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Abstract

By assuming the endoscopic classification of automorphic representations on inner forms of
unitary groups, which is currently work in progress by Kaletha, Minguez, Shin, and White, we
bound the growth of cohomology in congruence towers of locally symmetric spaces associated to
U(n, 1). In the case of lattices arising from Hermitian forms, we expect that the growth exponents
we obtain are sharp in all degrees.
2010 Mathematics Subject Classification: 32N10 (primary); 32M15 (secondary)

1. Introduction

This paper studies the limit multiplicity problem for cohomological automorphic
forms on arithmetic quotients of U(N − 1, 1). Let F be a totally real number
field with ring of integers OF . Write A for the ring of adeles over F. Let
U(N) = UE/F(N) denote the quasi-split unitary group with respect to a totally
imaginary quadratic extension E of F. Let G be a unitary group over F that is
an inner form of UE/F(N). We assume that G has signature (N − 1, 1) at one
real place and compact factors at all other real places. Let S be a finite set of
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places to be defined later, and which includes all infinite places, and let n ⊂ OF
be a nonzero ideal that is divisible only by primes away from S that split in E/F.
We let K(n) ⊂ G(A f ) be the compact congruence subgroup of level n, and let
Γ(n) = G(F) ∩ K(n) be the congruence arithmetic lattice in U(N − 1, 1) of level
n associated to G. Let Y(n) be the manifold Γ(n)\U(N − 1, 1)/U(N − 1) × U(1),
which is a connected finite volume complex hyperbolic manifold of complex
dimension N −1. (See (12) below for the precise definition.) Write hd

(2)(Y(n)) for
the dimension of the L2-cohomology of Y(n) in degree d ≥ 0.

Theorem 1.1. Assume the endoscopic classification for inner forms of U(N)
stated in Theorem 1.7.1 of [16].1 If d < N − 1, we have

hd
(2)(Y(n)) �ε vol(Y(n))Nd/(N2−1)+ε .

The case d > N − 1 follows by Poincaré duality. It is well known that
hN−1

(2) (Y(n)) ∼ vol(Y(n)). Previous results of this type in the case of U(2, 1) and
U(2, 2) can be found in work of the first author [20, 19]; see also [12] for the
case of U(N − 1, 1).

Theorem 1.1 fits into the general framework of estimating the asymptotic
multiplicities of automorphic forms. We now recall the general formulation of
this problem, and some of the previous results on it. Let G be a semisimple real
algebraic group with no compact factors. We still write G for G(R), the real
group of R-points, if there is no danger of confusion. If Γ ⊂ G is a lattice and
π an irreducible unitary representation of G, we let m(π,Γ) be the multiplicity
with which π appears in L2(Γ\G). If we now assume that Γ is congruence
arithmetic and that Γn ⊂ Γ is a family of principal congruence subgroups, the
limit multiplicity problem is to provide estimates for m(π,Γn).

A general principle that has emerged from work on this problem is that, the
further π is from being discrete series, the better bounds one should be able to
prove for m(π,Γn). If we define V(n) = vol(Γn\G), the trivial bound (at least
when Γ is cocompact) is m(π,Γn) � V(n), and it is known from work of de
George and Wallach [13] (if Γ is cocompact) and Savin [29] (if it is not) that
this is realized if and only if π is in the discrete series. In the cocompact case,
it also follows from [13] that if π is nontempered, then one has a bound of the

1 The introduction of [16] clarifies the conditionality of Theorem 1.7.1. In a nutshell, we are
still waiting for the remaining case in Chaudouard–Laumon’s proof of the weighted fundamental
lemma and the papers [A25,A26] as cited in [1]. In addition we need the sequel papers [KMSb]
and [KMSa] (still in preparation) as cited in [16] to complete the proof of Theorem 1.7.1 for pure
inner forms and all inner forms of U(N), respectively. In the meantime, the stabilization of the
twisted trace formula has been completed by Moeglin–Waldspurger [23, 24], so this is no longer
an obstacle.
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form m(π,Γn) � V(n)1−δ(π) for some δ(π) > 0; see the introduction of [28] for
an explanation of this principle, and [33] for an explicit determination of such a
δ(π) in some cases.

For the most highly nontempered representation, namely the trivial one, one
has m(π,Γn) = 1. Sarnak and Xue [28] made a conjecture that interpolates
between this and m(π,Γn) � V(n) in the discrete series case. Define p(π) to be
the infimum over p for which the K-finite matrix coefficients of π lie in Lp(G).
We then have:

Conjecture 1 (Sarnak-Xue). For fixed π, we have m(π,Γn) �ε V(n)2/p(π)+ε .

Note that Conjecture 1 is weaker than the trivial bound in both cases of π
discrete or trivial. The point is that it is much stronger for general nontempered
π than what one can prove using the methods of deGeorge–Wallach mentioned
above. Sarnak and Xue established Conjecture 1 for S L(2,R) or S L(2,C),
and proved an approximation for S U(2, 1) that, in our setting, implies that
h1(Y(n)) � vol(Y(n))7/12+ε when N = 3 and Γ is cocompact and arises from
a Hermitian form.

We show in Proposition 3.1 that the representations π of U(N − 1, 1) con-
tributing to hd

(2)(Y(n)) all have p(π) ≥ 2(N − 1)/d. In the setting of Theorem
1.1, Conjecture 1 therefore predicts that hd

(2)(Y(n)) �ε vol(Y(n))d/(N−1)+ε , so that
Theorem 1.1 in fact represents a strengthening of this conjecture.

We note that there has also been significant progress recently on the problem
of showing that the normalized discrete spectral measure of L2(Γn\G) tends
weakly to the Plancherel measure of G. This work is in some sense orthogonal
to ours, and as formulated these results do not provide information on m(π,Γn)
beyond showing that m(π,Γn)/V(n) approaches the expected value.

1.1. Outline of the proof. We go back to the unitary group G over F intro-
duced at the very beginning. Let K∞ denote a maximal compact subgroup of
G(F ⊗QR) so that K∞ is isomorphic to U(N − 1)×U(1)×U(N)[F:Q]−1. It will be
more convenient for us to work on the possibly disconnected arithmetic quotients
X(n) = G(F)\G(A)/K(n)K∞. If qv denotes the order of the residue field of Fv ,
we prove the following more precise bound.

Theorem 1.2. Assume the endoscopic classification for inner forms of U(N)
stated in Theorem 1.7.1 of [16]. If d < N − 1, we have

hd
(2)(X(n)) �

∏
v |n

(1 − 1/qv )NnNd+1,

except when N = 4 and d = 2 when we have hd
(2)(X(n)) �ε NnNd+1+ε .
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Theorem 1.1 follows from this, as X(n) contains �ε Nn1−ε copies of Y(n)
and we have vol(Y(n)) = NnN2−1+o(1). We now give an outline of the proof
of Theorem 1.2. For simplicity, we shall either omit or simplify much of the
notation for things like Arthur parameters and packets. Because of this, all
notation introduced here is temporary. (Refer to Section 2 below for unexplained
notation.)

Let Φsim(n) denote the set of conjugate self-dual cusp forms on GL(n,AE),
and let ν(l) denote the unique irreducible (complex algebraic) representation of
S L(2,C) of dimension l. Let U(n) be the quasi-split unitary group of degree
n with respect to E/F. Let Ψ2(n) denote the set of square-integrable Arthur
parameters for U(n), which are formal sums ψ = φ1 � ν(n1) � · · · � φk � ν(nk)
with φi ∈ Φsim(mi), subject to certain conditions including that n =

∑
i≥1 nimi and

that the pairs φi � ν(ni) have to be distinct. Any φ ∈ Φsim(n) (resp. ψ ∈ Ψ2(n))
has localizations φv (resp. ψv ), which are local Langlands parameters (resp.
Arthur parameters) for U(n). To each ψ ∈ Ψ2(N) and each place v of F,
there is associated a local packet Πψv

(G) of representations of G(Fv ), and a
global packet Πψ(G) =

∏
Πψv

(G). If ψ ∈ Ψ2(N) and K ⊂ G(A f ) we define
dimG(K, ψ) =

∑
π∈Πψ(G) dim(πK

f ). Similarly, one may associate to ψ ∈ Ψ2(n) a
packet Πψ(U(n)) =

∏
Πψv

(U(n)) for U(n,A), and we define dimU(n)(K, ψ) for
K ⊂ U(n,A f ) analogously to dimG(K, ψ).

The main result of the endoscopic classification implies that the automorphic
spectrum of G is contained in the union of Πψ(G) for ψ ∈ Ψ2(N). If we combine
this classification with Matsushima’s formula, we have

hd
(2)(X(n)) ≤

∑
ψ∈Ψ2(N)

∑
π∈Πψ(G)

dim Hd(g,K∞; π∞) dim πK(n)
f , (1)

where Hd(g,K∞; π∞) denotes the relative Lie algebra cohomology of π∞ as in
[6]. The main part of the proof involves using the structure of the packets Πψ(G)
to bound the right hand side of (1) in terms of global multiplicities on smaller
quasi-split unitary groups, which we then bound using a theorem of Savin. The
key fact that allows us to control the power of Nn we obtain is due to Bergeron,
Millson, and Moeglin [3, Prop 13.2], and essentially states that if there exists
π ∈ Πψ(G) with Hd(g,K∞; π∞) , 0, then ψ must contain a representation ν(n)
with n ≥ N − d.

We define a shape to be a list of pairs (n1,m1), . . . , (nk,mk) with
∑

i≥1 mini =

N, and may naturally talk about the shape of an Arthur parameter. If S =

(n1,m1), . . . , (nk,mk) is a shape, we let Ψ2(N)S ⊂ Ψ2(N) be the set of parameters
having that shape. If ψ ∈ Ψ2(N)S, we let φi ∈ Φsim(mi) be the terms in the
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decomposition ψ = φ1 � ν(n1) � · · · � φk � ν(nk). We also define PS to be the
standard parabolic in GLN of type

(m1, . . . ,m1︸       ︷︷       ︸
n1 times

, . . . ,mk, . . . ,mk︸      ︷︷      ︸
nk times

).

We now fix S, and bound the contribution to (1) from Ψ2(N)S, which we
denote hd

(2)(X(n))S. As mentioned above, we may assume that n1 ≥ N − d. We
may restrict our attention to those ψ ∈ Ψ2(N)S for which there is π ∈ Πψ(G) with
Hd(g,K∞; π∞) , 0. This condition restricts ψ∞, and hence φi,∞, to finite sets
which we denote Ψ∞ and Φi,∞, so that

hd
(2)(X(n))S �

∑
ψ∈Ψ2(N)S
ψ∞∈Ψ∞

dimG(K(n), ψ).

In Section 5 we prove Proposition 5.1, which states that if the principal con-
gruence subgroups Ki(n) ⊂ U(mi,A f ) are chosen correctly, then one can bound
dimG(K(n), ψ) in terms of dimU(mi)(Ki(n), φi). For most choices of S, this bound
has the form

dimG(K(n), ψ) � Nndim GLN/PS+ε
k∏

i=1

dimU(mi)(Ki(n), φi)ni . (2)

We prove this bound by factorizing both sides over places of F. At nonsplit
places we apply the trace identities that appear in the definition of the local
packets Πψv

(G). At split places, Πψv
(G) is a singleton {πv }, and we use the

description of πv as the Langlands quotient of a representation induced from PS.
We next sum the bound (2) over ψ ∈ Ψ2(N)S, or equivalently we sum φi over

Φsim(mi), which gives

hd
(2)(X(n))S � Nndim GLN/PS+ε

k∏
i=1

∑
φi∈Φsim(mi)
φi,∞∈Φi,∞

dimU(mi)(Ki(n), φi)ni

≤ Nndim GLN/PS+ε
k∏

i=1


∑

φi∈Φsim(mi)
φi,∞∈Φi,∞

dimU(mi)(Ki(n), φi)


ni

. (3)

If we define Θi,∞ to be the union of Πφi,∞(U(mi)) over φi,∞ ∈ Φi,∞, then Θi,∞

is finite. Moreover, because the parameters φi are simple generic, the packet
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Πφi (U(mi)) is stable, so all representations in it occur discretely on U(mi). This
implies that ∑

φi∈Φsim(mi)
φi,∞∈Φi,∞

dimU(mi)(Ki(n), φi) ≤
∑

π∞∈Θi,∞

m(π∞, n), (4)

where m(π∞, n) denotes the multiplicity of π∞ in L2
disc(U(mi, F)\U(mi,A)/Ki(n)).

In fact it follows from the known cases of the Ramanujan conjecture that π∞ is
tempered, so π∞ appears only in the cuspidal spectrum. Then a theorem of Savin
[29] gives m(π∞, n) � Nnm2

i for all π∞. Combining this with (3) and (4) gives a
bound

hd
(2)(X(n))S � Nndim GLN/US+ε

where US is the unipotent radical of PS. Showing that dim GLN/US ≤ Nd + 1
completes the proof.

The role played by the cohomological degree in this argument is that dim US
must be large if d is small, because of the bound n1 ≥ N − d. However, it should
be noted that the bound dim GLN/US ≤ Nd + 1 does not need to hold if m1 ≤ 3,
and in these cases there are some additional steps one must take to optimize the
argument to obtain the exponent Nd + 1. We will describe them in the course of
the proof in the main body except for the following key input, which may be of
independent interest. Namely we give in Lemma A.1 a uniform bound (which
is significantly better than a trivial bound; see the remark below Lemma A.1)
on the dimension of invariant vectors in supercuspidal representations of GL(r)
under principal congruence subgroups. By a uniform bound we mean a bound
which is independent of the representation (and only depends on the residue
field cardinality and the level of congruence subgroup). The asymptotic growth
of the invariant dimension is fairly well understood if a representation is fixed
but not otherwise. Analogous uniform bounds, on which our paper sheds some
light, should be useful for bounding the growth of cohomology of other locally
symmetric spaces.

In an earlier version of this paper, we obtained bounds for invariant vectors
in supercuspidal representations of GL2 and GL3 (which are the only cases we
need here) by a different method, which involved explicitly constructing the
representations. The argument for GL3 may be of independent interest, and
we have included it in Appendix B. The argument for GL2 is more routine,
and may be found in an earlier version of this paper on the arXiv. It applied
the construction described in [14, Section 7.A], which for a p-adic field L with
p , 2, produces supercuspidals π for GL2(L) from a quadratic extension L′/L
and a character χ of L′×. Moreover, all supercuspidals are obtained in this way.
The construction realizes π on the Schwarz space S(L′), and the formulas it
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provides for the action of GL2(L) on S(L′) easily let one bound the fixed vectors
in π. The bound we obtain is dim πK(n) ≤ qn(1 + 1/q), where q is the order of
the residue field of L and K(n) < GL2(L) is the principal congruence subgroup
of depth n.

The proof of Theorem 1.2 in fact shows that hd
(2)(X(n))S �ε NnNd+ε , except

when S = (N − d, 1), (1, d), or in the exceptional case when N = 4, d = 2, and
S = (2, 2). Moreover, when S = (N − d, 1), (1, d) we expect that the bound
hd

(2)(X(n))S �ε NnNd+1+ε is sharp when G arises from a Hermitian form, so that
the majority of Hd

(2)(X(n)) comes from parameters of this shape. By [3, Theorem
10.1], these forms are theta lifted from a Hermitian space of dimension d, and
it may therefore be possible to prove that Theorem 1.2 is sharp using the theta
lift. Note that this is done in [12], but in a slightly different setting to Theorem
1.2. In particular, it is proved there that hd

(2)(X(n)) � NnNd+1 if G arises from a
Hermitian form, d < N/2, and n has the form cpk, where c is a fixed ideal of F
that is sufficiently divisible, and p is a fixed prime of F that is inert in E.

The reader may be curious as to how we can expect our bound to be sharp,
when at a key point in the proof (Lemma 5.2) we seem to bound the dimension
of the space of K-invariants in a quotient of an induced representation by the
invariants in the whole induced representation. We remark that Lemma 5.2
is actually more efficient than this for certain S. In particular, when S =

(N −d, 1), (1, d) (which should give the main contribution), the bound of Lemma
5.2 is sharp.

Finally we remark that it should be possible to adapt much of our arguments
to unitary groups of other signatures, notwithstanding combinatorial complexity.
However the bound is not going to be optimal as the case of U(2, 2) already
shows [19]. We would need a sharper uniform bound than dim πK(n) � qd(d−1)n/2

when π runs over non-generic representations of GLd.

1.2. Acknowledgements. We would like to thank Nicolas Bergeron for helpful
discussions. The first author was supported by the NSF under grant no. 1501230,
and under grant no. 1440140 while in residence at MSRI in Berkeley, California,
during the spring of 2017. He was also supported as the Neil Chriss and Natasha
Herron Chriss Founders’ Circle Member while at the IAS in 2017–18. The
second author was supported by NSF grant no. 1501882 and a Sloan Fellowship.

2. Notation

Our notation and discussion in this section are based on [25] and [16].
(Similar summaries are given in [19] and [20] with more details in the quasi-
split case.)
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Let N be a positive integer. Write GL(N) for the general linear group. Let F
be a field of characteristic zero. Given a quadratic algebra E over F, we define
U(N) = UE/F(N) to be the quasi-split unitary group in N variables, defined by
an antidiagonal matrix JN with (−1)i−1 in the (i,N + 1− i) entry, as in [16, 0.2.2].
The compact special unitary group in two variables is denoted by S U(2). Let ν(n)
denote its n-dimensional irreducible representation (unique up to isomorphism).

Assume that F is a local or global field of characteristic zero. Write WF for
the Weil group of F. For any connected reductive group G over F, its Langlands
dual group is denoted by Ĝ. Let LG = ĜoWF denote the (Weil form of) L-group
of G. Note that LGL(N) = GL(N,C) ×WF and that LUE/F(N) may be explicitly
described, cf. [16, 0.2.2].

Now assume that F is local. Define the local Langlands group LF := WF

if F is archimedean and LF := WF × S U(2) otherwise. An A-parameter is
a continuous homomorphism ψ : LF × S L(2,C) → LG commuting with the
projection maps onto WF such that ψ(LF) has relatively compact image in Ĝ
and that ψ restricted to S L(2,C) is a map of C-algebraic groups into Ĝ. Two
parameters are considered isomorphic if they are conjugate under Ĝ. Write
Ψ(G) or Ψ(G, F) for the set of isomorphism classes of A-parameters. Define
Ψ+(G) analogously without the condition on relatively compact image. Define
sψ := ψ(1,−1) for any ψ ∈ Ψ+(G).

An L-parameter is ψ+ ∈ Ψ+(G) which is trivial on the S L(2,C)-factor
(external to LF). The subset of L-parameters (up to isomorphism) is denoted
by Φ(G). Any ψ ∈ Ψ+(G) gives rise to an L-parameter φψ by pulling back via the
map LF → LF × S L(2,C), w 7→

(
w,

(
|w|1/2 0

0 |w|−1/2

))
.

When G = GL(N), we associate representations πψ and ρψ of GL(N, F)
to ψ ∈ Ψ+(G) by the following recipe from [16, 1.2.2]. We may decompose
ψ = ⊕k

i=1ψi with ψi = φi � ν(ni) such that φi : LF →
LGL(mi) is an irreducible

mi-dimensional representation of LF and
∑k

i=1 mini = N. The local Langlands
correspondence associates an irreducible essentially square-integrable represen-
tation πφi of GL(mi, F) to φi. Let | det(m)| denote the composition of the absolute
value on F× with the determinant map on GL(m, F). Then consider the multi-set
of representations

{πφi | det(mi)|
ni−1

2 , πφi | det(mi)|
ni−3

2 , ..., πφi | det(mi)|
1−ni

2 }ki=1. (5)

This defines a representation of
∏k

i=1 GL(mi)ni viewed as a block diagonal Levi
subgroup of GL(N). Let ρψ denote the parabolically induced representation.
(The choice of parabolic subgroup does not affect our argument; we will choose
the upper triangular one.) The Langlands quotient construction singles out an
irreducible subquotient πψi of the representation of GL(mini, F) induced from
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(5) on the Levi subgroup GL(mi, F)ni . We write πψ for the representation of
GL(N) parabolically induced from �k

i=1πψi . (In the case of interest, one actually
knows that πψi is unitary by Lemma 6.1. Thus πψ is the irreducible representation
corresponding to ψ by the A-packet parametrization.)

As in the introduction, from here throughout the paper, we fix a totally
real field F and a totally complex quadratic extension E over F with complex
conjugation c in Gal(E/F). The ring of adeles over F (resp. E) is denoted by
A (resp. AE). We often write G∗ for U(N) and G(N) for ResE/FGL(N). The
group G(N) is equipped with involution θ : g 7→ JN

tc(g)−1J−1
N , giving rise to the

twisted group G̃+(N) = G(N) o {1, θ}. Write G̃(N) for the coset G(N) o θ. Let
v be a place of F. Given any algebraic group H over F, we often write Hv for
H(Fv ) or H ⊗F Fv (the context will make it clear which one we mean).

For n ∈ Z≥1, define Φ̃sim(n) (a shorthand for Φsim(G̃(n))) to be the set of
conjugate self-dual cuspidal automorphic representations of GL(n,AE). Here a
representation π is considered conjugate self-dual if π ◦ c is isomorphic to the
contragredient of π, or equivalently if π ◦ θ is isomorphic to π. Fix two Hecke
characters χκ : A×E/E

× → C× with κ ∈ {±1} as follows: χ+ is the trivial character
while χ− is an extension of the quadratic character of A×/F× associated to E/F
by class field theory. We use χκ to define two base-change L-morphisms

ηχκ : LU(N)→ LG(N), κ ∈ {±1},

as follows. Choose wc ∈ WF\WE so that WF = WE
∐

WEwc. Under the
identification Û(N) = GL(N,C) and Ĝ(N) = GL(N,C) × GL(N,C), we have
(where scalars stand for scalar N × N-matrices whenever appropriate)

ηχκ (g o 1) = (g, JN
tg−1J−1

N ) o 1,

ηχκ (1 o w) = (χκ(w), χ−1
κ (w)) o w, w ∈ WE ,

ηχκ (1 o wc) = (1, κ) o wc.

Let us define Ψ̃ell(N), the set of (formal) elliptic parameters for G̃(N). Such
a parameter is represented by a formal sum ψ = �k

i=1ψi with ψi = µi � ν(ni) such
that the pairs (µi, ni) are mutually distinct, where µi ∈ Φ̃sim(mi),

∑k
i=1 mini = N.

(Two formal sums are identified under permutation of indices.)
Mok defines the sets Ψ2(U(N), ηχκ ) for κ ∈ {±1}. (In [25], he writes ξχκ for

ηχκ .) They are identified (via the map (ψN , ψ̃) 7→ ψN of [25, Section 2.4]) with
disjoint subsets of Ψ̃ell(N), corresponding to the two ways U(N) can be viewed
as a twisted endoscopic group of G̃(N) via ηχκ , characterized by a sign condition.
We don’t need to recall the sign condition here. It suffices to know that each
ψ ∈ Ψ2(U(N), ηχκ ) admits localizations to Ψ+(U(N)v ); see below. We write ψN

for ψ when ψ is viewed as a member of Ψ̃ell(N).
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A parameter ψ in Ψ2(U(N), ηχκ ) is said to be generic if ni = 1 for all
1 ≤ i ≤ k and simple if k = 1. Write Φsim(U(N), ηχκ ) for the subset of simple
generic parameters. Theorem 2.4.2 of [25] shows that Φ̃sim(N) is partitioned into
Φsim(U(N), ηχκ ), κ ∈ {±1}.

To a parameter ψ ∈ Ψ2(U(N), ηχκ ) is associated localizations ψv ∈ Ψ+(G∗v )
such that ψv is carried to ⊕k

i=1φµi,v � ν(ni) via the L-morphism ηχκ : LU(N) →
LG(N), where φµi,v is the L-parameter for µi,v (via local Langlands for GL(mi)).
For each place v of F split in E, fix a place w of E above v . Then we have an
isomorphism G∗v ' GL(N, Ew).

At every finite place v of F where G∗v is unramified, fix hyperspecial
subgroups K̃v = GL(OFv

⊗OF OE) of G(N, Fv ) and K∗v of G∗(Fv ) (such that
they come from global integral models away from finitely many v ). When v is
split as w and c(w) in E we have a decomposition K̃v = K̃w × K̃c(w), and we may
identify K∗v with K̃w via G∗v ' GL(N, Ew).

Finally let G be an inner form of G∗ over F. It can always be promoted to
an extended pure inner twist (ξ, z) : G∗ → G, [16, 0.3.3]. Let S be a set of
places of F such that both Gv and G∗v are unramified for every v < S . Then
fix an isomorphism G∗v ' Gv , which is G(F)-conjugate to (ξ, z). We have
a hyperspecial subgroup Kv ⊂ Gv by transferring K∗v . So if v < S is split
in E then Kv and K∗v are identified with GL(N,OE,w) under the isomorphisms
Gv ' G∗v ' GL(N, Ew).

Let ψv ∈ Ψ(U(N)v ) for a place v of F. This gives rise to a distribution
f 7→ f (ψv ) on the space of smooth compactly supported functions on U(N)v
[25, Theorem 3.2.1].

Given a connected reductive group H over Fv , a smooth compactly supported
function f on H(Fv ), and an admissible representation π of H(Fv ), we write
tr(π( f )) or f (π) for the trace value. Occasionally we also consider a twisted
variant when π̃ is an admissible representation of G+(N, Fv ) and f̃ is a smooth
compactly supported function on G(N, Fv ) o θ. Then tr(π̃( f )) will denote the
(twisted) trace.

3. Cohomological representations of U(N − 1, 1)
In this section, we recall some facts about the cohomological representations

of the real Lie group U(N − 1, 1), which will imply that any global Arthur
parameter that contributes to hd

(2)(X(n)) must have a factor µ�ν(n) with n ≥ N−d
by applying results of Bergeron, Millson, and Moeglin. Let g0 be the real Lie
algebra of U(N − 1, 1), and K a maximal compact subgroup. Write g for the
complexification of g0. Similarly the complexification of real Lie algebras k0,
p0, etc will be denoted by k, p, etc below. The facts we shall need on the
cohomological representations of U(N − 1, 1) are summarized in the following
proposition; recall that p(π) is the infimum over p for which the K-finite matrix
coefficients of π lie in Lp(G).
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Proposition 3.1. Let a, b be a pair of integers with a, b ≥ 0 and a+b ≤ N−1, and
let d = a + b. There is an irreducible unitary representation πa,b of U(N − 1, 1)
with the following properties.

(i) We have

Hp,q(g,K; πa,b) =

{ C if (p, q) = (a, b) + (k, k), 0 ≤ k ≤ N − 1 − a − b,
0 otherwise.

(ii) Suppose that d ≤ N − 2. If ϕ : C× → GL(N,C) is the restriction of the
Langlands parameter of πa,b to C×, then we have

ϕ(z) = (z/z)(b−a)/2|z|N−d−1 ⊕ (z/z)(b−a)/2|z|−N+d+1 ⊕
⊕

−N+1≤ j≤N−1
j≡N−1 (2)

j,N−1−2a,−N+1+2b

(z/z) j/2.

(iii) We have p(πa,b) = 2(N − 1)/d.

Moreover, the πa,b are the only irreducible unitary representations of U(N −1, 1)
with H∗(g,K; π) , 0.

3.1. The classification of Vogan and Zuckerman. We let G = U(N − 1, 1),
and realize G as the subgroup of GL(N,C) preserving the Hermitian form
|z1|

2 + . . . + |zN−1|
2 − |zN |

2. The Lie algebra g0 of G is

g0 = {A ∈ MN(C) : tA = −IN−1,1AIN−1,1}

where

IN−1,1 =

(
IN−1

−1

)
.

The algebras k0 and p0 in the Cartan decomposition g0 = k0 ⊕ p0 are

k0 =

{(
A 0
0 iθ

)
: tA = −A, θ ∈ R

}
, p0 =

{(
0 z
tz 0

)
: z ∈ MN−1,1(C)

}
.

Let t0 denote the Cartan subalgebra of k0 consisting of diagonal matrices. The
adjoint action of K on p0 preserves the natural complex structure, and so we have
a decomposition p = p+ ⊕ p− of K-modules. We may naturally identify g with
Mn(C), and under this identification we have

p+ =

{(
0 z
0 0

)
: z ∈ MN−1,1(C)

}
, p− =

{(
0 0
z 0

)
: z ∈ M1,N−1(C)

}
.
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If τd is the representation of K on
∧d
p, it is well known [6, VI 4.8-9] that there

is a decomposition
τd = ⊕a+b=dτa,b, (6)

where τa,b is the representation of K on
∧a
p− ⊗

∧b
p+. Moreover, we have

τa,b = ⊕
min(a,b)
k=0 τ′a−k,b−k (7)

for a + b ≤ N − 1, where the representations τ′a,b are irreducible with highest
weight

b∑
i=1

εi −

N−1∑
i=N−a

εi + (a − b)εN . (8)

Here, {εi} is the standard basis for t∗ consisting of elements that are real on it0.
These decompositions correspond to the Hodge-Lefschetz decomposition for the
cohomology of X(n).

We now recall the classification of cohomological representations of G due to
Vogan and Zuckerman [31]. We choose an element H ∈ it0, so that ad(H) has real
eigenvalues. We let q ⊂ g be the parabolic subalgebra l+ u, where l = Zg(H) and
u is the sum of all the eigenspaces for ad(H) with positive eigenvalues. Because
k and p± are stable under ad(H), we have u = u ∩ k + u ∩ p− + u ∩ p+. We define
R± = dim(u∩p±) and R = R+ +R−, and let µ = 2ρ(u∩p), which is the sum of the
roots of t in u∩p. We fix a set of positive roots for t in l∩ k so that a positive root
system for t in k is determined (together with u ∩ k). Then µ is a highest weight
for the positive root system.

The main theorem of Vogan and Zuckerman is that there is a unique irre-
ducible unitary representation Aq of G 2 with the following properties:

• Aq has the same infinitesimal character as the trivial representation.

• Aq contains the K-type with highest weight µ.

They also show that any irreducible unitary representation of G with nonzero
(g,K)-cohomology (with trivial coefficients) must be of the form Aq for some q.
It is clear that Aq only depends on u ∩ p. Moreover, we have [31, Prop 6.19]

HR++p,R−+p(g,K; Aq) ' Homl∩k(∧2p(l ∩ p),C), p ≥ 0, (9)

and
Hp,q(g,K; Aq) = 0 (10)

2 Note that the general unitarity of the representations Aq is proved in [30].
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for other (p, q), i.e. if p − q , R+ − R−.
Write H1, . . . ,HN for the entries of the real diagonal matrix H. Because Aq

only depends on the orbit of H under the Weyl group of K, we may assume that
H1 ≥ · · · ≥ HN−1. The subspace u ∩ p, and hence Aq, only depends on the
number of Hi −HN that are positive, negative, and zero. Therefore, if a and b are
the number of Hi − HN that are positive and negative respectively, then we have
Ha+1 = · · · = HN−1−b = HN , while we may assume that all the remaining Hi are
distinct. It may be seen that R+ = a and R− = b, and

µ =

a∑
i=1

εi −

N−1∑
i=N−b

εi − (a − b)εN .

The representation Aq depends only on a and b, and we denote it by πa,b.
To prove (iii), we will need the description of πa,b as a Langlands quotient

when a + b < N − 1, which is given by Vogan and Zuckerman in [31, Theorem
6.16]. Define

V =

 1
0N−2

1

 ,
and let a0 = RV so that a0 is a maximal abelian subalgebra of p0. Let A = exp(a0)
be the corresponding subgroup. Define α ∈ a∗ by α(V) = 1. The roots of a
in g are ±α and ±2α with multiplicities 2(N − 2) and 1 respectively, so that
ρ = (N − 1)α. Let U be the unipotent subgroup corresponding to the positive
roots. Let M = ZK(V), so that

M =


 eiθ

X
eiθ

 : X ∈ U(N − 2), θ ∈ R

 .
Let tM ⊂ t be the diagonal Cartan subalgebra in m. Let σ be the irreducible
representation of M with highest weight given by the restriction to tM of

a+1∑
i=2

εi −

N−1∑
i=N−b

εi + (b − a)ε1.

Let ν = (N − 1 − d)α. We define Iν,σ to be the unitarily normalized induction
from P = MAU to G of the representation σ⊗ eν ⊗ 1. Then πa,b is the Langlands
quotient of Iν,σ.
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3.2. Proof of Proposition 3.1 . The assertion that πa,b are the only represen-
tations with nonzero cohomology is clear, because any such representation is
isomorphic to Aq for some q. The calculation of Hp,q(g,K; πa,b) in condition (i)
follows from (9) and (10) after we compute Homl∩k(∧2p(l ∩ p),C). Our assump-
tion on H implies that l0 ' u(N−d−1, 1)×u(1)d, and l = l∩k⊕l∩p is the standard
Cartan decomposition of l. We wish to show that the trivial representation of l∩ k
occurs exactly once in ∧2p(l ∩ p) for all 0 ≤ p ≤ N − d − 1, but this follows
from the decompositions (6) and (7) for u(N − d − 1, 1), combined with the fact
that τ′p,q is trivial if and only if p = q = 0 as one sees from the highest weight
formula (8).

The description of the Langlands parameter of πa,b in (ii) follows from [2,
Section 5.3].

To prove assertion (iii), we may assume that a + b < N − 1 as otherwise
πa,b lies in the discrete series. When a + b < N − 1, the assertion follows from
our description of πa,b as a Langlands quotient, and well-known asymptotics for
matrix coefficients, which we recall from Knapp [17]. Let P = MAU be the
opposite parabolic to P, and let Iσ,ν be the normalized induction of σ ⊗ eν ⊗ 1
from P to G. Let A(σ, ν) : Iσ,ν → Iσ,ν be the intertwiner

A(σ, ν) f (g) =

∫
U

f (ug)du,

which converges by [17, VII, Prop 7.8]. Then the image of A(σ, ν) is isomorphic
to the Langlands quotient πa,b of Iσ,ν. We introduce the pairing on Iσ,ν given by

〈 f , g〉 =

∫
K
〈 f (k), g(k)〉σdk

where 〈·, ·〉σ denotes a choice of inner product on σ. If we choose g ∈ Iσ,ν to
pair trivially with the kernel of A(σ, ν), then 〈Iσ,ν(·) f , g〉 is a matrix coefficient
of πa,b, and all coefficients are realized in this way. The asymptotic behaviour of
the coefficients is given by [17, VII, Lemma 7.23], which states that

lim
a→∞

e(ρ−ν) log a〈Iσ,ν(a) f , g〉 = 〈A(σ, ν) f (1), g(1)〉σ. (11)

As ν = (N − d− 1)α, [17, VIII, Theorem 8.48] implies that p(πa,b) ≤ 2(N − 1)/d.
It also follows from that theorem that to prove p(πa,b) = 2(N − 1)/d, we need
only show that the right hand side of (11) is nonzero for some choice of f and
g, subject to the condition that g pairs trivially with ker A(σ, ν). To do this,
choose f ∈ Iσ,ν such that A(σ, ν) f , 0, and some nonzero g of the required type.
Because A(σ, ν) is an intertwiner, after translating f by K we may assume that
A(σ, ν) f (1) , 0. Because ker A(σ, ν) is an invariant subspace, we may likewise
assume that g(1) , 0. Because σ was irreducible, translating by M we may also
assume that 〈A(σ, ν) f (1), g(1)〉σ , 0 as required.
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4. Application of the global classification

As in the notation section, (ξ, z) : G∗ → G is an extended pure inner
twist of the quasi-split unitary group G∗ = U(N) over F. We always assume
that Gv0 is isomorphic to U(N − 1, 1) at a real place v0 of F and that Gv is
compact at all other real places v . Although much of our argument works for
general inner forms, the assumption significantly simplifies some combinatorial
and representation-theoretic arguments (especially of Section 3) and ensures that
we obtain expectedly optimal upper bounds in all degrees in the main theorem.

Let ψ ∈ Ψ2(G∗, ηχκ ). The main local theorem of [16] defines local packets
Πψv

(G, ξ) consisting of finitely many (possibly reducible and non-unitary3)
representations of Gv such that Πψv

(G, ξ) contains an unramified representation
(relative to Kv ) at all but finitely many v . The global packet Πψ(G, ξ) consists
of restricted tensor products π = ⊗′vπv with πv ∈ Πψv

(G, ξ). The parameter ψ
determines a sign character εψ on a certain centralizer group (in Ĝ) attached to ψ,
and [16] defines a subset Πψ(G, ξ, εψ) of Πψ(G, ξ) by imposing a sign condition.
We need not recall the condition as it will be soon ignored along the way to an
upper bound. Theorem 1.7.1 of [16] asserts the following.

Theorem 4.1. There is a G(A)-module isomorphism

L2
disc(G(F)\G(A)) '

⊕
ψ∈Ψ2(G∗,ηχκ )

⊕
π∈Πψ(G,ξ,εψ)

π.

Let S be a finite set of finite places of F containing all places at which E or
G ramify. Let n ⊂ OF be a nonzero ideal whose prime factors are split in E and
don’t lie in S . In Section 2 we have introduced hyperspecial subgroups Kv of
G(Fv ) when v < S . For v ∈ S let Kv be an arbitrary open compact subgroup
of G(Fv ). Now we define the congruence subgroup K(n) =

∏
v K(n)v , where

K(n)v is given as follows for each finite place v . Define K(n)v to be Kv if v
does not divide n. If v |n then we have fixed an isomorphism Kv ' GL(N,OEw ),
and K(n)v is the subgroup of Kv consisting of elements congruent to the identity
modulo n. Let K∞ denote a maximal compact subgroup of G(F ⊗Q R). Often
we write [G] for the quotient G(F)\G(A), and likewise when G is replaced with
quasi-split unitary groups.

We would like to investigate the cohomology of the arithmetic manifold

X(n) = G(F)\G(A)/K(n)K∞. (12)

3 The issue is that ψv ∈ Ψ+(G∗v ) is not known to be in Ψ(G∗v ) in general although it is expected.
However this is actually known for parameters contributing to cohomology from the known cases
of the Ramanujan conjecture, see Section 6. It follows that all representations in the local packets
we will consider are irreducible and unitary.
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Since G(F ⊗Q R)/K∞ is isomorphic to the symmetric space U(N − 1, 1)/(U(N −
1) × U(1)), which has complex dimension N − 1, we see that the complex
dimension of X(n) is also N − 1.

We take the first step in proving Theorem 1.2 on bounding the L2-Lefschetz
numbers hd

(2)(X(n)) in degrees 0 ≤ d < N − 1, as n varies. Write hd(g,K∞; π∞)
for dim Hd(g,K∞; π∞). Matsushima’s formula (see [6] in the noncompact case)
gives

hd
(2)(X(n)) =

∑
π⊂L2

disc([G])

m(π)hd(g,K∞; π∞) dim πK(n)
f ,

where the sum runs over irreducible G(A)-subrepresentations π of L2
disc([G]) up

to isomorphism, and m(π) := dimG(A)(π, L2
disc([G])) denotes the multiplicity of π.

Combining this with Theorem 4.1 gives

hd
(2)(X(n)) ≤

∑
ψ∈Ψ2(G∗,ηχκ )

∑
π∈Πψ(G,ξ)

hd(g,K∞; π∞) dim πK(n)
f . (13)

5. Bounding the contribution of a single parameter

In this section, we bound the contribution of a single parameter ψ to the right
hand side of (13). The form of our bound will depend on the shape of ψ, and so
throughout this section we shall fix a shape S = (n1,m1), . . . , (nk,mk) and define
Ψ2(G∗, ηχκ )S to be the set of parameters with that shape. If ψ ∈ Ψ2(G∗, ηχκ )S,
we define µi ∈ Φ̃sim(mi) to be such that ψN = �i≥1µi � ν(ni). Each µi represents
a simple generic parameter φi ∈ Φsim(U(mi), ηχκi ) for a unique sign κi ∈ {±1}
determined as in [25, (2.4.8)]. We define

τ(S) =

(
N
2

)
−

∑
i≥1

ni

(
mi

2

)
, (14)

τ1(S) =

(
N
2

)
−

(
n1

2

)
−

∑
i≥2

ni

(
mi

2

)
,

τ2(S) = τ(S) + (n1 − 1) + ε,

τ3(S) = τ(S) + 3(n1 − 1) + ε.

Here, ε > 0 is an arbitrarily small constant that may vary from line to line.
Any implied constants in bounds for quantities containing τ2(S) or τ3(S) will be
assumed to depend on ε. We also define
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σ(S) = σ2(S) = σ3(S) =

k∑
i=1

ni − 1, σ1(S) =

k∑
i=2

ni.

For each 1 ≤ i ≤ k and finite place v , define a compact open subgroup Ki,v

of U(mi)v as follows. If v < S , then Ki,v is the standard hyperspecial subgroup,
and if v ∈ S then Ki,v will be chosen during the proof of Proposition 5.1. Let
Ki =

∏
v Ki,v , and let Ki(n) be the principal congruence subgroup of Ki of level

n. Let P ⊂ GL(N) be the standard parabolic subgroup with Levi
∏k

i=1 GL(mi)ni .

Proposition 5.1. There is a choice of Ki,v for v ∈ S with the following property.
Let ψ ∈ Ψ2(G∗, ηχκ )S, and assume that φi (arising from ψ as above) is bounded
everywhere for each 1 ≤ i ≤ k. Then

∑
π∈Πψ(G,ξ)

dim πK(n)
f �

∏
v |n

(1 + 1/qv )σ(S)Nnτ(S)
∏
i≥1

 ∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

. (15)

Moreover, if m1 = l with l = 1, 2, 3, we have

∑
π∈Πψ(G,ξ)

dim πK(n)
f �

∏
v |n

(1 + 1/qv )σl(S)Nnτl(S)

∑
π1∈Πφ1 (U(m1))

dim πK1(n)
1, f

∏
i≥2

 ∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

.

The first step in proving Proposition 5.1 is to write both sides as a product
over the finite places. We describe this in the case of the first inequality, as the
second is similar. We have∑

π∈Πψ(G,ξ)

dim πK(n)
f =

∏
v -∞

∑
πv∈Πψv (Gv ,ξv )

dim πKv (n)
v (16)

and

∏
i≥1

 ∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

=
∏
v -∞

∏
i≥1

 ∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v (n)
i,v


ni

.

It therefore suffices to prove that
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∑
πv∈Πψv (Gv ,ξv )

dim πKv (n)
v ≤ Cv (1 + O(q−2

v ))
∏
i≥1

 ∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v (n)
i,v


ni

(17)

for all finite v . Here, the constant Cv may be arbitrary for v ∈ S , while for v < S
it is either 1 if v is inert in E/F, or the v -component of the constant in (15) if v
is split. It is important to keep Cv independent of ψv and n (but it could depend
on Kv ) for the application to the proof of the main theorem. We divide the proof
of (17) into four cases, depending on whether v is split in E, and whether v ∈ S .
Thus the proof of Proposition 5.1 will be complete by Lemmas 5.2, 5.3, 5.4, and
5.5 below.

5.1. A remark on the representations ρψ. In Section 5, we will need to
modify the definition of the local representation ρψ given in Section 2 to make
it compatible with our global arguments. We first assume that v is split in E/F.
Let ψ be as in Proposition 5.1, and consider the localization ψv , which is a
parameter for GL(N, Ew). In Section 2, we associated a representation ρψv

to
ψv , by decomposing ψv into irreducibles and applying the recipe (5). We may
modify this definition, by instead using the decomposition ψv = ⊕i≥1φv ,i ⊗ ν(ni)
with φv ,i ∈ Φv (mi) associated to the shape S (so that the φv ,i are not necessarily
irreducible), and in Section 5 we will let ρψv

denote the representation of
GL(N, Ew) obtained in this way. In particular, ρψv

is induced from a parabolic
of GL(N) with Levi

∏k
i=1 GL(mi)ni . If v is not split in E/F, then we have a

local parameter ψN
v for GL(N, Ew), and we modify the definition of the induced

representation ρψN
v

in the same way.
If we denote the result of the old construction by ρ′ψv

, then ρψv
and ρ′ψv

have
the same composition series. This implies that πψv

is a subquotient of ρψv
, which

is all that matters for most of our arguments. The only exception to this is in
Lemma 5.2, which will be discussed in the course of the proof.

5.2. v split in E/F, v < S. These v are the only ones which require us to
consider the special cases m1 = 1, 2, 3 of Proposition 5.1 separately. In this
case, the local packets under consideration each contain a single representation
of GL(N, Fv ) or GL(mi, Fv ). The bound we prove, Lemma 5.2, is an application
of the fact that the representation in Πψv

(Gv , ξv ) is a subquotient of an explicit
induced representation.

Lemma 5.2. Let Πψv
(G, ξ) = {πv } and Πφi,v (U(mi)) = {πi,v }. We have

dim πK(n)v
v ≤ (1 + 1/qv )σ(S)(1 + O(q−2

v ))Nnτ(S)
v

∏
i≥1

(
dim πKi(n)v

i,v

)ni
, (18)



Endoscopy and cohomology of U(n, 1) 19

and if m1 = l with l = 1, 2, 3 we have

dim πK(n)v
v ≤ C(ε, qv )(1+1/qv )σl(S)(1+O(q−2

v ))Nnτl(S)
v dim πK1(n)v

1,v

∏
i≥2

(
dim πKi(n)v

i,v

)ni
.

(19)
The terms involving 1 + 1/qv only need to be included if v |n. The term
C(ε, qv ) = 1 if l = 1 or qv is greater than a constant depending on ε.

Proof. We recall the identification Gv = GL(N, Ew), which carries Kv to K̃w.
View ψv as a member of Ψ(GL(N, Ew)). As in Section 5.1, we have an irreducible
subquotient πv = πψv

of an induced representation ρw = ρψv
of GL(N, Ew).

Let Pw denote the block upper triangular parabolic subgroup from which ρw is
induced. (So the Levi factor of Pw is

∏k
i=1 GL(mi)ni .)

We shall prove the first bound using dim πK(n)v
v ≤ dim ρK̃(n)w

w . We have

dim ρK̃(n)w
w = [K̃w : K̃w ∩ K̃(n)wPw]

∏
i≥1

(
dim µK̃i(n)w

i,w

)ni

.

The result then follows from the fact that [K̃w : K̃w ∩ K̃(n)wPw] = 1 if v - n,
while if v |n we have

[K̃w : K̃w ∩ K̃(n)wPw] = (1 + 1/qv )σ(S)(1 + O(q−2
v ))Nnτ(S)

v ,

and the fact that πi,v are isomorphic to µi,w so that dim µK̃i(n)w
i,w = dim πKi(n)v

i,v .
The case m1 = 1 is the only place that we need to know the exact definition

of πv , not just that it is a subquotient of ρw. Let ρ′w be the induced representation
of GL(N, Ew) associated to ψv in Section 2. Because φi,v are bounded, πv is the
unique irreducible quotient of ρ′w. Becuase m1 = 1, ρ′w is induced from a standard
parabolic P′w with Levi factor L′w = GL(1)n1 ×

∏
j GL(t j) for some t j. Moreover,

the representation one induces is given on the GL(1)n1 factor of L′w by

| det |
n1−1

2 µ1,w ⊗ . . . ⊗ | det |
−n1+1

2 µ1,w.

Let (P1
w)′ be the parabolic obtained by modifying P′w in the upper-left n1 × n1

block so that the GL(1)n1 factor in the Levi is replaced by GL(n1). Let (ρ1
w)′ be

the representation induced from (P1
w)′ using the same data as ρ′w, except that one

takes the representation µ1,w ◦ det(n1) on the new Levi factor GL(n1, Ew). As
(ρ1

w)′ is a quotient of ρ′w, πv is also a quotient of (ρ1
w)′.

We may perform a similar modification to ρw, to define a representation ρ1
w

induced from the standard parabolic P1
w with Levi GL(n1)×

∏
i≥2 GL(mi)ni . As ρ1

w
and (ρ1

w)′ have the same composition series, πv is a subquotient of ρ1
w. It follows

that dim πK(n)v
v ≤ dim(ρ1

w)K̃(n)w , and
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dim(ρ1
w)K̃(n)w = [K̃w : K̃w ∩ K̃(n)wP1

w] dim µK̃1(n)w
1,w

∏
i≥2

(
dim µK̃i(n)w

i,w

)ni

.

The result follows as before, after calculating [K̃w : K̃w ∩ K̃(n)wP1
w].

In the cases m1 = 2, 3, we bound all but one of the factors of dim πK1(n)v
1,v

in (18) using the representation theory of GL(m1, Fv ). In particular, applying
Corollary A.4 in (18) gives

dim πK(n)v
v ≤ C(ε, qv )(1 + 1/qv )σ(S)(1 + O(q−2

v ))Nnτ(S)+ m1(m1−1)
2 (n1−1)+ε

v

dim πK1(n)v
1,v

∏
i≥2

(
dim πKi(n)v

i,v

)ni
,

which gives (19).

5.3. v split in E/F, v ∈ S. In this case, G∗v ' GL(N, Fv ) ' GL(N, Ew) and Gv

is an inner form of GL(N, Fv ). It is known (see [16, Theorem 1.6.4] for instance)
that the packet Πψv

(G∗) contains exactly one element whereas Πψv
(G, ξ) has one

or zero elements.
For v ∈ S , the constant Cv can be arbitrary. This means that to prove (17),

we need to know that the left hand side is bounded independently of ψv , and that
if it is nonzero, then the right hand side is also nonzero. Both facts are provided
by the following local lemma, where we consider ψv ∈ Ψ(G∗v ) and bounded
φi,v ∈ Φ(GL(mi, Fv )) with ψv = ⊕k

i=1φi,v � ν(ni). The unique representations
in Πψv

(G, ξ) and Πφi,v (U(mi)v ) = Πφi,v (GL(mi, Fv )) are denoted by πv and πi,v ,
respectively.

Lemma 5.3. There is C(Kv ) > 0 such that dim πKv
v ≤ C(Kv ). For each i there

exists an open compact subgroup Ki,v ⊂ U(mi, Fv ) depending only on Kv such
that the following is true for every ψv and φi,v as above: if πKv

v , 0, then πKi,v

i,v , 0
for all i.

Proof. The first claim is Bernstein’s uniform admissibility theorem [5]. (We
need it just for unitary representations, but the proof there shows the theorem for
irreducible admissible representations of general p-adic reductive groups.)

To prove the second claim, recall that ψv gives rise to representations ρψv
and

πψv
of G∗v ' GL(N, Fv ) as in Section 5.1. So πψv

is an irreducible subquotient of
ρψv

.
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The hypothesis πKv
v , 0 means that 1Kv

(πv ) , 0. If we transfer 1Kv
to a func-

tion 1∗Kv
on G∗v , we have the character identity 1∗Kv

(πψv
) = e(Gv )aψv

1Kv
(πv ) , 0

by Theorem 1.6.4 (1) of [16] with certain signs e(Gv ), aψv
∈ {±1}. If we let

K′v ⊂ GL(N, Fv ) be an open compact subgroup such that 1∗Kv
is bi-invariant

under K′v , this implies that πK′v
ψv
, 0 and thus ρK′v

ψv
, 0. This gives πKi,v

i,v , 0
for suitable Ki,v ⊂ GL(mi, Fv ), which implies the claim. (To see this, one uses
a description of invariant vectors in an induced representation under an open
compact subgroup as in the first display of [4, p.26], noting that the double coset
P\G/K there is finite.)

5.4. v nonsplit in E/F, v < S. In this case, for each ψv ∈ Ψ(G∗v ) we have
ψN
v = ηχκ ◦ ψv ∈ Ψ(G̃(N)) = Ψ(GL(N, Ew)). This gives rise to representations
πψN

v
and ρψN

v
of GL(N, Ew) as in Section 5.1. Similarly φi,v ∈ Φ(U(mi)v ) gives a

representation πφmi
i,v

of GL(mi, Ew) for the parameter ηχκi ◦φi,v . If ψv and φi,v arise
from global data as at the start of Section 5 then πφmi

i,v
is nothing but µi,w.

Inequality (17) in this case follows from the lemma below.

Lemma 5.4. Consider ψv ∈ Ψ(G∗v ) and φi,v ∈ Φ(U(mi)v ) as above such that
ψN
v = ⊕i≥1φ

mi
i,v � ν(ni). Then we have∑

πv∈Πψv (G,ξ)

dim πKv
v ≤ 1. (20)

If equality holds, then ∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v

i,v = 1 (21)

for all i.

Proof. Suppose first that sψv
∈ {±1}. We have a hyperspecial subgroup K̃v of

G(N)v ' GL(N, Ew). The twisted fundamental lemma implies that the functions
1Kv

and 1K̃voθ are related by transfer.
Applying the character identity for U(N) (Theorem 3.2.1 (b) of [25]) with

s = 1 gives

1U(N)
Kv

(ψv ) =
∑

πv∈Πψv (G,ξ)

dim πKv
v ,

and combining this with the twisted character identity [25, Theorem 3.2.1 (a)]
and the twisted fundamental lemma gives
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∑
πv∈Πψv (G,ξ)

dim πKv
v = tr(̃πψN

v
(1K̃voθ)).

The twisted trace tr(̃πψN
v
(1K̃voθ)) is equal to the trace of π̃ψN

v
(θ) on πK̃v

ψN
v
, so we have

tr(̃πψN
v
(1K̃voθ)) ≤ dim πK̃v

ψN
v
.

Since πψN
v

is a subquotient of ρψN
v
, we have

dim πK̃v

ψN
v
≤ dim ρK̃v

ψN
v
≤ 1

which gives (20).
If equality holds, then ψN

v is unramified. So all φi,v are unramified as well.
Applying [25, Theorem 3.2.1 (b)] to the parameter φi,v and the function 1Ki,v for
U(mi) gives ∑

πi,v∈Πφi,v (U(mi))

dim π
Ki,v

i,v = 1U(mi)
Ki,v

(φi,v ).

If π̃φmi
i,v

is the canonical extension of πφmi
i,v

to G̃(mi)v (via Whittaker normalization),∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v

i,v = tr(̃πφmi
i,v

(1K̃i,voθ)).

tr(̃πφmi
i,v

(1K̃i,voθ)) is the trace of θ on the one-dimensional space πK̃i,v

φ
mi
i,v

, so we have

tr(̃πφmi
i,v

(1K̃i,voθ)) = ±1, and (21) follows from positivity.
Now suppose that sψv

< {±1}, and let (Ge, se, ηe) be the elliptic endoscopic
triple for G with se = sψv

. We have Ge = U(a) × U(b) for some a, b > 0.
There is an Arthur parameter ψe for Ge such that ηe ◦ ψe = ψ, which we may
factorise as ψe = ψ1 × ψ2. We let Kev ⊂ Ge(Fv ) be a hyperspecial subgroup, and
let 1eKv

be the characteristic function of Kev . The Fundamental Lemma implies
that 1Kv

∈ H(Gv ) and 1eKv
∈ H(Gev ) have ∆[e, ξ, z]-matching orbital integrals.

Applying [25, Theorem 3.2.1 (b)] with s = sψv
gives∑

πv∈Πψv (G,ξ)

1Kv
(πv ) = 1eKv

(ψev ) = 1K1,v (ψ1,v )1K2,v (ψ2,v ).

The result now follows by applying the result in the case sψv
∈ {±1} to the groups

U(a) and U(b).
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5.5. v nonsplit in E/F, v ∈ S. Here we prove a result analogous to Lemma
5.3.

Lemma 5.5. There exist open compact subgroups Ki,v ⊂ U(mi)v depending only
on Kv such that the following holds: given ψv ∈ Ψ(Gv ) and φi,v ∈ Φ(U(mi)v )
such that ψN

v = ⊕k
i=1φ

N
i,v � ν(ni) (thus φi,v are bounded), if∑

πv∈Πψv (G,ξ)

dim πKv
v , 0 then

∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v

i,v , 0.

Moreover there is a constant C(Kv ) > 0 which is independent of ψv such that∑
πv∈Πψv (G,ξ)

dim πKv
v ≤ C(Kv ).

Proof. We begin with the first claim. Suppose sψv
∈ {±1}. Let 1∗Kv

be the transfer
of 1Kv

to G∗v . The character identity of [16, Thm 1.6.1 (4)] gives

0 , e(Gv )
∑

πv∈Πψv (G,ξ)

dim πKv
v = 1∗Kv

(ψv ),

where e(Gv ) ∈ {±1}; note that the coefficients 〈π, 1〉 appearing in the cited
theorem are all 1 (where we take se = sψv

). Using the surjectivity result of Mok
[25, Prop. 3.1.1 (b)], there is a function 1̃Kv

on G̃(N)v whose twisted transfer to
G∗v is 1∗Kv

, and so we have 1∗Kv
(ψv ) = tr(̃πψv

(̃1Kv
)). Let K̃v ⊂ G(N)v be a compact

open subgroup such that 1̃Kv
is bi-invariant under K̃v . It follows that we must

have πK̃v

ψv
, 0, and hence there are compact open K̃i,v ⊂ G(mi)v depending only

on Kv such that πK̃i,v
φi,v
, 0. The result now follows from Lemma 5.6 below.

Now suppose that sψv
< {±1}, and let (Ge, se, ηe) be the elliptic endoscopic

triple for G with se = sψv
and so Ge = U(a) × U(b) for some a, b > 0. There

is an Arthur parameter ψe for Ge such that ηe ◦ ψe = ψ, which we may factorise
as ψe = ψ1 × ψ2. Let 1eKv

be the function obtained by transferring 1Kv
to Gev .

Applying the trace identity

e(Gv )
∑

πv∈Πψv (G,ξ)

dim πKv
v = 1eKv

(ψev )

gives 1eKv
(ψev ) , 0. Because 1eKv

(ψev ) is equal to a sum of traces there is a compact
open K1,v × K2,v ⊂ Gev such that

1K1,v×K2,v (ψev ) = 1K1,v (ψ1,v )1K2,v (ψ2,v ) , 0
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and the result now follows from the case sψv
∈ {±1} for the groups U(a) and

U(b).
We now prove the second claim. Suppose sψv

∈ {±1}. We again use the
identity

e(Gv )
∑

πv∈Πψv (G,ξ)

dim πKv
v = tr(̃πψv

(̃1Kv
)),

and let K̃v ⊂ G(N)v be a compact open subgroup such that 1̃Kv
is bi-invariant

under K̃v . The trace tr(̃πψv
(̃1Kv

)) is equal to the trace of π̃ψv
(̃1Kv

) on the space
πK̃v

ψv
, and the operator norm of π̃ψv

(̃1Kv
) is at most ‖̃1Kv

‖1 = C(Kv ). We therefore

have
∣∣∣tr(̃πψv

(̃1Kv
))
∣∣∣ ≤ C(Kv ) dim πK̃v

ψv
, and the result follows as in Lemma 5.3. If

sψv
< {±1}, we reduce to the case of U(a) × U(b) as before.

Recall that ηχκi ◦ φi,v ∈ Φ(G(mi)v ) corresponds to µi,w via local Langlands
under the isomorphism G(mi)v ' GL(mi, Ew), where w is the unique place of E
above v .

Lemma 5.6. If K̃i,w ⊂ GL(mi, Ew) is a compact open subgroup, then there is
a compact open subgroup Ki,v ⊂ U(mi)v with the following property: For any
bounded parameter φi,v ∈ Φ(U(mi)v ) and the representation µi,w of GL(mi, Ew)

corresponding as above, if µK̃i,w

i,w , 0 then∑
πi,v∈Πφi,v (U(mi))

dim π
Ki,v

i,v , 0. (22)

Proof. The only nontrivial part of the lemma is the assertion that Ki,v may be
chosen independently of µi,w. To this end, we will show that φi,v (or µi,w) varies
over a compact domain and that Ki,v as in the lemma can be chosen in open
neighborhoods. Then the proof will be complete by taking intersection of the
finitely many Ki,v for a finite open covering.

By a theorem of Jacquet, our assumption that µi,w was tempered implies that
µi,w belongs to a family of full induced representations from some

µ′1| · |
is1 ⊗ · · · ⊗ µ′k| · |

isk (23)

with µ′j square integrable and s j ∈ R/(2π/ log qw)Z. Our assumption that µi,w

had bounded depth implies that the set of tuples µ′1, . . . , µ
′
k we must consider is

finite, and so we only need to consider one. We then need to show that the set of
s j such that µi,w is conjugate self-dual (i.e. µi,w ' µi,w ◦ θ) is compact. Because
µ′j| · |

is j ◦ θ = (µ′j ◦ θ)| · |
−is j , this condition is equivalent to saying that the multisets
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{µ′j| · |
is j} and {(µ′j ◦ θ)| · |

−is j} are equivalent. This in turn is equivalent to the
existence of a permutation σ ∈ S k such that µ′j| · |

is j ' (µ′σ( j) ◦ θ)| · |
−isσ( j) for all j.

For each σ the set of s j satisfying this is closed, and hence the set of s j such that
µi,w is conjugate self-dual is closed and compact.

For fixed s1, . . . , sk, there is some Ki,v such that 1Ki,v (φi,v ) , 0, where
1Ki,v (φi,v ) is equal to the left hand side of (22) by definition. Also, if we transfer
1Ki,v to 1̃Ki,v on G̃(mi) using the surjectivity theorem of Mok [25, Prop. 3.1.1
(b)] then the character identity tells us that 1Ki,v (φi,v ) = tr(̃πmi

φi,v
(̃1Ki,v )) (where the

twisted trace is Whittaker normalized). The point is that tr(̃πmi
φi,v

(̃1Ki,v )) varies
continuously in the s j (see [27]) so we still have 1Ki,v (φi,v ) , 0 around an open
neighborhood of s1, ..., sk (where φi,v varies as s1, ..., sk vary). The result now
follows by compactness.

6. Archimedean control on parameters

In this section, we prove some useful conditions on the parameters ψ that
contribute to the cohomology of X(n).

Given φ∞ = ⊗v |∞φv ∈ Φ(U(n)∞) for n ≥ 1, note that the restriction of φv
to WC = C× (for a fixed isomorphism Fv ' C), viewed as an n-dimensional
representation via Û(n) = GL(n,C), is a direct sum of n characters z 7→ zai,v zbi,v

with ai,v , bi,v ∈ C and ai,v −bi,v ∈ Z for i = 1, ..., n. We say that φ∞ is C-algebraic
if n is odd and all ai,v ∈ Z or if n is even and all ai,v ∈

1
2 +Z. We say φv is regular

if ai,v are distinct. If π∞ is a member of the L-packet for φ∞ then π∞ is said to
be regular or C-algebraic if φ∞ is. (This is Clozel’s definition and coincides with
the general definition [8, Definition 2.3.3] for general reductive groups.)

Let S = (n1,m1), . . . , (nk,mk) be a shape as in Section 5. If ψ ∈ Ψ2(G∗, ηχκ )S
then ψ gives rise to µi ∈ Φ̃sim(mi) and φi ∈ Φsim(U(mi), ηχκi ) as before.

Lemma 6.1. Let ψ ∈ Ψ2(G∗, ηχκ )S. If there is π∞ ∈ Πψ∞(G, ξ) with hd(g,K∞; π∞) ,
0 then φi,∞ or φi,∞⊗χ−,∞ is C-algebraic. Moreover every φi,v is bounded at every
place v (equivalently µi,v is tempered at every place v ).

Proof. Since π∞ contributes to cohomology, its infinitesimal character is equal
to that of the trivial representation. In particular it is regular C-algebraic, cf.
[8, Lemmas 7.2.2, 7.2.3]. Hence φψ∞ is regular C-algebraic. (Here we use
the simple recipe to determine the infinitesimal character of π∞ from φψ∞ by
differentiation, as described in [22, Section 2.1].) For each infinite place v , the
representation φi,v |WC is the direct sum of mi characters, say ηi,1, ..., ηi,mi . Then
⊕

mi
j=1⊕

ni−1
l=0 ηi, j|·|

ni−1
2 −l appears as a subrepresentation of φψ∞ . As the latter is regular
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C-algebraic, we see that for each v |∞, φi,v |WC is regular and that either φi,v |WC

or φi,v |WC ⊗ | · |
1/2 is C-algebraic, depending on the parity of N − ni. It follows

that φi,∞|WC or φi,∞|WC ⊗ | · |
1/2 is regular C-algebraic. By the definition of χ− in

Section 2, φi,∞|WC ⊗ | · |
1/2 is C-algebraic if and only if φi,∞|WC ⊗ χ−,∞ is.

The key point is that µi or µi ⊗ χ− is an automorphic representation with
regular C-algebraic component at ∞ (recalling that µi,∞ lies in the packet for
φi,∞). Both µi and µi ⊗ χ− are cuspidal and conjugate self-dual, so either µi
or µi ⊗ χ− (whichever is C-algebraic at ∞) is essentially tempered at all finite
places by [9, Theorem 1.2] (the cohomological condition in loc. cit. follows
from regular C-algebraicity, cf. [11, Lemme 3.14]) and at all infinite places by
[11, Lemme 4.9]. In either case, twisting by χ− if necessary, we deduce that µi is
essentially tempered everywhere. Since the central character of µi is unitary, we
see that µi is tempered everywhere. By the local Langlands correspondence [25,
Theorem 2.5.1 (b)], this is equivalent to φi,v being bounded at every v .

Lemma 6.2. For each i, there is a finite set of parametersPi,∞ ⊂ Φ(U(mi)∞) with
the following property: If ψ ∈ Ψ2(G∗, ηχκ )S, and there exists π∞ ∈ Πψ∞(G, ξ) with
hd(g,K∞; π∞) , 0, then φi,∞ ∈ Pi,∞.

Proof. The infinitesimal character of π∞ is determined by the condition that
hd(g,K∞; π∞) , 0 (to be the half sum of all positive roots of G), thus there are
finitely many such π∞. So they are contained in finitely many Arthur packets,
whose parameters form a finite subset P ⊂ Ψ(U(N)∞). If ψ gives rise to φi then
ηχκi ◦ (φi,v � ν(ni)) should appear as a factor of ηχκ ◦ψv for every infinite place v .
Since we have the constraint ⊗v |∞ψv ∈ P, it is clear that there are finitely many
possibilities for φi,∞.

7. Summing over parameters

In this section we continue the proof of Theorem 1.2 from the end of Section
4 and finish the proof. In the preliminary bound (13), we will fix a shape S and
bound the contribution to hd

(2)(X(n)) from parameters in Ψ2(G∗, ηχκ )S, which we
denote by hd

(2)(X(n))S. Clearly it suffices to establish a bound for hd
(2)(X(n))S as

in Theorem 1.2.
Suppose ψ ∈ Ψ2(G∗, ηχκ )S has the property that there is π ∈ Πψ(G, ξ) with

hd(g,K∞; π∞) , 0. Proposition 3.1 implies that πv0 must be a Langlands quotient
of a standard representation with an exponent of the form (z/z)p/2(zz)(a−1)/2 for
some a ≥ N−d. Proposition 13.2 of [3] implies that there is i such that ni ≥ N−d,
and we assume that this is n1. Note that [3, Prop 13.2] implicitly assumes that
the other archimedean components of π have regular infinitesimal character, but
this is satisfied in our case.
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Apply Lemma 6.2 to obtain finite sets Pi,∞ ⊂ Φ(U(mi)∞) for all i such that
if ψ ∈ Ψ2(G∗, ηχκ )S, and there is π ∈ Πψ(G, ξ) with hd(g,K∞; π∞) , 0, then
φi,∞ ∈ Pi,∞. Let Ψrel be the set of A-parameters ψ ∈ Ψ2(G∗, ηχκ )S with φi bounded
everywhere and φi,∞ ∈ Pi,∞ for all i. By Lemmas 6.1 and 6.2 we have

hd
(2)(X(n))S ≤

∑
ψ∈Ψrel

∑
π∈Πψ(G,ξ)

hd(g,K∞; π∞) dim πK(n)
f ,

and because hd(g,K∞; π∞) is bounded we may simplify this to

hd
(2)(X(n))S �

∑
ψ∈Ψrel

∑
π∈Πψ(G,ξ)

dim πK(n)
f .

Because φi is bounded everywhere for every i, we may apply Proposition 5.1 to
obtain

hd
(2)(X(n))S �

∏
v |n

(1 + 1/qv )σ(S)Nnτ(S)
∑
ψ∈Ψrel

∏
i≥1

 ∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

.

Let Φbdd
sim(U(mi), ηχκi ) denote the set of simple parameters that are bounded

everywhere. Taking a sum over ψ ∈ Ψrel corresponds to taking a sum over
the possibilities for φi ∈ Φbdd

sim(U(mi), ηχκi ) with φi,∞ ∈ Pi,∞. We may therefore
factorize the sum over ψ to ones over φi, which gives

hd
(2)(X(n))S �

∏
v |n

(1 + 1/qv )σ(S)Nnτ(S)
∏
i≥1

∑
φi∈Φ

bdd
sim (U(mi),ηχκi )
φi,∞∈Pi,∞

 ∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

≤
∏
v |n

(1 + 1/qv )σ(S)Nnτ(S)
∏
i≥1


∑

φi∈Φ
bdd
sim (U(mi),ηχκi )
φi,∞∈Pi,∞

∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f


ni

.

(24)

We may bound the sums using the global limit multiplicity formula of Savin
[29]. Indeed, because φi is a simple generic parameter, the packet Πφi (U(mi))
is stable, so that every representation πi ∈ Πφi (U(mi)) occurs in the discrete
spectrum of U(mi) with multiplicity one. In fact, πi must actually lie in the
cuspidal spectrum by [32, Theorem 4.3], because πi,∞ is tempered. Because the
archimedean components of φi are restricted to finite sets, there is a finite set Πi,∞
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of representations of U(mi)∞ such that if πi ∈ Πφi (U(mi)) then πi,∞ ∈ Πi,∞. If
mcusp(π∞,Yi(n)) denotes the multiplicity with which an irreducible representation
π∞ of U(mi)∞ occurs in the L2-space of cuspforms L2

cusp(Yi(n)), where Yi(n) =

U(mi, F)\U(mi,A)/Ki(n), we have

∑
φi∈Φ

bdd
sim (U(mi),ηχκi )
φi,∞∈Pi,∞

∑
πi∈Πφi (U(mi))

dim πKi(n)
i, f ≤

∑
πi⊂L2

cusp([U(mi)])
πi,∞∈Πi,∞

dim πKi(n)
i, f =

∑
π∞∈Πi,∞

mcusp(π∞,Yi(n)).

For each π∞, Savin [29] gives

mcusp(π∞,Yi(n)) � [Ki : Ki(n)] �
∏
v |n

(1 − 1/qv )Nnm2
i ,

and combining this with (24) gives

hd
(2)(X(n))S �

∏
v |n

(1 − 1/qv )Nnτ
′(S),

where τ′(S) = τ(S) +
∑

i≥1 nim2
i . If 1 ≤ m1 ≤ 3 then applying Proposition 5.1

and working as above gives

hd
(2)(X(n))S �

∏
v |n

(1 + 1/qv )σ
′
l (S)Nnτ

′
l (S),

where l = m1, τ′l(S) = τl(S) + m2
1 +

∑
i≥2 nim2

i , and σ′l(S) = σl(S) − 1 −
∑

i≥2 ni.
The bounds for the functions τ′ and τ′j given by Lemma 7.1 below then imply

that
hd

(2)(X(n))S �ε NnNd+ε ,

unless we are in one of the two cases listed there. In the exceptional case (ii)
we have hd

(2)(X(n))S � NnNd+1+ε , and in case (i), which should give the general
main term, we have

hd
(2)(X(n))S �

∏
v |n

(1 − 1/qv )NnNd+1.

This completes the proof of Theorem 1.2. �
It remains to prove the lemma used in the above proof.

Lemma 7.1. If m1 ≥ 4, we have τ′(S) ≤ Nd. If m1 = l, l = 1, 2, 3, we have
τ′l(S) ≤ Nd + ε, except in the following cases.

(i) S = (N − d, 1), (1, d), in which case τ′1(S) = Nd + 1.



Endoscopy and cohomology of U(n, 1) 29

(ii) S = (2, 2) and d = 2, in which case τ′2(S) = Nd + 1 + ε = 9 + ε.

Proof. We begin with the case m1 ≥ 4. The inequality d ≥ N − n1 implies
that it suffices to prove τ′(S) ≤ N(N − n1). Substituting the definition of τ′ and
simplifying, we must show that(

N
2

)
+

∑
i≥1

ni

(
mi + 1

2

)
≤ N(N − n1). (25)

We next eliminate the variables other than N, m1 and n1. The identity
(

n+1
2

)
=

1 + . . .+ n implies that if A =
∑

ai, then
(

A+1
2

)
≥

∑(
ai+1

2

)
, and applying this to the

mi with multiplicity ni for i ≥ 2 gives∑
i≥2

ni

(
mi + 1

2

)
≤

(
N − n1m1 + 1

2

)
. (26)

Note that equality occurs above if and only if
∑

i≥2 ni is either 0 or 1. After
applying this in (25), we are reduced to showing that(

N
2

)
+ n1

(
m1 + 1

2

)
+

(
N − n1m1 + 1

2

)
≤ N(N − n1).

Simplifying gives

N(N − 1) + n1(m1 + 1)m1 + (N − n1m1 + 1)(N − n1m1) ≤ 2N(N − n1)

−2m1n1N + 2Nn1 + m2
1n2

1 ≤ −m2
1n1

0 ≤ 2m1N − 2N − m2
1n1 − m2

1

As N ≥ m1n1, we have m1N ≥ m2
1n1 so that

2m1N − 2N − m2
1n1 − m2

1 ≥ (m1 − 2)N − m2
1.

Because n1 ≥ 2 we have N ≥ n1m1 ≥ 2m1, so that

(m1 − 2)N − m2
1 ≥ m2

1 − 4m1 ≥ 0,

where we have used m1 ≥ 4 at the last step.
In the case m1 = 1, we have

τ′1(S) =

(
N
2

)
−

(
n1

2

)
+

∑
i≥2

ni

(
mi + 1

2

)
+ 1,
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and applying (26) gives

τ′1(S) ≤
(
N
2

)
−

(
n1

2

)
+

(
N − n1 + 1

2

)
+ 1.

It may be seen that the right hand side of this simplifies to N(N − n1) + 1 as
required. Equality occurs when d = N − n1 and we have equality in (26), which
is equivalent to the conditions given in (i).

In the case m1 = 2, simplifying the definition of τ′2(S) gives

τ′2(S) =

(
N
2

)
+

∑
i≥2

ni

(
mi + 1

2

)
+ 3 + ε,

and after applying (26) we have

τ′2(S) ≤
(
N
2

)
+

(
N − 2n1 + 1

2

)
+ 3 + ε.

We must therefore show that(
N
2

)
+

(
N − 2n1 + 1

2

)
+ 3 ≤ N(N − n1) + 1.

Simplifying this gives

N(N − 1) + (N − 2n1 + 1)(N − 2n1) + 4 ≤ 2N(N − n1)

4 ≤ 2Nn1 − 4n2
1 + 2n1

2 ≤ n1(N − 2n1 + 1).

The result now follows from n1 ≥ 2 and N ≥ n1m1 = 2n1, and equality occurs
exactly in case (ii).

When m1 = 3, after simplifying the definition of τ′3(S) and dropping the ε
term, we must show that

(
N
2

)
+ 6 +

∑
i≥2

ni

(
mi + 1

2

)
≤

(
N
2

)
+ 6 +

(
N − 3n1 + 1

2

)
≤ N(N − n1),

where the first inequality is (26). Simplifying this gives

N(N − 1) + 12 + (N − 3n1 + 1)(N − 3n1) ≤ 2N(N − n1)
12 ≤ n1(4N − 9n1 + 3).
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We have n1 ≥ 2 and N ≥ 3n1, so that N ≥ 6 and 4N − 9n1 + 3 ≥ N + 3 ≥ 9 as
required.

A. Bounds for fixed vectors in representations of GLd

In this section we prove bounds for the dimension of the vectors in an irre-
ducible representation of GLd that are invariant under a congruence subgroup,
with no assumption on d or the residue characteristic, by applying results of
Lapid [18] on the support of Whittaker functions for supercuspidal representa-
tions. These results were used in the proof of Lemma 5.2 (thus in the proof of
Proposition 5.1) when m1 = 2, 3.

Let F be a p-adic field. Let R be the ring of integers of F, $ a uniformizer,
k the residue field, and q its cardinality. Write v : F× → Z for the additive
valuation such that v ($) = 1. Let d ≥ 2, and let G = GLd(F). Let N, A, and
K = GLd(R) be the usual upper triangular unipotent, diagonal, and maximal
compact subgroups of G, respectively. For n ≥ 0 let K(n) be the level $n

principal congruence subgroup of K consisting of matrices which reduce to the
identity matrix modulo $n.

We first prove the following result, which bounds dim πK(n) for π supercus-
pidal, before using it to deduce a bound for a general π in Corollary A.3. Note
that the constant c in Theorem A.2 can be made explicit, which implies that the
constants C in Lemma A.1 and Corollary A.3 can be also.

Lemma A.1. There is a constant C depending only on d such that for any
n ≥ 1 and any irreducible supercuspidal representation π of G, we have
dim πK(n) ≤ Cnd−1qnd(d−1)/2.

Remark. We may obtain a uniform bound on dim πK(n) of order p(d2−1)n using the
Plancherel theorem. Indeed, if we let ZK be the center of K, and ω be the central
character of π, we may define f to be the function supported on ZK K(n) and given
by f (zk) = ω−1(z). Applying the Plancherel theorem to f gives dim πK(n) ≤

d(π)−1vol(ZK K(n))−1 for any Haar measure on G and for any supercuspidal π,
where d(π) is the formal degree of π. By normalizing Haar measure, we can
arrange that d(π) is a positive integer, which gives dim πK(n) � q(d2−1)n. This is
considered a trivial bound. On the other hand, for a fixed π (either supercuspidal
or any generic representation of G), the asymptotic growth of dim πK(n) is well
known to be of order qnd(d−1)/2. (Such an asymptotic growth is known for general
reductive p-adic groups either by character expansion or by a building argument
[21, Theorem 8.5].) So the bound of Lemma A.1 is close to optimal (and more
than enough for our global application). On a general reductive group, it is an
interesting question whether a uniform bound can be established to the same
order as the bound for an individual representation.
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Proof of Lemma A.1. For all n ≥ 1, define A(n) to be the subset of A given by

A(n) = {diag(t1, . . . , td) ∈ A : −n ≤ v (ti/ti+1) ≤ n, i = 1, . . . , d − 1}.

Let ψ0 be an additive character of F with conductor R, and let ψ be the character
of N defined by ψ(n) = ψ0(n1,2 + . . . + nd−1,d). For a generic irreducible
representation π of G let W(π) be the Whittaker model of π with respect to
ψ. In [18, Thm, 2.1], Lapid proves the following.

Theorem A.2 (Lapid). There exists a constant c = c(d) > 0 with the follow-
ing property. Let π be an irreducible supercuspidal representation of G with
Whittaker model W(π), and n ≥ 1. Then the support of any W ∈ W(π)K(n) is
contained in NA(cn)K.

Let G0 = GLd−1(F), embedded in G as the upper left block. Let N0, K0,
and K0(n) be the corresponding subgroups of G0. Define T0 to be the diagonal
subgroup of G0, and for n ≥ 1, define T0(n) to be T0 ∩ A(n). We are going
to deduce Lemma A.1 from Theorem A.2 by combining it with the result of
Bernstein-Zelevinsky that the restriction mapW(π)→ C(G0) is injective.

Let W ∈ W(π)K(n), and let W0 be its restriction to G0. Theorem A.2 implies
that W0 is supported on N0T0(cn)K0, and it is left equivariant under N0 and right
invariant under K0(n). LetV0 be the space of functions on N0T0(cn)K0 satisfying
these conditions. Any V ∈ V0 is determined by its values on T0(cn)K0/K0(n),
and dimV0 is the number of left N0-orbits on T0(cn)K0/K0(n). If T0,c is the
maximal compact subgroup of T0, there is a surjective map T0(cn)K0/K0(n) →
T0(cn)/T0,c that is constant on the orbits of N0. The fiber of this map above
t ∈ T0(cn) is naturally identified with K0/K0(n), and under this identification
the orbits of N0 on the fiber are the same as those of N0 ∩ K0 on K0/K0(n). It
follows that the number of N0-orbits on T0(cn)K0/K0(n) is equal to the product
of #T0(cn)/T0,c and #(N0 ∩ K0)\K0/K0(n). We have

#T0(cn)/T0,c = (2cn + 1)d−1 ≤ C(d)nd−1

for some C(d) > 0, and #(N0 ∩ K0)\K0/K0(n) ≤ qnd(d−1)/2, so dimV0 ≤

C(d)nd−1qnd(d−1)/2. As the map W(π)K(n) → V0 given by restriction to G0 is
injective, this implies the Lemma.

CorollaryA.3. There is a constant C depending only on d such that for any n ≥ 1
and any irreducible representation π of G, we have dim πK(n) ≤ Cnd−1qnd(d−1)/2.
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Proof. There is a standard parabolic P with Levi
∏k

i=1 GLdi , and irreducible
supercuspidal representations σi of GLdi , such that π embeds in IndG

P (σ1 × . . . ×
σk). We have

dim πK(n) ≤ dim IndG
P (σ1 × . . . × σk)K(n)

= #(P ∩ K\K/K(n))
k∏

i=1

dimσKi(n)
i ,

where Ki(n) are the level $n principal congruence subgroups of GLdi . Applying
Lemma A.1 gives

dim πK(n) ≤ C(d)#(P ∩ K\K/K(n))nd−1qn
∑ (di

2),

and the bound #(P ∩ K\K/K(n)) ≤ qn dim(G/P) finishes the proof.

We may rewrite Corollary A.3 in a form which is less sharp, but better suited
to the proof of our main theorem.

Corollary A.4. If π is an irreducible admissible representation of G, then for
every ε > 0 there is a constant C(ε, q) > 0 such that

dim πK(n) ≤ C(ε, q)q(d(d−1)/2+ε)n.

Moreover, for any ε > 0 there is q(ε) > 0 such that we may take C(ε, q) = 1 for
all q > q(ε).

B. Bounds for fixed vectors in representations of GL3

Let F be a p-adic field. Throughout this section we assume p , 2, 3. Let
R be the ring of integers of F, $ a uniformizer, k the residue field, and q its
cardinality. Write v : F× → Z for the additive valuation such that v ($) = 1.
Let G = GL3(F), K = GL3(R), and A = M3(R). Let K j be the subgroup of K
containing all elements congruent to 1 modulo $ j. Put U j = 1+π jR, a subgroup
of F×. The following result was used in an earlier version of this paper as a
substitute for the results of Appendix A. We have decided to leave it in, as it may
be of independent interest.

Theorem B.1. Assume p , 2, 3. If π is an irreducible supercuspidal representa-
tion of G, then

dim πKn ≤ 9n2q4n(1 + 1/q)3.

The proof uses the construction of supercuspidal representations of GLn(F)
by Howe in [15], in the case n = 3. It was shown in [26] that these exhaust all
supercuspidal representations of G when p is not 3.
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Remark. We rely on [15], where it is essential to assume p , 3 (or more
generally p - r if we study GLr). It may be superfluous to require p , 2, but
as p is odd in [15], we keep this assumption. When p ∈ {2, 3}, one could try
to adapt our argument using the construction of supercuspidals in [10] or [7],
but we have not investigated this as Appendix A gives the desired result for our
purpose for all p via a simpler approach.

B.1. An overview of Howe’s construction. We now describe the construction
of Howe in more detail, including the features we shall use to prove Theorem
B.1. Howe’s representations V(ψ′) are parametrized by a degree 3 extension
F′/F and a character ψ′ of F′×, satisfying a condition called admissibility. Fix
such an F′ and ψ′, and let R′, $′, and k′ be the ring of integers, uniformizer, and
residue field of F′. Write N = N(F′/F) for the norm map from F′ to F. Choose
a basis for R′ as a free R-module, which defines an embedding F′ ⊂ M3(F).
We shall identify F′ with a subalgebra of M3(F) from now on. We define the
order A′ = ∩x∈F′× xAx−1, which is characterized as the set of matrices M such
that M$′iR3 ⊂ $′iR3 for all i. We define K′ = ∩x∈F′× xKx−1 = A′ ∩ GL3(R),
which is the subgroup of matrices preserving the lattices $′iR3. For i ≥ 1 we
define K′i = 1 + $′iA′ and U′i = 1 + $′iR′. Let j be the conductor of ψ′, that is
the minimal j such that ψ′ is trivial on U′j. The admissibility condition placed on
ψ′ implies that j ≥ 1.

In [15, Lemma 12], Howe constructs a representation W(ψ′) of K′F′×4, and
defines the supercuspidal representation V(ψ′) associated to F′ and ψ′ to be the
compact induction of W(ψ′) to G. We know that dim πKn is at most dim W(ψ′)
times the number of double cosets of the form K′F′×gKn that support Kn-
invariant vectors, that is such that W(ψ′)gKng−1∩K′F′× , 0. Bounding dim W(ψ′)
is easy, while bounding the number of these double cosets requires a feature of
W(ψ′) from Howe’s paper that we now describe.

We first assume that j ≥ 2. The representation W(ψ′) is trivial on K′j,
and because K′j−1/K

′
j is abelian, W(ψ′)|K′j−1

decomposes into characters. Howe
defines a character ψ of K′j−1/K

′
j by taking the natural extension of ψ′ from U′j−1,

and shows that W(ψ′)|K′j−1
contains exactly the characters lying in the K′-orbit of

ψ for the natural action of K′ on K̂′j−1/K
′
j.

We use this fact to control those g supporting invariant vectors by observing
that if W(ψ′)gKng−1∩K′F′× , 0, then W(ψ′)gKng−1∩K′j−1 , 0. However, if g ∈ Kλ($)K
with λ ∈ X∗(T ) too large, then gKng−1∩K′j−1 will contain the intersection of K′j−1
with a unipotent subgroup of G, and this will turn out to be incompatible with the

4 Lemma 12 only defines W(ψ′) as a representation of K′, but it can be extended to K′F′× by the
remarks at the start of [15, Thm 2].
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description of W(ψ′)|K′j−1
. In the case j = 1, F′ is unramified over F and W(ψ′) is

inflated from a cuspidal representation of K′/K′1 ' GL3(k), and we may use this
to argue in a similar way.

In the case of GL3, Howe’s construction may be naturally divided into the
cases where F′/F is ramified or unramified. We shall therefore divide our proof
into these two cases, after introducing some more notation and defining the
character ψ.

B.2. The character ψ. We now assume that j ≥ 2, and define the character ψ
of K′j−1/K

′
j that appears in the description of W(ψ′)|K′j−1

.
Let B′ be the group of prime to p roots of unity in F′×, which is naturally

identified with k′×. Let C′ be the group generated by B′ and $′. Let 〈 , 〉 be
the pairing 〈S ,T 〉 = tr(S T ) on M3(F). Let χ be a character of F of conductor
R, which defines an isomorphism θ : M3(F) → M̂3(F) by θ(S )(T ) = χ(〈S ,T 〉).
Let e denote the degree of ramification of F′/F. Because the dual lattice to
A′ under 〈, 〉 is $′1−eA′ by [15, Lemma 2], the map θ gives an isomorphism
between the character group of $′i−1A′/$′iA′ and $′−i−e+1A′/$′−i−e+2A′. We
may combine θ with the isomorphism K′j−1/K

′
j ' $′ j−1A′/$′ jA′ to obtain

µ : K̂′j−1/K
′
j → $′− j−e+1A′/$′− j−e+2A′. If µ(ϕ) = y + $′− j−e+2A′, we say that y

represents ϕ. If ϕ has a representative y ∈ F′×, we see that ϕ also has a unique
representative c ∈ C′, which is called the standard representative of ϕ.

The map θ restricts to a map F′ → F̂′, which is also given by θ(x)(y) =

χ(trF′/F xy). We may combine θ with the isomorphism U′j−1/U
′
j ' $

′ j−1R′/$′ jR′

to obtain µ′ : Û′j−1/U
′
j → $− j−e+1R′/$− j−e+2R′. If µ′(ϕ) = y + $− j−e+2R′, we

say that y represents ϕ. We see that a nontrivial ϕ has a unique representative
c ∈ C′, which is called the standard representative of ϕ.

We define ψ by taking the standard representative c for ψ′ on U′j−1, and letting
ψ be the character represented by c. If we let Ad∗ denote the natural action of K′

on K̂′j−1/K
′
j, given explicitly by [Ad∗(k)ψ](g) = ψ(k−1gk), then [15, Lemma 12]

states that W(ψ′)|K′j−1
contains exactly the characters in Ad∗(K′)ψ.

B.3. Reduction to the case c < F. We may carry out the argument sketched
in Section B.1 once we have reduced to the case where either j = 1 or c < F. We
perform this reduction by observing that if j ≥ 2 and c ∈ F, then V(ψ′) is a twist
of V(ψ1) for some ψ1 of smaller conductor. Indeed, by [15, Lemma 11], if c ∈ F
then we may write ψ′ = ψ1ψ2, where ψ1 is trivial on U′j−1 and ψ2 = ψ′′◦N(F′/F)
for some character ψ′′ of F×.

Lemma B.2. We have V(ψ′) = V(ψ1) ⊗ ψ′′ ◦ det.
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Proof. This follows by examining the construction of W(ψ′) in [15, Lemma 12].
In the case c ∈ F, the groups Hi defined by Howe are equal to K′i , and the
group GLl(F′′) appearing in the proof of [15, Lemma 12] is equal to GL3(F).
Howe constructs W(ψ′) by taking the representation W(ψ1) of K′ associated to
ψ1 (which he denotes W ′′(ψ′1), and whose construction can be assumed as ψ1
has smaller conductor) and forming the twist W(ψ1) ⊗ ψ′′ ◦ det. He then obtains
W(ψ′) by applying the correspondence of [15, Thm 1] to W(ψ1)⊗ψ′′ ◦det, which
in this case is trivial so that W(ψ′) = W(ψ1) ⊗ ψ′′ ◦ det. As V(ψ′) and V(ψ1) are
the inductions of W(ψ′) and W(ψ1), the lemma follows.

The next lemma shows that it suffices to consider V(ψ1).

Lemma B.3. We have dim V(ψ′)Kn ≤ dim V(ψ1)Kn .

Proof. Because N(U′i ) = Udi/ee, if a character ϕ of F× has conductor i + 1, then
ϕ ◦ N(F′/F) has conductor ei + 1. Because ψ′′ ◦ N has conductor j ≥ 2, this
implies that there is some i ≥ 1 such that j = ei + 1 and ψ′′ has conductor i + 1.

If n ≥ i + 1 then det Kn ⊂ Ui+1. This implies that ψ′′ ◦ det is trivial on Kn,
which gives the lemma. Suppose that n ≤ i and V(ψ′)Kn , 0. As the central
character of V(ψ′) is ψ′|F× , this implies that ψ′ is trivial on Un, and hence on Ui.
As ψ1 is trivial on U′j−1∩F = Ui, this implies that ψ2 = ψ′′◦N(F′/F) is trivial on
Ui. This implies that ψ′′ is trivial on Ui, which contradicts it having conductor
i + 1.

By replacing ψ′ with ψ1, multiple times if necessary, we may assume for the
rest of the proof that j = 1 or c < F.

B.4. The unramified case. Here, the groups K′ and K′j are equal to K and K j

respectively, and so we omit the ′ in this section. We also take $′ = $. The
embedding F′ ⊂ M3(F) has the property that R′ = F′ ∩M3(R), so that it induces
an embedding k′ ⊂ M3(k). It also satisfies R′× = F′× ∩ K and U′i = F′× ∩ Ki.

We need to bound dim W(ψ′), and the number of double cosets KF′×gKn

such that W(ψ′)gKng−1∩KF′× , 0, and we begin with the second problem. We
note that F′× ⊂ KZ in the unramified case, where Z is the center of G, so that
KF′× = KZ. The dimension of W(ψ′)gKng−1∩KZ depends only on the double coset
KZgK. By the Cartan decomposition, we may therefore break the problem into
finding those λ ∈ X∗(T )+ such that ZKλ($)K supports invariant vectors, where
T is the diagonal torus in G, and then count the (ZK,Kn)-double cosets in a
given ZKλ($)K. These steps are carried out by Lemmas B.4 and B.5. We write
λ ∈ X∗(T ) as (λ1, λ2, λ3).
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Lemma B.4. If λ ∈ X∗(T )+ is such that W(ψ′)λ($)Knλ($)−1∩KZ , 0, then
max{λ1 − λ2, λ2 − λ3} ≤ n − j. (It follows that j ≤ n.)

Proof. We will prove λ1 − λ2 ≤ n − j by contradiction; the argument for λ2 − λ3
is exactly analogous.

First we treat the case j > 1. The hypothesis implies that W(ψ′)λ($)Knλ($)−1∩K j−1 ,
0, and we use the description of W(ψ′) restricted to K j−1. We identify K j−1/K j '

M3(k). If c = b$− j with b ∈ B′, and we identify b with an element of k′× ⊂
M3(k), then ψ|K j−1 under this identification corresponds to the character of M3(k)
given by x→ χ(tr(bx)/$).

If λ1 − λ2 ≥ n − j + 1, a simple calculation shows that the image of
λ($)Knλ($)−1 ∩ K j−1 in K j−1/K j ' M3(k) contains the subgroup

Y =

 ∗
∗

 ⊂ M3(k).

There must be a character in the orbit Ad∗K(ψ) which is trivial on Y , which
means that there is k ∈ K such that tr(yAd(k)b) = 0 for all y ∈ Y . The annihilator
of Y under the trace pairing is

Y⊥ =

 ∗∗ ∗ ∗
∗ ∗ ∗

 ⊂ M3(k),

so that Ad(k)b ∈ Y⊥. Any y ∈ Y⊥ has eigenvalues that lie in the quadratic
extension of k, while the eigenvalues of b lie in k′ − k because c < F, which is a
contradiction.

Next we consider the case j = 1. In this case, the proof of [15, Lemma
12] states that W(ψ′) is inflated from a cuspidal representation of GL3(k). If
λ1 − λ2 ≥ n, then the image of λ($)Knλ($)−1 ∩ K in K/K1 ' GL3(k) contains
the subgroup

Y =

 1
∗ 1
∗ 1

 ⊂ GL3(k).

However, a cuspidal representation cannot have any vectors invariant under Y ,
because then it would be a subrepresentation of a representation induced from a
parabolic of type (2,1).

LemmaB.5. Let λ ∈ X∗(T )+ satisfy max{λ1−λ2, λ2−λ3} ≤ n− j as in LemmaB.4.
The number of (ZK,Kn)-double cosets in ZKλ($)K is at most q4n−4 j(1 + 1/q)3.
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Proof. Any double coset ZKgKn contained in ZKλ($)K has a representative
with g ∈ λ($)K. It may be seen that λ($)k1 and λ($)k2 represent the
same double coset if and only if k1 ∈ λ($)−1Kλ($)k2Kn, and so if we define
Kλ = λ($)−1Kλ($)∩K then the number of double cosets is equal to |Kλ\K/Kn|.

If j = n then λ1 = λ2 = λ3 so Kλ = K, hence the lemma is trivial. So we
may assume j ≤ n − 1. Then Kλ contains any matrix g = (ga,b) ∈ M3(R) such
that v (g2,1) ≥ n − j, v (g3,2) ≥ n − j, v (g3,1) ≥ 2n − 2 j, and v (gi,i) = 0 for
1 ≤ i ≤ 3 (the last condition ensures that g ∈ K as g mod $ is upper triangular).
This implies that the image of Kλ in K/Kn ' GL3(R/$n) has cardinality at least
q5n+4 j(1 − 1/q)3. Therefore

|Kλ\K/Kn| ≤ |K/Kn|/|image(Kλ)|

≤ q9n(1 − q−3)(1 − q−2)(1 − q−1)/q5n+4 j(1 − 1/q)3

= q4n−4 j(1 + q−1 + q−2)(1 + q−1) ≤ q4n−4 j(1 + 1/q)3.

Lemma B.4 implies that there are at most n2 choices of λ ∈ X+
∗ (T )/X∗(Z)

such that KZλ($)K supports invariant vectors, and combining this with Lemma
B.5 shows that there are at most n2q4n−4 j(1 + 1/q)3 double cosets KZgKn that
support invariant vectors. This gives

dim V(ψ′)Kn ≤ n2q4n−4 j(1 + 1/q)3 dim W(ψ′).

We now bound dim W(ψ′). We first assume that j ≥ 2. Our assumption that
c < F implies that the field F′′ in [15, Lemma 12] is the same as F′, and the
groups Hi are given by H0 = R′× and Hi = U′i for i ≥ 1. Following the proof of
that lemma, we see that W(ψ′) is the representation associated to the character
ψ′ on R′× by [15, Thm 1]. When j is even, that theorem implies that W(ψ′) is the
induction of a character of R′×K j/2 to K, so that dim W(ψ′) = |K : R′×K j/2|. We
have |K : R′×K j/2| = q3 j(1 − 1/q)(1 − 1/q2) ≤ q3 j.

When j is odd, we let j = 2i + 1. The construction of W(ψ′) in this case
is described on [15, p. 448], and is given by inducing a representation J from
R′×Ki to K. The discussion on p. 448 implies that J has the same dimension
as the two representations denoted V(ϕ̃′′) and V(ψ) there, and Howe states that
dim V(ψ) = (#H̃/Z̃)1/2 for two groups H̃ and Z̃. Moreover, on p. 447 he states
that H̃/Z̃ ' H/Z ' Ki/U′i Ki+1. As i ≥ 1, we have dim J = |Ki/U′i Ki+1|

1/2 = q3.
We then have dim W(ψ′) = q3|K : R′×Ki| = q3q6i(1−1/q)(1−1/q2) ≤ q6i+3 = q3 j.

In the remaining case j = 1, W(ψ′) is inflated from a cuspidal representation
of GL3(k). Such a cuspidal representation has dimension (q2−1)(q−1). Therefore
dim W(ψ′) = (q2 − 1)(q − 1) ≤ q3 = q3 j.

In all cases we have verified dim W(ψ′) ≤ q3 j. Hence

dim V(ψ′)Kn ≤ n2q4n−4 j(1 + 1/q)3 · q3 j ≤ n2q4n(1 + 1/q)3.
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B.5. The ramified case. In this case we must have j ≥ 2. Moreover, F′

is tamely ramified over F (since p , 3) and generated by a cube root of a
uniformizer $ of F. Thus we may assume $′3 = $. Choose our basis for
R′ as a free R-module to be {1, $′, $′2}. With this choice, the image of $′ in G
is

$′ =

 $
1

1

 .
We see that $′iA′ is given by

$′3iA′ = $i

 ∗ $∗ $∗
∗ ∗ $∗
∗ ∗ ∗

 , (B.1)

$′3i+1A′ = $i

 $∗ $∗ $∗
∗ $∗ $∗
∗ ∗ $∗

 , (B.2)

$′3i+2A′ = $i

 $∗ $∗ $2∗

$∗ $∗ $∗
∗ $∗ $∗

 , (B.3)

where the *’s lie in R. As K′ = A′×, K′ is the lower triangular Iwahori subgroup.
The proof may be naturally broken into cases depending on the residue class

of j modulo 3. We may assume that j . 1 (3), as in this case we have c ∈ F.
Note that we are using our assumption that $′3 = $ here.

As in the unramified case, we begin by observing that it suffices to bound
dim W(ψ′) and the number of double cosets K′F′×gKn such that W(ψ′)gKng−1∩K′F× ,
0. This condition depends only on K′F′×gK, and the following lemma gives a
convenient set of representatives for these double cosets.

Lemma B.6. If Σ = {λ ∈ X∗(T ) : λ1 + λ2 + λ3 = 0}, we have G =⋃
λ∈Σ K′F′×λ($)K.

Proof. We use the Bruhat decomposition. Let T 1 and N(T ) be the maximal
compact subgroup and normalizer of T . We define the Weyl group W = N(T )/T
and affine Weyl group W̃ = N(T )/T 1. We identify W with the group of
permutation matrices in K, and hence with a subgroup of W̃. We then have
W̃ ' X∗(T )oW, and W̃ may be identified with matrices of the form λ($)w with
λ ∈ X∗(T ) and w ∈ W.

We have$′ ∈ N(T ), and it may be seen that W̃ = 〈$′〉ΣW. Indeed, the action
of $′ on W̃/W ' X∗(T ) by left multiplication is given by
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$′(λ1, λ2, λ3) = (λ3 + 1, λ1, λ2),

so every orbit contains a unique element of Σ. The Bruhat decomposition then
gives

G =
⋃
w∈W̃

K′wK′ =
⋃
λ∈Σ

K′〈$′〉λ($)WK′ =
⋃
λ∈Σ

K′F′×λ($)K

as required.

The next lemma bounds those λ ∈ Σ such that K′F′×λ($)K supports invariant
vectors.

Lemma B.7. If λ ∈ Σ satisfies W(ψ′)λ($)Knλ($)−1∩K′F′× , 0, then

max{λ1 − λ2, λ2 − λ3, λ3 − λ1 + 1} ≤ n − i − 1 if j = 3i + 2, (B.4)

max{λ2 − λ1, λ3 − λ2, λ1 − λ3 − 1} ≤ n − i − 1 if j = 3i. (B.5)

In either case, summing the three bounds gives j ≤ 3n − 2.

Proof. We may naturally identify K′/K′1 and K′j−1/K
′
j with (k×)3 and k3 using

the coordinate entries in such a way that the adjoint action of K′/K′1 on K′j−1/K
′
j

is given by

Ad(x1, x2, x3)(y1, y2, y3) =

{ (x1x−1
2 y1, x2x−1

3 y2, x3x−1
1 y3), j ≡ 0 (3),

(x−1
1 x2y1, x−1

2 x3y2, x−1
3 x1y3), j ≡ 2 (3).

Moreover, if c is equal to $′− j−2b with b ∈ B′ ' k×, then the character ψ of
K′j−1/K

′
j is given by ψ(y1, y2, y3) = χ(b(y1 + y2 + y3)/$). This implies that

Ad∗(h)ψ is nontrivial on every coordinate subgroup in K′j−1/K
′
j ' k3 for any

h ∈ K′.
If W(ψ′)λ($)Knλ($)−1∩K′F′× , 0, then W(ψ′)λ($)Knλ($)−1∩K′j−1 , 0. Because

W(ψ′)|K′j−1
is a sum of characters of the form Ad∗(h)ψ with h ∈ K′, one such

character must be trivial on λ($)Knλ($)−1 ∩ K′j−1, which implies that the image
of λ($)Knλ($)−1 ∩K′j−1 in K′j−1/K

′
j does not contain a coordinate subgroup. By

combining the definition K′j−1 = 1 + $′ j−1A′ with (B.1)–(B.3), we see that this
implies the inequalities (B.4) and (B.5).
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Lemma B.8. Let λ ∈ Σ satisfy (B.4) or (B.5). The number of (K′F′×,Kn)-
double cosets in K′F′×λ($)K is at most q3n−2i(1 + 1/q)3 when j = 3i, and
q3n−2i−2(1 + 1/q)3 when j = 3i + 2.

Proof. Any double coset K′F′×gKn contained in K′F′×λ($)K has a representa-
tive of the form λ($)k, and two elements λ($)k1 and λ($)k2 represent the same
double coset if and only if k2 ∈ λ($)−1K′F′×λ($)k1Kn. Therefore if we define
K′λ = λ($)−1K′λ($)∩K, the number of double cosets is bounded by |K′λ\K/Kn|.
It may be seen that K′λ contains any matrix g = (ga,b) ∈ M3(R) satisfying the
conditions

v (ga,b) ≥ max{λb − λa + 1, 0}, a < b
v (gi,i) = 0, 1 ≤ i ≤ 3
v (ga,b) ≥ max{λb − λa, 0}, a > b

on the upper triangular, diagonal, and lower triangular entries respectively. The
reader should note that for each pair a , b, one may order (a, b) so that the
inequalities on v (ga,b) and v (gb,a) have the form v (ga,b) ≥ c, v (gb,a) ≥ 0 for some
c > 0. Moreover, the set of entries for which the inequality above reads v (ga,b) ≥
0 form the unipotent radical of a Borel subgroup Bλ containing the diagonal
matrices. It follows that K′λ lies between Bλ ∩GL3(R) and (Bλ ∩GL3(R))K1.

We will divide the proof into six cases depending on the possibilities for Bλ.
We treat one case in detail, and describe the modifications to be made in the
others.

Case 1: Bλ =

 ∗ ∗ ∗∗ ∗
∗


In this case, the significant congruence conditions imposed on g = (ga,b) ∈ K′λ
are

v (g2,1) ≥ λ1 − λ2, v (g3,1) ≥ λ1 − λ3, and v (g3,2) ≥ λ2 − λ3. (B.6)

The image of K′λ in K/Kn therefore has cardinality at least q9n+2λ3−2λ1 (1 − 1/q)3,
and so as in Lemma B.5 we have |K′λ\K/Kn| ≤ |K/Kn|/|image(K′λ)| ≤ (1 +

1/q)3q2λ1−2λ3 . If j = 3i then Lemma B.7 gives 2λ1 − 2λ3 ≤ 2n − 2i as required.
If j = 3i + 2, Lemma B.7 does not provide a strong enough bound for λ1 − λ3,
and so we instead observe that the image of K′λ in K/Kn contains those matrices
satisfying

v (g2,1) ≥ λ1 − λ2, v (g3,1) ≥ n, and v (g3,2) ≥ λ2 − λ3, (B.7)
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with the other conditions unchanged. This group has cardinality at least q8n+λ3−λ1 (1−
1/q)3, and so |K′λ\K/Kn| ≤ (1 + 1/q)3qn+λ1−λ3 . Lemma B.7 gives

λ1 − λ3 = (λ1 − λ2) + (λ2 − λ3) ≤ 2n − 2i − 2,

which gives the Lemma in this case.
In the other five cases, we may apply the same method to produce a bound

of the form |K′λ\K/Kn| ≤ (1 + 1/q)3qτ, where τ depends on the residue class of
j modulo 3. We describe the underlying recipe for finding τ in the case above,
and then show what it gives in each remaining case. When j ≡ 0 (3), we added
the right hand sides of (B.6), and the resulting expression 2(λ1 − λ3) could be
bounded using one application of Lemma B.7, which gave τ. When j ≡ 2 (3),
we modified the bound in (B.6) corresponding to the non-simple positive root for
Bλ to obtain (B.7), added the right hand sides, and bounded the result using two
applications of Lemma B.7 to give τ.

We now find τ in the remaining 5 cases, and check that

τ ≤
{ 3n − 2i − 2, j = 3i + 2,

3n − 2i, j = 3i.

Note that in some cases we may need to use the assumption that n ≥ 1, which
we are free to make.

Case 2: Bλ =

 ∗ ∗ ∗∗
∗ ∗


The analog of (B.6) is

v (g2,1) ≥ λ1 − λ2, v (g3,1) ≥ λ1 − λ3, v (g2,3) ≥ λ3 − λ2 + 1,

which is modified to v (g2,1) ≥ n. We have

2λ1 − 2λ2 + 1 ≤ 2n − 2i − 1 = τ when j = 3i + 2,
n + λ1 − λ2 + 1 ≤ 3n − 2i = τ when j = 3i.

Case 3: Bλ =

 ∗ ∗

∗ ∗ ∗

∗


The analog of (B.6) is

v (g1,2) ≥ λ2 − λ1 + 1, v (g3,1) ≥ λ1 − λ3, v (g3,2) ≥ λ2 − λ3,
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which is modified to v (g3,2) ≥ n. We have

2λ2 − 2λ3 + 1 ≤ 2n − 2i − 1 = τ when j = 3i + 2,
n + λ2 − λ3 + 1 ≤ 3n − 2i = τ when j = 3i.

Case 4: Bλ =

 ∗ ∗∗
∗ ∗ ∗


The analog of (B.6) is

v (g2,1) ≥ λ1 − λ2, v (g1,3) ≥ λ3 − λ1 + 1, v (g2,3) ≥ λ3 − λ2 + 1,

which is modified to v (g2,3) ≥ n. We have

2λ3 − 2λ2 + 2 ≤ 2n − 2i = τ when j = 3i,
n + λ3 − λ2 + 1 ≤ 3n − 2i − 2 = τ when j = 3i + 2.

Case 5: Bλ =

 ∗∗ ∗ ∗
∗ ∗


The analog of (B.6) is

v (g1,2) ≥ λ2 − λ1 + 1, v (g1,3) ≥ λ3 − λ1 + 1, v (g3,2) ≥ λ2 − λ3,

which is modified to v (g1,2) ≥ n. We have

2λ2 − 2λ1 + 2 ≤ 2n − 2i = τ when j = 3i,
n + λ2 − λ1 + 1 ≤ 3n − 2i − 2 = τ when j = 3i + 2.

Case 6: Bλ =

 ∗∗ ∗
∗ ∗ ∗


The analog of (B.6) is

v (g1,2) ≥ λ2 − λ1 + 1, v (g1,3) ≥ λ3 − λ1 + 1, v (g2,3) ≥ λ3 − λ2 + 1,

which is modified to v (g1,3) ≥ n. We have

2λ3 − 2λ1 + 3 ≤ 2n − 2i − 1 = τ when j = 3i + 2,
n + λ3 − λ1 + 2 ≤ 3n − 2i = τ when j = 3i.
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There are at most 9n2 choices of λ ∈ Σ satisfying the bounds of Lemma B.7.
Indeed, if j = 3i + 2 then the Lemma gives n − 1 ≥ λ1 − λ2, λ2 − λ3 ≥ −2n + 3,
and these two values determine λ ∈ Σ uniquely. If j = 3i, we have i ≥ 1 so
the Lemma likewise gives 2n − 3 ≥ λ1 − λ2, λ2 − λ3 ≥ −n + 2. Moreover, the
bound of Lemma B.8 may be written as q3n− j+i(1 + 1/q)3 in either case j = 3i
or j = 3i + 2. We therefore have at most 9n2q3n− j+i(1 + 1/q)3 double cosets
K′F′×gKn that support invariant vectors, and

dim V(ψ′)Kn ≤ 9n2q3n− j+i(1 + 1/q)3 dim W(ψ′).

If j is even, W(ψ′) is again obtained by inducing a character from R′×K′j/2 to K′,
and we have dim W(ψ′) = |K′ : R′×K′j/2| = (1 − 1/q)2q j.

If j is odd, set j = 2l + 1. As before, Howe defines W(ψ′) to be the induction
from R′×K′l to K′ of a representation of dimension |K′l : U′l K′l+1|

1/2 = q. This
gives dim W(ψ′) ≤ q|K′ : R′×K′l | = (1 − 1/q)2q2l+1 = (1 − 1/q)2q j.

In either case, the bound dim W(ψ′) ≤ q j gives

dim V(ψ′)Kn ≤ 9n2q3n− j+i(1 + 1/q)3 · q j = 9n2q3n+i(1 + 1/q)3.

If j = 3i then the bound j ≤ 3n − 2 from Lemma B.7 gives i ≤ n − 1, while if
j = 3i + 2 then j ≤ 3n− 2 gives i ≤ n− 2. In either case, this completes the proof
of Theorem B.1.
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