercuspidal.

If (U, ρ) is a supercuspidal type, then it cuts out (possibly several) su-

percuspidal Bernstein components, thus deserving the name. In type theory,

it is typical to construct a supercuspidal type singling out each individ-

ual supercuspidal Bernstein component when possible. We do not insist on

this but instead ask for other properties (cf. §2.2 below) with a view to-

wards omni-supercuspidal types. The construction data of [Yu01] are too

general for us to have a good control, so we restrict our attention to 0-

toral and 1-toral data as they should be still general enough for applica-

tions. Most results of this section are recollections from [Adl98, Yu01, Fin21,

Fin].

For the remainder of Section 1 we assume that G splits over a tamely

ramified extension of F .
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1.1. Construction of supercuspidal types from 0-toral data

Definition 1.1.1. A 0-toral datum (for G) consists of a triple (T, r, φ),
where

• T ⊂ G is a tamely ramified elliptic maximal torus over F ,
• r ∈ R>0,

2

• φ : T (F ) → C∗ is a smooth character of depth r. If G �= T , then we
require φ to be G-generic in the sense of [Yu01, §9] (relative to any,
or, equivalently, every point in B(G,F )∩A (T, F ′), where F ′ denotes
a finite tame extension of F over which T is split).

A 0-toral-datum gives rise to the following input for Yu’s construction of
supercuspidal representations, where we use the notation of [Yu01, §3] (see
also [HM08, §3]):

D1: G0 = T is an elliptic maximal torus of G1 = G over F , and T is split
over a finite tamely ramified extension F ′/F .

D2: y ∈ B(G,F )∩A (T, F ′) is a point, which we fix once and for all. (Note
that the image [y] of the point y in the reduced Bruhat–Tits building
does not depend on the choice of y.)

D3: r = r0 = r1 > 0 is a real number.
D4: ρ is the trivial representation of K0 := T (F ).
D5: φ = φ0 : T (F ) → C∗ is a character that is G-generic (relative to y) of

depth r in the sense of [Yu01, §9]. The character φ1 is trivial.

Remark 1.1.2. Note that if G = T , then this datum is strictly speaking
not satisfying Condition D1 of [Yu01, §3] because Condition D1 requires
G0 � G1. However, as Yu also points out in [Yu01, §15, p.616], we can
equally well work with this “generalized” datum.

Later we will vary r and φ for a given T . The point y will remain fixed.
Following Yu, we write K1 := T (F )G(F )y, r

2
and 0K1 := T (F )yG(F )y, r

2
. In

[Yu01], Yu constructs an irreducible smooth representation ρ1 of K1, and
letting 0ρ1 := ρ1|0K1 , shows the following.

Theorem 1.1.3 (§2.5 of [Adl98]; Prop 4.6, Thm 15.1 and Cor 15.3 of
[Yu01]). The compactly induced representation

π := c-ind
G(F )
K1 ρ1,

2We disregard r = 0 as it is enough to consider positive depth for our intended
applications.
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is irreducible and supercuspidal of depth r. Moreover, every irreducible
smooth representation π′ of G(F ) with Hom0K1(0ρ1, π

′) �= {0} is in the same
Bernstein component as π. In particular, (0K1, 0ρ1) is a supercuspidal type.

Remark 1.1.4. These representations were already among those constructed
by Adler in [Adl98]. However, we have used Yu’s notation here to be consis-
tent with Section 1.2, in which we introduce a class of representations that
is more general than that arising from a 0-toral-data.

Remark 1.1.5. The representations obtained from 0-toral data are the same
as the ones constructed from what DeBacker and Spice call “toral cuspidal
G-pairs” in [DS18]. DeBacker and Spice refer to the resulting representations
as “toral supercuspidal representations” in their introduction.

During Yu’s construction of ρ1, he constructs a smooth character φ̂ :
T (F )G(F )y, r

2
+ → C∗ (denoted φ̂ in [Yu01]), which is trivial on

(T,G)(F )y,(r+, r
2
+). Let J

1
+ := (T,G)(F )y,(r, r

2
+). Then we show

Proposition 1.1.6. Assume p does not divide the order of the absolute
Weyl group of G. Then the pair (J1

+, φ̂|J1
+
) is a supercuspidal type.

Proof. This is a special case of Proposition 1.2.6 proved in the next section.

1.2. Construction of supercuspidal types from 1-toral data

Since non-simple reductive groups might not admit a 0-toral datum in gen-
eral, we introduce the slightly more general notion of 1-toral data. A reader
who is only interested in the final result about the mere existence of enough
omni-supercuspidal types, Theorem 2.2.15, is welcome to skip all discus-
sions surrounding 1-toral data, see also Remark 2.2.17. The motivation for
the introduction of 1-toral data is to provide the reader with the opportunity
to choose the compact open subgroup appearing in the omni-supercuspidal
type to be a Moy–Prasad filtration subgroup. Moreover, we believe that the
intermediate results motivated by 1-toral data, in particular Proposition
2.2.4, are of independent interest to representation theorists.

Definition 1.2.1. A 1-toral datum is a tuple ((G0, . . . , Gd), (r0, . . . , rd−1),
(φ0, . . . , φd−1)), where

• G0 is an elliptic, maximal torus of G and either

– G0 = G1 = G, or

– G0 � G1 � · · · � Gd−1 � Gd = G is a sequence of twisted Levi
subgroups that split over some tamely ramified extension F ′ of F ,
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• 0 < r0 < r1 < . . . < rd−1 < r0 + 1 is a sequence of real numbers,
• φi is a smooth character of Gi(F ) of depth ri that is Gi+1-generic
relative to y of depth ri (if G

0 �= G) for 0 ≤ i ≤ d− 1 and some (thus
every) y ∈ B(G,F ) ∩ A (G0, F ′).

Since G0 is a torus, we will also write T instead of G0.
A 1-toral datum gives rise to a tuple

(1.2.2) ((G0, . . . , Gd), y, (r0, . . . , rd−1, rd = rd−1), ρ, (φ0, . . . , φd−1, φd = 1))

as in [Yu01, §3] (or as in [Yu01, §15] in the case of G = T ) by setting

• y to be a point in B(G,F ) ∩ A (G0, F ′), which we fix once and for
all (note that [y] does not depend on the choice of y in B(G,F ) ∩
A (G0, F ′)),

• ρ to be the trivial representation.

Remark 1.2.3. A 0-toral datum is a 1-toral datum with the additional con-
dition that d = 1. For the reader interested in our choice of nomenclature:
The “0” in “0-toral” refers to the difference between rd and r0 being 0, while
the “1” in “1-toral” is motivated by the difference between rd and r0 being
smaller than 1.

Remark 1.2.4. The decision to set φd = 1 is not a serious restriction (and
could be removed if desired). By setting φd = 1 we only exclude additional
twists by characters of G(F ) if G is not a torus. This convention has the
advantage that the translation between the notion in [Yu01] and the notation
in [Fin21] is easier, i.e. we do not have to distinguish the cases φd = 1 and
φd �= 1.

For 0 ≤ i ≤ d − 1, we write H i for the derived subgroup of Gi. We set
Hd := Gd (not the derived subgroup of Gd unless Gd is semisimple). We
abbreviate for 1 ≤ i ≤ d,

Gi
y,ri−1,

ri−1

2
+

:= (Gi−1, Gi)(F )y,(ri−1,
ri−1

2
+),

H i
y,ri−1,

ri−1

2
+

:= H i(F ) ∩Gi
y,ri−1,

ri−1

2
+
.

and define hi
y,ri−1,

ri−1

2
+
analogously, where gi and hi denote the Lie algebras

of Gi and H i, respectively, and set

J1
+ := H1

y,r0,
r0
2
+H

2
y,r1,

r1
2
+ . . . Hd−1

y,rd−2,
rd−2

2
+
Hd

y,rd−1,
rd−1

2
+
,

= H1
y,r0,

r0
2
+H

2
y,r1,

r1
2
+ . . . Hd−1

y,rd−2,
rd−2

2
+
Gd

y,rd−1,
rd−1

2
+
.
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Kd := G0
[y]H

1
y,r0,

r0
2

H2
y,r1,

r1
2

. . . Hd−1
y,rd−2,

rd−2

2

Hd
y,rd−1,

rd−1

2

,

0K
d

:= G0
yH

1
y,r0,

r0
2

H2
y,r1,

r1
2

. . . Hd−1
y,rd−2,

rd−2

2

Hd
y,rd−1,

rd−1

2

.

From the tuple (1.2.2), Yu constructs in [Yu01, §4] an irreducible rep-
resentation ρd of Kd such that the following theorem holds, letting 0ρd :=
ρd|0Kd .

Theorem 1.2.5 (Prop 4.6, Thm 15.1, Cor 15.3 of [Yu01] and Thm 3.1 of
[Fin]). The compactly induced representation

π := c-ind
G(F )
Kd ρd,

is irreducible and supercuspidal of depth rd. Moreover, every irreducible
smooth representation π′ of G(F ) with Hom0Kd(0ρd, π

′) �= {0} is in the same
Bernstein component as π. In particular, (0Kd, 0ρd) is a supercuspidal type.

The representation ρd restricted to J1
+ is given by the character φ̂ =∏

0≤i≤d−1 φ̂i|J1
+
(times identity), where φ̂i is defined as in [Yu01, §4], i.e. φ̂i

is the unique character of (G0)[y](G
i)y,0Gy,

ri
2
+ that satisfies

• φ̂i|(G0)[y](Gi)y,0
= φi|(G0)[y](Gi)y,0

, and

• φ̂i|G
y,

ri
2

+
factors through

Gy,
ri
2
+/Gy,ri+ � gy, ri

2
+/gy,ri+ = (gi ⊕ ri)x, ri

2
+/(g

i ⊕ ri)x,ri+

→ (gi)x, ri
2
+/(g

i)x,ri+ � (Gi)x, ri
2
+/(G

i)x,ri+,

on which it is induced by φi. Here ri is defined to be

g ∩
⊕

α∈Φ(GF ′ ,TF ′ )\Φ(Gi
F ′ ,TF ′ )

g(F ′)α

for some maximal torus T of Gi that splits over a tame extension F ′ of
F with y ∈ A (T, F ′), and the surjection gi ⊕ ri � gi sends ri to zero.

Proposition 1.2.6. Assume p does not divide the order of the absolute
Weyl group of G. Then the pair (J1

+, φ̂|J1
+
) is a supercuspidal type.

Remark 1.2.7. The hypothesis on p may not be optimal, but imposed here
to import results from [Fin21, Kal19] which assume it. The condition clearly
holds if p is larger than the Coxeter number of the Weyl group.
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Proof of Proposition 1.2.6. The statement is obvious if G is a torus, hence
we assume that G is not a torus for the remainder of the proof. Let (π, V )
be an irreducible smooth representation of G(F ) such that V contains a
one-dimensional subspace V ′ on which the subgroup J1

+ ⊂ G(F ) acts via φ̂.
We need to show that π is supercuspidal.

Our strategy consists of deriving from the action of J1
+ ⊂ G(F ) via φ̂

on V ′ a maximal datum for (π, V ) (in the sense of [Fin21, Def. 4.6]). This
can be achieved because the character φ̂ on J1

+ encodes the information of
a truncated extended datum in the sense of [Fin21, Def. 4.1]. The fact that
G0 is a torus, hence has trivial derived group, allows us to complete the
truncated extended datum to a maximal datum for (π, V ) by adding the
trivial representation of (G0)der = {1}. Then we can apply [Fin21, Cor. 8.3],
which is a criterion to deduce that (π, V ) is supercuspidal from properties
of the previously constructed maximal datum for (π, V ). Let us provide the
details.

Since p does not divide the order of the absolute Weyl group of G,
the character φj is trivial on Hj(F ) ∩ Gj(F )y,0+ ([Kal19, Lemma 3.5.1]).

Hence φ̂j |Hi+1

y,ri,
ri
2

+

is trivial for 0 ≤ i < j < d. Moreover, φ̂j |Hi+1

y,ri,
ri
2

+

is

trivial for d > i > j ≥ 0 by the second bullet point of the definition of φ̂j .

Thus φ̂|Hi+1

y,ri,
ri
2

+

= φ̂i|Hi+1

y,ri,
ri
2

+

. We let Xi ∈ g∗y,−ri such that the character

φ̂|Hi+1

y,ri,
ri
2

+

= φ̂i|Hi+1

y,ri,
ri
2

+

viewed as a character of

H i+1
y,ri,

ri
2
+
/H i+1

y,ri+ � h
i+1
y,ri,

ri
2
+
/hi+1

y,ri+

is given by Ψ ◦ Xi. Since φi is Gi+1-generic relative to y of depth ri, by
Yu’s definition of genericity [Yu01, §8 and §9] we can choose Xi to have the
following extra properties: firstly Xi ∈ (Lie (Z(Gi))(F ))∗ ⊂ (gi)∗ (see [Yu01,
§8] for the definition of this inclusion), and secondly

v(Xi(Hα̌)) = −ri for all α ∈ Φ(Gi+1
F , , TF ,) \ Φ(Gi

F , , TF ,),

where Hα̌ := dα̌(1) ⊂ LieT (F ,) ⊂ gi(F ,). (Here dα̌ : Ga → LieT denotes
the Lie algebra morphism arising from α̌ : Gm → T , and recall that we write
T = G0.) Since Xi ∈ (Lie (Z(Gi))(F ))∗, we have that

Xi(Hα̌) = 0 for all α ∈ Φ(Gi
F , , TF ,)

and that the Gi+1-orbit of Xi is closed.
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Thus Xi is almost stable and generic of depth −ri at y as an element of
(gi+1)∗ in the sense of [Fin21, Definition 3.1 and Definition 3.5]. By [Fin21,
Cor. 3.8.] this implies that Xi is almost strongly stable and generic of depth
−ri at y. Moreover, since φi is Gi+1-generic, we have Gi = CentGi+1(Xi).
Hence the tuple (y, (ri)d−1≥i≥0, (Xi)d−1≥i≥0, (G

i)d≥i≥0) is a truncated ex-
tended datum of length d in the sense of [Fin21, Def. 4.1].3 Since J1

+ acts on

V ′ via φ̂, since (G0)der = T der = {1}, and since B(G0, F ) consists of a single
facet, we conclude that (y, (Xi)d−1≥i≥0,1) is a maximal datum for (π, V ) in
the sense of [Fin21, Def. 4.6].

Since y is a facet of minimal dimension of B(G0, F ) = B(T, F ) and
Z(G0)/Z(G) is anisotropic, [Fin21, Cor. 8.3] implies that (π, V ) is supercus-
pidal.

2. Construction of a family of omni-supercuspidal types

We have seen that 0-toral and 1-toral data yield supercuspidal types. Up-
grading this, we will see in this section that 0-toral data and 1-toral data
give rise to what we call omni-supercuspidal types (see Definition 2.2.1 be-
low), which eventually lead to interesting congruences of automorphic forms
in the global setup. Thus it is crucial to have a family of omni-supercuspidal
types of level tending to infinity, whose existence we prove in this section.

2.1. Abundance of 0-toral data and 1-toral data

The current subsection is devoted to show that 1-toral data exist in abun-
dance under a mild assumption on p. We construct an infinite family of
0-toral data of increasing level for absolutely simple groups as an interme-
diate step.

We begin with a preliminary lemma that will be useful for explicit con-
structions later.

Lemma 2.1.1. Let n ∈ Z≥2 and let E be the degree n unramified extension
of F . Let σ be a generator of Gal(E/F ). Suppose that p � n. Then there
exists an element e in E with the following properties:

• v(e) = 0
•
∑

1≤i≤n σ
i(e) = 0

• The image ē of e in the residue field kE of E is a generator for the
field extension kE/kF .

3Beware that the sequence of twisted Levi subgroups is increasing in Yu’s data,
but decreasing in [Fin21].
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Proof. Let e0 ∈ E \ F be an element of valuation zero whose image e0 in
kE generates the extension of finite fields kE/kF . If

∑
1≤i≤n σ

i(e0) = 0,

then we are done, so suppose
∑

1≤i≤n σ
i(e0) �= 0. Set e1 :=

∑
1≤i≤n σ

i(e0)
and e := n · e0 − e1. Then σ(e1) = e1 and e1 ∈ OF . Hence the image ē
of e := n · e0 − e1 in kE is a generator for the field extension kE/kF and
therefore v(e) = 0. Moreover

∑
1≤i≤n σ

i(e) = n
∑

1≤i≤n σ
i(e0)− ne1 = 0, so

the proof is finished.

Recall that we write Cox(G) ∈ Z≥1 for the Coxeter number of the ab-
solute Weyl group W of G. Note that if G is an absolutely simple reductive
group and p > Cox(G), then G splits over a tamely ramified extension of
F . For the reader’s convenience, we recall the table of Coxeter numbers for
irreducible root systems of all types:

type of W As Bs (s ≥ 2) Cs (s ≥ 3) Ds (s ≥ 4) E6 E7 E8 F4 G2

Cox(G) s+ 1 2s 2s 2s− 2 12 18 30 12 6

Proposition 2.1.2. Let G be an absolutely simple reductive group over
F . Assume that p > Cox(G). Then there exists a tamely ramified elliptic
maximal torus T of G that enjoys the following property: For every n ∈ Z≥1,
there exist a real number r with n < r ≤ n+1 and a character φ : T (F ) → C∗

of depth r such that (T, r, φ) is a 0-toral datum.

Proof. We first claim that it suffices to show that G contains an elliptic
maximal torus T such that for every n ∈ Z≥1, there exists a G-generic
element Xn ∈ t∗ of depth −r in the sense of [Yu01, § 8] with n < r ≤ n+ 1.
Suppose that T is such a torus accommodating such an Xn for every n. Let
y ∈ A (T, F ′)∩B(G,F ) as in §1.1. Then we can compose Xn with the fixed
additive character Ψ to obtain a generic character φ of tr/tr+ = ty,r/ty,r+ �
Ty,r/Ty,r+, which we can view as a character of Ty,r. Since the character
takes image in the divisible group C∗, we can extend it to a character of
T (F ), which we also denote by φ. Then φ is a G-generic character of T (F )
of depth r and (T, r, φ) is a 0-toral datum.

Let us show the existence of T and Xn as above. For simplicity we write
X forXn when there is no danger of confusion. Since over a non-archimedean
local field every anisotropic, maximal torus transfers to all inner forms (see
[Kot86, §10] and [Kal19, Lemma 3.2.1]), we may assume without loss of
generality that G is quasi-split. (See [Kal19, 3.2] to review what transfer of
maximal tori means.) Let T sp be a maximal torus of G that is maximally
split. Denote by X∗(T sp) the group of cocharacters of T sp ×F F sep. Let
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E′ be the splitting field of T sp, which is finite Galois over F . Then the
action of Gal(F sep/F ) on X∗(T sp) factors through Gal(E′/F ). We denote
by W sp = N(T sp)/T sp the Weyl group (scheme) of T sp ⊂ G.

Before we go further, we outline the strategy for the rest of the proof.
Firstly, we will choose a finite Galois extension E/F (in F sep) as well as
a 1-cocycle of Gal(E/F ) with values in W sp. A careful choice will allow
us to “twist” T sp to an elliptic maximal torus T over F . Put Ẽ := EE′.
(In fact we will have Ẽ = E except possibly for type D2N .) Secondly, we
choose r ∈ (n, n + 1] in such a way that the remaining steps will work and
describe an OẼ-linear functional X on the finite free OẼ-module t(Ẽ)r by

fixing a convenient basis for t(Ẽ)r. Thirdly, we make explicit the conditions
that X ∈ t∗ (namely X is Gal(Ẽ/F )-equivariant as a linear functional) and
that X is G-generic of depth −r. This yields a list of constraints for the
coordinates of X for the fixed (dual) basis. Finally we exhibit a choice of
coordinates satisfying all constraints.

We are about to divide the proof into two cases. The case of type D2N

is to receive a special treatment. Assuming G is not of type D2N , we define

δ ∈ AutZ(X∗(T
sp))

encoding the action of Gal(E′/F ) on X∗(T sp) as follows. If G is split, then
E′ = F and define δ to be the identity automorphism. If G is not split (still
excluding D2N ), then [E′ : F ] = 2. Write σ for the nontrivial element of
Gal(E′/F ), and let δ stand for the action of σ in this case.

Viewing the absolute Weyl group W := W sp(F sep) as a subgroup of
AutZ(X∗(T sp)), we distinguish two cases as follows.

Case 1: G is of type D2N , or −1 ∈ Wδ
First suppose that G is not of type D2N . Let E be a quadratic extension of
F that contains E′. Then there exists w ∈ W sp(E) such that wδ = −1 (i.e.
multiplication by −1 on X∗(T sp)). Let f̄ : Gal(F sep/F ) → W be the group
homomorphism that factors through Gal(E/F ) and sends the non-trivial
element σ of Gal(E/F ) to w. Then f̄ is a 1-cocycle giving an element of
the Galois cohomology H1(F,W sp), because σ ∈ Gal(E/F ) acts on W via
conjugation by δ.

If G is of type D2N , observe that Gal(E′/F ) is one of the following
groups: {0}, Z/2Z, Z/3Z, or S3. By [Fin19, Lemma 2.2] there exists a
quadratic extension E of F such that E ∩ E′ = F , i.e. Gal(EE′/F ) =
Gal(E/F ) × Gal(E′/F ) canonically. Since the center of W is {±1} in this
case ([Hum90, 3.19 Cor., Table 3.1, 6.3 Prop.(d)]), we have −1 ∈ W sp(F ).
Then the group homomorphism f̄ : Gal(F sep/F ) → W defined by factoring
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through Gal(E/F ) and sending the non-trivial element σ of Gal(E/F ) to
−1 is an element of H1(F,W sp).

By [Rag04, Main Theorem 1.1] every element of H1(F,W sp) lifts to
an element in H1(F,N(T sp)) that is contained in ker(H1(F,N(T sp)) →
H1(F,G)). Let us denote by f such a lift of f̄ (in both cases). Then f gives
rise to (the conjugacy class of) a maximal torus T in G over F . The torus T
is split over EE′, and the nontrivial element σ of Gal(E/F ) ≤ Gal(EE′/F )
acts on X∗(T ) via f(σ)δ = −1, where we set δ = 1 if G is of type D2N .

Hence T is an elliptic maximal torus of G.
To avoid convoluted notation, we separate cases according as the qua-

dratic extension E/F is unramified or ramified. Write Ẽ = EE′.
Suppose first that E/F is unramified, and let 
F be a uniformizer of

F . Since p > Cox(G), hence p � |W |, the OẼ-module t(Ẽ)y,n+1 is spanned

by {
n+1
F Hα̌}α̌∈Δ̌ as a free module, where Δ̌ is a choice of simple coroots

of T ×F Ẽ and Hα̌ = dα̌(1), where dα̌ denotes the map Ga → Lie (T ×F Ẽ)
induced by the coroot α̌ : Gm → T . IfG is of typeD2N we assume in addition
that Δ̌ is preserved under the action of Gal(Ẽ/E), which is possible by the
definition of T and G being quasi-split. (Choose Δ̌ corresponding to a Borel
subgroup of GE over E containing TE , noting that TE � T sp

E .) Let a ∈ E
with v(a) = 0 such that σ(a) = −a, which exists by Lemma 2.1.1. Let X
be the OẼ-linear functional on t(Ẽ)y,n+1 defined by X(
n+1

F Hα̌) = a for

α̌ ∈ Δ̌. Then

X(σ(
n+1
F Hα̌)) = X(
n+1

F H−α̌) = X(−
n+1
F Hα̌) = −a = σ(a)

= σ(X(
n+1
F Hα̌)),

and X is also stable under Gal(E′/F ). Hence X defines an OF -linear func-

tional on tx,n+1 = (t(Ẽ)x,n+1)
Gal(Ẽ/F ). Note that for every coroot β̌ (of GẼ

with respect to TẼ), we have X(Hβ̌) = mβ̌a

−(n+1)
F for some non-zero inte-

ger mβ̌ with −Cox(G) < mβ̌ < Cox(G), because the sum of the coefficients
of the highest coroot in terms of simple coroots is Cox(G)− 1. Hence, since
p > Cox(G), we have v(X(Hβ̌)) = −(n + 1) for all coroots β̌ of GẼ with
respect to TẼ . Thus X is G-generic of depth n+1 in the sense of [Yu01, § 8]
by our assumption on p and [Yu01, Lemma 8.1].

It remains to treat the case that E/F is totally ramified. Since p �= 2, the
quadratic extension E/F is tamely ramified and we may choose a uniformizer

E of E such that σ(
E) = −
E . Then, as p > Cox(G), the OẼ-module

t(Ẽ)y, 2n+1

2
is generated by {
2n+1

E Hα̌}α̌∈Δ̌, where Δ̌ is chosen as above. We

define an OẼ-linear functional X on t(Ẽ)y, 2n+1

2
by setting X(
2n+1

E Hα̌) = 1
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for α̌ ∈ Δ̌. Then X(σ(
2n+1
E Hα̌)) = 1, and, if G is of type D2N , then

X(τ(
2n+1
E Hα̌)) = X(
2n+1

E Hτ(α̌)) = 1 for τ ∈ Gal(Ẽ/E). ThusX descends
to an OF -linear functional on ty, 2n+1

2
. Moreover, X is G-generic of depth

n+ 1
2 , because p > Cox(G). This concludes Case 1.

Case 2: G is not of type D2N and −1 /∈ Wδ
We claim that in this case G is a split group of type AN , D2N+1 or E6 for
some integer N ≥ 1. (In the D2N+1-case, N ≥ 2.) If G is split, this follows
from [Hum90, 3.19 Cor. and Table 3.1]. If G is non-split and not of type
D2N , then G is of type AN , D2N+1 or E6 and δ is induced by the non-trivial
Dynkin diagram automorphism with respect to some set of simple coroots
Δ̌. Let w0 be the longest element in the Weyl group W (for simple reflections
corresponding to Δ̌). Then w0(Δ̌) = −Δ̌. Since −1 /∈ W for type AN ,D2N+1

and E6, we have w0 �= −1 and therefore −w0 is a nontrivial automorphism
of X∗(T sp) that preserves Δ̌. Hence −w0 = δ, i.e. −1 = w0δ ∈ Wδ. Thus
none of the non-split groups appears in Case 2.

We treat the three cases separately. When G is a split group of type
D2N+1 or E6, we exhibit the existence of an appropriate G-generic element
X in the Lie algebra of a suitable torus by explicit calculations; the details
are deferred to Appendix A and Appendix B.

The remaining case is when G is a split group of type AN . We
denote by α̌1, . . . , α̌N simple coroots such that the simple reflections sα̌i

and
sα̌j

commute if and only if |i− j| �= 1. Then the Weyl group W contains
an element w of order N + 1 such that w(α̌i) = α̌i+1 for 1 ≤ i < N and
w(α̌N ) = −

∑
1≤i≤N α̌i. We denote by E the unramified extension of F

of degree N + 1, and let σ be a generator of Gal(E/F ). Then the map
f : Gal(F sep/F ) � Gal(E/F ) → W defined by sending σ to w is an element
of H1(F,W ) that gives rise to (the conjugacy class of) an elliptic maximal
torus T in G over F . Since p > Cox(G) = N + 1, the set {
n+1

F Hα̌i
}1≤i≤N

forms an OE-basis for t(E)y,n+1. Let a ∈ E be an element of valuation zero
such that

∑
1≤i≤N+1 σ

i(a) = 0 and the image ā of a in the residue field kE is
a generator for the field extension kE/kF (see Lemma 2.1.1). Then the linear
functional X on t(E)y,n+1 defined by X(
n+1

F Hα̌i
) = σi−1(a) descends to

an OF -linear functional on ty,n+1. Moreover we claim that

v(a+ σ(a) + . . .+ σj(a)) = 0, for 1 ≤ j ≤ N − 1.

Suppose this is false. Then ā + σ(ā) + . . . + σj(ā) = 0, where ā denotes
the image of a in the residue field kE . We apply σ to the last equation and
subtract the original equation to obtain that σj+1(ā) = ā. This contradicts
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that ā is a generator of kE/kF because j + 1 < N + 1. Since all coroots of
AN are of the form α̌i + α̌i+1 + . . .+ α̌j for 1 ≤ i ≤ j ≤ N , we deduce that
X is G-generic of depth n+ 1.

Corollary 2.1.3. Let G be an adjoint simple reductive group over F that
is tamely ramified. Assume that p > Cox(G). Then there exists a tamely
ramified elliptic maximal torus T of G that enjoys the following property:
For every n ∈ Z≥1, there exists a real number r with n < r ≤ n + 1 and a
character φ : T (F ) → C∗ of depth r such that (T, r, φ) is a 0-toral datum.

Proof. As in the proof of Proposition 2.1.2, we may and will show the ex-
istence of G-generic elements of depth −r in the Lie algebra instead of
G-generic characters of depth r.

By assumption, we can take G = ResF ′/FG
′ for a finite tamely ramified

extension F ′/F and an absolutely simple adjoint group G′ over F ′. As usual
F ′ is a subfield of F ,; the inclusion is denoted by ι0. By Proposition 2.1.2
there exists a tamely ramified elliptic maximal torus T ′ of G′ over F ′ such
that for each n′ ∈ Z≥1, there exists X ∈ t′(F ′) which is G′-generic of depth
−r′ with n′ < r′ ≤ n′ + 1 when the depth is normalized with respect to the
valuation v′ := e v : F ′ � Z ∪ {∞}, where e denotes the ramification index
of F ′/F . Writing Φ̌′ for the set of coroots of G′

F sep with respect to T ′
F sep , we

have

(2.1.4) v′(X(Hβ̌)) = −r′, ∀β̌ ∈ Φ̌′.

Then T := ResF ′/FT
′ is an elliptic maximal torus of G over F . Under the

canonical isomorphism t(F ) � t′(F ′), we will show that X viewed as an
element of t(F ) is G-generic of depth −r′/e. Clearly this finishes the proof.
(For each n, consider n′ = en so that n < r′/e ≤ n+ 1

e ≤ n+ 1.)
We need some preparation. Over F , we have compatible direct sum

decompositions

g(F ,) = g′(F ′)⊗F F , =
⊕

ι∈HomF (F ′,F ,)

g′(F ′)⊗F ′,ι F
,

∪ ∪ ∪
t(F ,) = t′(F ′)⊗F F , =

⊕
ι∈HomF (F ′,F ,)

t′(F ′)⊗F ′,ι F
,

Correspondingly the set Φ̌ of coroots of GF , with respect to TF , decomposes
as

Φ̌ =
∐

ι∈HomF (F ′,F ,)

Φ̌′
ι,



374 Jessica Fintzen and Sug Woo Shin

where Φ̌′
ι is the set of coroots of G′ ×F ′,ι F

, with respect to T ′ ×F ′,ι F
,, so

that Φ̌′ = Φ̌′
ι0 .

We are ready to verify that X is G-generic of depth −r′/e. Namely let
us show

(2.1.5) v(X(Hα̌)) = −r′/e, ∀α̌ ∈ Φ̌.

Recall that v′ = ev. So the condition holds for β̌ ∈ Φ̌′ = Φ̌′
ι0 by (2.1.4). But

Gal(F ,/F ) acts on Φ̌ in a way compatible with its action on the index set
HomF (F

′, F ,). Thus the Gal(F ,/F )-orbit of Φ̌′ exhausts Φ̌. On the other
hand, since the valuation is Galois-invariant,

−r′/e = v(X(Hβ̌)) = v(σ(X(Hβ̌)))

= v(X(Hσ(β̌))), σ ∈ Gal(F ,/F ), β̌ ∈ Φ̌′.

This completes the proof of (2.1.5). We are done.

Proposition 2.1.6. Let G be a tamely ramified reductive group over F .
Assume that p > Cox(G). Then there exists an elliptic maximal torus T of
G that splits over a tamely ramified extension with the following property:
For every n ∈ Z≥1, there exists a 1-toral datum with G0 = T , n < r0 ≤
rd−1 ≤ n + 1 and, if G is not a torus, then the characters φ0, . . . , φd−1 are
trivial on the center of G.

Proof. If G is a torus, then T = G, and for every n ∈ Z≥1 there exists
n < r0 ≤ n + 1 such that Tr0 �= Tr0+. (This follows, for example, from the
Moy–Prasad isomorphism from the analogous assertion for the Lie algebra
of T ; the latter is easy since an increase of 1 in the index corresponds to
multiplication by a uniformizer.) Hence there exists a (non-trivial) depth-r0
character φ0 of T , and ((T,G), (r0), (φ0)) is a 1-toral datum.

So assume for the remainder of the proof that G is not a torus. Let
G1, . . . , GN be the simple factors of the adjoint quotient Gad of G. Then
there exists a surjection pr : G →

∏
1≤i≤N Gi whose kernel is the center

of G. For 1 ≤ i ≤ N , let Ti be an elliptic maximal torus of Gi, and φi :
Ti(F ) → C∗ a character of depth ri as provided by Proposition 2.1.3. Set
T := pr−1(T1× . . .×TN ). Since p > Cox(G), the prime p does not divide the
order of π1(Gad), and hence the depth of φi ◦ pri : T (F ) → C∗ is ri, where
pri denotes the composition of pr with the projection

∏
1≤m≤N Gm � Gi.

We assume without loss of generality that r1 ≤ r2 ≤ . . . ≤ rN . Let 1 = i1 <
i2 < . . . < ij ≤ N be integers such that

ri1 = . . . = ri2−1 < ri2 = . . . = ri3−1 < ri3 = . . . < rij = . . . = rN .
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For 0≤ k≤ j−1, set r̃k = rik+1
, and define Gk :=T pr−1(

∏
1≤m≤ik+2−1Gm) ⊂

G and φT
k :=

∏
ik+1≤m≤ik+2−1(φm ◦ prm)|Gk . Then

((G0, . . . , Gj−1, Gj := G), (r̃0, . . . , r̃j−1), (φ
T
0 , . . . , φ

T
j−1))

is a desired 1-toral datum.

As a corollary of the above proof when N = 1, we strengthen Corollary
2.1.3 to allow non-adjoint groups.

Corollary 2.1.7. Let G be a tamely ramified reductive group over F whose
adjoint quotient Gad is simple. Assume that p > Cox(G). Then there exists
a tamely ramified elliptic maximal torus T of G that enjoys the following
property: For every n ∈ Z≥1, there exists a real number r with n < r ≤ n+1
and a character φ : T (F ) → C∗ of depth r such that (T, r, φ) is a 0-toral
datum.

2.2. Construction of omni-supercuspidal types from 0-toral and
1-toral data

In this subsection we introduce the notion of omni-supercuspidal types and
construct such types from 0-toral and 1-toral data. The results of the last
subsection then allow us to deduce the main theorem that there exists a large
family of omni-supercuspidal types in an appropriate sense. The following
is the key definition of this section.

Definition 2.2.1. Let m ∈ Z≥1. An omni-supercuspidal type of level
pm is a pair (U, λ), where U is an open compact subgroup of G(F ) and
λ : U � Z/pmZ is a smooth surjective group morphism such that (U,ψ ◦ λ)
is a supercuspidal type for every nontrivial character ψ : Z/pmZ → C∗.

Remark 2.2.2. Let m > m′ ≥ 1 and write prm,m′ : Z/pmZ � Z/pm
′
Z for

the canonical projection. If (U, λ) is an omni-supercuspidal type of level pm,
then (U, prm,m′ ◦ λ) is an omni-supercuspidal type of level pm

′
.

We assume from here until Corollary 2.2.14 that G is tamely ramified
over F . (In Theorem 2.2.15 the group G need not be tamely ramified.) Fix
a 1-toral datum

(2.2.3) (G0, . . . , Gd), (r0, . . . , rd−1), (φ0, . . . , φd−1))

which yields the following input for Yu’s construction

((G0, . . . , Gd), y, (r0, . . . , rd−1, rd = rd−1), ρ = 1, (φ0, . . . , φd−1, φd = 1)).
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Recall that we introduced an open compact subgroup J1
+ and a smooth

character φ̂ in §1.2. The following allows us more flexibility compared to the
supercuspidal type (J1

+, φ̂|J1
+
) we had before. Combined with Proposition

2.1.6, it provides an explicit construction of a character on a rather small
compact open subgroup that detects supercuspidality. We expect this result
to be of independent interest.

Proposition 2.2.4. Assume p does not divide the order of the absolute
Weyl group of G. Then for every group U such that

G(F )y,r0 ⊂ U ⊂ G(F )y, rd
2
+,

the pair (U, φ̂|U ) is a supercuspidal type.

Remark 2.2.5. We have G(F )y,r0 ⊂ G(F )y, rd
2
+ (so that the proposition is

not vacuous) if and only if r0 > rd/2, which is always satisfied if r0 > 1.

Remark 2.2.6. When the 1-toral data come from 0-toral data (so that d = 1,
r = r0), the proposition essentially follows from Adler’s work. More precisely,
it suffices to handle the case U = G(F )y,r. This case follows immediately
from the case G(F )y,r ⊂ U = J1

+ ⊂ G(F )y, r
2
+ (Proposition 1.1.6) thanks to

[Adl98, 2.3.4]4.

Proof. We may and will assume that r0 > rd/2. It suffices to consider the
case U = G(F )y,r0 . If G is a torus, there is nothing to prove, so we assume
that G is not a torus for the remainder of the proof. Let (π, V ) be an
irreducible smooth representation of G(F ) and suppose that (π|G(F )y,r0

, V )

contains the character φ̂|G(F )y,r0
. By Proposition 1.2.6 it is enough to show

that then (π|J1
+
, V ) contains the character φ̂|J1

+
. Define

J0 = Gy,r0 ,

Ji = Hd−i
y,r0H

d−i+1
y,rd−i,

rd−i

2
+
· · ·Hd−1

y,rd−2,
rd−2

2
+
Hd

y,rd−1,
rd−1

2
+
(1 ≤ i ≤ d− 1),

Jd = J1
+.

We show by induction on j that (π|Jj
, V ) contains the character φ̂|Jj

. For
j = 0 the statement is true by assumption. Thus let 1 ≤ j ≤ d and assume
the induction hypothesis that (π|Jj−1

, V ) contains the character φ̂|Jj−1
. We

4For the reader who likes to check the proof, “X1 ∈ m⊥
x,−r/2” in the proof of

[Adl98, 2.3.3] (using Adler’s notation) should have been “X1 ∈ m⊥
x,−r+”, and “g ∈

Gx, r2
” should have been “g ∈ Gx,0+”.
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denote by Vj−1 the largest subspace of V on which Jj−1 acts via φ̂. Let

Xi ∈ g∗y,−ri be such that φ̂i|Hi+1
y,ri

viewed as a character of

H i+1
y,ri /H

i+1
y,ri+ � hi+1

y,ri/h
i+1
y,ri+

is given by Ψ ◦Xi. Since φi is G
i+1-generic of depth ri relative to y, we can

choose Xi to be almost stable and generic of depth −ri at y (as an element

of (gi+1)∗) in the sense of [Fin21, Definition 3.1 and Definition 3.5]; compare

with the proof of Propositions 1.2.6. By [Fin21, Cor. 3.8.] this implies that

Xi is almost strongly stable and generic of depth −ri at y. Hence the tuple

(y, (Xi)d−1≥i≥0) is a truncated datum in the sense of [Fin21, §4]. Moreover,

by [Kal19, Lemma 3.5.1.] the character φk is trivial on Hk
y,0+ and hence also

trivial on Hd−i+1
y,0+ for d − i + 1 ≤ k. Thus φ̂k is trivial on Hd−i+1

y,rd−i,
rd−i

2
+

if

k �= d− i. Therefore the action of Hd−i+1
y,rd−i,

rd−i

2
+
on Vj−1 is given by φ̂d−i for

1 ≤ i ≤ j − 1, which means that the action is as illustrated below:

Hd−i+1
y,rd−i,

rd−i

2
+

� Hd−i+1
y,rd−i,

rd−i

2
+
/Hd−i+1

y,rd−i+ � h
d−i+1
y,rd−i,

rd−i

2
+
/hd−i+1

y,rd−i+

Ψ◦Xd−i

� Vj−1.

We can now apply [Fin21, Cor. 5.2] repeatedly as in the proof of [Fin21,

Cor. 5.4]. More precisely, we use the following assignment of notation, where

the left hand side denotes the objects in [Fin21, Cor. 5.2] using (only here)

the notation of [Fin21] and the right hand side denotes the objects defined

above:

n := d,Xi := Xd−i, ri := rd−i, j := d− j, Hi := Hd−i+1,

Tj := T ∩Hd−j+1 = G0 ∩Hd−j+1, ϕ := Ψ.

Choose ε ∈ (0, r04 ) such that Hd−j+1
y,rd−j−2ε = Hd−j+1

y,rd−j . To avoid confusion we

write d′ (instead of d) for the positive number d that occurs in [Fin21,

Cor. 5.2], and we set

d′ := max
(rd−j

2
, rd−j − n0ε

)
,

where n0 is the smallest integer in Z≥3 such that rd−j − n0ε < r0. Then

either d′ + ε ≥ r0 or d′ + ε ≥ rd−j − 2ε, which implies together with the

assumption Hd−j+1
y,rd−j−2ε = Hd−j+1

y,rd−j (needed in the latter case that d′ + ε ≥
rd−j − 2ε) that Hd−j+1

y,rd−j+,d′+ε+ ⊂ Hd−j+1
y,rd−j+,r0 . Since Hd−j+1

y,rd−j+,r0 acts via φ̂d−j
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on Vj−1, and φ̂d−j is trivial when restricted to Hd−j+1
y,rd−j+,r0 (by construc-

tion/definition) the group Hd−j+1
y,rd−j+,d′+ε+ acts trivially on Vj−1 as well. More-

over, using that rd−j > r0 > rd−j

2 , we see that the commutator subgroup[
Jj−1, H

d−j+1

y,rd−j ,
rd−j

2
+

]
is contained in

Hd−j+1
y,rd−j+,r0+H

d−j+2

y,rd−j+1+,
rd−j+1

2
+
· · ·Hd−1

y,rd−2+,
rd−2

2
+
Hd

y,rd−1+,
rd−1

2
+

⊂ Jj−1

and hence acts trivially on Vj−1. Therefore Hd−j+1
y,rd−j ,d′+ preserves Vj−1 and

we can find a nonzero subspace V ′ on which the action of Hd−j+1
y,rd−j ,d′+ factors

through Hd−j+1
y,rd−j ,d′+/H

d−j+1
y,rd−j+ and is given by Ψ ◦ (Xd−j + Cn0

) for some

Cn0
∈ (hd−j+1)∗y,−(d′+ε) that is trivial on tj ⊕ hd−j . Moreover,

2d′ − rd−j + 2ε ≤ d′ −min
(rd−j

2
, 3ε

)
+ 2ε < d′ < r0.

Hence, applying [Fin21, Cor. 5.2] we obtain a nonzero subspace V ′′ of V on
which

• the action of Hd−j
y,r0 is given by φ̂ ([Fin21, Cor. 5.2(iv)]),

• for 1 ≤ i ≤ j − 1, the action of Hd−i+1
y,rd−i,

rd−i

2
+
is given by

Hd−i+1
y,rd−i,

rd−i

2
+

� Hd−i+1
y,rd−i,

rd−i

2
+
/Hd−i+1

y,rd−i+

� h
d−i+1
y,rd−i,

rd−i

2
+
/hd−i+1

y,rd−i+

Ψ◦Xd−i

� V ′′

(this implies that Hd−i+1
y,rd−i,

rd−i

2
+

acts via φ̂, because φ̂k is trivial on

Hd−i+1
y,rd−i,

rd−i

2
+
if k �= d− i) ([Fin21, Cor. 5.2(ii)]),

• the action of Hd−j+1
y,rd−j ,d′+ is given by

Hd−j+1
y,rd−j ,d′+ � Hd−j+1

y,rd−j ,d′+/H
d−j+1
y,rd−j+ � h

d−j+1
y,rd−j ,d′+/h

d−j+1
y,rd−j+

Ψ◦Xd−j

� V ′′

([Fin21, Cor. 5.2(iii)]).

If d′ = rd−j/2, then Jj acts on V ′′ via φ̂ so we are done. Otherwise, we
achieve d′ = rd−j/2 by a recursion as follows. We choose V ′′ to be as large
as possible with the above properties, then we use the same reasoning as
above with V ′′ in place of Vj−1, and apply [Fin21, Cor. 5.2] repeatedly (at
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each step replacing Vj−1 by the newly obtained subspace, with d′ playing
the role of d in [Fin21, Cor. 5.2]) as the value of d′ goes through:

d′ = rd−j − (n0 + 1)ε, rd−j − (n0 + 2)ε, . . . , rd−j − (n0 +N0)ε,
rd−j

2
,

where N0 is the largest integer for which rd−j−(n0+N0)ε >
rd−j

2 . (If N0 ≤ 0,
we only consider the case d′ = rd−j

2 .) After the final step of recursion, we

obtain a nonzero subspace of V on which Jj acts via φ̂|Jj
. This completes

the inductive proof.

Write eF for the absolute ramification index of F . Let m be an arbitrary
positive integer and set

n := 2eFm− 1.

Assume that the 1-toral datum (2.2.3) satisfies

(2.2.7) n < r0 ≤ rd−1 = rd ≤ n+ 1.

Such a 1-toral datum always exists by Proposition 2.1.6 under our current
assumption that G is tamely ramified. To produce an omni-supercuspidal
type on the group G(F )y, rd

2
+, we want to know:

Lemma 2.2.8. Assume that char(F ) = 0, that rd is as in (2.2.7), and that
G is tamely ramified. Then the image of

φ̂ : G(F )y, rd
2
+/G(F )y,rd+ → C∗

is a cyclic group of order pm.

Remark 2.2.9. If char(F ) = p, then the last isomorphism in (2.2.10) in the
proof below breaks down, and the lemma is false for m > 1.

Proof. Recall that we write T = G0. Since G is tamely ramified, we have

(2.2.10)
T (F )rd
T (F )rd+

⊂
T (F ) rd

2
+

T (F )rd+
⊂

G(F )y, rd
2
+

G(F )y,rd+
�

g(F )y, rd
2
+

g(F )y,rd+
.

Since rd ≤ n+1 = 2meF , and hence rd− rd
2 ≤ meF , we see that every element

in g(F )y, rd
2
+/g(F )y,rd+ has order dividing pm. Therefore the image of φ̂ is

contained in a cyclic subgroup of C∗ of order pm. (Every finite subgroup of
C∗ is cyclic.)
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The image of T (F )rd/T (F )rd+ in g(F )y, rd
2
+/g(F )y,rd+ is a p-torsion

subgroup contained in g(F )y,(rd−eF )+/g(F )y,rd+. Now suppose that im(φ̂)

is contained in a cyclic subgroup of order pm−1. Viewing φ̂ as an addi-
tive character on g(F )y, rd

2
+/g(F )y,rd+, we then have φ̂(pm−1X) = 0 for

X ∈ g(F )y, rd
2
+/g(F )y,rd+. As pm−1g(F )y, rd

2
+ = g(F )y,( rd

2
+(m−1)eF )+, it fol-

lows that φ̂ is trivial on g(F )y,( rd
2
+(m−1)eF )+/g(F )y,rd+, thus also trivial

on T (F )rd/T (F )rd+ (since rd
2 + (m − 1)eF < rd). This contradicts that

φ̂|T (F )rd
= φ̂d−1|T (F )rd−1

�= 1. We conclude that the image of φ̂ is exactly a
cyclic group of order pm.

The lemma allows us to factor φ̂ as

(2.2.11) G(F )y, rd
2
+/G(F )y,rd+

λ� Z/pmZ
exp
↪→ C∗

for some λ (assuming char(F ) = 0). Here exp stands for n �→ exp(2πin/pm).
When λ is composed with any other nontrivial character of Z/pmZ, the
composite map has the form φ̂i with i �≡ 0 (mod pm). The following lemma
shows that φ̂i is still a supercuspidal type.

Lemma 2.2.12. Assume that char(F ) = 0, that p does not divide the order
of the absolute Weyl group of G, and that G is tamely ramified. Let r0 and
rd be as in (2.2.7). Then (G(F )y, rd

2
+, λ) is an omni-supercuspidal type of

level pm, i.e. (G(F )y, rd
2
+, φ̂

i) is a supercuspidal type for all integers i with

i �≡ 0 (mod pm).

Proof. Since the proof is trivial for G = T , we assume that G is not a torus.
Recall that φ̂ =

∏
0≤j≤d−1 φ̂j , where φj is a Gj+1-generic character of Gj(F )

of depth rj . We may assume that 0 < i < pm, and hence

(2.2.13) 0 ≤ v(i) ≤ (m− 1)eF =
n+ 1

2
− eF ≤ n− 1

2
.

We claim that φi
j is a Gj+1-generic character of Gj(F ) of depth rj −v(i). To

see this, let Xj ∈ (gj)∗y,−rj be a Gj+1-generic element of depth rj such that

the character φj |Gj
y,ri

viewed as a character of Gj
y,rj/G

j
y,rj+ � g

j
y,rj/g

j
y,rj+ is

given by Ψ ◦ Xj . Note that the i-th power map sends Gj
y,rj−v(i) into Gj

y,rj

and Gj
y,(rj−v(i))+ into Gj

y,rj+. The resulting map

Gj
y,rj−v(i)/G

j
y,(rj−v(i))+ → Gj

y,rj/G
j
y,rj+
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corresponds to the map

g
j
y,rj−v(i)/g

j
y,(rj−v(i))+

·i−→ gjy,rj/g
j
y,rj+

induced by multiplication by i. (This can be seen from the binomial ex-
pansion and the fact that rj − v(i) > 1.) Hence φi

j |Gj
y,ri−v(i)

factors through

Gj
y,rj−v(i)/G

j
y,rj−v(i)+ � g

j
y,rj−v(i)/g

j
y,rj−v(i)+ on which it is given by Ψ ◦ (i ·

Xj). The claim has been verified.
It follows from the claim that

((G0, . . . , Gd), (r0 − v(i), . . . , rd−1 − v(i)), (φi
0, . . . , φ

i
d−1))

is a 1-toral datum. It is implied by (2.2.13) that

r0 − v(i) > n− n− 1

2
=

n+ 1

2
≥ rd

2
.

Thus G(F )y,r0−v(i) ⊂ G(F )y, rd
2
+ ⊂ G(F ) rd−v(i)

2
+
. Applying Proposition 2.2.4

to the new 1-toral datum above (thus the role of rj in the proposition is

played by rj − v(i)) and observing that (φ̂)i|G(F )
y,

rd
2

+
= φ̂i|G(F )

y,
rd
2

+
, we

deduce that (G(F )y, rd
2
+, φ̂

i) is a supercuspidal type.

The upshot is the following.

Corollary 2.2.14. Assume char(F ) = 0, p > Cox(G) and G is tamely
ramified. Then there exists a sequence {(Um, λm)}m≥1 such that

1. each (Um, λm) is an omni-supercuspidal type of level pm,
2. U1 ⊃ U2 ⊃ · · · , and {Um}m≥1 forms a basis of open neighborhoods of

1,
3. Um′ is normal in Um whenever m′ ≥ m.
4. If G is not a torus, then λm|Um∩Z(G)(F ) is trivial.

Proof of Corollary 2.2.14. For m ≥ 1, set n := 2eFm − 1 (as above). Then
by Proposition 2.1.6 there exists a 1-toral datum ((G0, . . . , Gd, (r0, . . . , rd−1),
(φ0, . . . , φd−1)) with n < r0 ≤ rd−1 ≤ n+ 1 and φ0|Z(G)(F ), . . . , φd−1|Z(G)(F )

trivial. We may and will choose the same G0 and y for every m. Set Um :=
G(F )y, rd

2
+ and let λm be as defined in Equation (2.2.11). Then (Um, λm) is

an omni-supercuspidal type of level pm by Lemma 2.2.12. Moreover, U1 ⊃
U2 ⊃ · · · , and {Um}m≥1 forms a basis of open neighborhoods at 1. Property
(3) follows from Um being Moy–Prasad subgroups at the same point y and
Property (4) follows from φ0|Z(G)(F ), . . . , φd−1|Z(G)(F ) being trivial.
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We now drop the assumption that G splits over a tamely ramified ex-
tension of F , i.e. G is an arbitrary (connected) reductive group defined over
F .

Theorem 2.2.15. Assume char(F ) = 0 and p > Cox(G). Then there exists
a sequence {(Um, λm)}m≥1 such that

1. each (Um, λm) is an omni-supercuspidal type of level pm,
2. U1 ⊃ U2 ⊃ · · · , and {Um}m≥1 forms a basis of open neighborhoods of

1,
3. Um′ is normal in Um whenever m′ ≥ m,
4. If G is not a torus, then λm|Um∩Z(G)(F ) is trivial.

Remark 2.2.16. Condition (4) is imposed to ensure that some global asser-
tions in Section 3 hold when the reductive group over a totally real field is
slightly more general than those considered in [Gro99] (see Proposition 1.4
therein), see Remark 3.1.8.

Remark 2.2.17. In contrast to the proof of Corollary 2.2.14, the following
proof only relies on the omni-supercuspidal types constructed from 0-toral
data and not the more general omni-supercuspidal types constructed from 1-
toral data. We have nevertheless included the construction of supercuspidal
types from 1-toral data in our discussion above as this construction might
be useful for other applications.

Thus we are presenting the reader with two approaches to prove the
theorem. One is to prove the preceding results only in the simpler case of
0-toral data, and then deduce the theorem via multiple reduction steps. The
other is to establish the intermediate results in the generality of 1-toral data.
Then the final theorem (Corollary 2.2.14) is immediate, as far as G is further
assumed to be tamely ramified.

Proof of Theorem 2.2.15. It is enough to find a sequence {(Um, λm)}m≥m0

as in the theorem statement for some fixed m0, since we can decrease level of
an omni-supercuspidal type without changing the open compact subgroup
as explained in Remark 2.2.2.

The basic idea of proof is to reduce to the case where G is either a torus
or an (absolutely) simple adjoint group, and then handle the two base cases.
Below we use ψm to denote an arbitrary nontrivial character of Z/pmZ.

Step 1. Proof when G is a torus.
Let G = T be a torus over F (possibly wildly ramified). We consider

the filtration subgroup T0+, which is a pro-p group. Since T (F ) is dense
in T (see e.g. [Bor91, III.8.13]), the group T (F ) contains infinitely many
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elements. If T is anisotropic, then the compact group T0+ has finite index
in the compact group T (F ), and hence T0+ has infinitely many elements. If
T is not anisotropic, then T contains a copy of the multiplicative group Gm

and therefore T0+ contains infinitely many elements as well. (An alternative
way to see that T (F ) has a pro-p subgroup with infinitely many elements
is by considering the exponential map from a small neighborhood of 0 in
LieT (F ) to T (F ).)

Take U1 = T0+ and Ui+1 = {up : u ∈ Ui} recursively. Then {Ui}i≥1

satisfies (2). For 1 ≤ i < j, as a finite abelian p-group, Ui/Uj is a product
of cyclic groups of p-power orders. We claim that at least one of the cyclic
groups has exact order pj−i. Suppose not, then we would have Uj−1 = Uj ,
which would in turn imply Uj = Uj+1 = · · · . Since U1 is pro-p, we deduced
that Uj = Uj+1 = · · · = {1}, which contradicts the infinitude of U1. There-
fore there exists a projection λm : Um/U2m � Z/pmZ for m ≥ 1. Then
condition (1) obviously holds for (Um, λm).

Step 2. Proof when G is a simple simply connected group.
In this case G = ResF ′/FG

′ for a finite extension F ′/F and an absolutely
simple simply connected group G′ over F ′. Since G(F ) = G′(F ′), we reduce
to the case when G is absolutely simple. By Proposition 2.1.2, there is a
tamely ramified elliptic maximal torus T ⊂ G along with a sequence of
0-toral data {(T, rm, φm)}m≥1 with 2eFm − 1 < rm ≤ 2eFm for all m.
Fix y as in the paragraph below Definition 1.1.1. For each m, set Um :=
G(F )y,rm/2+ and let λm : Um � Z/pmZ be defined by Equation (2.2.11).
Then Condition (1) holds thanks to Lemma 2.2.12, and Condition (2) is
obviously satisfied. Condition (3) follows because the groups are Moy–Prasad
filtration subgroups for the same point y. Since Z(G)(F ) is finite, there
exists an integer m0 such that Um0

∩ Z(G)(F ) = {1}, hence (4) holds for
{(Um, λm)}m≥m0

.

Step 3. Proof when G is a simply connected group.
ThenG=G1×· · ·×GN , whereGi are simple simply connected groups. By

Step 2, we can find a sequence of omni-supercuspidal types {(Ui,m, λi,m)}m≥1

satisfying (1), (2), (3) and (4) for each Gi, for all i. Take Um := U1,m×· · ·×
UN,m for each m ≥ 1 and define λm : Um � Z/pmZ by λm(u1, ..., um) =∑

i λi,m(ui). Clearly (2), (3) and (4) hold for {(Um, λm)}. To verify (1),
suppose that π is an irreducible smooth representation of G(F ) containing
ψm ◦ λm as a Um-subrepresentation for some arbitrary nontrivial charac-
ter ψm of Z/pmZ. By [Fla79, Thm. 1], π � ⊗N

i=1πi for irreducible, smooth
representations πi of Gi(F ). Since λm pulls back to λi along the natural
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inclusion Gi ↪→ G, we see that πi|Ui,m
contains ψm ◦ λi,m. By Step 2, πi is

supercuspidal for every 1 ≤ i ≤ N . We conclude that π is also supercuspi-
dal.

Step 4. Proof of the general case.

If G is a torus, we are done by Step 1, so we assume that G is not a torus
for the remainder of the proof. Let Z0 denote the maximal torus of Z, and
Gsc the simply connected cover of the derived subgroup of G. The multiplica-
tion map f : Z0×Gsc → G has finite kernel and cokernel (either as algebraic
groups or as topological groups of F -points). This implies that f induces an
isomorphism from a small enough open subgroup in Z0(F ) × Gsc(F ) onto
an open subgroup of G(F ). By Steps 1 and 3, we have omni-supercuspidal
types (U ′

m, λ′
m) for Z0(F ) and (U ′′

m, λ′′
m) for Gsc(F ) as in the theorem, for

all m ≥ 1. There exists m0 such that ker(f) ∩ (U ′
m′ × U ′′

m′′) = {1} for all
m′,m′′ ≥ m0. Take Um := f(U ′

m × U ′′
m) and define λm : Um � Z/pmZ

by λm(f(u′, u′′)) = λ′′(u′′) for u′ ∈ U ′
m, u′′ ∈ U ′′

m and m ≥ m0. This is
well-defined.

Condition (2) is satisfied by (Um, λm) as just defined, since {U ′
m×U ′′

m}≥1

forms a basis of open neighborhoods of 1 in Z0(F )×Gsc(F ). Conditions (3)
and (4) are obviously true by construction.

To check (1), suppose that an irreducible smooth representation π of
G(F ) contains ψm ◦ λm as a Um-representation. Let N be the unipotent
radical of an F -rational proper parabolic subgroup of G. We need to show
that πN(F ) = 0.

By [Xu16, Lem. 6.2], π|f(Z0(G(F ))×Gsc(F )) decomposes as a finite direct
sum ⊕n

i=1πi of irreducible f(Z0(G(F )) × Gsc(F ))-representations. Without
loss of generality, we may assume that π1|Um

contains ψm ◦ λm. For i > 1,

there exists gi ∈ G(F ) such that πi � g−1
i π1, where

g−1
i π1(γ) = π1(giγg

−1
i )

for all γ ∈ f(Z0(F ) ×Gsc(F )) (e.g. see the proof of Lemma 6.2 and Corol-
lary 6.3 in [Xu16]). For g ∈ G(F ), let N ′

g be the unipotent radical of a
proper F -rational parabolic subgroup of Gsc such that f induces an iso-
morphism from 1×N ′

g onto g−1Ng (and also on the F -points). By Step 3,
the irreducible Gsc(F )-representation π1|f(Gsc(F )) ◦f is supercuspidal and so
(π1 ◦ f)N ′

g(F ) = 0. Thus we obtain as vector spaces

πN(F ) =

n⊕
i=1

(πi)N(F ) =

n⊕
i=1

(π1)giN(F )g−1
i

=

n⊕
i=1

(π1 ◦ f)N ′
gi
(F ) = 0.
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3. Congruence to automorphic forms with supercuspidal
components

Now we switch to a global setup for algebraic automorphic forms as studied

in [Gro99]. The following notation will be used.

• G is a reductive group over a totally real field F such that G(F⊗QR) is
compact modulo center. Since the statements in this section are trivial

to show if G is a torus, because all smooth irreducible representations

of p-adic tori are supercuspidal, we assume through that G is not a

torus.

• v is a place of F above p; pv is the maximal ideal of the ring of integers

OFv
in the completion Fv of F with respect to v.

• ev := e(Fv/Qp) is the absolute ramification index of Fv (so pevv = (p)

as ideals in OFv
).

• Gv := G×F Fv, Gp := (ResF/QG)×Q Qp, G∞ := (ResF/QG)×Q R.
• S is a finite set of places of F containing all p-adic and infinite places

as well as all ramified places for G; we fix a reductive model for G

over specOF \{finite places in S} (still denoted by G for convenience),

and we use this model to identify G(AF ) =
∏′

v G(Fv) as a restricted

product.

• Up :=
∏

w�p∞ Uw is a (fixed) compact open subgroup of G(A∞,p
F ) such

that Uw = G(OFw
) hyperspecial for w /∈ S, and we write US :=∏

w/∈S Uw.

If Up is a compact open subgroup of Gp(Qp) =
∏

w|pG(Fw), and Λ a

finitely generated Zp-module with a continuous action of Up, then we write

U := UpUp, and

M(U,Λ) :=

{
cont. functions f : G(F )\G(AF )/U

pG∞(R)◦ → Λ,

such that f(gup) = u−1
p f(g), for g ∈ G(AF ), up ∈ Up

}
.

Here G∞(R)◦ denotes the connected component of G∞(R) that contains the
identity. We write ZN

p for the free Zp-module of rank N with trivial Up-

action, and we drop the exponent if N = 1. Hence M(U,Zp) is the space of

Zp-valued functions on the finite set G(F )\G(AF )/U
pUpG∞(R)◦. Note that

M(U,Λ) is a TS := Z[US\G(AS
F )/U

S ]-module under the usual double coset

action. It is routine to check that the association of TS-modules

Λ �→ M(U,Λ)
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is functorial in Λ. In particular, if Λ′ � Λ⊕N as Zp[Up]-modules with N ∈
Z≥1, then M(U,Λ′) � M(U,Λ⊕N ) = M(U,Λ)⊕N as TS-modules, and TS

acts on the last direct sum by the diagonal action. We define

(3.0.1) TS(U,Λ) ⊂ EndZp
(M(U,Λ))

to be the Zp-subalgebra generated by the image of TS . (Thus TS(U,Λ) is
commutative.) If Λ′ � Λ⊕N then we have an induced isomorphism
TS(U,Λ′) � TS(U,Λ), acting equivariantly on M(U,Λ′) � M(U,Λ)⊕N . This
observation will be used a few times in §3.1 and §3.2.

We have an obvious action of π0(G∞(R)) by right translation on the
spaces of automorphic forms considered here, cf. Proposition 8.6 and the
paragraph below (4.1) in [Gro99], commuting with the Hecke algebra actions.
Every isomorphism between spaces of automorphic forms below is compati-
ble with the π0(G∞(R))-action. That said, we will not mention π0(G∞(R))-
actions again.

3.1. Constant coefficients

Our goal is to define congruences between arbitrary automorphic forms with
constant coefficients and automorphic forms that are supercuspidal at p. In
order to define the coefficients of the latter space, we denote by Am the
Zp-algebra Zp[T ]/(1 + T + . . . + T pm−1) for m a positive integer. Then we
have a canonical Zp-algebra isomorphism Am/(T − 1) � Zp/(p

m).

Theorem 3.1.1. Assume p > Cox(G) and let N be a positive integer. Then
there exist

• a basis of compact open neighborhoods {Up,m}m≥1 of 1 ∈ Gp(Qp) =∏
w|pG(Fw) such that Up,m′ is normal in Up,m whenever m′ ≥ m and

• a smooth character ψm : Up,m → A×
m for each m ≥ 1

such that we have isomorphisms of Zp/(p
m)-modules (where the Up,m-action

in M( · ) is trivial on the left hand side and through ψm on the right hand
side)

(3.1.2) M(UpUp,m,ZN
p /(pm)) � (M(UpUp,m, Am/(T − 1)))⊕N

that are compatible with the action of TS(UpUp,m,ZN
p /(pm)) on the left hand

side and the diagonal action of TS(UpUp,m, Am/(T − 1)) on the right hand
side via the Zp-algebra isomorphism

(3.1.3) TS(UpUp,m,ZN
p /(pm)) � TS(UpUp,m, Am/(T − 1)).



Congruences of algebraic automorphic forms 387

Moreover, every automorphic representation of G(AF ) that contributes to

(M(UpUp,m, Am))⊕N ⊗Zp
Qp

is supercuspidal at all places above p.

Remark 3.1.4. Theorem 3.1.1 also holds if we replace Up by a compact
open subgroup Uv =

∏
w�v∞ Uw of G(A∞,v

F ) such that Uw is hyperspecial
for w /∈ S, and Up,m by compact open subgroups Uv,m of G(Fv) for a place
v above p. The conclusion in this case includes that every automorphic
representation G(AF ) that contributes to (M(UvUv,m, Am))⊕N ⊗Zp

Qp is
supercuspidal at v. The proof works in a completely analogous way.

Remark 3.1.5. The assumption that p > Cox(G) in Theorem 3.1.1 and in
all other results in Section 3 can be removed by appealing to Appendix D,
which proves Theorem 2.2.15 for all primes p.

Before presenting a proof, let us comment on the meaning of the propo-
sition. As m grows to infinity, the space M(UpUp,m,Qp), or more precisely
its extension of scalars to Qp, exhausts all automorphic forms on G(AF )
with constant coefficients, if we also allow Up to shrink arbitrarily. Thus the
left hand side of (3.1.2) represents arbitrary automorphic forms on G with
Zp/(p

m)-coefficients. Loosely speaking, Theorem 3.1.1 can be thought of as
a congruence modulo a power of p between arbitrary automorphic forms and
those with supercuspidal components at p.

A caveat is that the congruence here is between spaces of automorphic
forms. It does not follow from our result that for an individual automorphic
representation π, there exists π(m) which is supercuspidal at p such that
“π ≡ π(m) mod pm” in terms of Hecke eigenvalues outside S. To see this,
let cπ : TS(UpUp,m,Zp) → Zp be the Zp-algebra morphism accounting for π.
Suppose that TS(UpUp,m,Zp)/(p

m) is isomorphic to TS(USUv,m, Am)/(T −
1) (which we do not know; see Remark 3.1.8). Taking cπ mod pm, we obtain a
morphism TS(USUv,m, Am)/(T−1) → Zp/(p

m), but now the problem is that
it is unclear whether the latter lifts to a morphism TS(USUv,m, Am) → Zp.
(When m = 1, this is often possible by the Deligne–Serre lifting lemma
[DS74, Lemma 6.11], for instance.) However, we often do not need such a
lift for applications, see e.g. §3.3 below and [Sch18, §7]. For these applications
a statement like Theorem 3.1.1 suffices.

Proof of Theorem 3.1.1 . We let {(Up,m, λm)}m≥1 be omni-supercuspidal
types of level pm for Gp as in Theorem 2.2.15, i.e. such that Up,1 ⊃ Up,2 ⊃ . . .,
the groups {Up,m}m≥1 form a basis of open neighborhoods of 1 and Up,m′ is
normal in Up,m whenever m′ ≥ m.
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For each m ≥ 1, we have the following commutative diagram of maps,
where ζpm denotes a primitive pm-th root of unity in Qp.

Am ⊗Zp Qp � Q
pm−1
p {ζai

pm}p
m−1

i=1

Z/pmZ A×
m Am

mod T−1

a mod pm Ta Ta

(Z/pmZ)× Z/pmZ 1 1

We define the smooth character ψm : Up,m → A×
m as the composite

Up,m
λm−−→ Z/pmZ ↪→ A×

m,

and we let u ∈ Up,m act on Am by multiplication by ψm(u). Since the

resulting action of Up,m on Am/(T − 1) is trivial, we have canonical isomor-

phisms

M(UpUp,m,ZN
p /(pm)) � M(UpUp,m,Zp/(p

m))⊕N(3.1.6)

� (M(UpUp,m, Am/(T − 1)))⊕N

as modules over Zp/(p
m) � Am/(T − 1). Moreover, these isomorphisms

are TS-equivariant, and observing that the action of TS on (M(UpUp,m,

Am/(T−1)))⊕N is given via the diagonal action of TS(UpUp,m, Am/(T−1)),

we obtain that the isomorphisms (3.1.6) are compatible with the action

of

TS(UpUp,m,ZN
p /(pm)) � TS(UpUp,m, Am/(T − 1)).

Note that

(3.1.7) M(UpUp,m, Am)⊗Zp
Qp �

⊕
χ:Z/pmZ→Q

×
p

χ�=1

M(UpUp,m, (Qp)χ◦λm
),

where (Qp)χ◦λm
denotes the free rank-1 Qp-module on which u ∈ Up,m

acts by multiplication by χ ◦ λm. Since (Up,m, λm) is omni-supercuspidal,

every automorphic representation of G(AF ) that contributes to

(M(UpUp,m, Am))⊕N ⊗Zp
Qp is supercuspidal at all places above p.
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Remark 3.1.8. In the setup of Theorem 3.1.1, we have TS-equivariant iso-
morphisms

M(UpUp,m,ZN
p )/(pm) � M(UpUp,m,ZN

p /(pm))(3.1.9)

(3.1.2)
� (M(UpUp,m, Am/(T − 1)))⊕N .

We claim that the natural map (induced by the map Am → Am/(T − 1)
of coefficient modules) M(UpUp,m, Am)/(T − 1) → M(UpUp,m, Am/(T − 1))
is a TS-equivariantly isomorphism for sufficiently small Up,m. (Unlike the
first isomorphism in (3.1.9), the isomorphicity is not obvious since the Up,m-
action on Am is not trivial.) If the center of ResF/QG has the same Q-rank
and R-rank (that is, if G satisfies the equivalent conditions of [Gro99, Propo-
sition 1.4]; in particular every arithmetic subgroup of G(F ) is finite) then
the claim is proved by the argument of [Gro99, Proposition 9.2], with Am,
Am/(T −1), and Up,m playing the roles of Lp, L, and Kp there, respectively;
the point is that the arithmetic subgroup Δα in that argument becomes triv-
ial when Kp = Up,m is small enough. Now, without the assumption on the
center, we can still mimic the argument since Up,m ∩ Z(G)(F ) acts trivially
on Am by condition (4) of Theorem 2.2.15. This means that Up,m acts on
Am through its image under the adjoint map G(F ⊗Q Qp) → Gad(F ⊗Qp).
Since Gad satisfies the conditions of [Gro99, Proposition 1.4], if Up,m is small
enough, then all Δα act trivially on Am in the argument of [Gro99, Proposi-
tion 9.2], even if Δα need not be a finite group, so the proof there still goes
through to establish the claim. Now that the claim is true, (3.1.9) yields a
natural TS-equivariant isomorphism (cf. (3.1.2))

M(UpUp,m,ZN
p )/(pm) � (M(UpUp,m, Am)/(T − 1))⊕N .

However we cannot take the quotients outside the Hecke algebras in (3.1.3).
The abstract situation is as follows. Let M be a finite free Zp-module, α ∈
EndZp

(M). Write M := M/(pm) and α ∈ EndZp
(M) for the image of α.

Put T := Zp[α] and T := Z/(pm)[α] for the subalgebra of EndZp
(M) (resp.

EndZp
(M)) generated over Zp. Then the obvious map T/(pm) → T need not

be an isomorphism: consider arbitrary α such that α is the multiplicative
unity. Despite the apparent defect, it is readily checked that

(3.1.10) TS(UpUp,m0
,ZN

p ) = lim←−
m≥m0

TS(UpUp,m0
,ZN

p /(pm))

for each integer m0 ≥ 1, with compatible actions on the spaces of functions
with coefficients in ZN

p and ZN
p /(pm), respectively. If the center of ResF/QG
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has the same Q-rank and R-rank, then the analogous statements also hold
with non-constant coefficient VZp

that we will introduce in §3.2 below.5 More
precisely, we have M(UpUp,m, V N

Zp
)/(pm) � M(UpUp,m, V N

Zp
/(pm)) as TS-

modules by the same reasoning as for the claim above for Up,m sufficiently
small. This leads to the non-constant coefficient analogue of (3.1.10). For ap-
plications, (3.1.10) and its non-constant analogue are often enough, cf. proof
of Theorem 3.3.3 below (where the center of ResF/QG has Q-rank and R-
rank 0).

3.2. Non-constant coefficient

Let L be a finite extension of F such that L/Q is Galois and G×F L is split.
Then (ResF/QG) ×Q L is split and we denote by G̃ a split reductive group

over OL such that G̃L � (ResF/QG)×QL. Let V be a linear algebraic repre-

sentation of G̃ over OL. This yields an algebraic representation of ResOL/ZG̃

on VZ (i.e. V viewed as a Z-module) over Z. In particular, (ResOL/ZG̃)(Zp)
acts continuously on VZp

= VZ ⊗Z Zp for the p-adic topology. Observe that

(ResOL/ZG̃)(Qp) = G̃(L⊗Q Qp) � (ResF/QG)(L⊗Q Qp) = Gp(L⊗Q Qp),

and the latter naturally contains Gp(Qp) as a closed subgroup. Therefore
every sufficiently small open subgroup Up of Gp(Qp) (as long as it maps into
(ResOL/ZG̃)(Zp) under the above isomorphism) acts on VZp

. In that case, us-
ing this action, we obtain a space of automorphic forms M(UpUp, VZp

/(pm))
as defined earlier.

Theorem 3.2.1. Assume p > Cox(G). Then there exists a basis of compact
open neighborhoods {Up,m}m≥1 of 1 ∈ Gp(Qp) =

∏
w|pG(Fw) with Up,m′

normal in Up,m for m′ ≥ m as well as smooth actions of Up,m on Am arising
from multiplication by a character ψm : Up,m → A×

m for m ≥ 1 (factoring
through Z/pmZ), such that we have isomorphisms of Zp/(p

m)-modules

(3.2.2) M(UpUp,m, VZp
/(pm)) � (M(UpUp,m, Am/(T − 1)))⊕dimZp V

that are compatible with the action of TS(UpUp,m, V/(pm)) on the left hand
side and the diagonal action of TS(UpUp,m, Am/(T − 1)) on the right hand
side via the Zp-algebra isomorphism

(3.2.3) TS(UpUp,m, VZp
/(pm)) � TS(UpUp,m, Am/(T − 1)).

5Without the assumption on the center, the argument for the preceding claim
still applies if Up,m ∩ Z(G)(F ) acts trivially on VZp .
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Moreover, every automorphic representation of G(AF ) that contributes to

(M(UpUp,m, Am))⊕dimZp VZp ⊗Zp
Qp

is supercuspidal at all places above p.

Remark 3.2.4. If V ′
C is an algebraic representation of (ResF/QG)×QC over C,

then we can choose a model of the representation V ′
C over OL (e.g. the sum

of the Weyl modules as in [Jan03, p. 183] corresponding to the irreducible
components of V ′

C), i.e. a representation V of G̃ over OL whose base change
to C is the representation V ′

C of (ResF/QG) ×Q C. This way we obtain the
setup needed at the start of this subsection.

Remark 3.2.5. The space M(UpUp,m, VQp
), where VQp

= VZp
⊗Zp

Qp, can

be described in terms of classical automorphic forms on G. Here we fix field
embeddings Q ↪→ Qp and Q ↪→ C and a compatible isomorphism ι : Qp � C,
and extend scalars using these embeddings to define VQp

and VC. Thus VC

is an algebraic representation of (ResL/QG̃L) ×Q C = (ResF/QG) ×Q (L ⊗Q

C), which we can restrict to a representation of (ResF/QG) ×Q C via the
obvious embedding C ↪→ L⊗QC. The resulting representation can be viewed
either as an algebraic representation of (ResF/QG)×Q C, or as a continuous
representation of G∞(C) ⊃ G∞(R). For simplicity, suppose that the center
of G is anisotropic over F and that G∞(R) is connected (in addition to being
compact modulo center). Write AG for the space of L2-automorphic forms
on G(F )\G(AF ) (as in 2.1.2 of [Sor13] but without the need to fix a central
character; note that his G is our ResF/QG). Then Lemma 2 of loc. cit. gives

a TS
C-equivariant isomorphism

ιM(UpUp,m, VQp
) � HomG∞(R)(V

∨
C ,AG)

UpUp,m .

Proof of Theorem 3.2.1. Recall that an open subgroup of Gp(Qp) acts con-
tinuously on VZp

for the p-adic topology. Hence, for every integer m ≥ 1,
there exists an open subgroup of Gp(Qp) that acts trivially on (the finite
set) VZp

/pmVZp
.

Now let {(Up,n, λn)}n≥1 be a sequence of omni-supercuspidal types for
Gp(Qp) = G(F ⊗Q Qp) as in Theorem 2.2.15. By the preceding paragraph,
there is an increasing sequence n1 < n2 < · · · such that Up,nm

stabilizes
VZp

and acts trivially on VZp
/pmVZp

for every m. Let pri,j : Z/p
iZ � Z/pjZ

denote the canonical surjection when i ≥ j ≥ 1. Then

(U ′
p,m, λ′

p,m) := (Up,nm
, prnm,m ◦ λnm

), m ≥ 1,
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is an omni-supercuspidal type of level pm. Moreover, by construction, we
have

M(UpU ′
p,m, VZp

/(pm)) � M(UpU ′
p,m,Zp/(p

m))⊕dimZp VZp ,

where the action of U ′
p,m is trivial on the right hand side and induced by that

on VZp
on the left hand side. Now we can proceed as in the proof of Theorem

3.1.1: We let U ′
p,m act on Am via the character ψ′

m : U ′
p,m

λ′
p,m� Z/pmZ ↪→ A×

m

to obtain a Zp/p
m-linear isomorphism

(3.2.6) M(UpU ′
p,m, VZp

/(pm)) � M(UpU ′
p,m, Am/(T − 1))⊕dimZp VZp .

As at the start of §3, we obtain a Zp/p
m-algebra isomorphism

(3.2.7) TS(UpU ′
p,m, VZp

/(pm)) � TS(UpU ′
p,m, Am/(T − 1)), m ≥ 1,

which is compatible with (3.2.2) via the respective Hecke algebra actions on
both sides.

Remark 3.2.8. In fact the argument of this section still goes through and
produces some congruence without the assumption that (Up,m, λp,m) is omni-
supercuspidal, which plays a role only in applications. However the outcome
is less interesting without a careful choice of the pair (Up,m, λp,m).

3.3. An application to Galois representations

We illustrate how to employ Theorems 3.1.1 and 3.2.1 to construct Galois
representations from automorphic representations in a suitable context. The
idea is to reduce to the case when automorphic representations have super-
cuspidal components. In fact, Remark 7.4 of [Sch18] reads “...and it seems
reasonable to expect that one could do a similar argument in the compact
unitary case, providing an alternative to the construction of Galois repre-
sentations of Shin [Shi11] and Chenevier–Harris [CH13], by reducing directly
to the representations constructed by Harris–Taylor.” 6 Confirmation of this
is the goal of this section.

Let n ∈ Z≥2. Recall that F is a totally real field, and let E be a to-
tally imaginary quadratic extension of F with complex conjugation c ∈
Gal(E/F ). For a finite place w of E, we write LLw for the unramified local

6We copied the sentence except that the bibliographic items have been adapted.
Remark 7.4 of [Sch18] also mentions the case of Hilbert modular forms but we chose
to concentrate on the more complicated case treated here.
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Langlands correspondence for GLn(Ew), from irreducible unramified repre-
sentations of GLn(Ew) to continuous semisimple unramified n-dimensional
representations of the Weil group WEw

of Ew (with coefficients in C, up to
isomorphisms).

Let Π be a regular C-algebraic cuspidal automorphic representation of
GLn(AE) that is conjugate self-dual, i.e. its contragredient Π

∨ is isomorphic
to the complex conjugate Πc. Let SE be the set of all infinite places and the
finite places of E where Π is ramified, and S all the places of F below SE .
Fix a prime p and an isomorphism ι : Qp � C. A well known theorem by
Clozel ([Clo91, Thm 1.1], based on [Kot92]) states the following. At each
place w of E, write | detw | for the determinant map on GLn(Ew) composed
with the absolute value on Ew which is normalized to send a uniformizer to
the inverse of the residue field cardinality.

Theorem 3.3.1 ([Clo91]). Suppose that there exists a finite place v of E
where Πv is a discrete series representation. Then there exists a continuous
representation

ρΠ,ι : Gal(E/E) → GLn(Qp)

which is unramified outside SE such that LLw(Πw) ⊗ | detw |(1−n)/2 is iso-
morphic to the semisimplification of ιρΠ,ι|WEw

for all w /∈ SE.

Remark 3.3.2. Harris and Taylor showed in [HT01] (see Thm. VII.1.9 therein)
that Πw and ρΠ,ι|WEw

still correspond under the local Langlands correspon-
dence at ramified primes not above p. The latter result was later also ob-
tained in [Sch13] by a different approach.

We remove the assumption that Πv is a discrete series representation
from the above theorem when p is not too small using congruences, to obtain
Theorem 3.3.3. The condition on p is due to Proposition 2.1.2.

Theorem 3.3.3. Suppose that p > n. Then for every regular C-algebraic
conjugate self-dual cuspidal automorphic representation Π of GLn(AE), there
exists a continuous representation

ρΠ,ι : Gal(E/E) → GLn(Qp)

which is unramified outside SE such that LLw(Πw) ⊗ | detw |(1−n)/2 is iso-
morphic to the semisimplification of ιρΠ,ι|WEw

for all w /∈ SE.

Remark 3.3.4. The assumption that p > n can be removed by appealing to
Appendix D, which proves Theorem 2.2.15 for all primes p, see also Remark
3.1.5.
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Remark 3.3.5. This theorem is not new. A stronger statement on the ex-
istence and local-global compatibility for ρΠ,ι has been known by [CHL11,
Shi11, CH13] without restriction on p. The local-global compatibility was
further strengthened by [Car12, Car14, BLGGT14]. Much of [Shi11] was re-
proved in [SS13] by a simpler method. The point is that the proof here is still
simpler as there is no eigenvariety as in [CH13] and no elaborate geometric
and endoscopic arguments as in [Shi11], as far as Theorem 3.3.1 is taken for
granted. (The geometry and harmonic analysis involved in Theorem 3.3.1
are less complicated than those of [Shi11, SS13].)

Proof. We will freely use the notions and base change theorems of [Lab11]
for unitary groups to go between automorphic representations on unitary
groups and general linear groups.

Let SplSE (resp. SplSF ) be the set of places of E (resp. F ) outside SE

(resp. S) that are split in E/F . By a standard reduction step using auto-
morphic base change over quadratic extensions as in the proof of [HT01,
Thm. VII.1.9] (also see the proof of [Shi11, Prop. 7.4]), it suffices to show
the compatibility for ρΠ,ι only at w ∈ SplSE .

By a patching argument (executed as in the proof of [CH13, Thm. 3.1.2]),
we further reduce to the case where

• [F : Q] is even,
• every place of F above p is split in E,
• every finite place of F is unramified in E.

Since [F : Q] is even, there exists a unitary group G over F which is an outer
form of GLn with respect to the quadratic extension E/F such that G is
quasi-split at all finite places and anisotropic at all infinite places. We may
view Π as a representation of (ResE/F (G⊗F E))(AF ), which is isomorphic
to GLn(AE); in particular Πx stands for the component of Π at a place x
of F . Since Π is conjugate self-dual, by [Lab11, Thm. 5.4, 5.9], there exists
an automorphic representation π on G(AF ) such that Πx is the unramified
base change of πx at all places x of F outside S.

We set up some more notation. For w ∈ SplSE , we denote by w ∈ SplSF
the restriction of w to F . Recall that we denote by Up =

∏
x�p∞ Ux a (fixed)

compact open subgroup of G(A∞,p
F ) such that Ux is hyperspecial for x /∈ S.

For x ∈ SplSF and for each w above x, we fix isomorphisms iw : G(Fx) �
GLn(Ew) carrying Ux onto GLn(OEw

) such that πx � Πw via iw. We write


w for a uniformizer of Ew and write T
(i)
w for the following double coset

T (i)
w :=

[
GLn(OEw

)

(

wIi 0
0 In−i

)
GLn(OEw

)

]
,
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which we might also view as a double coset of US\G(AS
F )/U

S by requiring all

other factors to be the trivial double coset. We also denote by T
(i)
w the dou-

ble coset operator corresponding to this double coset acting on appropriate
spaces that can be deduced from the context. Given an irreducible unram-

ified representation σw of GLn(Ew) (or G(Fx)), we write T
(i)
w (σw) for the

eigenvalue of T
(i)
w on the one-dimensional space σ

GLn(OEw )
w . For convenience,

we introduce the following variant of the big Hecke algebra: define TS
Spl to

be the Z-subalgebra of Z[US\G(AS
F )/U

S ] generated by T
(i)
w for w ∈ SplSE

(excluding w not split over F ) and 1 ≤ i ≤ n. Replacing TS with TS
Spl, we

define other Hecke algebras to be the image of TS
Spl in the endomorphism

algebras of appropriate spaces of automorphic forms. Note that Theorems
3.1.1 and 3.2.1 are still valid with TS

Spl in place of TS : indeed we retain the
same isomorphism between the same spaces of automorphic forms, and the
TS
Spl-equivariance is simply weaker than the TS-equivariance.

We choose U = UpU
p ⊂ G(A∞

F ) sufficiently small such that π∞ has
nonzero U -fixed vectors, while keeping Ux hyperspecial for x /∈ S. Since
G∞(R) is compact, we see that π∨

∞ comes from an irreducible algebraic
representation V ′

C of G∞ ×R C = (ResF/QG) ×Q C. As in Remark 3.2.4,
there exists a finite Galois extension L/Q in C containing F such that
(ResF/QG) ×Q L is split, thus (ResF/QG) ×Q L � G̃L for a split group

G̃ over OL, and such that there is an algebraic representation V of G̃
over OL giving a model for V ′

C. According to §3.2, this leads to an ac-
tion of Up on the corresponding free Zp-module VZp

such that π contributes
to M(U, VZp

), see Remark 3.2.5. (Note that π∞ is a direct summand of
(V ⊗ZC)∨ = (VZp

⊗Zp
C)∨ as a G∞(R)-representation.) We let {Up,m}m≥1 be

compact open subgroups of U ⊂ Gp(Qp) with an action of Up,m on Am aris-
ing from multiplication by a character ψm : Up,m → A×

m for m ≥ 1, factoring
through λm : Up,m → Z/pmZ, as in Theorem 3.2.1. This means we have

(3.3.6) TS
Spl(U

pUp,m, VZp
/(pm)) � TS

Spl(U
pUp,m, Am/(T − 1)), m ≥ 1,

Let AS(UpUp,m, Am) be the set of irreducible TS
Spl,Qp

-modules appearing as

a constituent of M(UpUp,m, Am) ⊗Zp
Qp. This set is identified with the set

of σS = {σx}x∈SplSF , where σx is an irreducible unramified representation
of G(Fx), such that there exists an automorphic representation σ of G(AF )
satisfying

• σx � σx for x ∈ SplSF ,
• (σ∞,p)U

p �= {0},
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• σ∞ = 1, i.e. the archimedean components of σ are trivial, and
• HomUp,m

(ψ◦λm, σp) �=0 for some nontrivial character ψ : Z/pmZ→C∗.

The last condition implies that σp is a supercuspidal representation of
Gp(Qp). For each σS ∈ AS(UpUp,m, Am), we choose a σ as two sentences
above. By base change theorems [Lab11, Cor. 5.3, Thm. 5.9] we obtain a
cuspidal conjugate self-dual automorphic representation Σ of GLn(AE) that
is regular and C-algebraic such that Σx is the unramified base change of σx
at each place x of F outside S and also that Σp is supercuspidal. It follows
from Theorem 3.3.1 that there exists a continuous semisimple representation

ρΣ,ι : Gal(E/E) → GLn(Qp)

which is unramified outside SE such that LLw(Σw) is isomorphic to the
semisimplification of ιρΣ,ι|WEw

for all w /∈ SE . By the Chebotarev density
and Brauer–Nesbitt theorems, ρΣ,ι is independent of the choice of σ up to
isomorphism. Thus we write ρσS ,ι := ρΣ,ι. Let ES denote the maximal exten-
sion of E in E unramified outside SE . Then ρσS ,ι factors through Gal(ES/E).

At w ∈ SplSE , let N(w) ∈ Z≥1 denote the absolute norm of the finite prime
w. Using t as an auxiliary variable, the compatibility at w of Theorem 3.3.1
means that (cf. [CHT08, Prop. 3.4.2. part 2])

(3.3.7) det(1 + tρσS ,ι(Frobw)) =

n∑
i=0

tiN(w)i(i−1)/2T (i)
w (σw).

On the other hand,

TS
Spl(U

pUp,m, Am) ↪→ TS
Spl(U

pUp,m, Am)⊗Zp
Qp �

∏
σS∈AS(UpUp,m,Am)

Qp,

where for each w∈ SplSE and each 1≤ i≤n, the image of T
(i)
w ∈ TS

Spl(U
pUp,m,

Am) in the σS-component is the scalar in Qp by which T
(i)
w acts on the

x-component of σS (viewed as a representation of GLn(Ew) via iw). Let
Matn×n(·) denote the n × n-matrix algebra over the specified coefficient
ring. For m ≥ 1, write

ρm : Gal(ES/E) →
∏

σS∈AS(UpUp,m,Am)

GLn

(
Qp

)

↪→ Matn×n

⎛⎝ ∏
σS∈AS(UpUp,m,Am)

Qp

⎞⎠ ,
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where the σS-part of the first map is ρσS ,ι. We can extend this map linearly
to a map

ρBm : B[Gal(ES/E)] → Matn×n(B),

for every (
∏

σS∈AS(UpUp,m,Am)Qp)-algebra B. By composing ρBm with the de-
terminant, we produce a continuous n-dimensional determinant map in the
sense of Chenevier [Che14]

dm : Qp[Gal(ES/E)] →
∏

σS∈AS(UpUp,m,Am)

Qp

(which consists of maps dBm for all (
∏

σS∈AS(UpUp,m,Am)Qp)-algebra B, but
we usually omit the index B from the notation) such that

(3.3.8) det(1 + tρm(γ)) = dm(1 + tγ), γ ∈ Gal(ES/E)

We deduce from (3.3.7) that all the coefficients of the characteristic
polynomial χ(Frobw, t) := dm(t − Frobw) in the sense of Chenevier are
contained in TS

Spl(U
pUp,m, Am) for all w ∈ SplSE . The same holds for all

elements of Gal(ES/E) because the union of Frobenius conjugacy classes
over SplSE is dense in Gal(ES/E) by the Chebotarev density theorem. Hence
it follows from [Che14, Corollary 1.14] that dm is the scalar extension of
a TS

Spl(U
pUp,m, Am)-valued n-dimensional continuous determinant (in Ch-

enevier’s sense):

Zp[Gal(ES/E)] → TS
Spl(U

pUp,m, Am)

satisfying (3.3.8). To save notation, we still write dm for the latter. Thus

dm(1 + tFrobw) =

n∑
i=0

tiN(w)i(i−1)/2T (i)
w , w ∈ SplSE .

Via (3.3.6) we obtain a continuous n-dimensional TS
Spl(U

pUp,m, VZp
/(pm))-

valued determinant

Dm : (Zp/(p
m))[Gal(ES/E)] → TS

Spl(U
pUp,m, VZp

/(pm))

such that

(3.3.9) Dm(1 + tFrobw) =

n∑
i=0

tiN(w)i(i−1)/2T (i)
w
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(equality taken inside TS
Spl(U

pUp,m, VZp
/(pm))) for w ∈ SplSE . We have the

restriction map

resm,1 : T
S
Spl(U

pUp,m, VZp
/(pm)) → TS

Spl(U
pUp,1, VZp

/(pm))

and for m′ ≤ m the projection map

prm,m′ : TS
Spl(U

pUp,1, VZp
/(pm)) → TS

Spl(U
pUp,1, VZp

/(pm
′
)).

From (3.3.9) and the density of Frobenii, we deduce that for m ≥ m′ ≥ 1,
we have

prm,m′ ◦ resm,1 ◦Dm(1 + tγ) = resm′,1 ◦Dm′(1 + tγ) γ ∈ Gal(ES/E).

By Amitsur’s formula [Che14, (1.5)] and the properties of the determinant,
we see that the n-dimensional determinant resm,1 ◦ Dm is uniquely deter-
mined by its values on 1 + tGal(ES/E). Hence we obtain an equality of
TS
Spl(U

pUp,1, VZp
/(pm

′
))-valued n-dimensional continuous determinants

prm,m′ ◦ resm,1 ◦Dm = resm′,1 ◦Dm′

Taking the inverse limit over resm,1 ◦Dm for m ≥ 1 ([Che14, Lem. 3.2]) and
using from Remark 3.1.8 that

TS
Spl(U

pUp,1, VZp
) = lim←−

m

TS
Spl(U

pUp,1, VZp
/(pm)),

we obtain a TS
Spl(U

pUp,1, VZp
)-valued n-dimensional continuous determinant

D : Zp[Gal(ES/E)] → TS
Spl(U

pUp,1, VZp
)

with D(1 + tFrobw) =
∑n

i=0 t
iN(w)i(i−1)/2T

(i)
w . Since π contributes to

M(UpUp,1, VZp
) (as π contributes to M(U, VZp

) and Up,1 ⊂ Up), it gives
rise to a Zp-algebra morphism

cπ : TS
Spl(U

pUp,1, VZp
) → Qp, T (i)

w �→ T (i)
w (πw), ∀w ∈ SplSE .

The composition cπ ◦D yields a continuous n-dimensional Qp-valued deter-
minant. It follows from [Che14, Thm. A, Ex. 2.34] that cπ ◦D arises from a
continuous representation ρπ : Gal(ES/E) → GLn(Qp) in the sense that

cπ(D(1 + tγ)) = det(1 + tρπ(γ)), γ ∈ Gal(ES/E).
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Therefore we conclude that for w ∈ SplSE ,

det(1 + tρπ(Frobw)) = cπ(D(1 + tFrobw)) =

n∑
i=0

tiN(w)i(i−1)/2T (i)
w (πw).

That is, LLw(πw)⊗ | detw |(1−n)/2 is isomorphic to the semisimplification of

ιρπ|WEw
. The proof of the theorem is complete by setting ρΠ,ι := ρπ.

3.4. Density of supercuspidal points in the Hecke algebra

As another application of our main local theorem, we show that the su-

percuspidal locus is Zariski dense in the spectrum of the Hecke algebra of

p-adically completed (co)homology following Emerton–Paškūnas [EP20]. Us-

ing Bushnell–Kutzko’s study of types for GLn, they proved the result for a

global definite unitary group which is isomorphic to a general linear group

at p. Their machinery is quite general, enabling us to extend their result to

general reductive groups which are compact modulo center at ∞ once we

combine it with our local construction.

We retain the same notation as at the start of §3. We may and will

assume that F = Q by replacing G with ResF/QG as this does not sacrifice

the quality of the theorem. As in loc. cit. we assume that the central torus

Z(G)0 has the same Q-rank and R-rank. Let L be a finite extension of Qp

with ring of integers O. (We have renewed the use of L here to be consistent

with [EP20]. In §3.2 the letter L denoted a certain number field which we

will denote by L below.) This will be our coefficient field for the involved

representations. Fix an algebraic closure L of L and a uniformizer 
 ∈ O. So

far in this section, we worked with Hecke algebras as Zp-algebras acting on

the space of automorphic forms as Zp-modules, but everything carries over

verbatim with O and 
 in place of Zp and p. This extension is not strictly

necessary but sometimes convenient as irreducible algebraic representations

of GQp
need not be defined over Qp. If Up is a compact open subgroup

of G(Qp), then we define the completed group algebra of Up over O to

be O[[Up]] := lim←−U ′
p

O[Up/U
′
p], where the limit is taken over open normal

subgroups U ′
p ⊂ Up. The topology on O[[Up]] is given by the projective limit

(with the usual topology on O[Up/U
′
p] as a finite free O-module). Whenever

we work with O[[Up]]-modules, we work in the category of compact linear-

topological O[[Up]]-modules (resp. O-modules) and denote the Hom space

by Homcont
O[[Up]]

(·, ·) (resp. Homcont
O (·, ·)).
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Let Up =
∏

w�p,∞ Uw be an open compact subgroup of G(A∞,p) such
that Uw is hyperspecial for all w away from a finite set of places S. Define
Y (UpUp) := G(Q)\G(A)/UpUpG(R)◦. Consider the completed homology

H̃0(U
p) := lim←−

Up

H0(Y (UpUp),O),

where Up runs over open compact subgroups of G(Qp). Then H̃0(U
p) is

a finitely generated O[[Up]]-module that is O-torsion free for any compact
open subgroup Up of G(Qp). If U

p or Up is sufficiently small, for instance
if UpUp is a neat subgroup (in the sense of [Pin90, §0]), then Up acts on
points of G(Q)\G(A)/UpG(R)◦ with trivial stabilizers, and H̃0(U

p) is free
over O[[Up]]. We topologize H̃0(U

p) as a finitely generated O[[Up]]-module,
using the topology of O[[Up]]. This is equivalent to the inverse limit topology
where the topology on H0(Y (UpUp),O) arises from the topology of O.

We also define the completed cohomology

(3.4.1) H̃0(Up) := lim←−
s≥1

lim−→
Up

H0(Y (UpUp),O/
s),

which is complete for the 
-adic topology, or equivalently the inverse limit
topology over s of the discrete topology on the direct limit. In our earlier
notation, H0(Y (UpUp),O/
s) = M(UpUp,O/
s). We have a canonical iso-
morphism H̃0(Up) = Homcont

O (H̃0(U
p),O) as topological O-modules, where

the topology on the latter is given by the supremum norm.
We define the “big” Hecke algebra

(3.4.2) TS(Up) := lim←−
Up, s

TS(UpUp,O/
s),

recalling that TS(UpUp,O/
s) was introduced around (3.0.1), where the Zp-
algebra setup earlier extends to the O-algebra setup in the evident manner.
We equip TS(Up) with the profinite topology via (3.4.2), where the finite set
TS(UpUp,O/
s) is equipped with the discrete topology. For each compact
open subgroup Up of G(Qp) and a locally algebraic representation V of Up

over L, we have TS(Up)-equivariant isomorphisms

HomO[[Up]](H̃0(U
p), V ∗) = HomUp

(V, H̃0(Up)L) = M(UpUp, V
∗),

as explained in [EP20, 5.1]. The TS(Up)-module structure is semisimple as
it is the case on the space of algebraic automorphic forms.
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Let {Vi}i∈I be a family of continuous representations of Up on finite
dimensional L-vector spaces. We recall from [CDP14, Def. 2.6] (see Lemmas
2.7 and 2.10 therein for equivalent characterizations):

Definition 3.4.3. Let M be a compact linear-topological O[[Up]]-module.
We say that {Vi} captures M if there is no nontrivial (i.e. other than
M = Q) quotient M � Q inducing an isomorphism

Homcont
O[[Up]]

(Q,V ∗
i ) � Homcont

O[[Up]]
(M,V ∗

i ), ∀i ∈ I.

Proposition 3.4.4. Assume p > Cox(G). Then there exist

• an open compact pro-p subgroup Up of G(Qp) and
• a countable family of smooth representations {Vi}i∈I of Up on finite
dimensional L-vector spaces

such that the following hold:

• (Up, Vi ⊗L L) is a supercuspidal type for every i,
• {Vi}i∈I captures O[[Up]].

Moreover Up can be chosen to be arbitrarily small.

Remark 3.4.5. This proves a result similar to [EP20, Cor. 4.2] but slightly
stronger in that our proposition implies the conclusion there via Lemmas
2.8 and 2.10 of loc. cit. Note that the proof below still produces {Vi}i∈I
capturing O[[Up]] as far as Up,m is a sequence of pro-p groups forming a
neighborhood basis of 1. Indeed the proof readily adapts to other types such
as principal series types.

Remark 3.4.6. As can be seen in the proof, we construct Vi to be irreducible
representations of Up over L which may become reducible over L.

Proof. Let {(Up,m, λm)}m≥1 be a sequence for G(Qp) as in Theorem 2.2.15,
where we may assume that Up := Up,1 is a pro-p group and arbitrarily small
(see the first paragraph in the proof of Theorem 2.2.15).

Let Lm ⊂ L denote the totally ramified extension of L generated by pm-
th roots of unity, with Om denoting its ring of integers and 
m a uniformizer
in Om. We compose λm : Up,m → Z/pmZ with a fixed character Z/pmZ ↪→
O×

m to define a smooth character ψ◦
m : Up,m → O×

m. Put ψm := ψ◦
m ⊗Om

Lm.
The dual representations, i.e., inverse characters, corresponding to ψ◦

m and
ψm are denoted by ψ◦∗

m and ψ∗
m. For an embedding σ : Lm ↪→ L over L, write

ψ∗
m,σ := ψ∗

m⊗Lm,σL (viewed as a one-dimensional representation over L). We
will think of ψ◦

m, ψ◦∗
m (resp. ψm, ψ∗

m) as representations on a free O-module
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(resp. L-module) of rank [Lm : L]. The notation is consistent as ψ∗
m is then

the dual representation of ψm over L. The multiplication by 
m (on the
underlying Om-module) yields a Up,m-equivariant map [
m] : ψ◦∗

m → ψ◦∗
m .

Since pm-th roots of unity become trivial in Om/(
m), the Up,m-action on
the cokernel ψ◦∗

m /(
m) is trivial.
Take {Vi} to be the family of irreducible L-subrepresentations of

Ind
Up

Up,m
ψm (which is semisimple) for all m ≥ 1. Since (Up,m, λm) is omni-

supercuspidal, and since ψm ⊗L L � ⊕σ∈HomL(Lm,L)ψm ⊗Lm,σ L as a Up,m-

representation, the pair (Up,m, ψm⊗LL) is a supercuspidal type. Via Frobe-
nius reciprocity, it follows that (Up, Vi ⊗L L) is also a supercuspidal type.

It remains to prove that {Vi} captures O[[Up]]. Put M := O[[Up]] and
let Q be the smallest quotient of M such that

Homcont
O[[Up]]

(Q,V ∗
i ) � Homcont

O[[Up]]
(M,V ∗

i ), ∀i ∈ I.

This implies that Q captures {Vi}. We need to show that M
∼→ Q.

For each m, we have Ind
Up

Up,m
ψ∗
m isomorphic to the direct sum of V ∗

i ’s for
suitable indices i. So M � Q induces an isomorphism

Homcont
O[[Up]]

(Q, Ind
Up

Up,m
ψ∗
m)

∼→ Homcont
O[[Up]]

(M, Ind
Up

Up,m
ψ∗
m), m ≥ 1.

Via Frobenius reciprocity,

Homcont
O[[Up,m]](Q,ψ∗

m)
∼→ Homcont

O[[Up,m]](M,ψ∗
m), m ≥ 1.

The isomorphism continues to hold when ψ∗
m is replaced with ψ◦∗

m . Indeed,
the injectivity is obvious as the map is induced by the surjection M � Q.
For the surjectivity, notice that the cokernel is a finitely generated O-module
that is torsion free and vanishes after taking ⊗OL. Now we consider the
following commutative diagram with exact rows and vertical maps induced
by M � Q.

Homcont
O[[Up,m]](Q,ψ◦∗

m )
[�m]

∼

Homcont
O[[Up,m]](Q,ψ◦∗

m )

∼

Homcont
O[[Up,m]](Q,ψ◦∗

m /(�m))

α

Homcont
O[[Up,m]](M,ψ◦∗

m )
[�m]

Homcont
O[[Up,m]](M,ψ◦∗

m )
β

Homcont
O[[Up,m]](M,ψ◦∗

m /(�m))

The map α is injective by surjectivity of M � Q. To see that α is surjective,
it is enough to check that β is surjective; this is true by projectivity of
M (as a compact linear-topological O[[Up,m]]-module). Hence α gives an
isomorphism

Homcont
O[[Up,m]](Q,ψ◦∗

m /(
m))
∼→ Homcont

O[[Up,m]](M,ψ◦∗
m /(
m))
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as vector spaces over O/(
). The Hom spaces do not change if Q and M are
replaced with Q/(
) and M/(
). Since Up,m acts trivially on ψ◦∗

m /(
m), we
deduce that

(M/(
))Up,m

∼→ (Q/(
))Up,m
, m ≥ 1,

where the subscripts signify the Up,m-coinvariants. Since {Up,m} is a neigh-

borhood basis of 1, we deduce that M/(
)
∼→ Q/(
). As Q is O-torsion

free by [EP20, Lem. 2.4], this implies that (ker(M � Q))/(
) = {0}.
The topological Nakayama’s lemma for compact O[[Up,m]]-modules [NSW08,

Lem. 5.2.18] implies that ker(M � Q) = {0}. Hence M
∼→ Q, and {Vi} cap-

tures M .

Corollary 3.4.7. Assume p > Cox(G), and let Up and {Vi} be as in Propo-
sition 3.4.4. If Up or Up is sufficiently small (e.g., if UpUp is neat), then for
each continuous finite dimensional representation W of G(Qp) over L, the
family {Vi ⊗L W} captures H̃0(U

p) and the evaluation morphism⊕
i

HomUp
(Vi ⊗W, H̃0(Up)L)⊗ (Vi ⊗W ) −→ H̃0(Up)L

has dense image.

Proof. As remarked earlier, if UpUp is neat, then H̃0(U
p) is a free O[[Up]]-

module. Therefore Lemmas 2.8 and 2.9 of [EP20] imply that {Vi ⊗L W}
captures H̃0(Up). The assertion about density is simply an equivalent char-
acterization of capture in [CDP14, Lem. 2.10] (or [EP20, Lem. 2.3]), noting
that H̃0(Up)L = Homcont

O (H̃0(U
p), L).

Remark 3.4.8. To apply the corollary when Up is fixed (and p > Cox(G)),
we choose small enough Up such that UpUp is neat. This is possible as Up

can be made arbitrarily small in Proposition 3.4.4.

Here is an informal discussion of the corollary. Recall that HomUp
(Vi ⊗

W, H̃0(Up)L) = M(UpUp, (Vi⊗W )∗). If W is the restriction of an irreducible
algebraic representation of GL (we are writing L for the number field L
in §3.2), this is a space of algebraic automorphic forms such that every
automorphic representation π that contributes to it (as in Remark 3.2.5) has
the properties that πp is supercuspidal (since πp contains the type (Up, Vi))
and that π|G(R)0 = W . Thus the corollary roughly asserts that automorphic
forms which are supercuspidal at p and have “weight” W at ∞ form a dense
subspace in the completed cohomology.

Now we formulate a density statement in terms of Hecke algebras. Fix
an open maximal ideal m ⊂ TS(Up) and consider the m-adic localization
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TS(Up)m, which is a direct factor of TS(Up) as a topological ring. (See [EP20,

5.1], cf. (C.4) and Remark C.5.) Fix a representation W of G(Qp) coming

from an irreducible algebraic representation as in the preceding paragraph.

Let

Σ(W )sc ⊂ SpecTS(Up)m[1/p]

denote the subset of closed points such that the corresponding morphism

TS(Up)m[1/p] → L (up to the Gal(L/L)-action) comes from an eigen-

character of TS(Up) in M(UpUp,W
∗) for some Up, and such that the eigen-

space gives rise to an automorphic representation of G(A) whose component

at p is supercuspidal.

Theorem 3.4.9. If p > Cox(G), the subset Σ(W )sc ⊂ SpecTS(Up)m is

Zariski dense.

Remark 3.4.10. The assumption that p > Cox(G) can be removed as in

Remark 3.1.5 by using Appendix D.

Proof. Essentially the same argument as in the proof of [EP20, Thm. 5.1]

works, so we only sketch the proof. Choose a sufficiently small Up and {Vi}
as in Proposition 3.4.4. By Corollary 3.4.7, {W ⊗Vi} captures the m-adic lo-

calization H̃0(U
p)m, which is a direct summand of H̃0(U

p). As in loc. cit. we

obtain that

Homcont
O[[Up]]

(H̃0(U
p)m, (W ⊗ Vi)

∗) � Homcont
O[[Up]]

(W ⊗ Vi, H̃
0(Up)m ⊗ L)

� Homcont
O[[Up]]

(W ⊗ Vi, (H̃
0(Up)m ⊗ L)alg),

where (·)alg designates the subspace of locally algebraic vectors for the Up-

action. Thus TS(Up)m[1/p] acts semisimply on (H̃0(Up)m ⊗ L)alg as it is

the case on the space of algebraic automorphic forms. Moreover the sup-

port of Homcont
O[[Up]]

(W ⊗ Vi, (H̃
0(Up)m ⊗ L)alg) in the maximal spectrum of

TS(Up)m[1/p] is contained in Σ(W )sc as explained in loc. cit. (The super-

cuspidality at p comes from the fact that (Up, Vi) is a supercuspidal type.)

Finally the Zariski density of Σ(W )sc follows from Proposition 2.11 of [EP20]

based on Remarks 2.12 and 2.13 therein with R = TS(Up)m. (We need Re-

mark 2.13 as TS(Up)m is not known to be Noetherian in general; refer to

the discussion in §5.1 of loc. cit. Sometimes the Noetherian property can be

proved, as in Appendix C.)
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Appendix A. Calculations for D2N+1

The purpose of this appendix is to prove Proposition 2.1.2 for split groups
G of type D2N+1. In this appendix, by “the proof” we will always refer to
the proof of Proposition 2.1.2. We maintain the notation from there. Recall
that it suffices to exhibit an elliptic maximal torus T ⊂ G such that for
every n ∈ Z≥1, there exists a G-generic element X ∈ t∗ of depth −r with
n < r ≤ n+ 1. Put s := 2N + 1 in favor of simpler notation.

Our strategy is similar to the other cases of the proof. We take E/F to
be the unramified extension of degree 2s − 2 = 4N with Gal(E/F ) = 〈σ〉,
where σ denotes the (arithmetic) Frobenius automorphism. Recall that T sp

is a split maximal torus in G.
Let {e1, ..., es} be a basis for X∗(T sp) ⊗Z R. Without loss of generality,

i.e. by changing the basis if necessary, we let the simple coroots be

α̌i = ei − ei+1, 1 ≤ i ≤ s− 1, α̌s = es−1 + es,

and the coroots Φ̌ = {±(ei ± ej) : 1 ≤ i < j ≤ s}. Take the Coxeter
element w = sα̌1

sα̌2
. . . sα̌s

, where sα̌i
denotes the reflection on X∗(T sp)⊗ZR

corresponding to α̌i. The order of w is equal to Cox(G) = 2s− 2 = 4N . An
easy computation shows:

w(α̌i) = α̌i+1, 1 ≤ i ≤ s− 3,

w(α̌s−2) = α̌1 + α̌2 + · · ·+ α̌s

w(α̌s−1) = −(α̌1 + α̌2 + · · ·+ α̌s−1)

w(α̌s) = −(α̌1 + α̌2 + · · ·+ α̌s−2 + α̌s)

As in the earlier proof, we define T over F from the cocycle f : Gal(E/F ) →
W sending σ to w. (A cocycle here is a homomorphism as Gal(E/F ) acts
trivially on W .) We may and will identify TE with T sp

E and fix T henceforth.
Let r ∈ Z. Then givingX ∈ t∗(E)−r is equivalent to assigning a1, ..., as ∈ OE

such that

X(H�r
F α̌1

) = a1, ..., X(H�r
F α̌s

) = as

since {
r
F α̌i}1≤i≤s is an OE-basis of t(E)r. (To see this, it is enough to

check it for r = 0. In this case, {α̌i}1≤i≤s generates a subgroup of the free
Z-module X∗(TE) with index coprime to p, since p > Cox(G) and thus p
does not divide the order of the Weyl group. It follows that {α̌i}1≤i≤s indeed
generates t(E)0 over OE . Since t(E)0 is a free OE-module of rank s, linear
independence follows.)
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The G-genericity means that we need

(A.1) v(X(Hβ̌)) = −r, ∀β̌ ∈ Φ̌.

On the other hand, X descends to an OF -linear functional on tr if

(A.2) X(σ(H�r
F α̌i

)) = σ(ai), ∀1 ≤ i ≤ s.

Hence in order to prove Proposition 2.1.2 for split groups G of type D2N+1 =
Ds, it suffices to find X satisfying (A.1) and (A.2). Moreover, it suffices to
find such an X only when r = 0, since the case n < r ≤ n + 1 follows by
multiplying X with 
−n−1

F . Thus we set r = 0 from now on. Then (A.2) can
be rewritten as

(A.3)

σ(ai) = ai+1, 1 ≤ i ≤ s− 3,
σ(as−2) = a1 + a2 + · · ·+ as,
σ(as−1) = −(a1 + a2 + · · ·+ as−1),
σ(as) = −(a1 + a2 + · · ·+ as−2 + as+1).

Take ζ to be a primitive (q2s−2 − 1)-th root of unity in OE , where q is
the residue field cardinality of F (so kE = Fq2s−2). Set

a = ζ
qs−1+1

2 , b = ζ
q2(s−1)−1

2(q−1) .

We would like to verify that the following solution to the system of equations
(A.3) works:

ai = σi−1(a), 1 ≤ i ≤ s− 2,

as−1 =
1

2
(b− (a+ σ(a) + · · ·+ σs−3(a)) + σs−2(a)),

as =
1

2
(−b− (a+ σ(a) + · · ·+ σs−3(a)) + σs−2(a)).

A simple computation shows

(A.4) σs−1(a) = −a, σ(b) = −b,

as−1 − as = b, as−1 + as = −(a+ σ(a) + · · ·+ σs−3(a)) + σs−2(a).

Using this, it is elementary to check that (A.3) is satisfied.
It remains to prove that (A.1) holds with r = 0. As a preparation,

observe that the reduction a ∈ kE of a generates kE , namely

(A.5) σj(a) = a, j ∈ Z≥1 ⇒ (2s− 2)|j.
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When each coroot β̌ is written (uniquely) as β̌ =
∑s

i=1 λiα̌i with λi ∈ Z,
the condition imposed by (A.1) is that v(

∑s
i=1 λiX(Hα̌i

)) = 0. As β̌ runs
through all coroots (enough to consider positive coroots), the following are
the conditions to check:

1. v(ai+1 + · · ·+ aj) = 0 for 0 ≤ i < j ≤ s.
2. v(ai+1 + · · ·+ as + (aj+1 + · · ·+ as−2)) = 0 for 0 ≤ i ≤ j ≤ s− 2.
3. v(ai+1 + · · ·+ as−2 + as) = 0 for 0 ≤ i < s− 2.

Divide Case (1) into (1a) j ≤ s− 2, (1b) j = s− 1, and (1c) j = s. To check
an element of OE has valuation zero, it suffices to show that the reduction
is nonzero in kE .

A.0.0.1. Cases (1a), (1c), and (2). In these cases, the condition to be
checked has the form

(A.6) σi′(a) + · · ·+ σj′(a) �= 0, 1 ≤ j′ − i′ ≤ s− 1.

Indeed this is clear in Case (1a) with i′ = i and j′ = j − 1. In Case (1c), it
suffices to show that −σ(ai+1 + · · ·+ as) �= 0 but the left-hand side equals,
via (A.4),

−σ
(
σs−2(a)− (a+ σ(a) + · · ·+ σi−1(a))

)
= a+ σ(a) + · · ·+ σi(a).

So this case corresponds to showing (A.6) with i′ = 0 and j′ = i. In Case
(2),

ai+1 + · · ·+ as + (aj + · · ·+ as−2) = −a− σ(a)− · · · − σi−1(a) + σj(a)

+ σj+1(a) + · · ·+ σs−2(a)

= σj(a) + σj+1(a) + · · ·+ σs−2+i(a)

so the condition that this expressions is non-zero amounts to (A.6) with
i′ = j and j′ = s− 2 + i. Note that j′ − i′ = s− 2 + i− j ≤ s− 2.

Now the verification of (A.6) is the same as for type A in the proof of
Proposition 2.1.2, based on (A.5).

A.0.0.2. Case (1b). To prove the claim by contradiction, we suppose that

2(ai+1 + ai+2 + · · ·+ as−1) = −(a+ σ(a) + · · ·+ σi−1(a))

+ (σi(a) + · · ·+ σs−2(a)) + b = 0.
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We apply σ2 to the equation and subtract it from the original equation,
recalling that σ2(b) = b. Then

−a− σ(a) + 2(σi(a) + σi+1(a))− σs−1(a)− σs(a) = 0.

This is simplified via (A.4) as σi(a) + σi+1(a) = 0, also using that q is
odd. Hence σ(a) = −a and therefore σ2(a) = a, which contradicts (A.5) (as
s ≥ 5).

A.0.0.3. Case (3). Again suppose that

2(ai+1 + · · ·+ as−2 + as) = −(a+ σ(a) + · · ·+ σi−1(a))

+ (σi(a) + · · ·+ σs−2(a))− b = 0.

The equation is the same as in Case (1b) except that the coefficient of b has
opposite sign, which does not affect the argument, so we reach contradiction
in the same way as before.

Appendix B. Calculations for E6

Here we prove Proposition 2.1.2 for a split group G of type E6. That is, we
exhibit an elliptic maximal torus T ⊂ G, and a G-generic element X ∈ t∗

of depth −r for the same T (as r varies). The notation in the proof of the
proposition is maintained.

We denote the simple coroots of E6 by α̌1, α̌2, . . . , α̌6 as shown in Fig-
ure 1.

α̌1

α̌2

α̌3 α̌4 α̌5 α̌6

Figure 1: Dynkin diagram for (the dual of) E6.

Then the positive coroots of E6 are7

1. α̌1 + . . .+ α̌j − α̌2 for 1 < j ≤ 6
2. α̌i + . . .+ α̌j for 3 ≤ i ≤ j ≤ 6

7The list coincides with the one in [Bou02, Planche V] up to identifying roots
with coroots. This is fine as the root system of type E6 is self-dual.
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3. α̌2 + . . .+ α̌j − α̌3 for 3 ≤ j ≤ 6
4. α̌i + . . .+ α̌4 for 1 ≤ i ≤ 2
5. α̌i + . . .+ α̌j for 1 ≤ i ≤ 2 ≤ 5 ≤ j ≤ 6
6. α̌i + . . .+ α̌j + α̌4 for 1 ≤ i ≤ 2 ≤ 5 ≤ j ≤ 6
7. α̌2 + α̌3 + 2α̌4 + 2α̌5 + α̌6

8. α̌1 + α̌2 + α̌3 + 2α̌4 + 2α̌5 + α̌6

9. α̌1 + α̌2 + 2α̌3 + 2α̌4 + α̌5

10. α̌1 + α̌2 + 2α̌3 + 2α̌4 + α̌5 + α̌6

11. α̌1 + α̌2 + 2α̌3 + 2α̌4 + 2α̌5 + α̌6

12. α̌1 + α̌2 + 2α̌3 + 3α̌4 + 2α̌5 + α̌6

13. α̌1 + 2α̌2 + 2α̌3 + 3α̌4 + 2α̌5 + α̌6

(Note that (1)–(4) correspond to coroots of subroot systems of type A.)
Let wh = s2s3s5s1s4s6, where si denotes the reflection corresponding to

α̌i. Then wh is a Coxeter element, hence it has order Cox(G) = 12 and its
eigenvalues when acting on the complex vector space spanned by the coroots
are ζ12, ζ

4
12, ζ

5
12, ζ

7
12, ζ

8
12, ζ

11
12 , where ζ12 denotes a primitive (complex) twelfth

root of unity (see [Hum90, 3.7. Table 1 and 3.19. Theorem]). Hence w := w4
h

is an elliptic element, i.e. does not have any nonzero fixed vector when acting
on the above complex vector space. One easily calculates that

w(α̌1) = −α̌1 − α̌2 − α̌3 − α̌4

w(α̌2) = α̌1 + α̌3 + α̌4 + α̌5 + α̌6

w(α̌3) = α̌1 + α̌2 + α̌3 + 2α̌4 + α̌5

w(α̌4) = −α̌1 − α̌2 − 2α̌3 − 3α̌4 − 2α̌5 − α̌6

w(α̌5) = α̌2 + α̌3 + 2α̌4 + α̌5 + α̌6

w(α̌6) = −α̌2 − α̌4 − α̌5 − α̌6

Let E be a cubic Galois extension of F . Fix a generator σ of Gal(E/F )
and define f : Gal(F sep/F ) � Gal(E/F ) → W by sending σ ∈ Gal(E/F ) to
w. As in the proof of Proposition 2.1.2, f gives rise to (the conjugacy class
of) a maximal torus T of G. Since w is elliptic, the torus T is elliptic. We
divide into two cases.

B.0.0.1. Case (1): when F does not contain a nontrivial third root of unity.
In this case we let E be the unramified cubic extension of F . Let a ∈ E be
an element of valuation zero such that a + σ(a) + σ2(a) = 0 and such that
the image ā of a in the residue field kE of E is a generator for the field
extension kE/kF (see Lemma 2.1.1), and define

a1 = a2 = a4 = σ(a), a3 = a−2σ(a), a5 = a+σ(a), a6 = −3a−2σ(a).
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Then

σ(a1) = −a1 − a2 − a3 − a4,

σ(a2) = a1 + a3 + a4 + a5 + a6,

σ(a3) = a1 + a2 + a3 + 2a4 + a5,

σ(a4) = −a1 − a2 − 2a3 − 3a4 − 2a5 − a6,

σ(a5) = a2 + a3 + 2a4 + a5 + a6,

σ(a6) = −a2 − a4 − a5 − a6.

Hence the linear functional X on t(E)y,n+1 defined by X(
n+1
F Hα̌i

) = ai
descends to a linear functional on ty,n+1.

We claim that {1, ā, σ(ā)} is a kF -basis for kE . To this end, suppose
that there exist c1, c2, c3 ∈ kF such that c1 + c2ā+ c3σ(ā) = 0. Applying σ,
we have c1 + c2σ(ā) + c3(−ā − σ(ā)) = 0. Taking the difference of the two
equations, we obtain

(c2 − 2c3)σ(ā) = (c2 + c3)ā.

If c2−2c3 �= 0 then σ(ā) = cā with c = (c2+c3)/(c2−2c3), thus ā = σ3(ā) =
c3ā. Since F does not contain any nontrivial third root of unity, neither does
kF , and hence c = 1. But then σ(ā) = ā, contradicting kE = kF (ā) �= kF .
Therefore c2−2c3 = 0, thus also c2+c3 = 0 as ā �= 0. Since p > Cox(G) > 3,
it follows that c2 = c3 = 0. Hence c1 = 0 as well, proving the desired linear
independence of {1, ā, σ(ā)} over kF .

Now using the linear independence of ā and σ(ā) together with the
explicit formulas for the (positive) coroots of E6 above, it is easy to check
that v(X(Hα̌)) = −(n+1) for all coroots α̌ of GE with respect to TE . Hence
X is G-generic of depth n+ 1.

B.0.0.2. Case (2): when F contains a nontrivial third root of unity ζ. In
this case let E be the totally ramified extension F (
E) for a root 
E of the
equation x3−
F = 0. As our choice of ζ and 
E is flexible, we may assume
that σ(
E) = ζ
E . We set

a1 = 2, a2 = a4 = a5 = 1, a3 = −4− 2ζ, a6 = 3ζ.

Then

ζa1 = −a1 − a2 − a3 − a4,

ζa2 = a1 + a3 + a4 + a5 + a6,
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ζa3 = a1 + a2 + a3 + 2a4 + a5,

ζa4 = −a1 − a2 − 2a3 − 3a4 − 2a5 − a6,

ζa5 = a2 + a3 + 2a4 + a5 + a6,

ζa6 = −a2 − a4 − a5 − a6.

Thus the linear functional X on t(E)y,n+1/3 defined by X(
3n+1
E Hα̌i

) =
ai descends to a linear functional on ty,n+1/3. It remains to check that

v(X(Hα̌)) = −(n + 1
3) for all coroots α̌ of GE with respect to TE . Note

that it suffices to consider the positive coroots. Using the explicit formulas
above, we obtain that for all positive coroots α̌,

X(
3n+1
E Hα̌) ∈ {1, 2, 3,−2− 4ζ} ∪ {i− 2ζ | − 4 ≤ i ≤ 1}

∪ {i− ζ | − 3 ≤ i ≤ 1} ∪ {i+ ζ | − 2 ≤ i ≤ 3}
∪ {i+ 3ζ | 0 ≤ i ≤ 3} .

If ζ /∈ Fp, then p > Cox(G) = 12 > 4 implies that the image X(
3n+1
E Hα̌) of

X(
3n+1
E Hα̌) ∈ OE in the residue field kE is non-zero, hence

v(X(
3n+1
E Hα̌)) = 0 as desired. If ζ ∈ Fp, then one can treat each case

separately and show that X(
3n+1
E Hα̌) �= 0 using that p > 12. More pre-

cisely it is obvious that X(
3n+1
E Hα̌) �= 0 when the value of X(
3n+1

E Hα̌)
is an integer, a multiple of ζ, or of the form ±1± ζ. In the remaining cases,
we have the form X(
3n+1

E Hα̌) = c1 + c2ζ, and one verifies that c31 �≡ −c32
mod p in each case so that c1 + c2ζ �= 0.

We conclude that X is G-generic of depth n+ 1
3 .

Appendix C. A note on Galois representations associated to
automorphic forms (by Vytautas Paškūnas)

The aim of this note is to explain how to deduce Theorem 3.3.3 (in the
main article) by replacing the use of Theorem 3.2.1 in its proof by the
density results proved in [4]. We put ourselves in the setting of the proof of
Theorem 3.3.3. In particular, F is a totally real field, E is a totally imaginary
quadratic extension of F , S is a finite set of places of F containing all the
places above p and ∞, SE is the set of places of E above S, ES is the
maximal extension of E unramified outside S, G is a unitary group over F
which is an outer form of GLn with respect to the quadratic extension E/F
such that G is quasi-split at all finite places and anisotropic at all infinite
places. We assume that all the places of F above p split in E. This implies
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that G(F ⊗QQp) is isomorphic to a product of GLn(Fv) for v | p. Let Up be
a compact open subgroup of G(A∞,p

F ). If Up is a compact open subgroup of
G(F ⊗Q Qp) then the double coset space

Y (UpUp) := G(F )\G(AF )/U
pUpG(F ⊗Q R)◦

is a finite set. From our point of view the key objects are the completed
cohomology

H̃0(Up) := lim←−
m

lim−→
Up

H0(Y (UpUp),Z/p
mZ),

where the inner limit is taken over all open compact subgroups Up and the
big Hecke algebra:

(C.1) TS
Spl(U

p) := lim←−
m,Up

TS
Spl(U

pUp,Z/p
mZ),

where TS
Spl(U

pUp,Z/pmZ) is the image the algebra TS
Spl, defined in the

proof of Theorem 3.3.3, in EndZp
(H0(Y (UpUp),Z/pmZ)). This algebra is

denoted by T′ in [4, §5.2]. We use the projective limit to define the topol-
ogy on TS

Spl(U
p), which makes it into a profinite ring. We also note that

H0(Y (UpUp),Z/pmZ) is just a space of Z/pmZ-valued functions on Y (UpUp)
and so coincides with M(UpUp,Z/pmZ) in §3.

We will show that TS
Spl(U

p) is a noetherian semi-local ring and will attach

a Galois representation of Gal(ES/E) to each maximal ideal of TS
Spl(U

p)[1/p],
assuming the result of Clozel recalled in Theorem 3.3.1. This is slightly more
general than Theorem 3.3.3, as we allow maximal ideals, which do not cor-
respond to the classical automorphic forms, and we do not have a restriction
on the prime p, as we work with Bushnell–Kutzko types.

We may identify H̃0(Up) (resp. H̃0(Up)Qp
) with the space of continuous

Zp-valued (resp. Qp-valued) functions on the profinite set

Y (Up) := G(F )\G(AF )/U
pG(F ⊗Q R)◦ ∼= lim←−

Up

Y (UpUp).

The action of G(F ⊗Q Qp) on Y (Up) makes H̃0(Up)Qp
into an admissible

unitary Qp-Banach space representation of G(F ⊗QQp) with unit ball equal

to H̃0(Up). We fix an open pro-p subgroup K of G(F ⊗Q Qp), which acts

freely on Y (Up) with finitely many orbits. This enables us to identify H̃0(Up)
as a representation ofK with a direct sum of finitely many copies of C(K,Zp),
the space of continuous functions from K to Zp on which K acts via right
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translations. Thus the Schikhof dual M := Homcont
Zp

(H̃0(Up),Zp) is a free
Zp[[K]]-module of finite rank and we may apply the results of [4] to M . We

point out that it follows from the Schikhof duality that H̃0(Up)Qp
is isometric

to the Banach space representation denoted by Π(M) in [4, Lem. 2.3].
In [4, §3.4] we construct a countable family {Vi}i∈N of smooth abso-

lutely irreducible representations of K defined over a finite extension of Qp

such that if π is a smooth irreducible Qp-representation of G(F ⊗Q Qp) and
HomK(Vi, π) is non-zero then π is a supercuspidal representation. (We actu-
ally work with GLn(Fv) with v | p, but the argument readily adapts to the
product of such groups by taking tensor products.) Moreover, the evaluation
map

(C.2) ev :
⊕
i≥1

HomK(Vi, H̃
0(Up)Qp

)⊗ Vi → H̃0(Up)Qp

has dense image, see Proposition 3.26, together with Lemmas 2.3 and 2.17
in [4]. This density result is the key input in this note.

The representations Vi are obtained as direct summands of inductions
of certain characters of open subgroups of K, analogous to the characters
(Up,m, ψ◦λm) in the main text, but constructed using Bushnell–Kutzko the-
ory of types. This theory is not available for every reductive group, but it
does not impose any restrictions on the prime p. To orientate the reader
we point out that we may identify HomK(Vi, H̃

0(Up)Qp
) with M(UpK,V ∗

i )
in §3 by sending ϕ to the function f : Y (UpK) → V ∗

i , which satisfies
f(x)(v) = ϕ(v)(x), for all x ∈ Y (UpK) and v ∈ Vi. As explained in §3, see
also [3, Prop. 3.2.4], the space HomK(Vi, H̃

0(Up)Qp
) is related to the space

of automorphic forms on G, the action of TS
Spl(U

p)[1/p] on this finite dimen-
sional vector space is semi-simple and the maximal ideals in the support
of HomK(Vi, H̃

0(Up)Qp
) correspond to certain classical automorphic forms,

such that the associated automorphic representations are supercuspidal at
places above p.

For k ≥ 1 let Ak be the image of ⊕k
i=1HomK(Vi, H̃

0(Up)Qp
) ⊗ Vi in

H̃0(Up)Qp
and let A∞ be the image of (C.2). Let ak be the TS

Spl(U
p)-annihila-

tor of Ak. Each Zp-algebra homomorphism x : TS
Spl(U

p)/ak → Qp will corre-

spond to a set of Hecke eigenvalues appearing in HomK(Vi, H̃
0(Up)Qp

)⊗Qp

for some 1 ≤ i ≤ k, and hence will correspond to a classical automorphic
form which, by construction of Vi, will be supercuspidal at all places above p.
Hence, to such x we may attach a Galois representation ρx : Gal(ES/E) →
GLn(Qp), using the results of Clozel. Moreover, (TS

Spl(U
p)/ak)[1/p] is semi-

simple.
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Lemma C.3. If Up is an open pro-p subgroup of G(F ⊗QQp), then the open
maximal ideals of TS

Spl(U
p) coincide with the maximal ideals of TS

Spl(U
pUp,

Z/pZ). In particular, TS
Spl(U

p) has only finitely many open maximal ideals.

Proof. The transition maps in (C.1) are surjective and thus a maximal
ideal m of TS

Spl(U
p) is open if and only if it is equal to the preimage of

a maximal ideal of TS
Spl(U

pU ′
p,Z/p

mZ) under the surjection TS
Spl(U

p) �
TS
Spl(U

pU ′
p,Z/p

mZ), for some open subgroup U ′
p and m ≥ 1. Using the sur-

jectivity of the transition maps we may assume that U ′
p is contained in Up.

Since the action of TS
Spl(U

pU ′
p,Z/p

mZ) on H0(Y (UpU ′
p),Z/p

mZ) is faithful
by definition, we conclude that the localisation H0(Y (UpU ′

p),Z/p
mZ)m is

non-zero. Since the module is p-torsion and Up is pro-p the Up-invariants of
its reduction modulo p are non-zero. Since these operations commute with
localisation, we conclude that H0(Y (UpUp),Z/pZ)m is non-zero and so m is
a maximal ideal of TS

Spl(U
pUp,Z/pZ).

If m is an open maximal ideal of TS
Spl(U

p) we let H̃0(Up)m and TS
Spl(U

p)m

be the m-adic completions of H̃0(Up) and TS
Spl(U

p), respectively. It follows
from the Chinese remainder theorem applied at each finite level that

(C.4) H̃0(Up) ∼=
∏
m

H̃0(Up)m, TS
Spl(U

p) ∼=
∏
m

TS
Spl(U

p)m,

where the (finite) product is taken over all open maximal ideals of TS
Spl(U

p).

Remark C.5. It follows from (C.4) that the completion of H̃0(Up) and
TS
Spl(U

p) at an open maximal ideal m coincides with the localisation, be-

cause inverting an element of TS
Spl(U

p), which maps to 1 in TS
Spl(U

p)m and
to 0 in other completions, kills off the other factors.

For k ≥ 1 let A0
k := Ak ∩ H̃0(Up) and let A0

∞ := A∞ ∩ H̃0(Up). Then

A0
k/p

m injects into A0
∞/pm and, since A∞ is dense in H̃0(Up)Qp

, we have

(C.6) H̃0(Up)/pm ∼= A0
∞/pm ∼= lim−→

k≥1

A0
k/p

m, ∀m ≥ 1.

In particular, there exists k, such that A0
k/p contains H0(Y (UpK),Z/pZ).

For such k, ak will also annihilate H0(Y (UpK),Z/pZ). Hence, there is a
surjection TS

Spl(U
p)/ak � TS

Spl(U
pK,Z/pZ). It follows from Lemma C.3 that

the maximal ideals TS
Spl(U

p)/ak coincide with the open maximal ideals of

TS
Spl(U

p). We note that, since A0
k is a finite free Zp-module, the same applies
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to TS
Spl(U

p)/ak and to its localisation (TS
Spl(U

p)/ak)m. In particular, the

quotient topology on TS
Spl(U

p)/ak coincides with the p-adic one and every

maximal ideal of TS
Spl(U

p)/ak is open.

Lemma C.7. Let ρx : Gal(ES/E) → GLn(Qp) be the Galois representation

corresponding to a Zp-algebra homomorphism x : (TS
Spl(U

p)/ak)m → Qp.

Then the function Dx : Zp[Gal(ES/E)] → Qp, a �→ det(ρx(a)) takes values

in the image of x. Moreover, there is a semi-simple Galois representation

ρ̄ : Gal(ES/E) → GLn(Fp) such that the function

D : Zp[Gal(ES/E)] → Fp, a �→ det(ρ̄(a))

takes values in the residue field κ(m) and

D(a) ≡ Dx(a) (mod m), ∀a ∈ Zp[Gal(ES/E)]

and for all Zp-algebra homomorphisms x : (TS
Spl(U

p)/ak)m → Qp.

Proof. Let ρ̄ be the semisimplification of the reduction modulo p of a

Gal(ES/E)-stable lattice in ρx, for some x. As explained in the proof of

Theorem 3.3.3 using density arguments it is enough to check the assertions

for a = 1+tFrobw with w �∈ SE split over F . The assertion then follows from

equation (3.3.6), which expresses the characteristic polynomial of ρx(Frobw)

in terms of Hecke operators.

The function D : Zp[Gal(ES/E)] → κ(m) is a continuous n-dimensional

determinant in the sense of Chenevier [2]. The universal deformation ring

RD of D is a complete local noetherian algebra over the ring of Witt vectors

of κ(m) by [2, Prop. 3.3, 3.7, Ex. 3.6]. It follows from Lemma C.7 that Dx

is a deformation of D and hence induces a map RD → Qp. By taking the

product over all Zp-algebra homomorphisms x : (TS
Spl(U

p)/ak)m → Qp we

obtain a continuous map

(C.8) RD →
∏
x

Qp
∼= (TS

Spl(U
p)/ak)m ⊗Zp

Qp,

where the last isomorphism follows since (TS
Spl(U

p)/ak)m[1/p] is semi-simple

and finite over Qp.

Lemma C.9. The map (C.8) induces a surjection RD � (TS
Spl(U

p)/ak)m.



416 Vytautas Paškūnas

Proof. This is proved in the course of the proof of Theorem 3.3.3 - let R′ be
the image of (C.8) and let D′ be the tautological deformation of D to R′.
Then R′ is equal to the closure of the subring generated by the coefficients
of D′(1+ tFrobw) for all w �∈ SE and these are contained in (TS

Spl(U
p)/ak)m.

Since the coefficients of D′(1 + tFrobw) can be expressed in terms of Hecke
operators, they are contained in R′. Since these generate (TS

Spl(U
p)/ak)m the

map is surjective. We note that in the case of modular forms the analogous
argument appears in [1, §2.2].

Theorem C.10. The maps RD � (TS
Spl(U

p)/ak)m for k ≥ 1 induce a

surjection RD � TS
Spl(U

p)m. In particular, TS
Spl(U

p)m is noetherian and for

every Zp-algebra homomorphism x : TS
Spl(U

p)m → Qp there is a continuous

semi-simple representation ρx : Gal(ES/E) → GLn(Qp) such that

(C.11) det(1 + tρx(Frobw)) =

n∑
i=0

tiN(w)i(i−1)/2x(T (i)
w ), ∀w �∈ SE .

Proof. Using Lemma C.9 we obtain a continuous action of RD on A0
k,m

compatible with the inclusions A0
k,m ⊂ A0

k+1,m, for k ≥ 1. Thus for each
m ≥ 1 we obtain a continuous action of RD on

lim−→
k≥1

(A0
k/p

m)m ∼= (A0
∞/pm)m ∼= (H̃0(Up)/pm)m,

where the last isomorphism follows from (C.6). By passing to the projec-
tive limit we obtain a continuous action of RD on H̃0(Up)m, which fac-
tors through the action of TS

Spl(U
p)m. Let R be the image of the map

RD → TS
Spl(U

p)m. Since RD is a complete local noetherian ring with a

finite residue field it is compact. Since TS
Spl(U

p)m is profinite it is Hausdorff

and hence R is closed in TS
Spl(U

p)m. But R is also dense, since by construc-

tion R surjects onto TS
Spl(U

pUp,Z/pmZ)m for all Up and m ≥ 1. Hence,

R = TS
Spl(U

p)m.

Let DR be the tautological deformation of D to R. Then

DR(1 + tFrobw) =

n∑
i=0

tiN(w)i(i−1)/2T (i)
w , ∀w �∈ SE ,

as this relation holds for allDx and hence in (TS
Spl(U

p)/ak)m by construction.

If x : R → Qp is a homomorphism of Zp-algebras then by [2, Thm. 2.12]
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there is a unique semi-simple representation ρx : Gal(ES/E) → GLn(Qp)

such that

x(DR(1 + tg)) = det(1 + tρx(g)), ∀g ∈ Gal(ES/E).

Since x◦DR is continuous, the representation ρx is continuous by [2, Ex. 2.34].

Remark C.12. It follows from (C.4) and the theorem above that TS
Spl(U

p) is
noetherian and we may attach a Galois representation satisfying (C.11) to

any Zp-algebra homomorphism x : TS
Spl(U

p) → Qp.
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Appendix D. A non-explicit proof of the existence of
omni-supercuspidal types (by Raphaël

Beuzart-Plessis)

The goal of this appendix is to give another proof of Theorem C on the ex-
istence of (sufficiently many) omni-supercuspidal types for reductive groups
over local fields of characteristic zero. The argument is very close to that
in the paper [BP], whose purpose was only to show the existence of one su-
percuspidal representation. It doesn’t use type theory but instead a notion
of cusp forms due to Harish-Chandra [HC]. As in [BP] and contrary to the
proof given in the main article, this alternative approach is non-explicit in
that we do not exhibit any omni-supercuspidal type. On the other hand,
one advantage of the method is that we are able to bypass the assumption
on the residual characteristic made in Theorem C. We end this appendix by
explaining why this theorem cannot hold for local fields of positive charac-
teristic.

We now fix some notations and recall the result. Let F be a local non-
Archimedean field of characteristic zero with residual characteristic p,O ⊂ F
be its ring of integers and P ⊂ O be the maximal ideal. We fix a uniformizer

 ∈ P . Let G be a connected reductive group defined over F . For our pur-
pose, it will be convenient to adopt a slightly more general definition of
omni-supercuspidal type than in the main body of the paper. More precisely,
in this appendix, an omni-supercuspidal type will be a pair (U, λ) where U
is a compact-open subgroup of G(F ) and λ : K → A is a smooth character
valued in an (arbitrary) abelian group A such that for every nontrivial char-
acter χ : A → C×, (U, χ◦λ) is a supercuspidal type. Note that if (U, λ) is an
omni-supercuspidal type with λ : U → A and μ : A → B is a surjective mor-
phism of abelian groups then (U, μ ◦ λ) is also an omni-supercuspidal type.
Thus, if B = Z/pmZ for some m � 1 then (U, μ◦λ) is an omni-supercuspidal
type of level pm as defined in the paper. The goal of this appendix is to prove
the following result.

Theorem D.1. For every open subgroup V ⊂ G(F ) and m � 1, there exists
an omni-supercuspidal type (Um, λm) of level pm with Um ⊂ V .

D.1. Proof of Theorem D.1

Let g be the Lie algebra of G, g∗ be the dual of g and 〈., .〉 for the canonical
pairing between g and g∗. An element Y ∈ g∗(F ) is called elliptic if for
every proper parabolic subalgebra p � g with nilpotent radical n, we have
Y /∈ n⊥(F ) where n⊥ stands for the orthogonal of n in g∗. We denote by
g∗(F )ell the open subset of elliptic elements in g∗(F ).
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Remark D.1. Choosing a G-invariant nondegenerate bilinear form B : g ×
g∗ → Ga, we get an equivariant isomorphism g∗ � g identifying g∗(F )ell with
the usual subset of elliptic elements in g(F ) that is: elements X ∈ g(F ) that
do not belong to any proper parabolic subalgebra. In particular, if T ⊂ G
is an elliptic maximal torus (that is; anisotropic modulo the center of G),
regular elements in the Lie algebra t(F ) are elliptic in this sense. Since such
a maximal torus always exists [PR, Theorem 6.21], we deduce that g∗(F )ell
is nonempty.

Let ψ : F → C× be a continuous additive character which is trivial on
O but not on P−1. By a lattice in a finite-dimensional F -vector space V ,
we mean a finitely generated O-submodule L ⊂ V such that L ⊗O F = V .
For every lattice L ⊂ g(F ) we denote by L⊥ ⊂ g∗(F ) the lattice of elements
Y ∈ g∗(F ) such that 〈Y,X〉 ∈ O for every X ∈ L. We define similarly
(L∗)⊥ ⊂ g(F ) for every lattice L∗ ⊂ g∗(F ).

Lemma D.2. Let Y1 ∈ g∗(F )ell. Then, there exists a lattice L0 ⊂ g(F ) such
that

Y1 + L⊥
0 ⊂ g∗(F )ell and 〈Y1, L0〉 = P−1.

Proof. First, consider the case whereG/Z(G) is anisotropic. Then, g∗(F )ell =
g∗(F ) and any lattice L0 ⊂ g(F ) such that 〈Y1, L0〉 = P−1 satisfies the re-
quirement.

Assume now that G/Z(G) is not anisotropic. In particular, 0 ∈ g∗(F )
is not elliptic. As g∗(F )ell is open, there exists a lattice L∗

1 ⊂ g∗(F ) such
that Y1 + L∗

1 ⊂ g∗(F )ell. Set L∗
2 = PY1 + L∗

1 (again a lattice in g∗(F )) and
L0 = (L∗

2)
⊥. Then, we have

Y1 + L⊥
0 = Y1 + L∗

2 = (1 + P) · (Y1 + L∗
1) ⊆ g∗(F )ell.

On the other hand, since PY1 ⊂ L∗
2 = L⊥

0 , we have 〈Y1, L0〉 ⊂ P−1 and
it cannot happen that 〈Y1, L0〉 ⊂ O as otherwise 0 ∈ Y1 + L⊥

0 and 0 is
not elliptic. Therefore, 〈Y1, L0〉 = P−1 and we see that L0 has the required
property.

From now on, we choose Y1 and L0 as in the previous lemma. For every
integer n � 0, we set Ln = 
nL0 and Yn = 
−n+1Y1. Let ω be a neigh-
borhood of 0 in g(F ) on which the exponential map exp : ω → G(F ) is
well-defined and one-to-one. Then, there exists an integer n0 � 1 such that
for every n′ � n � n0, Ln ⊂ ω, Kn = exp(Ln) is a compact-open subgroup
of G(F ) and Kn′ is normal in Kn. For m � 1 and n � n0, we define a map

λn,m : Kn → P−m/O
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by

exp(X) �→ 〈Yn+m, X〉+O, X ∈ Ln.

From now on we fix m � 1.

Lemma D.3. There exists n1 � n0 such that for every n � n1, λn,m is a
character.

Proof. By the Baker-Campbell-Hausdorff formula, there exists r � 0 such
that for every n � n0 and X,Y ∈ Ln we have

exp(X) exp(Y ) ∈ exp(X + Y +
2n−rL0).

To conclude, it suffices to choose n1 � n0 such that

〈Ym, 
n1−rL0〉 ⊂ O.

As the sequence (Kn)n�n0
form a decreasing basis of neighborhoods

of 1 and there exists a surjective homomorphism P−m/O → Z/pm
′
Z (e.g.

induced from the trace of F over Qp), we see that the following proposition
implies Theorem D.1.

Proposition D.4. There exists n2 � n1 such that for n � n2, the pair
(Kn, λn,m) is an omni-supercuspidal type.

Before proving the proposition, we make some reductions.
First, since all the nontrivial characters of P−m/O are of the form y �→

ψx(y) := ψ(xy) for some x ∈ O − Pm, we may as well fix x ∈ O − Pm and
prove the existence of n2 � n1 such that for n � n2, the pair (Kn, ψx ◦λn,m)
is a supercuspidal type.

Secondly, following Harish-Chandra, we call a function f ∈ C∞
c (G(F ))

a cusp form if for every proper parabolic subgroup P = MN � G we have∫
N(F )

f(gu)du = 0, for every g ∈ G(F ).

Similarly, a function ϕ ∈ C∞
c (g(F )) is said to be a cusp form if for every

proper parabolic subgroup P = MN � G we have∫
n(F )

ϕ(X + U)dU = 0, for every X ∈ g(F )

where n stands for the Lie algebra of the unipotent radical N of P .
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The following characterization of supercuspidal types is probably well-
known but for lack of a proper reference, we sketch the argument.

Lemma D.5. Let K ⊂ G(F ) be a compact-open subgroup and χ : K → C×

a smooth character. Then, the pair (K,χ) is a supercuspidal type if and only
if the function

fK,χ : g ∈ G(F ) �→
{

χ(g) if g ∈ K,
0 otherwise,

is a cusp form.

Proof. We know that (K,χ) is a supercuspidal type if and only if the com-
pactly induced representation c-indGK(χ) is itself supercuspidal.8 Thus, it suf-
fices to check that fK,χ is a cusp form if and only if all the proper Jacquet
modules of c-indGK(χ) are zero. Let P = MN be a proper parabolic sub-
group of G. There is a natural embedding of c-indGK(χ) in the right regular
representation R on C∞

c (G(F )). Moreover, the image of this embedding is
generated (as a module over G(F )) by the function fK,χ. Therefore, by ex-
actness of the functor (.)N of N(F )-coinvariants, we just need to check that,
for g ∈ G(F ), the image of R(g)fK,χ in C∞

c (G(F ))N is zero if and only if∫
N(F )

fK,χ(g
′ug)du = 0, for every g′ ∈ G(F ).

But this readily follows from the fact that the map

C∞
c (G(F )) → C∞

c (G(F )/N(F )), f �→
(
gN(F ) �→

∫
N(F )

f(gu)du

)

induces an isomorphism C∞
c (G(F ))N � C∞

c (G(F )/N(F )).

Set fn,m,x = fKn,ψx◦λn,m
. By the above lemma, we are reduced to showing

that fn,m,x is a cusp form for n sufficiently large. For every n � 0, we let
ϕn,m,x ∈ C∞

c (g(F )) be the function defined by

ϕn,m,x(X) =

{
ψ(x〈Yn+m, X〉) if X ∈ Ln,
0 otherwise,

for every X ∈ g(F ). Note that

ϕn,m,x(X) = ϕm,x(

−nX)

8By this, we just mean that all of the proper Jacquet modules of c-indGK(χ)
vanish. Since this representation is not always admissible (e.g. when the center of
G(F ) is non-compact), certain authors might prefer the terminology quasi-cuspidal.
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where for simplicity of notation we have set ϕm,x = ϕ0,m,x, and

fn,m,x = exp∗ ϕn,m,x

where for ϕ ∈ C∞
c (g(F )), we write exp∗ ϕ for the function on G(F ) given by

(exp∗ ϕ)(g) =

{
ϕ(X) if g = exp(X) with X ∈ ω,
0 otherwise,

for g ∈ G(F ).

The following lemma is [BP, (5)].

Lemma D.6. Let ϕ ∈ C∞
c (g(F )) be a cusp form and set ϕλ(X) = ϕ(λ−1X)

for λ ∈ F×, X ∈ g(F ). Then, for λ sufficiently close to 0 the function

fλ = exp∗ ϕλ is a cusp form on the group.

By the above, we are finally reduced to checking that ϕm,x is a cusp

form. We define a Fourier transform C∞
c (g(F )) → C∞

c (g∗(F )), ϕ �→ ϕ̂, by

ϕ̂(Y ) =

∫
g(F )

ϕ(X)ψ(〈Y,X〉)dX, ϕ ∈ C∞
c (g(F )), Y ∈ g∗(F )

where dX is a Haar measure on g(F ), the precise normalization of which

does not really matter. We have the following characterization of cusp forms

on g(F ).

Lemma D.7. A function ϕ ∈ C∞
c (g(F )) is a cusp form if and only if ϕ̂ is

supported in g∗(F )ell.

Proof. This is essentially [BP, Proof of Lemma 1]. Let P = MN � G be

a proper parabolic subgroup and n be the Lie algebra of N . We have a

commutative diagram

C∞
c (g(F ))

Fg

∫
n

C∞
c (g∗(F ))

Res

C∞
c ((g/ n)(F ))

Fg/n

C∞
c ((g/ n)∗(F ))

where Fg denotes the Fourier transform already introduced, Fg/n is the

Fourier transform on (g/ n)(F ) defined in a similar way (with respect to

the measure quotient of the Haar measures on g(F ) and n(F )), the right
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vertical arrow is the restriction map to n⊥(F ) = (g/ n)∗(F ) and the left
vertical arrow sends a function ϕ ∈ C∞

c (g(F )) to the function

X ∈ g(F )/ n(F ) �→
∫
n(F )

ϕ(X + U)dU.

By definition, a function ϕ ∈ C∞
c (g(F )) is a cusp form if and only if its

image by this left vertical arrow is zero for every proper parabolic subgroup
P . By injectivity of the Fourier transform, and commutativity of the above
diagram, this is equivalent to asking that the Fourier transform ϕ̂ vanishes
on n⊥(F ) for every proper parabolic subgroup P = MN � G. But, this last
condition is just saying that ϕ̂ is supported in g∗(F )ell.

An easy computation show that ϕ̂m,x = vol(L0)1−xYm+L⊥
0
and therefore

we aim to check that −xYm + L⊥
0 ⊂ g∗(F )ell. As

−xYm + L⊥
0 = −x
−m+1Y1 + L⊥

0 = −x
−m+1(Y1 +
m−1x−1L⊥
0 )

it is equivalent to showing that Y1 + 
m−1x−1L⊥
0 ⊂ g∗(F )ell. Since x ∈

O − Pm, we have 
m−1x−1 ∈ O and therefore

Y1 +
m−1x−1L⊥
0 ⊂ Y1 + L⊥

0 ⊂ g∗(F )ell

by the choice of Y1 and L0 (see Lemma D.2). This ends the proof of Propo-
sition D.4 and therefore also of Theorem D.1.

D.2. On the case of positive characteristic

We keep the previous notations except that we assume now that F is a local
non-Archimedean field of positive characteristic. Then, we claim that the
obvious analog of Theorem D.1 does not hold anymore in this setting, at
least when the group G is not anisotropic modulo the center. More precisely,
we have:

Proposition D.1. Assume that G is not anisotropic modulo the center.
Then, there exists n � 1 such that G has no omni-supercuspidal type of level
pn.

Proof. This all come from the following lemma.

Lemma D.2. Let N be a unipotent algebraic group defined over F with
nilpotent index m, UN ⊂ N(F ) be a compact-open subgroup and χ be a
smooth character of UN . Then, χpm

is trivial.
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Proof. Indeed, let N = N0 ⊃ N1 ⊃ . . . ⊃ Nm = {1} be a central series such
that Ni/Ni+1 is abelian for 0 � i � m−1. Then, for every i, Ni(F )/Ni+1(F )
is an abelian group killed by p. Hence, by an easy induction, for every u ∈
N(F ) and 1 � i � m, we have up

i ∈ Ni(F ). Setting i = m gives the
result.

Let P = MN � G be a proper parabolic subgroup and m be the nilpo-
tent index of N . We claim that G has no omni-supercuspidal type of level
pm+1. Indeed, assume by way of contradiction that (U, λ) is such an omni-
supercuspidal type of level pm+1. Let χ : Z/pm+1Z → C× be a character of
order pm+1. Then, by the above lemma, χpm ◦λ is trivial on UN := U∩N(F ).
In particular, we have∫

N(F )
fU,χpm◦λ(u)du = vol(UN ) �= 0

where fU,χpm◦λ is the function associated to the pair (U, χpm ◦ λ) as in the
previous section. It follows that the function fU,χpm◦λ is not a cusp form and
consequently, by Lemma D.5, that (U, χpm ◦ λ) is not a supercuspidal type.
As χpm

is non trivial, this contradicts the assumption that (U, λ) was an
omni-supercuspidal type.

Remark D.3. From the proof, we actually see that if G has a proper (maxi-
mal) parabolic subgroup with an abelian unipotent radical then there is even
no omni-supercuspidal type of level p2. There are many examples of groups
satisfying this condition, including all the quasi-split classical groups, and a
classification of such (in the split case) is given in [RRS, Remark 2.3].

Acknowledgements

The project leading to this publication has received funding from Excellence
Initiative of Aix-Marseille University-A*MIDEX, a French “Investissements
d’Avenir” programme.

References for Appendix D

[BP] R. Beuzart-Plessis, A short proof of the existence of supercuspidal
representations for all reductive p-adic groups, Pacific J. Math. 282
(2016), no. 1, 27–34.

[HC] Harish-Chandra, Harmonic analysis on reductive p-adic groups.
Notes by G. van Dijk, Lecture Notes in Mathematics, vol. 162,
Springer-Verlag, Berlin-New York, 1970, iv+125 pp.



Congruences of algebraic automorphic forms 425

[PR] V. Platonov, A. Rapinchuk, Algebraic groups and number theory.
Translated from the 1991 Russian original by Rachel Rowen, Pure
and Applied Mathematics, vol. 139, Academic Press, Inc., Boston,
MA, 1994, xii+614 pp.
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MR2470687 (2010j:11082)

[CDP14] Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas,
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the stabilization of the trace formula, Stab. Trace Formula

Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA,

2011, pp. 429–470. MR2856380

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Co-

homology of number fields, second ed., Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Math-

ematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.

MR2392026

[Pin90] Richard Pink, Arithmetical compactification of mixed Shimura

varieties, Bonner Mathematische Schriften [Bonn Mathemat-

ical Publications], vol. 209, Universität Bonn, Mathematis-

ches Institut, Bonn, 1990, Dissertation, Rheinische Friedrich-

Wilhelms-Universität Bonn, Bonn, 1989. MR1128753

[Rag04] M. S. Raghunathan, Tori in quasi-split-groups, J. Ramanujan

Math. Soc. 19 (2004), no. 4, 281–287. MR2125504

[Sch13] Peter Scholze, The local Langlands correspondence for GLn

over p-adic fields, Invent. Math. 192 (2013), no. 3, 663–715.

MR3049932

[Sch18] Peter Scholze, On the p-adic cohomology of the Lubin-Tate
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