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ABSTRACT. Igusa varieties are smooth varieties in positive characteristic p which are closely related to Shimura varieties
and Rapoport-Zink spaces. One motivation for studying Igusa varieties is to analyze the representations in the coho-
mology of Shimura varieties which may be ramified at p. The main purpose of this work is to stabilize the trace formula
for the cohomology of Igusa varieties ([Shi09]) arising from a PEL datum of type (A) or (C). Our proof is unconditional
thanks to the recent proof of the fundamental lemma by Ngo, Waldspurger and many others.

An earlier work of Kottwitz ([Kot90]), which inspired our work and proves the stable trace formula for the special
fibers of PEL Shimura varieties with good reduction, provides an explicit way to stabilize terms at oco. Stabilization
away from p and oo is carried out by the usual Langlands-Shelstad transfer as in work of Kottwitz. The key point of our
work is to develop an explicit method to handle the orbital integrals at p. Our approach has the technical advantage
that we do not need to deal with twisted orbital integrals or the twisted fundamental lemma.

One application of our formula, among others, is the computation of the arithmetic cohomology of some compact
PEL-type Shimura varieties of type (A) with nontrivial endoscopy. This is worked out in [Shi].

1. INTRODUCTION

The [-adic étale cohomology and Hasse-Weil zeta-functions of Shimura varieties have been computed in several cases
using the strategy developed by Ihara, Kottwitz, Langlands and others. At the core of the method lies the comparison
of the Arthur-Selberg formula (or L2-Lefschetz formula by Arthur) and the Lefschetz fixed-point formula for the special
fibers of Shimura varieties at primes of good reduction (“unramified” primes). In order to compute the cohomology of
Shimura varieties at ramified primes, Harris and Taylor introduced a new method making use of the interplay among
Shimura varieties, Rapoport-Zink spaces and Igusa varieties. There are two main parts for this method. On one
hand, one establishes a formula relating the cohomology spaces of the three geometric objects ([HT01, Thm VI.2.9],
generalized in [Man05, Thm 22]). On the other hand one obtains a trace formula for the cohomology of Igusa varieties
via counting points ([HT01, Prop V.4.8], generalized in [Shi09]) and compares it to the L?-Lefschetz formula for
Shimura varieties ([Art89, Thm 6.1]). This comparison of the two trace formulas usually requires stabilization. On the
geometric side of the trace formula, very roughly speaking, this amounts to rewriting a sum of orbital integrals over
the set of conjugacy classes as a sum of stable orbital integrals over the set of stable conjugacy classes on endoscopic
groups. In fact, the issue of stabilization was bypassed in the work of Harris and Taylor as they only work with some
simple kinds of unitary similitude groups for which endoscopy disappears. However more interesting applications are
expected to result from the general case where stabilization is necessary.

The aim of our work is to carry out the stabilization of the trace formula for the cohomology of Igusa varieties,
with [Shi09, Thm 13.1] as a starting point. We will use the standard form of the fundamental lemma and the transfer
conjecture (Conjectures 2.13 and 2.14), which were recently proved by Ngd and Waldspurger, based on previous work
of many others. (See Proposition 2.17 and the subsequent explanation.) Note that there have been results on the
stabilization of various trace formulas which are related or analogous to ours. The elliptic part of the Arthur-Selberg
trace formula was stabilized by Langlands ([Lan83]) and Kottwitz ([Kot86]). The characteristic 0 Lefschetz formula
for Shimura varieties (as in [Art89] or [GKMO97]) was stabilized by Kottwitz ([Kotb]) in an unpublished manuscript.
The point-counting formula for PEL-type Shimura varieties of type (A) or (C) was stabilized by [Kot92b], [?] and
[Mor].! Tt is worth noting that [Kot92b], [?] and [Mor] use a form of the twisted fundamental lemma while our work
does not.

Let us summarize our results more precisely. Let G be the reductive group over Q attached to a PEL Shimura
variety Sh of type (A) or (C), which is a projective system of quasi-projective varieties over a number field. The
Newton strata of the special fiber of Sh at a place above p are parametrized by group-theoretic data b € B(Gg,),
where each b prescribes an isogeny class of Barsotti-Tate groups over Fp with additional structure. Choose ¥ in that
isogeny class. One can define the Igusa variety Igy;, , which is a projective system of smooth varieties over F, related
to the Newton stratum of Sh corresponding to b. From an irreducible finite-dimensional representation £ of G, we
construct an l-adic local system .Z; on Igy, and Sh where I # p. (We use the same notation .Z; for Igy, and Sh by
abuse of language.) We will consider the /-adic cohomology space H.(Igy, , %) (alternating sum over all cohomological

IThe author is partially supported by the National Science Foundation under agreement No. DMS-0635607.
IKottwitz stabilized the formula for compactly supported cohomology. This result was extended by Morel to the case of intersection

cohomology.
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degrees), which is a virtual representation of G(A*?) x J,(Q,). Here Jj is a certain inner form of a Levi subgroup (of
a parabolic subgroup) of Gq,. (The group action at p is different for the cohomology of Sh. The latter has an action
of G(A*).) When ¢ € C°(G(A™P) x J,(Q,)) is acceptable ([Shi09, Def 6.2]), we have the following formula ([Shi09,
Thm 13.1]). Details are given in §4.4.

tr(6|Ho(lgy,, Z)) = Y. volIao(R))HA(I)| - tr&(n0) - OL G @ (g). (1.1)

(vosy,8) KT

The upshot of the present paper is Theorem 1.1 which stabilizes (1.1). This is an analogue of Kottwitz’s stable
trace formula ([Kot90, Thm 7.2]).

Theorem 1.1. (Theorem 7.2 2)

Let ¢ € C°(G(A®P) x J,(Qp)) be any acceptable function. For each elliptic endoscopic triple (H, s,n) for G, let
R be the function on H(A) constructed from ¢ as in §7. Let STH denote the stable distribution on H(A) given by
the sum of stable orbital integrals on elliptic semisimple elements. (See (7.3) for the precise definition.) Then

tr (¢|Ho(lgs,, Z) = |ker (Q,G)| Y (G, H)STS (h")

(H,s,m)

Since the orbital integral in (1.1) is essentially a product of local orbital integrals, we can basically stabilize (1.1) at
each place. The stabilization away from p is done exactly as in [Kot90, §7]. In fact, it is the usual Langlands-Shelstad
transfer of orbital integrals away from p and oco. At the infinite place of Q, we obtain an ezplicit transfer in exactly
the same way as in work of Kottwitz, where the essential inputs are Shelstad’s theory of real endoscopy and Clozel-
Delorme’s result on the existence of pseudo-coefficients for discrete series. (Although the existence of transfer at oo
can be deduced without exhibiting functions, the mere existence is not enough for applications to the computation
of cohomology, at least a priori.) So the main issue for us, which takes up §6, is how to stabilize the term at p in a
sensible way. The stabilization at p, which includes an explicit process of constructing hf , is considered important
because the explicit information about hf would eventually go into the computation of the Galois and automorphic
representations (even if they are ramified at p) in the cohomology of Shimura varieties at p. There are two problems
for stabilization at p. First, we are not in the usual formalism of the trace formula since the orbital integral at p
is computed on a different group, namely on J,(Q,). We resolve this issue by relating the endoscopy of J;, to the
endoscopy of G in a systematic way. Second, we need to relate the Kottwitz invariant (§4.2) at p to the transfer
factors. This is precisely the content of Lemma 6.3, which plays a key role. (An analogous result in the context of
Kottwitz’s formula is proved by Kottwitz in [?, Appendix].)

Our motivation for this work stemmed from two kinds of expected application of Theorem 1.1. (A fair part of that
expectation has been realized.) As the first application, given certain PEL-type Shimura varieties arising from unitary
groups with nontrivial endoscopy, we may compute their [-adic cohomology at ramified primes as long as we have
some prior knowledge of the cohomology of Rapoport-Zink spaces involved in the computation. Indeed, we studied in
[Shi] the cohomology of compact U(1,n — 1)-type Shimura varieties (which are more general than the ones in [HT01]
which have trivial endoscopy) in detail and obtained applications to Galois representations. We would like to make two
technical remarks regarding the last result. First, in the special case of U(1,n — 1)-type, it is actually not necessary
to assume that the PEL datum is unramified (§4.1) (as we still have nice integral models for Shimura varieties; they
also lead to a good notion of Igusa varieties). Although we wrote this paper only for an unramified PEL datum, the
argument and construction carry over to the U(1,n — 1)-case without the unramified assumption. Next, it is worth
noting that a large part of the cohomology of (compact or noncompact) Shimura varieties arising from unitary groups
with arbitrary signature could also be computed at ramified places even if endoscopy is nontrivial, by arguing as in
section A.7.3 of [Far04] (even though the latter only deals with the case of trivial endoscopy). The basic strategy is
to combine what we know in the case of U(1,n — 1) (e.g. [Shi, §6.2]) with the information about the cohomology
of those Shimura varieties at unramified places (e.g. [?, §8.4], which extends the results of [Kot92a] to the setting
of noncompact Shimura varieties with nontrivial endoscopy), and apply the Cebotarev density theorem to obtain the
desired information at ramified places.?

The second application of our results is expected in some cases where we have prior knowledge of the cohomology
of Shimura varieties. We may compute the cohomology of Rapoport-Zink spaces as an application of Theorem 1.1, by
proving a generalization of [HT01, Thm V.5.4] and using a result of Mantovan ([Man05, Thm 23]). This way we can
recover the main results of Fargues ([Far04, Ch 8]) and prove some new facts. The second application will appear in
our forthcoming work.

Finally let us sketch the structure of the article. Sections 1-4 are devoted to known facts and background materials
from various sources. The reader may try to digest the statement of Theorem 4.4 and then read from §5, where the

2t is a mere coincidence of numbering that our Theorem 7.2 is an analogue of the theorem 7.2 of [Kot90)].
3Morel suggested that we include this remark on Shimura varieties attached to unitary groups with arbitrary signature.
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stabilization of formula (4.3) in Theorem 4.4 begins. The first four sections may be used as reference along the way.
Section 5 is the easier part of stabilization, where local expressions away from p are treated. Here we have not needed
any new ideas or insights. The heart of the paper is section 6 and concerned with stabilization at p. After preparatory
subsections 6.1 and 6.2, we construct the functions hf whose stable orbital integrals have the desired values. It is
fundamentally used in our construction that the Kottwitz invariant at p (denoted by ;) interacts nicely with transfer
factors. This relationship is formulated in Lemma 6.3. The proof of Lemma 6.3 is the most technical result of our
paper and takes up §6.4. Section 7 puts together the main results of sections 5 and 6, culminating in Theorem 7.2
with the fully stabilized formula. Our paper could end here, but we included section 8 for two purposes. By explicitly
computing some terms in Lemma 6.3 in simple cases, we wish to help the reader understand the nature of Lemma 6.3.
More importantly, the computation of cas, is a necessary input in the aforementioned application of our main result
to the cohomology of Shimura varieties.
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1.1. Notation and Convention. We will work with various sets of isomorphism classes. By abuse of terminology,
we often choose a representative in each isomorphism class and identify the set of isomorphism classes with the set of
representatives. When a specific representative is chosen from an isomorphism class, we explain the choice.

Let F be a field of characteristic 0. Let T’ denote Gal(F/F) in §2.1-§2.4. Starting from §3, I' := Gal(Q/Q) and
I'(v) := Gal(Q,/Q,) for each place v of Q. For any linear algebraic group G over F, denote by G° the neutral
component of G.

Let D be a diagonalizable group over F. Let X*(D) (resp. X.(D)) denote the Z-module Homg(D,G,,) (resp.
Hom g (G, D)) with Gal(F/F)-action. We often write X*(D)g for X*(D) ®z Q. The same applies to X.(D)g. For
a finite abelian group A, let AP denote the group Hom(A4,C*).

Let G and G’ be connected reductive groups over F. For each g € G(F), use Int(g) : G — G to denote the inner
automorphism defined by z +— gzg~!. Let Intx(G) be the group of all inner automorphisms of G defined over a field
K (containing F). We say that G and G’ are F-inner forms with respect to an F-isomorphism 1 : G = G" if ¢y =1 o)
lies in Int#(G) for every o € Gal(F/F). This notion only depends on the G(F)-conjugacy orbit of 1. We often omit
the reference to i when there is no danger of confusion.

Let G be a connected reductive group over F. Let G denote the derived subgroup of G, and G* a quasi-split
F-inner form of G. Write Z(G) for the center of G and Ag for the maximal F-split torus in Z(G). If T is a
maximal torus of G xp F, we write R(G,T) (resp. RY(G,T)) for the set of roots (resp. coroots) of T in G and
Q(G,T) := Ng(T)/T for the Weyl group. Let Zg () denote the centralizer of v € G(F) in G. If ~ is semisimple and
GY°* is simply connected, then Zg(7) is connected. (See [Kot82, §3].) A semisimple v € G(F) is called F-elliptic if
Z(Za(7))°/Z(G)° is anisotropic over F. An F-elliptic torus T in G is one such that T/Z(G)° is anisotropic over F.

Set H'(F,G) := H'(Gal(F/F),G(F)). When F is a number field, write ker' (F,G) for the kernel of H'(F,G) —
[1, H*(F,,G) where v runs over all places of F. Similarly define ker!(F, H) for any complex Lie group H equipped
with an action of Gal(F/F) factoring through a finite quotient.

Suppose that v,7" € G(F). We say that v and +' are (G(F)-)conjugate in G(F) and write v ~ «' if there exists
g € G(F) such that 7/ = gyg~'. When v and 7/ are conjugate in G(F) so that 7/ = gyg~! for some g € G(F), the
association o — g71g° defines an element of ker(H'(F,I) — H'(F,Q)) where I := Zg(7). If this cohomology class
is in the image of ker(H!(F,I°) — H'(F,Q)), we say that v and v’ are stably conjugate, and write y ~g /. If I is
connected then G(F)-conjugacy and stable conjugacy coincide for by definition.

When we say that a field F' of characteristic 0 is global (resp. local), it means that F' is a finite extension of Q
(resp. @, for some place v of Q). Suppose that F is global or local. Then the Weil group Wr of F is defined
([Tat79]). To discuss the L-group “G of a connected reductive F-group G, we fix a Gal(F/F)-invariant splitting
data (B, T,{X,}aeca) once and for all where A is the set of B-positive roots for T in G. The L-group is defined as
a semi-direct product “G := G x W, where Wy acts on G via Wg — Out(G) = Aut(é,]&'ﬂ‘, {Xa}aeca). Often a
Levi subgroup of a parabolic subgroup of G (resp. “G) will be called a Levi subgroup of G (resp. ©G) by abuse of
terminology. (See [Bor79, §2-3] for details on L-groups and their Levi subgroups.)
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Let F be a global field. When S is a finite set of places of F', we denote by Af; the restricted product of F, for all
végsS.
Finally, if G is a Q-group and F' is any field containing Q, we write G for G xg F.

1.2. Harmonic analysis on reductive groups. We introduce further notation and convention for harmonic analysis
on reductive groups. Let G be a connected reductive group over a field F' of characteristic 0.

Suppose that F is local. The Kottwitz sign e(G) € {£1} is defined in [Kot83]. If G is quasi-split over F then
e(G)=1. If F =Q, (resp. F = R) then we often write e,(G) (resp. e (G)) for this sign. Let C°(G(F')) (resp.
C(G(F))) denote the space of smooth (resp. smooth and compactly supported) functions on G(F') with values in
an algebraically closed field 2. When F' is R or C, take 2 = C so that smoothness makes sense. When F' is non-
archimedean, smooth means locally constant and £ may be C or Q, for some prime [. We will always take Q = C from
65 until the end. When F = R, let x : Ag(R)? — C* be a continuous homomorphism and fix a maximal compact
subgroup Ko, of G(R). Define C°(G(R), x) to be the space of smooth functions G(R) — C which are bi-K-finite,
compactly supported modulo Ag(R)?, and transform under Ag(R)° by x.

Keep assuming that F' is local. Let G; and Gy be connected reductive F-groups which are inner forms. Once a
Haar measure p1 on G1(F) is chosen, there is a unique Haar measure ps on Go(F') such that pq and pe are compatible
in the sense of [Kot88, p.631].

Let us define orbital integrals and stable orbital integrals. Let v € G(F) be a semisimple element and fix Haar
measures on G(F) and Zg(v)°(F). For ¢ € C>(G(F)), define

G —
09"(9) = | fla~ye)de
Za (7)) (FI\G(F)

where the quotient measure is used for integration. The stable orbital integral is defined as ([Kot88, p.638])
G(F
SOS (@) = Y e(Za(y)") - a(v)- 05 (9)

Y sty

where 4/ runs over a set of representatives for G(F')-conjugacy classes in the stable conjugacy class of . The number
a(v') is defined as the cardinality of the kernel of H!(F, Zg(v')°) — HY(F, Zg(v')). We remark on the choice of Haar
G(F)
ﬂ//
Za(7")? is chosen to be compatible with that on Zg(v)°.

Assume that F is a local non-archimedean field. Let Irr(G(F')) denote the set of isomorphism classes of irreducible
admissible representations of G(F). The Grothendieck group of admissible representations of G(F) is written as
Groth(G(F)). (See [HTO01, p.23] for a precise definition, which also works for representations of any topological
group.) Let M be a Levi subgroup of a parabolic subgroup P of G. Write N for the unipotent radical of P. Define a
function D§; on M(F) and a character dp : M(F) — C* by

measures for O/ (4) in the definition. If 4/ ~4 v then Zg(y")? and Zg(7)? are F-inner forms. The measure on

DS (m) = det(1 — ad(m))|Lie (G)/Lie (M) dp(m) = [det(ad(m))|Lie (P)/Lie (1) | F

where |-|p : F'* — RZ is the valuation map normalized such that the inverse of the uniformizer maps to the cardinality
of the residue field of F. Let 7 be an admissible representation of G(F) on a €-vector space V. Denote by Jac% ()
the admissible representation of M (F') on the quotient of V' by the subspace generated by nv — v for n € N(F') and
ve V. Put J§(r) := Jach(m) ® 5;1/2. Both Jac$(m) and JS (r) induce maps from Groth(G(F)) to Groth(M(F)).
If 7 is an admissible representation of G(F') on a vector space V, each ¢ € C°(G(F')) defines a finite-rank operator
(@) := fG(F) ¢(g)m(g)dg on V. Thereby trm(¢), or tr (¢ | ), is defined. This definition extends to m € Groth(G(F)).

Let G be a connected reductive group over Q and S be a finite set of places of Q. Choose a hyperspecial subgroup
KD of G(Q,) at every finite place v where G, is unramified (possibly with finitely many exceptions of v), and define
the spaces C*°(G(A®)) and C°(G(A®)) via restricted product over all v ¢ S ([Fla79, §3]). Let Groth(G(A®)) denote
the Grothendieck group of admissible representations of G(A®) (where we assume S O {oc}). The definition of orbital
integrals, stable orbital integrals and the trace distributions extends to the adelic case in an obvious way. There is a
canonical measure on G(A)/Ag(R)?, called the Tamagawa measure. The volume of G(A)/Ag(R)° for this measure is
finite and denoted by 7(G). It is known that ([Kot88, p.629])

7(G) = |m0(Z(G)S@D)| /| ker (Q, ). (1.2)

Let G be a real reductive group and T be an R-elliptic torus in G. Define d(G) := |ker(H'(R,T) — H' (R, Q))|.
This value is finite and independent of the choice of T'.

2. ENDOSCOPIC GROUPS AND THE TRANSFER CONJECTURE

Throughout §2, let G be a connected reductive group over a local or global field F' of characteristic 0 and assume
that G9°* is simply connected. More conditions on G or F will be specified as needed. In §2.1 and §2.4 various sets
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such as Ep(G), EQr(G), SSr(G), etc, are defined. In later sections we will write £(G) (resp. &,(G)) for Er(G) if
F =Q (resp. F'=Q,) and do the same with EQr(G), SSr(G), etc.

2.1. Endoscopic triples. We first give the definition of endoscopic triples. Recall that there is an action of I' :=
Gal(F/F) on G given by the choice of splitting data. The definition below is independent of this choice since the
T-actions for any two splitting data differ by G-conjugacy.

Definition 2.1. ([Kot84b, 7.4])
An endoscopic triple for G is a triple (H,s,n) satlsfymg the followmg three conditions where H is a quasi-split

connected reductive group over F, s is an element of Z(H ) and 7 : H— Gisan embedding of complex Lie groups.
(1) n(H) = Zg(n(s))".
(ii) The G-conjugacy class of n is fixed by T’
(iii) The image of sin Z(H)/Z(G) is I'-invariant and its image under the connecting homomorphism (Z(H)/Z(G))" —
HY(F, Z(G)) arising from the I'-equivariant short exact sequence

1— Z(G) — Z(H) — Z(H)/Z(G) — 1
is trivial if F is local and locally trivial (i.e. contained in ker!(F, Z(G))) if F is global.

Remark 2.2. The condition (i) in the above definition implies that the embedding of Z(G) into Z(H) via 7 is I-
invariant. Thus the condition (iii) makes sense.

Remark 2.3. Tt is obvious that the endoscopic triples for G are the same as those for G’ if G and G’ are inner forms
over F.

Definition 2.4. An endoscopic triple (H, s,7) for G is called elliptic if (Z(H)')° c Z(G), or equivalently if Z(H)' Z(G)/Z(G)
is a finite group.

Definition 2.5. ([Kotb, Def 2.5])
An isomorphism between endoscopic triples (H,s,n) and (H',s',n') for G is an isomorphism « : H = H' such that

(i) no @ and 7' are conjugate under an element of G. (This makes sense as the H -conjugacy orbit of @ is
well-defined.)
(ii) s and @(s') are equal in Z(H)/Z(G).
The group of automorphisms of (H, s,n) is denoted by Autp(H, s,n). Define Outp(H, s,n) := Autp(H, s,n)/Intp(H).
We write Ep(G) (resp. E57(G)) for the set of isomorphism classes of all (resp. elliptic) endoscopic triples for G.

Remark 2.6. The notion of isomorphism in Definition 2.5 is stronger than the one given in [Kot84b, §7]. Consider
G = GLy and H = GL; x GLy. Let sqp = (a,b) € ﬁ, where a,b € C*, and 1 be such that (a,b) maps to the
diagonal matrix with entries a and b. Then (H, s,.,7) belongs to £r(G) (but not to ££(G)). Any two (H, s,5,7n) and
(H, Sc,4,m) are isomorphic in the sense of [Kot84b, §7], but they are isomorphic in our sense if and only if a/b = ¢/d
ora/b=d/c.

Let (H, s,n) be an endoscopic triple for G. Let Ty C H, T C G, Ty C fL T C G be maximal tori over F. Choose
Borel subgroups By C H, B C G, By C H and B C G over F such that Ty C By, T C B, Ty C By and T C B.
These determine isomorphisms tg : Ty ~ Ty and ¢ : T ~ T. There exists RS G such that 6 = Int(g) o n sends
Ty to T and By into B. Thereby we obtain 7' = Ty given by 1t 007  ou. Get an F-isomorphism j : Ty = T by
taking the dual. The Q(G, T')-orbit of j is independent of the choice of g and the Borel subgroups. For a fixed Ty, the
G(F)-conjugacy class of embeddings Ty — G induced by j is independent of the choice of T, Ty, T, § and the Borel
subgroups. Given an F-maximal torus T of H, there exists a maximal torus defined over F in its H(F)-conjugacy
class since H is quasi-split over F'. Suppose that G is quasi-split and that Ty is defined over F. Then we may arrange
that j is an F-morphism in the above process, replacing (B, T) by a G(F)-conjugate if necessary so that T is defined
over F. (Use [Kot82, Cor 2.2] to find an F-embedding j : Ty < G in the canonical G(F)-conjugacy class and take
for T the image of j.)

There is an embedding of Z(G) < Z(H) given by j~! since R(H,Ty) C R(G,T) via X*(Ty) ES X*(T). The
embedding Z(G) — Z(H) is canonical in the sense that it only depends on (H,s,n) and that it is compatible with
isomorphisms of endoscopic triples. The embedding Z(G) — Z(H) is defined over F'. Indeed, it is enough to prove
this when G is quasi-split over F', and for such a group G we may take j to be defined over F as remarked earlier.
Restricting Z(G) — Z(H) to maximal F-split subtori, we obtain a canonical embedding Ag < Ay over F. This
embedding is an isomorphism if (H,s,n) € £94(G).

In practice (from §5), we will fix a representative in each isomorphism class of endoscopic triples and identify the
set of isomorphism classes of endoscopic triples with the set of representatives.
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2.2. The groups A(-) and £(Iy/Q). Define Ap(Go) := m(Z(Go)T)P for any connected reductive F-group Go. For
the relationship between Ar(Gg) and the Galois cohomology of Gy, see [Kot86, §1-2]. If F' is local there is a canonical
functorial map

Hl(F,Go) —)AF(Go) (21)

(This map is functorial with respect to any F-morphism by [Kot86]; cf. proof of Lemma 2.3 in [Shi09].) The map in
(2.1) is an isomorphism (of pointed sets) if F' is non-archimedean and will form the left vertical arrow of (3.1).

Let F and G be as before. Let 79 be a semisimple element and set Iy := Zg(79). From the canonical T-equivariant
inclusion Z(G) < Z(I,), obtain an exact sequence

1= Z(G) — Z(Iy) — Z(1y))Z(G) — 1

0
and consider the connecting homomorphism (Z(Iy)/Z(G))" — H(F, Z(G)). Define &(Iy/F) = f¢(Io/F) to be the
subgroup of (Z(Iy)/Z(G))F whose image in H!(F, Z(G)) is trivial (resp. locally trivial) if F is local (resp. global).
Our definition (due to [Kotb]) coincides with the one in [Kot86, 4.6] when 7 is F-elliptic but differs from it in general.
Define &(Iy/F) to be ), Z(Io)' ") Z(G) if F is global and Z(Iy)" Z(G) if F is local. By unraveling the definition of
R(Iy/F) we see that canonically
R(lo/F) = K(1o/F)/Z(G). (2.2)
Now suppose that F is global and that ~y is F-elliptic. In particular K(Iy/F) is a finite abelian group. Assume that
the group homomorphism ker' (F, Z(G)) < ker'(F, Z(Iy)) induced by the canonical I'-equivariant map Z(G) < Z(Io)
is injective (cf. Lemma 4.1). Then by dualizing the exact sequence on [Kot86, p.395] we obtain an exact sequence

2.3. Transfer of conjugacy classes. Let F' be local or global and consider (H,s,n) € Er(G). We explain how to
transfer semisimple stable conjugacy classes from H to G. Let yg € H(F) be a semisimple element of H. Choose a
maximal torus Ty of H over F containing vg. As explained in the paragraph below Remark 2.6, there is a canonical
G(F)-conjugacy class of embeddings j : Ty — G. Put v := j(yg) for one such embedding. The G(F)-conjugacy
class of « is independent of the choice of Ty and j. This G(F)-conjugacy class contains an element vy € G(F) if
G is quasi-split over F, but not in general. If such vy € G(F) exists, we say that yg transfers to vy in G(F), or
that vy and 7y have matching conjugacy classes. The association vy +— 7 is a partially defined map from the set of
semisimple stable conjugacy classes in H(F') to the set of semisimple stable conjugacy classes in G(F'). This map is
compatible with isomorphisms between endoscopic triples for G. In the above process, we may choose Ty, and also j
if G is quasi-split over F, so that Ty and j are defined over F. (Use [Kot82, Cor 2.2].)

Let T := j(Ty). We have an inclusion R(H,Ty) — R(G,T) C X*(T') via j. The semisimple element g is called
(G, H)-regular if a(yy) # 1 for every a in R(G,T)\R(H,Ty). This notion is independent of the choice of Ty and j.

Define SSr(G) (resp. SSP(G)) to be the set of equivalence classes of (7o, k) where vy € G(F) is semisimple (resp.
elliptic) and k € Rg(lo/F). Two pairs (Yo, k) and (], s’) are considered equivalent if vy ~4 7 and k£ = &’ via the
canonical isomorphism Z (jco) ~Z (IC(’))7 where I} := Zg(v)). At this point, assume temporarily that G is quasi-split
over F'. Define £Qr(G) to be the set of equivalence classes of (endoscopic) quadruples (H,s,n,vmx) where (H,s,n)
is an endoscopic triple for G' and vy is a (G, H)-regular semisimple element of H(F). As we are assuming that Gd°r
is simply connected, we know that Iy := Zg(yy) is connected ([Kot86, Lem 3.2]). The quadruples (H, s,n,vm) and
(H',s',n',~};) are equivalent if there exists an isomorphism (H,s,n) = (H',s',n’) given by a : H = H' such that
a(vgr) is conjugate to 44, in H'(F) (equivalently, () and 74, are stably conjugate). Define £Q%'(G) to be the subset
of £Qr(G) characterized by the condition that (H,s,n) € £4(G). Tt is worth noting that Iy and I are connected
and inner forms of each other ([Kot86, §3]). Observe that vy transfers to some vy € G(F') since G is quasi-split over
F. From s € Z(H) we construct x € &(Iy/F) by taking the image of s under Z(H) < Z(Iy) = Z(Iy), which lies
in E(IO /Q). (cf. Remark 2.7.) It is easy to check that equivalent endoscopic quadruples give rise to equivalent pairs
(70, £). Thus we have defined a map (H, s,n,vr) — (70, ) from EQr(G) to SSF(G).

Now drop the assumption that G is quasi-split over F' and let G* be the quasi-split inner form of G. Define £Qr(G)
to be the subset of £Qr(G*) consisting of (H,s,n,vu) € EQr(G) for which vy transfers to a stable conjugacy class
in G(F).

Remark 2.7. In the situation (H,s,n,vg) — (70, k), we will always use the symbol ¥ to denote the image of s under
Z(H) <= Z(Ig) = Z(Ip). Tt follows that & € £(Io/Q). The image of % in £(I/Q) is .

Lemma 2.8. ([Kotb, Lem 4.1])
The above map defines a bijection from EQr(G) to SSp(G) and restricts to a bijection from EQP(G) to SST(Q).

An automorphism o : H = H inducing a self-equivalence of (H,s,n,vg) € EQr(G) is unique up to H(F)-conjugacy.
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Proof. Tt was proved in [Kot86, Lem 9.7] that the map from £Q5(G) to SS$(G) is a bijection. The general case is
proved in the same way. O

As remarked at the end of §2.1, we will fix a representative for each isomorphism class of £(G) from §5. When
working with £Qr(G), it is convenient to consider only those (H,s,n,vy) such that (H,s,n) is in the set of fixed
representatives. For any given (H,s,n,vm), it is easy to see from Lemma 2.8 that there are precisely |Outz(H, s, n)|
stable conjugacy classes of v}, € H(F') (including that of ~y itself) such that (H,s,n,vg) and (H,s,n,vy) are
equivalent.

2.4. Endoscopic triples for Levi subgroups. Let M be a Levi subgroup of an F-rational parabolic subgroup of
G. In §2.4 we assume for simplicity that G is quasi-split over F. Let J denote an inner form of M over F.

Definition 2.9. ([Kotb, Def 7.1])

A G-endoscopic triple for M is an endoscopic triple (Mg, sg,ng) for M such that the condition (iii) of Definition
2.1 holds with My and G in place of H and G, respectively. An isomorphism between two G-endoscopic triples
(My,sp,nu) and (M}, sy, 1)) for M is an isomorphism o : My = M}, of endoscopic triples for M such that sy and
a(s’y) are equal (not only in Z(]\/ZH)/Z(M\) but also) in Z(J/\/[\H)/Z(é) Denote by Ep(M, G) the set of isomorphism
classes of G-endoscopic triples for M. Write Autg(M 1, S,ny) for the group of automorphisms of (My, sy, ny) and
define Outﬁ(MH, SHyNH) = Autg(MH, sp,nu)/Intp(Mpg).

If J is an inner form of M over F', define G-endoscopic triples for J, the notion of isomorphism, and the set £ (J, G)
in an analogous way, by replacing M with J and using the canonical map Z(G) < Z (M\ ) 5 Z(J).

Let 79 € M(F) be a semisimple element. Let 7' be a maximal torus of M over F containing 9. We say that -y is
(G, M)-regular if a(yo) # 1 for every root o of T' in G which is not a root in M. This notion is independent of the
choice of T'. Now suppose that vy is (G, M)-regular. Let Iy denote Zps(70), which is the same as Zg(vp). We have
a natural map Rg(Io/F) — Ry (Lo/F). (This turns out to be a surjection with kernel (Z(J/M\)/Z(CA;?))F but we do not
need this fact.) Suppose that a semisimple element § € J(F') transfers to a (G, M)-regular vy € M(F). It is easy to
check that I5 := Z;(0) is an inner form of Iy over F. Define ¢ (I5/F), replacing Z(./TI)) by Z(j:s) in the definition
of Re(Ip/F). (There is a canonical I'-equivariant embedding Z (@) — Z (IA(;)) There are canonical isomorphisms
Ra(Is/F) ~ Ra(lo/F) and R;(Is/F) ~ Ky (Ip/F) coming from the canonical I'-equivariant isomorphism Z(Zg) ~
Z(Ip).

Define SSr (M, G) to be the set of equivalence classes of (o, ) where 7y is a (G, M)-regular semisimple element
of M(F) and k belongs to R¢(lo/F). Two pairs (vo, %) and (), ") are considered equivalent if o ~g v} in M(F)
and k = «’ via the canonical isomorphism Z(Io) ~ Z(I}). The set SSp(J,G) is defined analogously, replacing (7o, %)
with (4, ) where k € Rg(Is/F) and § € J(F') is a semisimple element which transfers to a (G, M)-regular element of
M(F). There is a natural injection SSg(J,G) — SSr(M, @) given by the transfer of stable conjugacy classes.

Define £Qp(M,G) to be the set of equivalence classes of (G-endoscopic) quadruples (Mpy, sy, nm,ve) where
(Mp, sg,nm) is a G-endoscopic triple for M and g is an (M, Mp)-regular semisimple element of My (F') which
transfers to a (G, M)-regular element in M (F'). The quadruples (My, sy, nu,vu) and (M, sy, 0y, Vi) are equiva-
lent if there is an isomorphism (M, sg,nm) — (Mg, sy, 1) by o : My = M}, such that a(yg) is conjugate to v}, in
M, (F). For (My,sg,nu,vu) € EQr(M,G), put Ins, := Zu, (ve) and suppose that vy transfers to vg € M(F). As
before, Iy and I, are connected and inner forms of each other, and we may construct k € R (Ip/F') as the image of
SH € Z(M\H). Thus obtain a map (Mg, sy, nm,va) — (Yo, k) from EQp(M,G) to SSr(M,G). Now define a subset
EQr(J,G) of EQp(M,G) by the following condition: the image (yo, &) of (Mu, Sgr,ner,vrr) is such that o transfers
to an element § € J(F). Thus we get a map EQp(J,G) = SSr(J,G) given by (My, sy, nm,vm) — (0, ). There is
an analogue of Lemma 2.8.

Lemma 2.10. The maps constructed above are bijections from EQr(M,G) to SSp(M,G) and from EQr(J,G) to
SSr(J,G), respectively. An automorphism o : Mg = My inducing a self-equivalence of (Mg, s,m,vg) in EQr(M,G)
is unique up to Mg (F)-conjugacy.

Proof. In the case of EQp(M,G) and SSF(M, G), the proof of [Kot86, Lem 9.7] works without essential change. The
analogous assertion for EQp(J, G) and SSp(J, G) follows from this. O

2.5. Levi subgroups of L-groups. In this subsection we use the notions and facts covered in [Bor79, §1-§3], omitting
proofs most of the time. Choose a Borel subgroup B and a maximal torus 7" of G over F. Thus get a based root datum
(X*(T),A, X.(T),AV). In particular we are given a bijection a — " from R(G,T) onto RY(G,T) which restricts to
a bijection A > AV. Recall that we choose a Gal(F/F)-invariant splitting data (B, T, {X,}) to define “G = G x Wp.
In particular “G is equipped with a natural surjection G — Wpg.



8 SUG WOO SHIN

Definition 2.11. The normalizer P of a parabolic subgroup of G in LG is called a parabolic subgroup of *G if P
surjects onto Wr. A standard parabolic subgroup of “G is one containing B x Wr. If P is a parabolic subgroup of
L@, the normalizer in P of a Levi subgroup of P := P° (which is a parabolic subgroup of CAY') is called a Levi subgroup
of P (or of “G by abuse of terminology).

The bijection A +» AV induces a natural injection from the set of G(F')-conjugacy classes of F-rational parabolic
subgroups of G to the set of é—conjugacy classes of parabolic subgroups of “G. Similarly there is a natural injection
from the set of G(F)-conjugacy classes of F-rational Levi subgroups of G to the set of @—conjugacy classes of Levi
subgroups of “G ([Bor79, 3.3, 3.4]). If G is quasi-split over F' then both injections are bijections. So if the image
of an F-embedding ip; : M — G is an F-rational Levi subgroup of G, then i), determines a é—conjugacy class of
L-embeddings “M < LG whose images are Levi subgroups of “G. Let l~0M : LM < G be one such embedding and
put 19, := FM|M\.

Lemma 2.12. If Iy : M < G lies in the @—conjugacy orbit of 18, then lys can be extended to an L-embedding
In 2 EM < EG which is G-conjugate to 1,. Moreover the image of any such extension lp; is the centralizer of
L ((Z(M)1)) in LG.

Proof. Let § € G be such that Int(g) o 19; = lns. Then Iy = Int(3) OFM is as desired in the first assertion. Let us
prove the second assertion. Let M := Iy (*M) and M’ := ZLG(IM((Z(]\//I)F)O)). Clearly M C M’ and (M’")° = MO.
Moreover M and M’ are Levi subgroups of “G. This is obvious for M and follows from [Bor79, Lem 3.5] for M'.
From this it is easy to see that M = M’. O

2.6. Transfer conjecture and the fundamental lemma. In §2.6 we state the famous transfer conjecture and the
fundamental lemma which are at the heart of the stable trace formula formalism. They are now proved in most cases
by the work of several mathematicians. (See Proposition 2.17 and the remark below it.)

Assume that F is a local field. For each (H,s,n) € £9Y(G), fix an L-group morphism 7 : “H — LG extending
7. Such an 7 exists since G4 is simply connected ([Lan79, Prop 1], cf. [Kot84b, 1.8.3]). Consider a (G, H)-regular
semisimple element vy € H(F) and a semisimple element 79 € G(F') with matching stable conjugacy classes. There
is a complex-valued function A(-,-)¥, called the transfer factor and well-defined up to a constant, defined on any such
pair of elements (vz,7). (See [LS87] when vy is G-regular and [LS90] in general.) The function A(-,-)% depends
not only on 7 but also on the choice of 7. When there is no danger of confusion, we simply write A(:,) for A(-, ).
Langlands and Shelstad proposed the following transfer conjecture. Functions ¢ and ¢ as in the conjecture are called
(A-)matching functions.

Conjecture 2.13. ([Kot86, Conj 5.5], cf. [LS90, 2.1])
For each function ¢ € C(G(F)), there ezists a function ¢ € C®(H(F)) such that for every (G, H)-regular
semisimple element vy € H(F), if vy transfers to vo € G(F) in the sense of §2.3, we have

SO’IY—IH(F)((ZSH) = Z e(Za(v)) - A(ym,v) - O?(F)(¢)

Y~stYo

where the sum is taken over a set of representatives for conjugacy classes in the stable conjugacy class of o, and
SO»%F)(qﬁH) =0 if yg does not transfer to G(F).

There is freedom in the choice of A(yp,7). Namely it is fixed only up to a constant. Nevertheless, once the value
of A(+,-) is fixed for one pair (yg,7), it is determined for every other pair.

When G is an unramified group over F', there is a more precise conjecture. Suppose that 77 is unramified in the
sense that it arises from a map H x W (F™/F) — G x W(F" /F) by inflation. (By definition W (F"/F) is the free
abelian group generated by the Frobenius morphism.) Let K¢ and Kp be hyperspecial maximal compact subgroups
of G and H, respectively. The following is believed to be true under an appropriate normalization of A(yg,7).

Conjecture 2.14. (Fundamental Lemma)
For any (G, H)-regular semisimple element vy € H(F), if yu transfers to o € G(F) then

SO (chare, ) = Y e(Za(y)) - Alym,7) - O (chark,,)

Y~stYo
H(F) .
and SO~ ’(charg,, ) = 0 if yg does not transfer to G(F).

Remark 2.15. As proved in [LS90, Lem 2.4.A], the general case of Conjecture 2.13 and 2.14 follows from the special
case where g is G-regular in the sense of [LS87, 1.3].
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Remark 2.16. The map 7 induces a map 7* : CX(Kg\G(Qp)/Kg) — CX(Ku\H(Qp)/Kp) of unramified Hecke
algebras. A more general version of the fundamental lemma says that ¢ and 77*(¢) are A-matching functions. (Recall
that A depends on the choice of 77.) The proof of this general version reduces to the case ¢ = charg, as proved by
Hales ([Hal95]).

Proposition 2.17. Conjecture 2.13 is true. Conjecture 2.14 is true if the residue characteristic of F' is sufficiently
large.*

We briefly remark on the proof of the proposition. Waldspurger showed in [Wal97] and [Wal] that Conjectures
2.13 and 2.14 follow from a Lie algebra version of the fundamental lemma. The proof of the Lie algebra fundamental
lemma over F' (with char F' = 0) is reduced by [Wal06] to the proof for local fields of positive characteristic if the
residue characteristic of F' is large enough. The proof of the last case was recently announced by Ngé ([Ngo]). (In
fact it is enough to assume that the residue characteristic of F' does not divide the order of the Weyl group.) This
implies Conjecture 2.13 for any F' and Conjecture 2.14 for any F' with large residue characteristic. For more details
and related works on the fundamental lemma, we refer to the introduction of [Ngo].

2.7. Transfer between GL, and their inner forms over p-adic fields. The purpose of §2.7 is to exhibit one of
the simplest examples of the Langlands-Shelstad transfer as well as its interaction with representation theory, in the
case of general linear groups and their inner forms. The result in this subsection, which is not new, will not be used
in later sections but turns out to be useful for applications (as in [Shi]).

Let F be a finite extension of Q5. In this subsection, let G’ be an F-inner form of G* := GL,,. Note that conjugacy

classes are the same as stable conjugacy classes in G(F) and G*(F') by Hilbert 90.
Badulescu defined a morphism LJ = LJg( Ig) from Groth(G*(F')) to Groth(G(F')) which is uniquely determined
by the character identity ([Bad07, Prop 3.3])

tr LJ(7)(g) = e(G) - trm(g™) (2.4)
for every m € Groth(G*(F')) and every pair of regular semisimple elements g € G(F') and ¢g* € G*(F) with matching
conjugacy classes. If m € Irr(G*(F)) is square-integrable, its image LJ(7) is the inverse image of m under the Jacquet-

Langlands correspondence as in [DKV84]. In general, an irreducible smooth representation of G*(F') may not map to
an irreducible representation of G(F') under L.J.

Lemma 2.18. (¢f. [HT01, Lem V.5.1])
For each ¢ € C°(G(F)), there exists a function ¢* € CZ(G*(F)) such that

(i) For any pair of semisimple elements v € G(F), v* € G*(F') with matching conjugacy classes,
051 (9) = e(@) - e(Zc (7)) - 05 (6")
where Haar measures are chosen to be compatible between the inner forms G(F) and G*(F) (resp. Za(v)(F)
and Zg-(v*)(F)), and O“?* (F)(¢*) =0 if a semisimple v* € G*(F) does not transfer to G(F).
(ii) For any m* € Groth(G*(F)),
tr LJ(7")(¢) = tr™(¢")

Remark 2.19. Lemma 2.18 admits an obvious generalization to the case where G is an inner form of a product of
general linear groups.

Remark 2.20. Note that (G*,1,1d) is an endoscopic triple for G. Part (i) of the lemma is a basic example of Conjecture
2.13, with the normalization A(-,-)G. = e(G).

Proof. By [DKV84, Thm B.2.c], we may choose ¢* € C2°(G*(F)) such that (i) holds, but we need to account for the
sign difference. Our sign convention is different from that of [DKV84] because we use compatible measures in the sense
of [Kot88, p.631]. The ratio of the measures on G(F) and G*(F') in our case differs by e(G) from that in [DKV84],
which explains the appearance of e(G). The extra sign factor e(Zg(y)) comes from the fact that we choose compatible
measures on Zg(y)(F) and Zg-(v*)(F) in (i).

It remains to verify (ii). Recall the Weyl integration formula in the notation of [HT01, p.189]

rr(g) =S [Wa(D)|™ [ Dat)of " (@)trn(t)dt
a e

where the sum runs over G(F')-conjugacy classes of maximal tori 7" in G(F'). A similar formula holds for 7* and G*.
Using part (i) and the fact that tr LJ(7*)(t) = e(G)tr 7*(t*) by (2.4), we deduce that tr LJ(7*)(¢p) = tr7*(¢*).

4Michael Harris, as well as Sophie Morel, informed us that the condition on the residue characteristic can be removed by results of
[Hal95].
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3. MORE BACKGROUND

3.1. The sets B(G), N(G) and the Newton maps. In §3.1 and §3.2, let G be a connected reductive group over Q,

which is quasi-split. Choose a maximal torus 7" of G defined over Q,. Let L := FracW(F,) and L := Frac W(F-)
for s € Z~¢. Denote by o the Frobenius automorphism of L which induces the p-th power map on the residue field.
In this section I'(p) := Gal(Q,/Q,). Let D denote the protorus with character group Q. Define

B(G) = G(L)/ ~, where =~y < g€ G(L), 2 =g 'yg’,

N(G) = (IntG(L)\Homg (D, )\ ~ (X.(T)o/Q) @),

where € is the Weyl group for T in G over F. There is a map
vg : G(L) — Homp (D, G)

characterized by various properties ([RR96, Thm 1.8], [Kot85, §4]) which induces the Newton map vg : B(G) — N(G).
The sets B(G), N(G) and the maps vg, g are functorial in G. Moreover, Ug fits into the commutative diagram (3.1)
below which is functorial in G. The first (resp. second) row of (3.1) is exact in the middle in the sense of pointed sets
(resp. abelian groups). See [RR96, Thm 1.15] about these facts and the maps in the diagram.

HY(Qp, G) B(G) = N(G) (3.1)

i -

WO(Z(é)I‘(P))D HX*(Z(G)F(p)) _re_ X*(Z(é))r(i’) 27 Q

3.2. The groups M, and J,. An element b € G(L) is called decent ([RZ96, Def 1.8)) if for some s € Zsg, svg(b)
arises from a morphism G,, — G and

bo(b)---o° 1 (b) = sva(b)(p). (3.2)

In particular this implies that b € G(L,). Recall that b € G(L) is called basic ([Kot85, §5.1]) if va(b) : D — G factors
through Z(G). Any b € B(G) is basic if it has a representative b € G(L) which is basic.

Fix b € B(G) for the moment. It is possible to choose a decent representative b of b such that v(b) is defined over
Qp (§4.3 and page 219 of [Kot85]). Write Mj for the centralizer of vg (b), which is a Q,-rational Levi subgroup of G.
In fact b gives rise to a basic element of B(Mj) ([Kot85, Prop 6.2]). We may and will arrange that be Ms(L) and
that b is a basic decent element of Ms(L). Fix s € Z~( which satisfies (3.2) for b.

Define a Q,-group J; by

J5(R) ={g € G(L@g, R) | g =bo(g)b"}
for any Qp-algebra R. The representability of J; is shown in [RZ96, 1.12]. We will often use the fact that J; is an

inner form of M; represented by the cocycle o — Int(b) in H*(L,/Q,, Int(M;)) (cf. [Shi09, Lem 4.2]). We may and

will fix a choice of an L-isomorphism 1 : J; = Mj such that ¢y = Int(b). (The M;(Q,)-conjugacy class of ¢ is
canonical.) This allows us to embed .J; into G over @p by J; ~ My — G. It b/ is another choice for 5, then there exists
g € G(Q,) such that Mz, = gM;g~! and b = gbg~! ([Kot85, Prop 6.3]).

From now on we fix the choice of a decent b for each b € B(G) and will write Jy, M, and v, for J;, My and

v (b) for simplicity of notation. It is easy to see from the previous discussion that the G(Q,)-conjugacy class of the
Qp-embedding M, — G and the G(@p)—conjugacy class of the @p—embedding Jp < G are canonical in that they are
independent of the choice of b.

3.3. Acceptable elements. Consider a triple (Go, v, M) such that
(i) Gy is a connected reductive group over Q,.

(ii) v:D — Gy is defined over Q,.

(iii) Mo is the centralizer of v in Gy (thus a Q,-rational Levi subgroup of Gy).
For any maximal torus Ty of My over @p, the map v may be viewed as an element of X, (Tp)g. Choose s € Zs such
that sv € X, (Tp). We assume

(%) For every o € R(Gy, To)\R(Moy,Tp), we have v,(a(sv(p))) # 0.

If condition (%) is verified for some Ty and s then it is also true for any other choice of Tj and s. For a € R(Gy, Tp),
condition (iii) implies that («,v) = 0 if and only if « € R(My, Tp).
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Definition 3.1. A semisimple element vy € M (Q,) is said to be v-acceptable if the following condition is verified: for
every « in R(Gy, Tp)\R(Mo, Tp), we have (o, v) > 0 if and only if a(p) € @: has positive (additive) p-adic valuation.
An arbitrary element o € My(Qy) is said to be v-acceptable if the semisimple part of 4o in the Jordan decomposition
is v-acceptable.

Whether 7 is v-acceptable is independent of the choice of Ty. If 79,7y € Mo(Q,) are My(Q,,)-conjugate, then o

is v-acceptable if and only if 74 is. So it makes sense to ask whether a stable or My(Q,)-conjugacy class in Mo (Q,) is
v-acceptable. Let Jy be an inner form of My over F'.

Definition 3.2. For an element § € Jo(Q,), let 05 denote its semisimple part. We say that J is v-acceptable if the
stable conjugacy class of §, transfers to a v-acceptable stable conjugacy class in My(Q,) (via the transfer between
inner forms).

Remark 3.3. This definition coincides with the one given in [Shi09, Def 6.1].

Denote by P(v) the unique Qp-rational parabolic subgroup of Gy containing M, as a Levi subgroup such that
a € R(Gy, To)\R(My,Ty) satisfies (a,v) < 0 exactly when « is a positive root with respect to P(v). The following
lemma is obvious.

Lemma 3.4. If vo € My(Qp) is v-acceptable, then vy is (Go, Mo)-reqular (§2.4) and |DJCV'}§) (70)lp = 0Py (10). The set
of all v-acceptable elements is open in My(Q,).

We record a few other useful lemmas. (We do not assume that the derived subgroups of Gy and My are simply
connected. ® This does not bother us as we are concerned with elements with connected centralizers when it comes to
applications.)

Lemma 3.5. Let m € My(Q,) be a (Go, My)-regular semisimple element. (For instance, m may be any v-acceptable
semisimple element by the preceding lemma.) The inclusion My — Go induces a bijection from the set of Mo(Qp)-
conjugacy classes in the stable conjugacy class (in My) of m to that of Go(Q,)-conjugacy classes in the stable conjugacy
class (in Go) of m.

Proof. Set I := Zy;,(m)°. We know I = Zg,(m)°. The first assertion is equivalent to the statement that the natural
map

ker(Hl(va I) - Hl(@pv MO)) - ker(Hl(va [) - Hl(va GO))
is a bijection. We will prove that the map H*(Q,, My) — H'(Q,, Go) given by My < Gy is an injection of sets. Since
H'(Q,, P(v)) = H'(Q,, Go) is an injection ([Ser02, I11.2.1.Ex1]), it suffices to show that H*(Q,, My) — H'(Q,, P(v))
is an injection. Let U be the unipotent radical of P(v). Since the composition My — P(v) — P(v)/U is an
isomorphism, the composition

H'(Qy, Mo) = H'(Qp, P(v)) = H'(Qy, P(v)/U)

is a bijection and the proof is complete.
|

Lemma 3.6. If v-acceptable semisimple elements m,m’ € My(Qp) are conjugate in Go(@p) then m and m’ are

conjugate in My(Q,).

Remark 3.7. Lemma 3.6 fails if m,m’ are assumed not v-acceptable but only (Go, My)-regular. A counterexample can
be given when My = GL; x GL4 is the diagonal torus of Gy = GLz, by taking m = (1,—1) and m’ = (-1, 1).

Proof. Let go € Go(Q,) be such that m’ = gomg, 1 and choose maximal tori T} and T4 of My over @p containing m
and m’ respectively. The proof is easily reduced to the case where Ty = T} and goTogy ! = Ty. Then Int(gg) acts on
X*(Tp) in the same way as some w € Q(Go,Tp). As m and m' are v-acceptable and conjugate under go, it follows that

w must preserve the parabolic subgroup P(v). This proves w € Q(Mg,Ty). Therefore m and m’ are My(Q, )-conjugate.
U

Corollary 3.8. Let m € My(Q,) be a semisimple element such that Zy,(m) is connected. In the Go(Qy)-conjugacy
class of m, there is at most one My(Qp)-conjugacy class which is v-acceptable.

Proof. Immediate consequence of Lemma 3.5 and Lemma 3.6. (Recall that if Zs, (m) is connected, the stable conjugacy

class of m is the same as the My(Q,)-conjugacy class of m by definition.) O

The discussion so far may be applied to (G, vy, My) of §3.2 as the conditions (i)-(iii) and (%) are clearly satisfied.
So we can make sense of v,-acceptable elements in M(Q,,) and J;,(Q,) as well as the parabolic subgroup P(v;) of G.
Another example is given by (H,ivas,,, M) of §6.3.

5In section 6, the role of Gy is played by H, for instance. For a PEL datum of type (C) (namely when the group G of §4.1 is a sympletic
similitude group), H der jg ysually not simply connected.
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3.4. A lemma on the transfer of functions. Let (G, v, Mp) be a triple as in §3.3. Fix Haar measures on G and
M.

Lemma 3.9. Suppose that ¢ € C°(My(Qy)) is supported on v-acceptable elements and that O%O(QP)(QS) = 0 whenever

m is a semisimple element such that Zy,(m) is not connected. Then there exists a function ¢ e C(Go(Qp)) such
that

(i) For any semisimple element g € Go(Qy),
OgGo(Qp)(;g) = Sp(y(m) - OMo(Q) ()

if there exists a v-acceptable element m € My(Qp) which is conjugate to g in Go(Q,) (if so, m is unique up
to My(Qp)-conjugacy), and

O?o(@p)((b) -0

otherwise. If m is v-acceptable andm ~ g in Go(Q,) then we choose compatible Haar measures on Zy,(m)°(Q,)
and Z¢,(9)°(Qp), which are isomorphic.
(ii) For any m € Irr(Go(Qy)),

tr(d) = tr Jg(ol,)op () ().

Proof. In [HT01, Lem V.5.2] the above lemma is proved when G| is a general linear group and My is the Levi subgroup
of a maximal parabolic subgroup of Gy. As the same argument works in our case we only sketch the proof indicating
the necessary changes that should be made.

Define a function ¢° € C°(My(Q,)) by ¢° := ¢ - 6;(1,/) and a function W on Go(Q,) by

W(g) =Y OMo@)(g)

where m runs over a set of representatives for My(Q,)-conjugacy classes contained in the Go(Q,)-conjugacy class of
g. The main step for (i), whose proof will be omitted as it is essentially the same as in [HT01, Lem V.5.2], is to prove
that W satisfies the characterizing properties of orbital integrals in [Vig82, Thm B]. It is worth noting that for the
proof we need to make use of the fact that ¢ € C>°(My(Q,)) is supported on v-acceptable elements. As a result of
the main step there exists a function ¢ € C2°(Go(Q,)) such that W(g) = OgGO(Qp)(cé). Corollary 3.8 finishes the proof
of (i).

Part (ii) follows from part (i) combined with Lemma 3.4, the Weyl integration formula and [Cas77, Thm 5.2]. One
may argue exactly as in [HT01, p.189-190], noting that there is a difference by 51;(11/) between our normalization and

theirs as we replaced ¢ with ¢° in the course of the proof.
O

Corollary 3.10. Let ¢ and 8 be as in Lemma 3.9. Let g € Go(Qyp) be a semisimple element. If there is no v-acceptable
element m € My(Q,) such that m ~g g in Go(Q,) then SOgGO(Q")((E) = 0. If there does exist such an element m,

Sofo(@p)((;) = 8p(w) (m)fl . Sogo(QP)(gﬁ)
where compatible Haar measures are chosen on Zy, (m)*(Qy) and Zg,(9)°(Qp).

Proof. Immediate from Lemma 3.5 and Lemma 3.9. (]

4. PRE-STABILIZED COUNTING POINT FORMULA

In this section we recall the definition of Igusa varieties and related notions. We state the “counting point” formula
for Igusa varieties in §4.4. We fix a prime p once and for all, until the end of the paper.

4.1. Igusa varieties. We give a brief summary of the material covered in [Shi09, §5]. (Also see [Man05].) Consider
a tuple (B, *,V, (-,-),h), called a PEL (Shimura) datum, where

B is a finite-dimensional simple Q-algebra.

* is a positive involution on B.

V' is a finite semisimple B-module.

(-,+) : VxV — Qis a nondegenerate alternate pairing such that (bvy,va) = (v1,b*vs) for all b € B, vi,vs € V.
h : C — Endg(V)r is an R-algebra homomorphism such that Vz € C, h(z¢) = h(z)* and that the bilinear
pairing (v, w) — (v, h(i)w) is symmetric and positive definite.
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Put F := Z(B) and define a Q-group G by the relation
G(R) = {g € Endpgyr(V ®q R) | 3w(g) € R*, (gv1, gva2) = w(g)(v1,v2) for all vi,v2 € V ®q R}
for any Q-algebra R. We define a C-group morphism g = uy, : G,,, — G as the composite

C* = C* x C* ~ (C®r C)* (L (Endp(V) ®q C)*

where the first map is z — (z,1) and the inverse of the second map is induced by the algebra map given by 21 ® 29 —
(2122, 2122). Often p is viewed as a @p—morphism by making a choice of ¢, : @p ~ C. The datum (B, *,V,(-,-), h) falls
into type (A), (C) or (D) ([Kot92b, §5]). We will consider only type (A) and (C) throughout this paper. This has the
following consequences.

e GUer and G are simply connected. So are M9°" and M for each Qp-Levi subgroup M of G, .

e Gp has an elliptic torus and (Ag)r = Ag, canonically.

e For any semisimple v € G(Q) and Iy := Zg(70), the canonical map ker'(Q, Z(G)) — ker'(Q, Z(Ip)) is
injective.

Lemma 4.1. The last assertion in the list above is true.

Proof. Write I&° := Io/Ig®" and G*® := G/G9". Tt suffices to prove that ker’(Q, I3") — ker!'(Q, G*") is surjective
by dualization ([Kot84a, (1.8.3),(4.2.2)]). The following commutative diagram is induced by the obvious commutative
diagram of morphisms between groups.

kerl((@, Z(G)) — kerl(Q, G) —— kerl((@, G?P)

l | !

ker' (Q, Z(Iy)) — ker’(Q, Iy) — ker' (Q, I3®)

The right arrow in the top row is a bijection by [Kot84a, Lem 4.3.1]. According to [Kot92b, p.393-394], ker' (Q,G) = 1
or ker' (Q, Z(@)) — ker' (Q, G) is a bijection. Therefore ker' (Q, &) — ker!(Q, G*?) is surjective. O

The PEL datum determines a Shimura variety Sh which is a projective system of quasi-projective varieties Shy,
defined over the reflex field E where U runs over sufficiently small open compact subgroups of G(A>) ([Kot92b, §5]).
Here F is a number field determined by the PEL datum. Let £ be a finite dimensional irreducible representation of G
over ;. We obtain from ¢ an l-adic local system % on each Shy.

We suppose that (B, *,V, (-,-), h) can be extended to a p-unramified integral Shimura datum ([Shi09, Def 5.2]) and
fix one such extension. In particular p is unramified in /' and Gg, is unramified. The p-unramified integral Shimura
datum determines a hyperspecial subgroup UZ];‘S of Gg,. The Shimura variety Shy» := Shprle;s has an integral model

with smooth fiber Shy» over F,,, which in turn has a Newton polygon stratification Shy» =[], %g)i parametrized by
be B(G@p, 7#).

From here on, fix b once and for all and also fix a representative b as in 63.2. Let X, be a Barsotti-Tate group over
F, of isogeny type b, satisfying the additional conditions (i)-(iv) in §5 of [Shi09]. We briefly remark that ¥, comes
equipped with the compatible structure of a Qp-algebra morphism B ®q Q, — End(¥;) ®z, Q, and a polarization
¥, — XY, and that J,(Q,) is isomorphic to the group of self-quasi-isogenies of ¥, preserving these additional structures
([Shi09, Lem 4.14]). The Igusa variety Igy, is a projective system {Igs, 17, } over open compact subgroups U? (which

are small enough) and positive integers m. Each Igy, 14 ,,, is a finite Galois covering of the locus in Shéi where the

fibers of the universal abelian scheme have their associated Barsotti-Tate groups isomorphic to ¥. The representation
¢ determines an [-adic local system on each Igy, s ,,,, to be written as Z; by abuse of notation. Define

H(lgs,, %) = Y (D" lim HE(Igs, yom, L)
k U? m

where we use the étale cohomology with compact support. As the summand is an admissible representation of
G(A>P) x Jp(Qp) for each k, we may view H.(Ig,, Z:) as a virtual representation in Groth(G(A>?) x J,(Q,)).

4.2. Kottwitz triples and Kottwitz invariant.

Definition 4.2. By a Kottwitz triple (of type b), we mean a triple (yo;~,d) where
e 7 € G(Q) is semisimple, and elliptic in G(R)
e v € G(A®P) and v ~ v in GA™").
o § € J4(Q,) is vy-acceptable and § ~ 7 in G(@p) via any @p—embedding Jy — G whose G(@p)—conjugacy
class is canonical (§3.2). We will simply write § ~; 7o for the last condition.
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Two triples (vo;7,9) and (7(;7/,9") are considered equivalent if g ~s: v} in G(Q), v ~ v in G(A>P), and § ~ ¢’
in Jb(Qp)

Let (70;7,6) be a Kottwitz triple. We briefly recall the definition of a(vo,7,6) € &(ly/Q)”, leaving details to
[Shi09, §10]. For each place v of Q, we can define o, (7p;7,8) € X*(Z(Io)" ), which will be written temporarily as a,
for simplicity. For v # p, 0o, the invariant a,, equals inv, (yo,7,) of [Kot90, p.169] . The definition of «, is reproduced
below in §4.3. See [Shi09, §10] for qee.

Recall that a,, (resp. ) restricts to —up in X*(Z(G)'®) (resp. pp in X*(Z(G)'*))). Also note that aU|Z(@)F(,U)

I

~

)
is trivial for v # p, co. For each place v we extend a, to an element &, of X*(Z(I5)"")Z(Q)) such that

B 1, ifv#p,o00
a7)(707775)‘z(§) = —H1, if v =p . (41)
w, ifv=o00

In view of (2.2), we make the following definition. It makes sense to view &, (v # p,00) and @,0 as characters of

~

R(Ip/Q) since each of them is trivial on Z(G).

a(y0;7:0) = | [ @lacoso | - (@ds)ls/e)- (4.2)

v#p,00

To clarify what input & depends on, it is helpful to write &, (v # p,00), Gp, Qoo as Ay(70,7Y) (v # P, 0), Ap(Y0,9),
Qoo (70), Tespectively. Put v, (v057) = awls(r,/0)-

If (v0;7,0) and (y};9,d’) are equivalent then Iy and I := Zg (7)) are inner forms over Q. In that case a(yo;7,9)
and a(y);7',6') are identified using the canonical I-equivariant isomorphism Z(Iy) = Z(I}).

Denote by KT}, the set of equivalence classes of Kottwitz triples. Let K Tfﬁ denote the subset of KT} consisting of
(70;7y,0) such that a(yo;7,9) is trivial.

4.3. Definition of &,(vp,d). We will give a definition of the Kottwitz invariant at p which is convenient for our
purpose. It is not hard to see that our definition is equivalent to the one given by [Shi09, §10]. Let us freely use the

notation of §3.2. In particular, 1 : J, — M is an isomorphism over L and satisfies 1))~ = Int(b). Let (y0;7,9) € KT}
such that 7o € M,(Q,). Then there exists y € M,(L) such that (5) = yyy~'. (First find x € M,(L) such that
¥ (0) = xypz~!. Since Steinberg’s vanishing theorem says H'(L,Iy) = 1, we can replace x by some y € M,(L).) In
fact, we could find y in M,;ier(L) by the same argument. It is easy to see that 55 = y_lgy" belongs to Io(L), thus
yields an element bs € B(Iy), which is independent of the choice of y. Define

ap(70,6) = ki, (bs)-
Lemma 4.3. The above element bs is basic in B(Iy).

Proof. Clearly bs maps to b under the map B(ly) — B(M,;) induced by the inclusion Iy < M,;. Since b is basic in
B(Mjy) (as noted in §3.2), bs must be basic in B(ly). The last implication easily follows from [RR96, Prop 1.12.(i)]. O

4.4. Point-counting formula for Igusa varieties. Put K;;S = U;S (§4.1). For each finite place v # p where Gg,
is unramified, choose a hyperspecial subgroup K C G(Q,). These data enable us to define C°(G(A>?) x J,(Q,))
via restricted product. An acceptable function ¢ € C°(G(A®P) x J,(Q,)) is defined in [Shi09, Def 6.2] to be a finite
linear combination of functions of the form ¢” x ¢, such that ¢, is supported on v,-acceptable elements of J,(Q,)
and a few other conditions hold. These other conditions ensure that Fujiwara’s fixed point formula (a.k.a. Deligne’s
conjecture) for algebraic correspondences is applicable in the course of the proof of Theorem 4.4, but do not concern
us in the stabilization process. In this section ¢ takes values in Q;, but will have values in C starting from §5.

We introduce some notations. Let 79 € G(Q) be an R-elliptic semisimple element. Write Iy for Zg(7) as usual and
I for a compact-mod-center inner form of Iy over R. Denote by Io(A)* the kernel of the map Io(A) — RZ, given by
x = |@w(2)|ax where @ : G — G, is the multiplier map. Define G(A)! similarly and set G(R)! := G(A)! N G(R).

Let us explain the choice of Haar measures in Theorem 4.4 below. Fix Haar measures on G(A*?) and J,(Q,) once
and for all. Choose the Tamagawa measure on Ip(A)! and any Haar measure on Io(R)!, and give Io(A) the quotient
measure via the exact sequence

1= Ij(R)! = IH(A)! — Io(A>®) — 1.
Haar measures on Zg(7)(Q,) (v # p,00), I5(Q,) and I (R)! are defined compatibly with those on In(Q,), In(Q,) and

Iy(R)!, respectively. (In fact, our notation G(A)! coincides with that of [Art05, p.16] where Arthur gives a natural
decomposition G(A) = G(A)! x A¢(R)". In our case Ag(R)" ~RZ,. The same applies to Iy in place of G.)
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Theorem 4.4. ([Shi09, Thm 13.1]) If ¢ € C°(G(A®P) x Jp(Qy)) is acceptable, then
tr(o|He(lgs,, Z0) = Y. vol((R)) "} Ag(ly)| - tré(r) - O G @) (). (4.3)

eff
(7037,0)EKT,

Even though Theorem 4.4 is valid with any Haar measures on G(A°>?) and J,(Q,), we make a particular choice of
measures for future convenience. Choose Haar measures i, on G(Q,) for each v so that whenever Gg, is unramified,
o (KB) = 1. For any finite set S of places of Q, take the Haar measure [T.gs #o on G(A®). Choose the Tamagawa
measure on G(A)!. The measure on G(R)! is determined by the condition that the quotient measure on G(A>) via
the exact sequence 1 — G(R)' — G(A)' — G(A>®) — 1 is equal to [],., to. We can arrange that the measure on
G(R) induces the usual measure dz/z on Ag(R)? = R via the exact sequence 1 — G(R)! — G(R) — Ag(R)" — 1.
The Haar measure on Mj;(Q,) is chosen such that K} N M;(Q,) has measure 1. The measure on .J;(Q,) is chosen to
be compatible with that on M;(Q,).

With Theorem 4.4 as a starting point, our main goal is to obtain a stable trace formula for tr (¢|H.(Igy, , %))
This means that we rewrite the right hand side of (4.3) in terms of stable orbital integrals on elliptic endoscopic groups
for G.

5. STABILIZATION AWAY FROM p

In this section, we assume that the function ¢ € C°(G(A>P) x J,(Q,)) is acceptable and has the form
¢ = H ¢y for ¢, € CZ(G(Qy)) (v # p,00), ¢p € CZ(Jp(Qyp)). (5.1)
VF0O
Put ¢? =[], £p.co ¢». From here on, every test function including ¢ will assume values in C (rather than Q;). Fix
11 : Q; = C once and for all.

5.1. A first step in stabilization. We know from (1.2) and (2.3) (cf. Lemma 4.1) that

[ Ao (To)l - |R(1o/Q)| ™" = 7(G) - | ker (Q, G))-
As R(Ip/Q) is a finite abelian group, we have

R/ Y <a(’m;%5),ﬂ>{

KER(Io/Q)

1, a(y0;7,9) is trivial,
0, otherwise.

Hence (4.3) can be rewritten as

tr(@luHe(lgs, %) = 7(GQ)ker(@G) Y vol(l(R)) ™

(70;7,0)EK Ty

S (a(i0:7,0), ) tré(ro) - 0L (g) (5:2)
wER(To/Q)

As remarked in §2.1, we fix once and for all a representative (H, s,n) in each isomorphism class of elliptic endoscopic
triples for G and view £°'(G) as the set of such representatives. For each (H,s,n) € £(G), we also fix an L-group
morphism 7 : “H — LG extending n once and for all. Fix Haar measures on H(Q,) for each v in the same way as we
did for G(Q,) in the paragraph below Theorem 4.4.

Each pair (7o, k) in the sum of (5.2) can be viewed as an element of SS°™(G), which corresponds by Lemma 2.8 to

(H, s,m,vx) whose isomorphism class in £Q°(@G) is uniquely determined. Define % € R(Io/Q) as in Remark 2.7. By
(12),

<CY(’70;’Y76),H> = H <av(70u7)7"<‘:> <&p(7075)7g><&00(70)7g>
v#p,00
If v is a finite place where G is unramified (except finitely many v with small residue characteristics), the transfer
factor Ay, (vm,Y0) is pinned down by the formula in Conjecture 2.14 (with K = Q,) as the relevant Haar measures are
fixed. At the other places v, the factors A, (vm,v0) are well-defined only up to constant, but will be chosen compatibly
so that the following global constraint is satisfied whenever vy € G(Q) ([LS87, §6]).

HA’U(’YH7’-YO) =1 (53)

Note that A,(vm,7v) # 1 for only finitely many v. For any 4" € G(A) such that v/ ~ 7o in G(A), transfer factors
satisfy

Ay(ym,7') = (v (70, 7), £) Do (V5 70)- (5.4)
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Put Is := Z;,(6) and I, := Zg,, (7) for v # p,00

Lemma 5.1. Suppose that (yo;7,9) € KTy. Then e,(I,) = 1 for all but finitely many v # p, co. If moreover a(~y; 7, 9)
is trivial, then

I (1) | eps) eso(lo) = 1.

VF#£P,00
Proof. As (Iy)g, is isomorphic to I, for all but finitely many v # p, 0o, the first assertion is verified. Now assume
that a(y0;7,9) is trivial. By Lemma 12.3 of [Shi09], there is ((A4,),4),[a]) € FPAY corresponding to (yo;7,d) in
the notation there. Take the Q-group I’ to be the centralizer of a in End%(A). Then we see that Ig, is isomorphic
to I, Is and I, when v # p,00, v = p and v = oo, respectively. It is a standard fact ([Kot83, Prop, p.297]) that

[[,e.(1p,) =1 O

Let SS*T(G) denote the subset of SS(G) consisting of the pairs (yg,#) for which there exist v and & such that
(70;7,6) € KTy. Observe that SS¥T(G) ¢ SS™(G). Let AP(ys,70) denote [Totp 00 Do(vH:70). To break up the

summand of (5.2) into three parts, we consider pairs (7o, %) € SS¥7(G) and make the following definitions.

(’YOa ad)> = fyHa'YO H Z Oy ’YOa a ) 1'€v<Iv)'O%(QU)(¢v)
VFEP,00 Yo ~stY0
Op(10, 7, 8p) == Do) Y (Gp(30,8), %) - ep(Ls) - 05" %) () (5.5)
0~ stY0
Ooc(10,R) = Acc(v,70) - Vol(Ioo (R))) ™Aoo (70), ) ™' - eoo(loo) - tr€(70)

The first (resp. second) sum in (5.5) runs over the set of semisimple conjugacy classes of v, in G(Q,) (resp. 4 in
Jp(Qp)). We generalize the definition in (5.5) to the case where (7, k) is contained in SS(G) but not necessarily in
SSET(@), as follows. The same definition of OP (v, k, ¢P) works in this generality. The expression Op (Y0, R, ¢p) makes
sense if we define O, (79, kK, ¢p) := 0 in case there is no ¢ such that § ~4 9. Finally Ouc (70, %) makes sense if g is
elliptic in G(R) and is defined to be zero otherwise.

By (5.2), (5.3), (5.5) and Lemma 5.1, we have

tr (¢luHe(Igs,, Z)) = 7(G)|ker (Q, G)| > 0" (70,5, 8") Op(70, K, ¢p) Oce(70,) (5.6)

(70,5)ESSKT(G)

The right hand side does not get new contributions if the sum is taken over all (79, &) in SS™(G), or in SS(G).

5.2. The functions h? and hfl. As before, let (H, s,n) € £(G). The reference for this subsection is [Kot90, p.178-
179, 182-186], where Kottwitz works out stabilization for the terms away from p assuming the validity of Conjecture
2.13 and 2.14. (cf. Proposition 2.17.) His method may be adapted to stabilize our terms away from p without change.
We state the results of Kottwitz on the functions h#? and hZ, which are needed to stabilize (5.6).

Since ay, (70, 70) equals inv, (79,7, ) for v # p, 0o
Ap(’YHv ’YO) : H <av(703 ’Y)v "{>71 = Ap(’va ’Y)
v#p,00
(Here we use the Langlands-Shelstad definition of transfer factors whereas inv,(-,-) is as in [Kot90, §2].) We write

eP(Zc(7)) = Ilustp 0o €v(Zc(7)). The usual transfer of r-orbital integrals yields the following lemma.

Lemma 5.2. There exists a function h'? € C°(H(A>P)) such that whenever a (G, H)-regular semisimple vy €
H(A>P) and a semisimple vy € G(A*P) have matching stable conjugacy classes,

SORETI(Iy = Y AP(ym.7) - € (Za () - OFET(¢7). (5.7)
Y~stYo
and SOH(A (hH’p) =0 if the (G, H)-regular semisimple element vy € H(A%P) does not transfer to G(A>P). The

sum in (5.7) is taken over a set of representatives for G(AP)-conjugacy classes which are G(Koo’p)-conjugate to vo.

Remark 5.3. If (H,s,n,v) — (y0,k) over Q (from Q@) to SS°(G)) then the right hand side of (5.7) equals
Op(r)/(% ) ¢p) by (54)

We explain the construction of hfl. Assume that the elliptic maximal tori of Gg come from those of Hg; otherwise
simply put hfl := 0. Under this assumption there are canonical isomorphisms among (Ag)r, Ay, (Ax)r and Ag,.
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0

The representation £ of G yields a (quasi-)character x¢ : Ag(R)? — C* by restricting the central character of .

Consider the composition
Wr — LH]R — LGR — L(A(;)]R

where the first map is the standard inclusion, the second is given by 7 and the third by dualizing Ag < G. The above
composition map determines a character of Ag(R)?, say x. Set xu := xX¢, viewed as a character of Ay (R)? = Ag(R)°.
Kottwitz constructed hll € C2°(H(R), xz) as a sum of the pseudo-coefficients of certain discrete series representations
of H(R) via Shelstad’s theory of real endoscopy. (See [Kot90, p.186] for the explicit formula.) In particular hZ is
stable cuspidal in the sense of [Art89, p.270]. (See [Kotb, §5.5] and [Kot90, p.186] for the fact that kL transforms
under xpg.) Observe that if H = G* and 7 = id then xg = xe.

Lemma 5.4. There is a function htl € C°(H(R), xg) such that whenever (H,s,n,vi) — (Y0, k) over R,

O (Y0, K), 7w : elliptic in H(R)
HR)/p HY _ 05 )y
505 (he) = { 0, otherwise (5.8)
and SOféR)(hfo) =0 if the (G, H)-regular semisimple vy does not transfer to G(R).

Remark 5.5. We use the convention of Langlands and Shelstad for transfer factors, but Kottwitz ([Kot90]) uses a
different normalization from theirs in that he replaces s with s~!, as explained on page 178 of that paper. (This is
why we put exponents -1 in (5.5), which are not seen in Kottwitz’s article.) So the formula for hZ on page 186 of
[Kot90] needs to be adjusted in our situation, but the validity of Lemma 5.4 remains intact. In case of PEL datum of
type (A), we may take s as an order two element so that the distinction between two conventions disappears.

Remark 5.6. In fact, Kottwitz’s function hZl has the property that SOfH(R)(hfo) = 0 for every non-(G, H)-regular

semisimple vy ([?, Prop 3.3.4, Rem 3.3.5]).

However, Kottwitz’s stabilization method does not work for Oy (7o, k, ¢p). (Compare O,(70, K, ¢p) with the right
hand side of the formula (7.3) of [Kot90].)

6. STABILIZATION AT p

Our goal in this section is to rewrite O, (K, Y0, ¢p) in terms of stable orbital integrals on endoscopic groups of G.
This should be more than an abstract statement. For applications of our stable trace formula it is necessary to have
a reasonably concrete construction of the test function hf on each endoscopic group H.

6.1. Definition of various sets. Define SS;‘;f(Mb7 G) to be the subset of SS,(Mp, G) which contains exactly those
(70, k) such that vy € M;(Q)) is vp-acceptable. Similarly define the subset SS;H(J;), G) of 8S8,,(Jp, G) so that it consists
of the pairs (0, k) with vp-acceptable §. The transfer of stable conjugacy classes canonically identifies SS‘;H(JZ,, G) with a
subset of SS;f(Mb, G), which will be denoted by SSZH(Mb, G). The injection My — G induces a map from SS;f(Mb, G)
(resp. SSZH(M;,,G)) to SS,(G), which is an injection by Lemma 3.6. We denote the images of SS;f(Mb,G) and
SS;H(MZ,7 G) by SSf,f(G) and SSZH(G), respectively.

Let EQ;f(G) (resp. EQZH(G)) denote the image of SS;f(G) (resp. SSZH(G)) under the bijection $S,(G) <> £Q,(G)
in Lemma 2.8. Let SQ;f(Mb, G) (resp. EQEH(J;,, @)) denote the image of SS;f(Mb, G) (resp. SSZC)H(Jb, G)) under the
bijection SS,(My, G) < EQ,(My, G) (resp. SS,(Jy, G) <> £Qp(Jy, G)) coming from Lemma 2.10. Similarly let

SQ;H(Mb, G) denote the image of SS;H(MI,, G). The sets 5Q;H(Mb, G) and SQ;H(Jb, G) are canonically identified.
The discussion so far is put together in the following diagrams.

1-1

S8(G) ~———£Q2(@) (Yo, &) <> (H, 5,7, 7#) (6.1)
il—l I
SSL(My,G) =—> EQN (M, ) (9.8) <> (M. 11,11, V)
S8M(@) ~———£Q1(G) (o, k) <~——> (H,5,7,7#1) (6.2)
- |
S8 (M, G) <—= £QST(M,, B) (Vs ) <—> (M, 551, 051, Yot

LR T

SSZH(JM G) ~ 5QZH(JZ;7 G) (0,k) <—>= (Mp, sH,NH, VM)
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The top two rows of (6.2) come from the restriction of the diagram (6.1) to subsets.

6.2. Study of the triple (Mpy,sp,ni). Throughout §6.2 we fix (H,s,1) € &,(G). Define £ (M, G; H) to be the
set of those isomorphism classes of (Mg, sy, nu) in €,(M,, G) for which there exist vy, € My (Q,) and vy € H(Q,)
such that

(i) (Mp,S$u,nH, My ) € SQ;f(Mb,G’) and (H,s,n,vu) € 5Q;f(G’), and

(i1) (Mm,Sgsnm, Y, ) and (H,s,n,vg) correspond under the bijections in (6.1).
Similarly define the subset EEﬂ(Jb,G H) of &(Jy,G). We will explain below how we will fix a representative
(M 1, SH,Ng) for each isomorphism class in €ef(Mb, G; H). Moreover, we will pin down certain additional data 77g,
le, lMH, iMy s VMg Tor each (My, sp,ng) and give a more direct way to view the bijection EQef( ) < EQZf(Mb, Q)
given by (6.1) (cf. Lemma 6.2). The representatives of isomorphism classes for £¢f(My, G; H) will also serve as
representatives for SSH(JI,, G; H), in view of the injection Sgﬁ(Jb, G;H) — S;f(Mb, G; H).

Consider a triple (T, T, j) where

e Ty is a maximal torus of H defined over @,
e T is a maximal torus of M, defined over Q, and
e j: Ty = T is a Qp-isomorphism.
From (T,Ty, ) we would like to construct a Q,-morphism v : D — H and (H,,s,,m,) € £,(M,, G) in the next few

paragraphs.
Define v : D — H by

1

DX Ay, T 5 Ty — H. (6.3)

Put H, := Zy(v) and let i, : H, < H denote the natural embedding. We are going to complete H, into a G-
endoscopic triple for M; but need some preparation first. Use j to identify X*(Ty) with X*(T') and X, (Tx) with
X.(T) as Z-modules. (Here we do not consider Galois actions.) We view v and v, as elements of X..(T)g and X.(Tx)qg,
respectively, which are identified via j. There are the following inclusions.

R(M,,T) C R(G,T) c X*T)
U |
R(H,,Ty) < R(H,Tg) < X*(Tw)

The set R(H,Ty) (resp. R(M,,T)) consists of the elements o € R(G,T) satisfying ¥ (s) =1 (resp. aovp, = 1). Since
R(H,,Ty) is the set of a« € R(H, Ty ) such that cov = 1, we know that R(H,,Tx) C R(Mp,T'). Similar consideration
shows that RY(H,,Ty) is the subset of RV (M, T) consisting of those oV satisfying

av(s) =1. (6.4)

Now choose a maximal torus T, C H and put T/ := 77('11" ). (These are not part of the splitting data used in the
definition of G or “H.) Choose a Borel subgroup B’ of G containing T’, which determines a Borel subgroup B,

of H via 7. With the choice of Borel subgroups By C H containing Ty and B C G containing T over we are

D
given isomorphisms tg : T~ T’ and ¢ : T' ~ T' as C-tori. Without loss of generality, we may assume that the
previous isomorphism j : Ty — T was chosen such that the dual map T3 Ty of j is given by LBln_lL (cf. §2.1).
Let us identify X.(Ty) = X*(T%) and X, (T) = X*(T’) via ¢ and ¢. Then the identification X.(Ty) = X.(T) via
j is transported to the identification X*(T’ ) = X*(T') via n. These allow us to identify RY(H,,Ty) = R(ﬁu,'ﬂ‘}{),
RY(H,T) = R(H,T}), RY(Mp, T) = R(Mp, T') and RY(G, T) = R(G,T).

So there is an embedding [z, Mb — G (vesp. lm, H <~ H ) corresponding to the inclusion of the sets of
roots of T (resp. T’;). The images of ljy, and lg, are Levi subgroups of G and H respectively. It follows from the

construction that the G- conjugacy orbit of I, (resp. H- conjugacy orbit of I, ) is exactly the orbit determined by
the given embedding M, < G (resp. H, — H) in the sense of the paragraph above Lemma 2.12. In particular the
@—conjugacy class of [ M, and H- conjugacy class of ly, are well-defined regardless of the choice of T/, T%, B, B/, B
and By. (Moreover the G—conjugacy class of I, is independent of the choice of (T H s T ]) but the H -conjugacy class
of Iy, depends on this choice.) Condition (6.4) ensures that the image of H — HAGis precisely the centralizer
of n(s) in ! Mb(]\//jb) (This centralizer is connected since M Mger is simply connected.) So there is a unique inclusion
H — Mb, which we call 7,,, making the diagram (6.5) commute. Let s, be the inverse image of s under lf,. Observe
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that n,(H,) = Z51, (my(sy)). It is a routine matter to verify that (Hy, sy, 7,) is a G-endoscopic triple for My,

Iy,

M, ~G (6.5)

v T WT

~ lm,

H,—H
So far we attached to (T'w, T, j) amorphism v : D — H and (H,, s,,,m.,) € E,(My, G). Actually we are only interested
in triples (T, T, j) arising from a quadruple (H,s,n,vy) € €Q;f(G) in the following way. Let (yo,%) € SS;f(G) be
the image of (H, s,7,vm). There are maximal tori Ty C H, T C G defined over Q, and a Q,-isomorphism j : Ty — T,

which (after being composed with 7" < G) belongs to the canonical G(Q,)-conjugacy class of embeddings Ty — G,

such that j(yy) and 7o are G(Q,)-conjugate. There also exists a vj-acceptable element v € M;(Q,) such that
Y6 = 909 " for some g € G(Q,). We can arrange that 7" := gT'g~* and Int(g) : T = T’ are defined over Q,.
Therefore it is harmless to assume that T is contained in M, and that ) = v = j(yu). Now that (T, T, j) is among
the triples that we considered earlier, we have v and (H,,s,,n,) attached to (T, T, j). Observe that vy € H,(Qp).
We claim that (H,,s,,n,,vm) is equivalent in £Q,(My, G) to (Mu, Sa,Mu, Ym, ) where the latter corresponds to
(H,s,m,vg) in (6.1). Indeed, j induces an embedding Ty — M; whose Mb(@p)—conjugacy class coincides with the
one determined by (H,,s,,n,) (as in §2.1), so (H,, sy, Ny, ye) maps to (Yo, k) € SS;f(Mb, G). Since (7o, k) is also the
image of (M, $g, M, Yary ), the claim follows from Lemma 2.10. By the claim, (H,, s,,7,) belongs to é’;f(Mb, G;H).

In the last paragraph, when vy is fixed, the choice of (Ty, T, j) is not unique. Let us investigate the dependence
of v on the choice of (T, T, j). Suppose that (T}, 1", j') is used to construct v/ : D — H. Then 77 = mT'm~! and

T} = hTyh™* for some m € My(Q,) and h € H(Q,). Let j” = Int(m™') o j’ o Int(h). We know that j and j” are in

the same G(Q,)-conjugacy class. Since j(vy) and j”(vx) are vy-acceptable, j and j” are in fact M,(Q,)-conjugate.
Since the My (Q,)-conjugate action is the identity on Ay, it is easy to see that v/ = Int(h™") o v in view of (6.3).

On the other hand, for a € Autg, (H,s,n) we may replace vy by a(ym) without changing the equivalence class
of (H,s,n,vu). Changing « by an inner automorphism of H if necessary, we may assume that a(Ty) = Ty. Under
jo = joa~! we see that a(yg) maps to a vp-acceptable element g in 7. The morphism I — H constructed from
Jo in (6.3) is given by avov. To sum up our discussion, the Autg, (H, s,7)-orbit of v depends only on the equivalence
class of (H,s,n,7vH).

In fact, we can remove the dependence on <y in the following sense. Consider (H,s,n,7v}y) € é';f(G). Let
(Mg, sm,mm,Ymy) and (M, sy, 0, V), ) correspond to (H,s,n,vg) and (H,s,n,7y), respectively. Construct
v:D — H (resp. v/ : D — H) from (H, s,n,vu) (resp. (H,s,n,7%)) by choosing a triple (T'y, T, j) (resp. (Ty,T",j")).

Lemma 6.1. The map v’ is contained in the Autg, (H,s,n)-orbit of v if (My,sm,nu) and (M, sy, 1) are isomor-
phic in ng(Mb, G; H).

Proof. Arguing as in a few paragraphs above Lemma 6.1, we have that 77 = mTm~! and T}, = hTyh~! for some
m € My(Q,) and h € H(Q,) and that j” := Int(h™') o j/ o Int(m) belongs to the Q(G,T)-orbit of j. (Unlike the
previous situation we do not know whether j” is in the Q(M,, T)-orbit of j.) Write j” = wj for w € Q(G,T).

When u acts on T, we write @ for its dual action on 7. If u € Q(G,T) then u — @ yields an isomorphism
QG T) > Q(é,T) (once an isomorphism T ~ T is determined by B and the choice of a Borel B D T). If the G-
endoscopic triples (M, s, ng) and (M, shy, 1) are isomorphic, then j(s) and j”(s) are M,-conjugate in T)Z(G).
This happens if and only if W = wowy for some wy € Q(M,,T) and wy € Q(G,T) such that wg(n(s)) = n(s)
mod Z(G).

On the other hand, let us view v and v/ as maps from D to Ty. The relation j” = wj implies v/ = wr. Since
wr = v if and only if w € Q(M,,T) (acting on Ty via j), we deduce that v is in the Autg, (H,s,n)-orbit of v if
and only if w = wywy for some wy € Q(M,,T) and wy € Q(G,T) such that wy acts on Ty (via j) is the same way
as some a € Autg,(H,s,n) fixing Ty. Such a wy is precisely characterized by the condition that @ (n(s)) = n(s)

~

mod Z(G) in view of (ii) of Definition 2.5. So the proof is complete.
]

This is a good moment to fix a representative for each isomorphism class, say 2, in ng(Mb,G;H ). (This has
the effect of fixing a representative for each isomorphism class in £ (J,, G; H) since EH(M,, Gy H) = E55(J,, G; H).)
Choose any vy as in the very beginning of §6.2 as well as (T, T, j), thus obtain v : D — H and (H,, s,,n,) € Q. We
will fix such v and (H,, s,,n,), and use the latter as the representative for the isomorphism class 2. The maps Iy,
and lp, in (6.5) will also be fixed for (H,, s,,m,).
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From now on, the representative (H,, s,,n,) will be denoted by (M, sg,nm) to save notation, and ng(Mb, G;H)
will be identified with the set of the representatives we just fixed. Write iy, for ¢, and I/R/IH for v. Lemma 6.1 tells
us that the Autg, (H, s,n)-orbits of iy, and VR/[H are canonical in that they depend only on the isomorphism class of
(My,sg,ng) in ng(Mb,G;H). Define vy, : D — My by

DﬁAI\/jb ‘—)AMH ‘—)MH

where Ay, < Apg, is the canonical embedding. (See the first paragraph below Remark 2.6.) This embedding is
o v, by the definition of v in (6.3).

compatible with j=!: T = Ty, so V3, = iny,
We claim that (6.5) can be extended to a commutative diagram of L- morphisms (ﬁ being rewritten as M, ). Let
us prove the claim. The map ny induces an injection (Z(]\//Tb) (P))0 <y (Z(MH)F(p))O of groups. Using Lemma 2.12 we
can choose an L-morphism le (resp. lMH) extending lps, (resp. lar, ) such that the G- conjugacy class of le (resp.
H-conjugacy class of [ MH) corresponds to the Levi embedding M, < G (resp. in,, : My — H) in the way described
in §2.5. The same lemma tells us that the image of lNMb (resp. ZNMH) is the centralizer of (Z(]/W\b)r(f’))o in LG (resp.
(Z(]/\/.I'\H)F(p))0 in LH). The commutativity of (6.5) shows that 7j o Iy, (*Mp) C TMb(LMb), hence there is a unique
L-morphism 77z : “Myg — “M, which makes the following diagram commute. We will fix such an 77z henceforth.

l
Ly, —ts L (6.6)
EHT TIT

TJ\IH

There is a natural embedding
My H * Outgp (MHa SH, 77H) — Out@p (H7 S, 7])

defined as follows. (In the following we often omit the subscript if the field of definition is Q,.) For each 3 €
OutG(MH7sH,77H) choose a lift § € Aut® (MH,SH,nH) and also m € J\/J\b such that Int(m) ony = ng o 3 (cf
Definition 2.5.(i)). Note that 6 and 6" are MH conjugate since ﬁ is defined over Q,. There is a unique @y € Aut(c(H)
such that n o &y = Int(lpz, (M)) on. Since af o lpr, and Iy, © B° are H-conjugate, we see that @y and @& 040 are H-
conjugate. Thus the fAI—conjugacy orbit of agay -1 is defined over Qp. Choose a Qp automorphism o : H = H such
that the outer automorphisms defined by ag and @ correspond via the canonical isomorphism Out@p (H) ~ Outc(H).
Then the H(Q,)-conjugacy class of ag is defined over Q, and we deduce that there is some o € Autg, (H) which is
H(Q,)-conjugate to ag. The properties of ajg imply that a actually lies in Autg, (H, s,7). Finally we define tar,; 1 (53)
to be the image of a in Outg, (H,s,7). It is not hard to show that ¢ps,, z is well-defined.

Suppose that o € Aut(H,s,n) and 8 € AutG(MH,sH,nH) are representatives for @ € Out(H,s,n) and 3 €
Out?(My, sgr, i), respectively. If LMH’H(B) = @ then we claim that a0y, and iy, o 3 are H(Q,)-conjugate. Note
that « (resp. () induces @ € Aut(H ) (resp. Be Aut(]/W\H)) which is well-defined up to Int(H) (resp. Int(Z/W\H)) and
that there exists § € G (resp. i € Mb) such that Int(§) o = @ on (resp. Int() o ny = B ony) and Int(3) (resp.
Int (7)) preserves n(s) (resp. ng(sg)) up to Z(G). (cf. Definitions 2.5 and 2.9.) The condition LMy, H(B) = & means
that Int(l5z, (7)) and Int(§) induce the same outer automorphism on H. In other words, there exists i € H such that

Int(9) = Int(Iag, (M)) © Int(n(h)) on n(H). (6.7)

On the other hand, the H- conjugacy class of Iy, corresponds to the H(Q )- conjugacy class of ips,, in the sense of §2.5.
So the H(Qp) conjugacy class of aoiyy, (resp. iy, of) corresponds to the H-conjugacy class of Int(§1) oy, (resp.
Iary, o Int(m~1)). (Here Int(g~') and Int(m 1) act on H and My via n and g, respectively.) Since Int(g—1) o Iy,
and lyz, o Int(m~1) are H-conjugate by (6.7), we see that avoipg, and i, o 8 are H(Q,)-conjugate.
Choose a finite subset {, }rez of Aut(H, s,n) such that the natural projection from {e, }rez to Out(H, s,n)/Out® (Mg, sg,n,
is a bijection of sets. We may assume that there exists r € Z such that «,. is the identity. Define Z(Mpy, H) to be the
set {057" © iMH }7"6%"-

Lemma 6.2. (i) For each ym, € Mu(Qp) such that (Muy, S, M, YMy) € SQ;f(MlnG;H), the quadruples

(H, s,m,i(vmy ) are equivalent for alli € T(My, H) and lie in EQ;f(G). If (My, su, e, YMy) € 5QZH(M5, G;H)
then (H,s,m,i(Yay)) € SQ;H(G) for everyi € I(My, H).
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(ii) Suppose that yar, € Mu(Qp) andvyu € H(Qp). If (Mu, su,nu, Ymy) and (H, s,n,vu) belong to EQ;‘;f(Mb,G;H)
and SQ;f(G), respectively, and correspond to each other as in (6.1), then there exists a unique i € Z(Mpy, H)
such that the elements i(8(yar,)) and yg are H(@p)-conjugate for some B € AutG(MH, SH,NH)-

(i) If ymy € Mu(Qyp) is such that (Mu, S, NH, YMy) € EQf,f(Mb,G;H) then Yar, 48 tWar, -acceptable with
respect to any i : Mg — H in Z(Mpg, H).

Proof. Let us prove (i). Suppose that (Mg, Sg, M, Yar, ) maps to (o, k) € SS;f(Mb,G) which may also be viewed
as an element of SS;f(g). We can choose Thy C My, Ty C My and jar : Tary, — Thr defined over Q) such that
Yo ~ jm(Yamy) in Mb(Qp). Let jpmce @ Tay — G be the composition of ji; with the natural injection Thy — G.

The Q(G,T)-orbit of jy,e and the G(Q,)-conjugacy class of jarc(var,) are independent of i € Z(Mpy, H). The
commutativity of (6.5) ensures that jar¢ belongs to the G(@p)—conjugacy class of the embeddings determined by
(H,s,n) (§2.1). Therefore (v, k) € SS;f(G) is the image of (H,s,n,i(ya,,)) for every i € Z(My, H). From this the
first two assertions of (i) follow. The last assertion is proved similarly.

To prove (ii), observe that (H,s,n,vy) and (H,s,n,in, (Yar,)) are equivalent as they have the same image in
SS°(G) by the proof of (i). So there exists a € Aut(H,s,n) such that vy = a(iag (Yay)). It is possible to
find o, € Aut(H,s,n) which has the same image in Out(H,s,n)/Out®(My,sg,nm) as a. We can also find § €
Auwt®(My, sg,mg) such that a is H(Q,)-conjugate to ay o tar, m(B). Here uar, m(B) € Aut(H,s,n) denotes any
automorphism whose image in Out(H,s,n) is tar, #(B) where 3 is the image of 3 in Owt®(My, sg,my). On the
other hand, tpr,, 5 (8) © inmy is H(@p)—conjugate to inr, © B by the discussion above Lemma 6.2. Therefore vy and

a0 ipry © B(yary, ) are H(Q,,)-conjugate.

It remains to prove (iii). Write i = a o iy, for @ € Aut(H,s,n). Let (yo,k) € SS;f(Mb,G’;H) be the image
of (Mg,sm,Mm, Yy ). We can choose maximal tori Ty C H, T C G and an isomorphism j : Ty = T over Qp
such that v = j(ym), where M(Q,)-conjugacy of j is determined by ng. Set Mg := a(My), T§ := a(Ty) and
j% = ja~'. What must be shown is that a(yar,) is ivar,-acceptable with respect to the inclusion M& C H. If we
identify X*(T) = X*(T) via j* then R(M§,T%) C R(M,,T) and R(H,T5) C R(G,T). So the vy-acceptability of
Yo = 7*(c(vp,,)) implies the vy, -acceptability of a(yar,,)-

O

6.3. Stabilization at p. Consider (H,s,n) € £,(G) such that Sgﬁ(Jb,G; H) is nonempty. We fix (Mpy,sy,ng) €
ESH(Jb,G;H) until we get to (6.10). Suppose that (yo, &), (v, k), (0,k), (H,s,m,vu) and (M, Sgr, M, Ya, ) are as
in diagram (6.2) and correspond to each other. Without loss of generality we can take v, = v and v, = yu. We
would like to express O, (70, K, ¢p) defined in (5.5) in terms of stable orbital integrals on H(Q,).

The first step is to write Op (7o, K, ¢p) in terms of stable orbital integrals on My (Q,) using the endoscopic transfer

between J, and My with respect to the L-morphism “Mpy 77—’3 LMy, = L.J,. We will need to relate the transfer factor
Ap(vr, 5)ﬁH to Ap(ve,70)%. Fix a Haar measure on Mg (Q,). In view of diagram (6.6), according to the definition
of transfer factors by Langlands-Shelstad, we may and will normalize A, (-, )%’;{ so that

Ap(vi,70) 08y = D51, (00) 1, 2D, ()l * Ap (v, 70) 5 (6.8)

for every vy and -y such that (My, sg,nm,va) € SQZf(Mb, G) maps to (vo, k) € SSf,f(Mb, G). (This remains true if
the superscript ‘ef’ in the last sentence is dropped.) The factor |DJC\:4b (70) ;1/2|DJI\{4H (7H)|117/2 comes from Ay of [LS87,

§3.6]. Here DﬁH is taken with respect to ins, : My — H.
Lemma 6.3. There is a nonzero constant car,, , depending on the normalization of the transfer factor Ap(-, ~)JJ\§H, such
that

CMpy - AP(’YHv 5)]{211 = <ap(70a 5)7 %>71AP(7H7 ’70)]\1\?;1 (69)
for every ym, o and § related to each other as in (6.2) (with Y = Yary )-

We postpone the proof of Lemma 6.3 to §6.4. In section 8 we will give another proof of Lemma 6.3 in some special

case and compute the constant ¢z, under a certain normalization of A, (-, )ﬁH

Remark 6.4. Lemma 6.3 is easily verified when (vo, ) comes from (H,s,n,vy) for (H,s,n) = (G*,1,id). Note that
there is a unique isomorphism class in £5%(J,, G; G*) which is represented by (Mp, sg,ni) = (My, 1,id). Take 77 = id
and 7y = id. In (6.9), (&p(70,9), k) = 1 and we may naturally take

Ayl )%; =1 and Ap(, )}(}H = ep(Jo).

Then Lemma 6.3 is satisfied with cpr,, = e,(J)-
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Let us go back to the task of rewriting O, (7o, K, ¢p). The identities (6.8) and (6.9) tell us that
Ju(Qp
Op(0.Fdp) = D ents - Dplya, )2, - ells) - |DE, (o)l 21 DR, (vl V2 - 054 (8).

dr~stv0
Since we assume 7o is vp-acceptable, |[D§; (Y0)|p = 6p(u,)(70) by Lemma 3.4. Define a character dp,,) : J5(Qp) — C*
by the formula §p(,,)(6) = 5p(l,b)('yo) where v € My(Qp) is the element whose stable conjugacy class matches that of
d. The function ¢ := ¢, - & P(U ) belongs to C2°(J,(Qp)). Let ¢’ € C°(Mp(Qp)) be a matching function for ¢ via
Conjecture 2.13 (and Proposition 2.17). Then

Op(’Ynga ¢p) = CMy - |DJI\{4H(’YH)|;1/2 : SO’Jy\;IIH(QP)((ﬁ;])V[H)
and SO%{H(QP)(QS;‘,/IH) = 0 if the (J,, My)-regular semisimple element ~}; transfers to ¢ € J,(Qp) which is not v4-

acceptable or if 7}, does not transfer to J,(Qp). The last fact and Lemma 6.2 (iii) imply that SOA]ZIH(Q”)(gbyH) =0
unless the (Jy, Mpr)-regular semisimple ~4; is vy, -acceptable for every ¢ : My — H in Z(Myg, H). Since the set
of ivpy,,-acceptable elements is open in My (Q,) for every i € Z(My, H) (Lemma 3.4), it is possible to choose qbg/IH
so that ¢éwH (7}) = 0 unless v}, (not necessarily semisimple) is vy, -acceptable for every i € Z(Mpy, H). Define

¢MH’i € CX(Mu(Qp)) by ¢é”H’i = (i)é,VIH e ) For every i € Z(Mpy, H), vy is ivp,-acceptable by Lemma 6.2

P(ZVMH
(iii) and |D3y,, (va)lp = 0p@o, )(YH) = Op(ivy,,)(ver) where the first equality follows from Lemma 3.4 and the second
H ~ .
is obvious. Applying Lemma 3.9 to (bi,VIH’i with respect to each i : My < H, we find a function ¢11)fo,1 € CX(H(Qyp))
and get
00,7, &) = cary - SOYL 7 (310, (6.10)

i(vm)
Note that 5241”' depends on ¢,, (Mu,su,nm) and ¢ but not on vy, 6 and vg. (As long as (d,x) and (o, k) give rise
to the same (Mg, sg,ny) in diagram (6.2).)
Define a function h/f € C2°(H(Qy)) by

T Sew, i
(Mp,sumu) *
where the first sum runs over £5%(.J,, G; H) and the second over Z(My, H). The upshot of section 6 is the following

lemma.

Lemma 6.5. Suppose that (H,s,n) € £,(G) is such that Egﬂ(Jb, G; H) is nonempty. For every (G, H)-regular semisim-
ple yu € H(Q,),
SOF () = Op(v0, R, 6p) (6.11)
if (H,s,m,7v1) € EQY(G) and
SOH@) (R = o (6.12)
otherwise.
Proof. Proof of (6.12) when (H,s,n,vu) ¢ SQ;H(G)
We prove SOH(Q’“)(aMH’i) = 0 for each (Mp,su,nu) € E8(Jy, G H) and i € Z(Mp,H). We assume that there

exists a ivpy,,-acceptable element vy, € My (Q,) such that i(yar, ) ~ vu in H(Q,) as otherwise SOH(QP (qzlj,\/IH’i) =0
by Lemma 3.9. Let (y0,x) be the image of (Mg, sy, nu, vy, ) under £Q,(My) — SS,(My). (Note that we do not
know whether (v, ) defines an element of SS,(M,, G) as we do not know whether -y is (G, My )-regular.) Consider
the injection SS,(Jp) — SS,(My). Since (Mu, su,Nm, YMy) ¢ EQeH(Mb,G) by Lemma 6.2 (i), there are two cases
that can occur.

(1) There exist no (4, k) € SS,(Jp) mapping to (7, k), or

(ii) there exists (6, k) € SSp(Jp) mapping to (o, k) but ¢ is not v,-acceptable.

By the construction of 524H7i,

SOH@) (g ZA (e, 83 - e(Z,(87)) - O @) (¢0)

where ¢’ runs over the set of conjugacy classes of Jy(Qp) such that ¢’ ~g 0. The right side is viewed as zero if there is
no (6, k) mapping to (v, k). It is now clear that SOfH(QP)(ngIH,i) vanishes in the cases (i) and (ii) alike, noting that
the orbital integral of qbg is nonzero only on vy-acceptable elements.

Proof of (6.11) when (H,s,n,vy) € SQZH(G)
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Suppose that (Mg, sg,na) and (My;, sy, 1) belong to £,(Jy, G; H). Let i € Z(My,H) and i/ € Z(My, H). As-
suming that SO%QP)(qEﬁ/[H’i) and SOAIY{,,(QP)(~IJ,\4}{’i/) are both nonzero, we will prove that (My, sg,ng) ~ (MY, sy n')
and ¢ = ¢’. Once we have done it, (6.11) follows from (6.10).

According to Lemma 3.9, there exist yar, € Mu(Qp) and vy, € Mp(Qp) such that i(yary ), i’ (vary,) and yg are
stably conjugate in H(Q,). Let (0, ko) (resp. (7p,kg)) be the image of (M, su, 1w, Yy ) (vesp. (M, sy M, Yary, )
in §§,(My, G). The images of (o, ko) and (), k() in SS,(G) are equivalent since both correspond to (H, s,n,vy) via
the bijection SS,(G) <> £9Q,(G). In particular, v ~s vy in G(Qy).

We know that (My, sy, g, Ymy) € EQH(MZ,,G; H). Indeed, if this were not true, the argument in the previous
part of the current proof shows that SOH(QP (5;,”1“) vanishes. Similarly (M, s, ny, Vs, ) € Egﬂ(Mb,G;H). So
both vy and 7{, are vy-acceptable in Mb(Qp). Lemma 3.5 shows that vy ~s; vy in My(Qp), which implies that (o, o)
and (7g,Kq) are equivalent in SS,(My,G). Therefore (M, sy, nu,vay,) and (My, sy, 0, Yy, ) are equivalent in
EST(My, G; H). Finally we deduce i =i’ from Lemma 6.2 (ii).

]

So far we assumed that ESH(JI,,G;H) is nonempty for (H,s,n). Now for arbitrary (H,s,n) € &£,(G) such that

E);ff(Jl77 G; H) is empty, we define hf := 0. The conclusion of Lemma 6.5 holds in this case since (H,s,n,vg) never
lies in £Q5(@).

6.4. Proof of Lemma 6.3. Subsection 6.4 is devoted to the proof of Lemma 6.3. We recall the setting. Fix
(H75777) GEP(G)a (MH,SanH) Ggsf(Mb,G;H)-

Suppose that (79, k), (7o, R) € SSZH(Mb, G) and (6, k), (0,%) € SSQH(JZ,, @) correspond via the bijection SSEH(MZ,, G) &
SS;H(J;J, G), respectively. Also suppose that (9, x) and (3,, %) correspond to (Myg, sg,nm,vr) and (Mg, Sg, N, Vi)
via (6.2), respectively (by setting v = Yo, Yar, = vm etc).

Regular case

First we consider the case of regular elements and later extend the proof to the general case. Suppose that

70 and %, are regular in M,. Set Ty := Zar, (70), To = Zm, Vo), T = Z3,0), T := Z5,(0), Tu = Znry, (va),
Ty = Zny(¥g).S Also set Tger := Ty N Mger, TSer = To N Mg and Z9°" := Z(Mger). Recall from §3.2 that the
L-isomorphism 1 : J, = M, satisfies 1)~ = Int( ) for the arithmetic Frobenius . We can choose z,7 € Mder(Qp)
and y,y € MZe"(L) such that

() =avr " =ywy~t YO =TT =Ty (6.13)
(To find such y and 7, use the argument of §4.3.) Set
c=ax"ly, c=7'7. (6.14)

It can be seen from (6 13) that ¢ € T§*(L) and ¢ € T0 (D).
Recall that K and ® were defined as the images of s under the canonical I'p-equivariant isomorphisms Ty —> T and

TH = T Without danger of confusion, we write s for kK and 7. (Of course s is viewed as elements of TH and T H Via
Z(H) < Ty and Z(H ) — TH.) For the proof of Lemma 6.3 in the regular case, by [LS87, Cor 4.2.B], it suffices to

show that N _

8p00:9)5) _ iy (W"S) 50 (6.15)
(ap(70,6),5) T, 0

where we use the notations of [LS87, §3.4] on the right hand side. We recall the definitions after setting up more

notations.

Let a := (7 v+ a,) be a cocycle in Z'(Ly/Q,, M) such that a, has the same image in M74(@,) as b, so that a
represents the cohomology class attached to J,. By inflation a cocycle 7+ b, in Z1(T',, M24) is obtained from a. For
each 7 € T'p, let b3 € M**(Q,) be any element whose image in M3 (Q,) is the same as b,. (We warn the reader
that 7 — b3°" is not a cocycle in Z'(I'y, M) in general.) Similarly, let ber € My (L) be any element which has the
same image in MP4(L) as b. Obviously

bler = 2p (6.16)
for some z € Z(M,)(L). Let b* denote the image of b in M4 (Ly). For each m € Z, define
(Eder)(m) . pder (Zder)a . (gder)a’”’l

6As Gder is simply connected, we know Za(v0) is connected. From this (and [Kot86, Lem 3.2]) it is not hard to see that Ty, To, T, T,
Ty and Tg are connected. In other words, Yo, ¥, 6, 6, v and J are automatically strongly regular.
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and similarly define (6*1)(™). For each 7 € W(L/Q,) (or 7 € I'(p)), define |7| € Z such that the image of 7 in W(L/Q,)
is o!7l. Now define bder := bgﬁzﬂ for each 7 € W(L/Q,) where pr: W(L/Qp,) — I'(p) is the naNtural projection. For
7 € W(L/Qp) with |7| > 0, it is elementary to check that both (59°7)7| and bd*" have image (b24)I7l in Mp4(L). In
other words, we can find z, € Z(M,;)(L) such that

(b7l = 2, pder (6.17)
We need to define the terms on the right hand side of (6.15). Define a torus
er  mpder — er
U= (T8 x Ty™)/{(z74, 2)|z € 29 (6.18)
By definition, inv (%%) is the element of H'(Q,,U) given by
H>

T ((xflbgerx'r)fl,fflbgerfr).
Now we recall the definition of sy. Consider the following commutative diagram where every arrow is I'(p)-
equivariant. By definition Z (M) == Z(M,) N (Mp)der, T .= T N (M,)9*, and 72! is the image of T in M.

=~ ~der

~der o~ o~ ~ —
Similarly define T and (T)2d. We have Z(M,;)" = Z(My) N T = Z(M,) N'T

X T (6.19)

e diag. ~der
Z(Mb)der C g} ~ ~de

_— PO — ~ ~der
We can choose z € Z(M,) such that the image (sz,sz) € T x T of sz € Z(Mpg) belongs to T x T . (Find one
~ ~ — ~ ~der

such z so that sz € 79" by using the fact that 79¢" . Z(M;) = T. Then sz € T is automatic.) Note that (sz, sz)
and (s, s) have the same image, say (s*¢,s*d), in 78 x (T)*d. Then sy € U is defined as the image of (sz,sz) in U.
It turns out that sy is I'(p)-invariant and independent of the choice of z ([LS87, p.246]). By abuse of notation, the
image of sy in mo(U) will be again denoted by sy. Then the right hand side of (6.15) is given by the Tate-Nakayama
pairing H'(Q,,U) x mo(U) — C*.

Consider the following diagram, which is commutative by the functoriality of the map x(.y ((RR96, Thm 1.15.(i)] or
[Kot97, 4.9.1]).

—der

B(T x T) = B(T4 » T"") —————— B(U) (6.20)

\L(KTV‘QT) l(ﬁTderw‘deer) KU

X*(fr(p) o %F(;D)) - X*((fad)l‘(p) ~ ((%)ad)l‘(p)) 4>X*(0F(p))

Recall from §4.3 that N N
ap('YOa 6) = KT(yilbyU% &p(ima) = Hf(yilbga)'
So the left hand side of (6.15) can be computed as
__ 7—1570 K—deor 7—1chr7(7 ,Sad
(kp(F10y7),5) _ (iqaer (@ 07G7), %) (Y, su) (6.21)
(rr(y=1by?),s)  (Rrae (y=100y?), 52)
where Y, is the image of ((y~b%Ty7)~1, 77 1b%7) in U(L). (The notation Y, also denotes its image in B(U).) The
second identity in (6.21) follows from the commutativity of the right rectangle in (6.20). To check the first identity in
(6.21), use (6.16) and the functoriality of (., with respect to the diagonal embedding Z(M;) < T x T.
The proof of (6.15) boils down to showing that

(inv (W> ,su) = (Yo, s0).

7H7 d
In light of the left rectangle of (3.1) for U, the above identify follows if we show that

inv <,YH’5) — Y,
7Ha5
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under the map H'(Q,,U) — B(U) of (3.1).
The last map is defined as the composition of the following:
H'(Qy, U) = HY(W(L/Q,),U(L)) & H'(W(L/Qp),U(L)) = B(U),
where the first two arrows are inflation maps. The image of Y, in H'(W(L/Q,),U(L)) is represented by the cocycle
for which

T (g ) Iy g () ) (6.22)
whenever |7| > 0. (The images of 7 with |7| > 0 uniquely determine the cocycle.) On the other hand,
7 ((z7'bdery™) = g bderzT) (6.23)

represents the image of inv (%%) in HY(W(L/Q,),U(L)). By (6.14) and (6.17), the cocycle in (6.22) can be rewritten
H>»
as
T ((c_lx_lbferxTcT)_l,E_lf_lbierTTET) (27 2p).

Noting that (271, 2,) = 1 in U(L) (see (6.18)), it is now obvious that (6.22) and (6.23) define the same cohomology
class in H*(W(L/Q,),U(L)). Hence the proof of Lemma 6.3 is complete in case 7 is regular semisimple.

General case

It remains to prove that the identity (6.9) of Lemma 6.3 continues to hold for the same constant ¢z, when g is
not regular. We imitate the argument of [Kota, A.3.8].

Changing notations, set

Iy :=Zn, (0), 1o += Z4,(0), In = Zny, (va)-
Note that Iy, I and Iy are connected (cf. the footnote in the current proof for the regular case). Find y € M, (L) such
that 9(8) = yyoy~'. The L-isomorphism g := Int(y 1)y from J, to M, restricts to Is — Iy. Since ¢p=7 = IIlt(g),
we have B B
Yotpy 7 = Int(bs) = Int(y~'by”). (6.24)

Choose an elliptic torus T' of I over Q,. Since bs € B(I) is basic by Lemma 4.3, it is in the image of the natural
map B(T) — B(Iy) ([Kot85, Prop 5.3]). This means that there exists i € Io(L) such that i~1bsi® € T(L). It is easy
to verify that k := ¢y ' o Int(i) = 1~ o Int(yi) gives a Q,-embedding from T to I5. (Namely k and k7 give the same
map from T to Is. This is checked using (6.24).) For each t € T(Q)), define

Yt = t")/o, §t = k(t)6

We assume that -, is regular in M; so that T = Zpy, (74)-
The natural inclusion T < I yields the following commutative diagram.

B(T) B(Iy) (6.25)

XH(TTW) —— X*(Z(Ip)"®)

We claim that
ap(ve,0¢) = ap(v0,0) (6.26)

via the bottom horizontal map of (6.25). To show this, it is enough to show that 55 = y_lgy” and ggt =Y 15@/;’
define the same element in B(Iy). Here y; is any element of T'(L) such that

V(o) = y; ey

(A different choice of y; does not change the image of ’561 in B(T).)
Let us prove the claim. Observe that

$(6) = Y(k(1)9(8) = (Int(yi)t)yyoy " = yiti oy~ " = yityei 'y~
where the last identity holds as i € Io(L). Hence we can take y; = yi. Then it is obvious that Egt is o-conjugate to 55
in Ip(L). The claim is proved.
We are ready to see that (6.9) holds in general. We deduce from (6.26) that
<ap(7ta 5t)7 E> = <ap(707 6)’ E>

for any t € T(Q,) such that 7, is regular in M,. On the other hand, Ap(7H,(5)ﬁH (resp. Ap(’YHﬁO)%L) is defined
as the value of Ay (v 4, 6t)]{;H (vesp. Ap(va L, ’yt)%’;) when ¢ is close enough to 1 and ~; is regular, where vg, is the
transfer of v up to stable conjugacy. (See [LS90, §2.4].) Since we already proved

CMy 'Ap(WH,tafst)}{}}H = <&p(7ta5t)>%>Ap('7H,tv'7t)%Zv
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for any such ¢, we conclude that (6.9) is true with the same constant ¢y, as in the regular case.

7. END OF STABILIZATION

We are ready to obtain a fully stabilized expression for tr (¢|u Hc(Igy, , Z%)) when ¢ € C(G(A>P) x Jy(Qy)) is
acceptable. For each (H,s,n) € £(G), put hf = hH’phfhfo.

The stable orbital integrals defined by h depend on the choice of 77, but are independent of the choice of local
transfer factors A, (-,-)§, once 7 is fixed. (Despite the fact that each of hHP hf and hZ depends on the choice.)
The stable orbital integrals defined by h¥ remain unchanged if (H, s,7) is replaced by an isomorphic endoscopic triple

~

(H,sz,n) for any z € Z(G). (Note that if s is replaced by sz then K changes by z in the process, in view of Remark
2.7.) Both of the above assertions are easy to verify.

Putting these together, we can show that h¥ is well-defined in the following sense: keeping the previous notation,
suppose that (H,%H,s,n) and (H',"H’ s',7") are equivalent as endoscopic data for G via a Q-isomorphism « : H =
H', in the terminology of [L.S87, 1.2]. Then the stable orbital integrals defined by hf and hH' are the same via a.

Lemma 7.1. Suppose that (H,s,n) € EYNG). For every (G, H)-regular semisimple vi € H(Q),
(i) if (H,s,m,vi) belongs to EQ™(Q), let (70, k) € SSNQ) be its image. Then

SO’IY—II;A) (hH> = Op(’)/()a R, ¢p) : OP(’YUa E7 ¢p) : Ooo (70; E)

if (70, %) € SSET(G) and SOgH(A)(hH) = 0 otherwise. (See Remark 2.7 for K.)
(ii) of (H,s,1,v1) & EQV(G) then SOSY (hH) = 0.
Proof. Let us prove the assertion (i). If (y0, &) € SS*T(G) then (7o, &) defines an element of SSZH(G) and (H,s,n,vg) €
£Q°Y(@) defines an element of SQZH(G). The first assertion follows from (5.7), (5.8) and Lemma 6.5.
Now assume (7o, k) ¢ SS¥T(G). One of the following occurs.

e There is no v,-acceptable § € J,(Q,) such that § ~g 7o.

® 7 € G(Q) is not R-elliptic.
In the first case, (y0,k) ¢ SS;H(G) and (H,s,n,v) ¢ EQ;H(G). By Lemma 6.5 (and the remark below its proof) we
conclude that SO?H(A)(hH) = 0. The same equality holds in the second case by (5.8).

Let us begin the proof of (ii). We may assume that elliptic maximal tori of Gg come from those of Hg as hl =0
otherwise. The condition of (ii) means that vz € H(Q) does not transfer to G(Q). Consider the case where vy as an
element of H(A) transfers to some vy € G(A) (up to G(A)-conjugacy). If o is not R-elliptic then SOZ™ (pH) = o
by (5.8). If 7o is R-elliptic then we show that a contradiction occurs. Indeed, the argument of the second paragraph
of [Kot90, p.188] shows that 7y € G(A) is G(A)-conjugate to an element of G(Q), which contradicts that vz does not
transfer to G(Q).

It remains to deal with the case where v does not transfer to G(A). We may assume vy is R-elliptic as otherwise
SO%SA)(hH) =0 by (5.8). Then vy transfers to G(R). Since G is quasi-split over Q,,, v transfers to G(Q,) as well.

So our situation is that vy does not transfer to G(A°?), which implies SOEH(A)(hH) = 0 by Lemma 5.2.

O
By Lemma 7.1 and Lemma 2.8, the identity (5.6) may be rewritten as
tr (¢luH.(gy,, Z)) = 7(G)[ker' (Q.G)| D SOIM (n') (7.1)
(H,s,m,vm)
where the sum runs over £Q°(G). By the remark below Lemma 2.8,
> SoEM My = 3" |Outg(H,s,n)| 71> SOE® (A (7.2)

(H,s,m,vm) (H,s,m) TH

where in the last sum v runs over a set of representatives for R-elliptic semisimple stable conjugacy classes in H(Q)
which are (G, H)-regular.

So far we have constructed hff when ¢ € C(G(A>P) x J,(Q,)) satisfies (5.1). The construction of A linearly
extends to the general case where ¢ is an arbitrary acceptable function. Define

STHA(W) = 7(H) - | Zu(yu)/Zu(yu)°| " - SOLW (W) (7.3)

YH
where vz runs over a set of representatives for Q-elliptic semisimple stable conjugacy classes in H(Q). (In fact there is
no new contribution if we include non-Q-elliptic stable conjugacy classes in the sum since hl has trivial stable orbital

integrals over them.) Define
UG, H) := 7(G)r(H) ' |Outg(H, s,n)| "
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Theorem 7.2. Let ¢ € C°(G(AP) x J,(Q,)) be any acceptable function. For each (H,s,n) € EN(G), let h! be the
function constructed from ¢ as above. Then

tr(@luHc(lgs,, %)) = ket (Q,G)| Y (G, H)ST/ (h")

(H,s,m)
Proof. We may assume that ¢ is as in (5.1). Note that only (G, H)-regular vy contribute to ST (h*) by Remark 5.6
and that Zy (yg) is connected for any such yg. The theorem follows from (7.1), (7.2) and (7.3). O

Remark 7.3. Theorem 7.2 is an analogue of [Kot90, Thm 7.2].

8. THE CONSTANT cjr,, OF LEMMA 6.3 IN SPECIAL CASES

The main purpose of this last section is to determine the constant cps,, which shows up in Lemma 6.3, under
a particular normalization of transfer factors as in (8.6) and (8.9). (The computation of ¢ps,, would be useful for
applications. It is used in [Shi, §5.5].) When J, ~ M, (§8.2) a simpler proof of Lemma 6.3 will be given. We will work
in the setting of Lemma 6.3 without mentioning it again. As we are only concerned with Q,-groups in §8, we often
write G for G, and similarly for other groups in order to save notation.

8.1. The case of general linear groups. For convenience we introduce a nonstandard terminology for a reductive
group Gg over Q.

Definition 8.1. We say that G satisfies GL, if G is Qp-isomorphic to

11 Rx./0,GLn,

il
for a finite index set I, positive integers n; and finite extension fields K; of Q,. Here, R, g, means the Weil restriction
of scalars.

In this subsection we prove Lemma 6.3 under the simplifying assumption that G, satisfies GL£,. This assumption
is often satisfied for a PEL datum (B, x*,V, (,), h) of type (A): In the case of type (A) datum, F = Z(B) is a CM field.
Let F* be the fixed field of F' under the complex conjugation. If every place of F'* above p splits in F, then Gq,
satisfies GL,.

Suppose that Gg, satisfies GL, throughout §8.1. Then the groups H, My, My, Iy and Iy also satisfy GL,. All
these groups and their dual groups have simply connected derived subgroups. In particular, Z(Mpyg) and Z(M,) are
tori.

One important task for us is to give an explicit formula (8.5) for (&,(70,9), k). Consequently its value will be
easily seen to be independent of vg, § and p. To this end, we examine the character a,(yo,9) € X*(Z(Iy)TP 2(G)).
Consider the following commutative diagram of I'(p)-equivariant group homomorphisms.

—

Z(H)— Z(My)— Z(Iy) — Z(Mp) (8.1)

Z(G)— Z(My)— Z(Io) —= Z(M,)

The two rows are given by the inclusions Z(Mpy) C Iy C MH C H and Z(Mb) C Iop C My C G, respectively, using
[Kot84b, 1.8] and [Kot86, 4.2]. The vertical injections Z(G) < Z(H) and Z(Mb) — Z(MH) are given by 7 and ngy,
respectively. The left-most rectangle is compatible with the dlagrarn (6.6) and thus commutative. The commutativity
of other rectangles are straightforward. The element s € Z(H) maps to sy € Z (M ) and K € Z (IO) We may write
s = 8189 for s € Z(ﬁ)r(p) and sy € Z(@) Let k1 and Ko denote the images of s; and so in Z(IO), respectively. In
view of (4.1),
(ap(70,6), K2) = N1(52)_1~ (8.2)
Let us evaluate (&, (70,9),R1). Let T be a maximal torus of M}, defined over Q,, containing vy. Recall from §3.2 that
b satisfies (3.2) and belongs to My(Ls). Let us also recall from §4.3 that ap(70,0) = K1, (bs) and that bs is o-conjugate
to b in My(L). We claim that 77, (bs) = v as elements of X.(T)o/UIo,T). Indeed, vpr, (bs) = Uar, (b) = vp shows
that 77, (bs) and v, are in the same Q(M,, T)-orbit, but since the Q(My, T')-orbit of v consists of 14 only, the claim is
verified.
The commutativity of (3.1) shows that py,(&,(70,9)) = 510 (1) where v, is viewed as an element of X, (T)g =
X*(T ) On the other hand, ¢y, is the pullback map via Z(Io) < T in this case. Since v, : D — T factors through
Z(My), we may view v, as an element of X*(Z/(-]\/[\b))(@, which will be denoted by 7. Then d;, (1) is nothing but the

pullback of 7y, via Z(E)) — Z/(]\Tb)
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Let &, € X*(Z(Mpy)F®) be the pullback of &,(70, )| 57,y via (8.1). Then
(@p(0,0), F1) = (@, 51)- (8.3)

Since p(.) is functorial on the category of connected reductive groups over Q, (for any Q,-group morphisms), we see

that pas,, (&) coincides with the pullback of dz, (1) € X*(Z(Io))5" to X*(Z(J\?H))“P) via (8.1). Again in view of

(8.1), pary (@) may also be obtained as the pullback of 7, via Z(MH) — Z(MH) — Z(Mb) The last map comes from
Z(My) < Z(MH) < My, which only depends on the endoscopic datum (MH, sm,ny) and not on vy, 0 and 7. Since
My satisfies GL,,, pary, is injective. (By (3.1), ker(pMH) is 1som0rph1(: to H'(Q,, Mp), which is trivial by Hilbert 90.)
Let 7, M denote the pullback of D via Z(MH)F(”) — Z(MH) — Z(Mb) We see from the description of pas,, ([RR96
p-162]) that a;, is obtained as the pullback of par, (a],) via Z(Mp)'® < Z(Mpy), hence & a;, coincides with 7, oA
priori DgVIH is just an element of X*(Z(M\H)F(p))@, but it belongs to X*(Z(J\/J\H)F(p)) as ay, does.
To sum up, a;, = /V\é\/[H and
(@, 51) = (5,7, s1). (8.4)
By (8.2), (8.3) and (8.4),
(@p(70.8),F) = pa(s2) - (B s1) (8.5)
Clearly the value on the right side is independent of 7, § and the choice of decomposition s = s155. Therefore Lemma
6.3 tells us that we may normalize A (-, )ﬁH so that the ratio of A, (vw, 5)‘1{}}H to Ap (v, VO)X}’[H is a nonzero constant.
Our normalization is that

AP(’YH) 5)}]\2]—1

Ap(vH, 70)%2

This choice is to be consistent with our convention that A, (-, )JJ\/bI =e,(Jp). (cf. Remark 2.20.)
It follows from (8.5) and (8.6) that the constant cps, in Lemma 6.3 is given by

eay = ep(Jo) - pa(s2) - (B s1) 7" (8.7)

8.2. The case J, ~ M. Recall from §3.2 that J, is the Qp-inner form of M, given by the cocycle o — b in
H'Y(L,/Qp,Int(M)). Since G is unramified over Q,,, we may assume that G xq, L is split, by enlarging s if necessary.
(Before, s € Z~ was chosen in §3.2.) The aim of §8.2 is to give an explicit alternative proof for Lemma 6.3, under the
assumptions that

= ¢( 1) (8.6)

o Jy >~ My as Q,-groups,
° Mgﬁr is simply connected, and
o Z(M,) and Z(Mpy) are connected.
The second and the third assumptions are always satisfied for a PEL datum of type (A).
The first assumption implies that o — b defines the trivial element in H'(L,/ Qp, Int(My)). So there exists some
by € My(L,) such that Int(b) = Int(by *bg). (This is possible since the natural map My (L) — Inty (M) is surjective.
The last fact follows from the triviality of H'(Ls, Z(M,)) implied by Hilbert 90.) In other words,

b=bybgz (8.8)
for some z € Z(My)(Ls).

We claim that J,(Q,) = My(Q,) as subgroups of Mj(L,) via § +— bydby '. Let us prove the claim. Using (3.2) it is
easy to see that J,(Qp) is contained in My (Ls). (See also the proof of [RZ96, Cor 1.14].) As subgroups of My(Ls), the
two groups J,(Qp) and M;y(Q,) are cut out by the conditions gba = bag and go = og, respectively. The claim follows
from this and (8.8).

We will certainly choose the transfer factor A(-, )JJ\/’}H so that

ACy )iy = Al (8.9)
via the isomorphism Jy,(Q,) ~ M;(Q,) in the last paragraph. Suppose that § € J,(Q,) and v € M;(Q,) are semisimple
elements with matching stable conjugacy classes. This amounts to assuming that bydby ! is stably conjugate to 7o in
My (Qyp). Observe that the identity (6.9) now simplifies as

ey = (p(70,6), 7Y~ - (inv, (bodby 5 %0), R)- (8.10)
The proof of Lemma 6.3 comes down to showing that the right side of (8.10) is a constant independent of 79 and J. As
in the paragraph preceding (8.2), write s = s1s, for s1 € Z(H)'®) and s, € Z(G) and let %; and %y denote the images
of 51 and sy in Z(Iy), respectively. To show Lemma 6.3, it suffices to prove that (ap(Y0,8), K1)~ - (invy, (bodby 5 70), R )

is constant. In view of [Shi09, Lem 10.9], it is enough to prove that if o = bodby ' then (a,(70,6), %) is independent
of 6.
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In the definition a,(70,d) = k1, (bs) (§4.3), we may take y = by * so that
55 = bogbad =z c Z(Mb)(Ls)

using (8.8). (Its image in B(Ip) is bs.) We see that a,(70,9) equals the image of kz(az,)(2) under the bottom horizontal
arrow below.
B(4(My)) ——— B(l)

i/‘iz(Mb) ifﬂo

X*((Z(My))T®)) —= X*(Z(Ip)"®)

Note that the diagram (8.1) makes sense in our case as well. We obtain a character on Z (Z/\l\ )" by pulling back
Kz(My)(2) via (8.1). Since k; is the image of 51 € Z(H)'®) | we see that

{p(70,0), R1) = (Kz () (2), 51)

where the pairing on the right is taken between X*(Z(]\/IH)F(M) and Z(M\H)F(p). The value on the right hand side is
visibly independent of 4. This finishes the proof of Lemma 6.3 in the setting of the current subsection. Our discussion
shows that (with the identification A(, )ﬁH =A,(, )%’;)

ey = pa(s2){kz) (2),51) 7" (8.11)
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