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Abstract. Let l be a prime. In this paper we are concerned with GU(1, n− 1)-type Shimura varieties with
arbitrary level structure at l and investigate the part of the cohomology on which G(Qp) acts through mod l
supercuspidal representations, where p 6= l is any prime such that G(Qp) is a general linear group. The main
theorem establishes the mod l analogue of the local-global compatibility. Our theorem also encodes a global
mod l Jacquet-Langlands correspondence in that the cohomology is described in terms of mod l automorphic
forms on some compact inner form of G.

1. Introduction

It has been observed by numerous mathematicians that torsion in the cohomology of locally symmetric
spaces has a deep relationship with arithmetic such as congruences of automorphic forms, Galois represen-
tations with torsion coefficients, and the mod l or l-adic versions of the Langlands program. Ultimately
one would like to understand the torsion for all locally symmetric spaces, but considering the difficulty it is
reasonable to start investigation in the case of Shimura varieties. In fact the latter have some advantage in
that they carry interesting Galois actions. The goal of this paper is a representation-theoretic description of
the l-torsion cohomology of certain GU(1, n− 1)-type Shimura varieties when the level at l is arbitrary.

Let ShU denote a Shimura variety associated with a reductive group G over Q with level U , an open
compact subgroup of G(A∞). Write E for the reflex field and HFl

(G(A∞), U) for the Hecke algebra of

U -bi-invariant functions with values in Fl. The étale cohomology H i(ShU ,Fl) has rich structure as an
HFl

(G(A∞), U) × Gal(E/E)-module and should realize the mod l version of the global Langlands corre-
spondence, which is expected to incorporate a suitable generalization of Serre’s conjecture but has yet to be
made precise.

A nearly complete result has been given by Emerton ([Eme]) in the case of elliptic modular curves, and
it is reasonable to believe that the same can be done for Shimura curves. For arbitrary PEL-type Shimura
varieties, recent work of Lan and Suh ([LS12], [LS]) proves the vanishing of the mod l interior cohomology
outside the middle degree assuming that the weight for the coefficient satisfies an effective condition and
that the PEL data is unramified at l so that U is hyperspecial at l (“l does not divide the level”) and ShU
has good reduction modulo l. Despite the beauty and uniformity of their argument, they excluded the case
of constant Fl-coefficient, which would be essential in that any reasonable mod l automorphic form should
be represented by a class in H i(ShU ,Fl). (In the case of modular forms, the corresponding fact is that a
form of higher weight is congruent modulo l with a weight 2 form at the cost of introducing l in the level.)
To our knowledge little is known about H i(ShU ,Fl) in relation to the mod l Langlands program especially
in the higher dimensional case when l divides the level.

As a first step toward the general case, we analyze the mod l étale cohomology in the part on which G(Qp)
acts through supercuspidal representations (this is philosophically resemblant to working with the simple
trace formula rather than the full trace formula) under the assumptions that

• G(R) is isomorphic (ignoring similitude) to a product of U(1, n− 1)× U(0, n)× · · · × U(0, n) and
• p is a prime different from l such that G(Qp) is isomorphic to a product of general linear groups.

We stress that U is allowed to be arbitrary at l here. This case was generally believed to be difficult but can
be treated in our work, as far as the supercuspidal part is concerned, for the simple reason that l plays no
special role in the proof, as we consider geometry over a mod p or p-adic base for a prime p 6= l (rather than
p = l). Our approach is based on an adaptation of Harris-Taylor’s method ([HT01]) to the mod l setting
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and very different from Lan-Suh’s approach and Emerton’s. We also include non-compact Shimura varieties
in our result although this only occurs when G(R) has no U(0, n)-factors.

To describe our results in detail let us set up some notation. Let Up ⊂ G(A∞,p) be an open compact
subgroup and define H i

c(ShUp ,Fl) to be the direct limit of H i
c(ShUpUp ,Fl) as Up runs over the open compact

subgroups of G(Qp). The reflex field E may be identified with the CM field F which is used to define

G. By a standard procedure H i
c(ShUp ,Fl) is equipped with a commuting action of HFl

(G(A∞,p), Up) and

Gal(F/F ). By assumption G(Qp) is isomorphic to GL1(Qp) times a product of GLn(Fv)’s and there is a
distinguished place w among the v’s which corresponds to the infinite place for the signature (1, n − 1).
Let us write H i

c(ShUp ,Fl)w-sc for the maximal subspace which has only supercuspidal subquotients as an
Fl[GLn(Fw)]-module. Let Dn,w denote the central division algebra over Fw with invariant 1/n. Let qw
denote the cardinality of the residue field of Fw.

Now let G′ be an inner form of G which is isomorphic to G over A∞,p, compact mod center at ∞ and a
certain group at p with a direct factor D×n,w (see §4.2 for detail). The following is our main result, whose
precise version is stated in Theorem 4.3.

Theorem 1.1. If i 6= n − 1 then H i
c(ShUp ,Fl)w-sc = 0 and (up to an explicit constant and a twist, and

ignoring the GL1(Qp)-factor in G′(Qp))[
Hn−1
c (ShUp ,Fl)w-sc

]
=
∑
ρw

[
HomD×n,w

(ρw, C
∞
c (G′(Q)\G′(A∞)/Up,Fl)ss)

]
[JL(ρw)] [rec(JL(ρw))]

in the Grothendieck group of HFl
(G(A∞,p), Up) × G(Qp) × WFw-modules where ρw runs over the set of

irreducible smooth D×n,w-representations (up to isomorphism) such that JL(ρw) is supercuspidal. If l does
not divide qw(qnw − 1) then the above isomorphism holds without passing to the Grothendieck group.

The theorem identifies Hn−1
c (ShUp ,Fl)w-sc as an HFl

(G(A∞,p), Up) × G(Qp) ×WFw -module in terms of

Fl-valued automorphic forms on G′(A∞) via the mod l local Jacquet-Langlands and local Langlands corre-
spondences for D×n,w and GLn(Fw), respectively denoted by JL and rec. In particular the theorem may be

thought of as providing a mod l global Jacquet-Langlands type correspondence between part of H0
c for G′

and part of Hn−1
c for G.

Even in the non-banal case we can be precise (though not as explicit) about Hn−1
c (ShUp ,Fl)w-sc without

passing to the Grothendieck group. As the answer is somewhat complicated we do not state it explicitly in
this paper but see Remark 4.13 below.

If ShUp is compact the G(A∞)-action on lim−→UpHn−1
c (ShUp ,Ql) is semisimple. This can be seen from the

corresponding fact on the discrete automorphic spectrum via Matsushima’s formula. However the analogous
assertion has no reason to be true for Hn−1

c (ShUp ,Fl) (or its direct limit) and may well be false. A nice aspect
of our result is that it identifies the mod l cohomology of ShUp rather precisely, at least in the supercuspidal
part, without taking Euler-Poincaré characteristic or working in the Grothendieck group. Another advantage
is that the assumptions (in the bulleted list above) are easy to state and check.

Here is the sketch of proof. First, the theorem is reduced to the same assertion about H i
c(ShUp , RΨFl)w-sc,

namely the supercuspidal part of the compact support cohomology of the special fiber with nearby cycle
coefficient. This is standard if the integral models for ShU are proper over the base (which is the case if
[F : Q] > 2) but still true without the condition thanks to [IM]. Second, we show that the cohomology of

the Newton strata has no supercuspidal part except the basic stratum Sh
(0)
Up , which has dimension 0. This is

deduced from the fact that the corresponding non-basic Lubin-Tate spaces have only induced representations

in their cohomology. The third step is to write H i
c(Sh

(0)
Up , RΨFl)w-sc in terms of the cohomology of the basic

Lubin-Tate space LT(0) and Igusa variety Ig
(0)
Up by using a formula due to Harris-Taylor and Mantovan

(Proposition 4.9). Finally the conclusion follows from the description of the mod l cohomology of LT(0) due

to Dat ([Dat12a]) and that of Ig
(0)
Up as in [HT01] or [Shi09].

Our method should apply well to non-constant coefficients as long as the weight parameter is small
relative to p. It would be certainly interesting to extend our results for other Shimura varieties and beyond
the supercuspidal part. We comment on such possibilities at the end (§5).
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As a somewhat different approach, an adaptation of the argument of [Far04] to the mod l setting might
lead to our main theorem. However for future generalization, it is much less clear to us how to go beyond
the supercuspidal part in such an approach than in the approach of this paper.

The organization of the paper is as follows. In section 2 we review some preliminaries in mod l represen-
tation theory of p-adic groups when p 6= l. Section 3 is devoted to key results on the mod l cohomology
of basic and non-basic Lubin-Tate spaces which are mostly due to Dat. Section 4 is the heart of the paper
where the main theorem is stated and proved. The concluding remarks are in section 5.

Remark on related work. In a lecture in early 2011, Emerton and Gee reported on a vanishing
theorem in the case of compact GU(1, n−1)-type Shimura varieties.1 Their methods and announced results
overlap little with mine. When I spoke about the results of this paper at a workshop in Kyoto in July 2011,
when the paper was being written, Imai and Mieda told me about their forthcoming results, which later
appeared in a preprint. Their result ([IM, Thm 5.5]) implies that H i

c(ShUp ,Fl)w-sc vanishes unless i = n− 1
(by a somewhat different argument) in the same setting as in this paper but does not make connection
with the mod l Langlands correspondence. More importantly, the main points of their paper and mine
are quite different. On the other hand I benefited from their preprint to include the case of non-compact
GU(1, n− 1)-type Shimura varieties, which was missing in the version presented in Kyoto.

Acknowledgments. The reader will clearly see the great influence of Jean-Francois Dat’s work on this
paper. I am grateful to Dat for his kind answers to numerous questions and Kai-Wen Lan for encouraging
me on this problem. I appreciate Naoki Imai and Yoichi Mieda for sending me their recent preprint [IM]. I
heartily thank the referee for a careful reading, pointing out several inaccuracies, and suggestions to improve
the paper.

2. Preliminaries

In this section we set up notation and recall various facts in the mod l representations theory of p-adic
reductive groups when p 6= l. For a category C , we write A ∈ C to mean that A is an object of C .

2.1. Notation. The following notation will be used in this section and afterward.

• l and p are distinct primes and n ∈ Z≥1,
• A (resp. A∞, A∞,p) is the ring of adeles (resp. finite adeles, finite adeles away from p),
• K is a finite extension of Qp with integer ring OK , residue field cardinality qK and valuation
vK : K× � Z,
• Dn = Dn,K is a division algebra with [Dn : K] = n2, Hasse invariant 1/n and center K,

• D0
n := ker(D×n

vK ·det→ Z), GLn(K)0 := ker(GLn(K)
vK ·det→ Z),

• Um := {g ∈ GLn(OK) : g ≡ 1 (mod pm)} for m ≥ 1,
• WK is the local Weil group for K.

• | · |K : WK → F×l is the character trivial on the inertia group and sends a geometric Frobenius to
q−1
K .

• Every representation of WK will be continuous (which is the case for the WK-representations realized
on cohomology in this paper) or assumed continuous.

When R is a commutative Zl-algebra and G is the group of K-points of a reductive group,

• RepR(G) is the category of smooth R-representations (R-modules V with G-action such that each
v ∈ V has an open stabilizer in G),
• Repadm

R (G) ⊂ RepR(G) is the subcategory of admissible R-representations (i.e. V such that V H is
a finitely generated R-module for all open compact open subgroup H of G),
• GrothR(G) is the Grothendieck group of admissible R-representations when R is a field,
• IrrR(G) is the set of isomorphism classes of irreducible representations in RepR(G),
• Repsc

R(G) and Irrsc
R(G) are defined by restricting to supercuspidal representations when G is a general

linear group (but the definition is different for inner forms like D×n ; see §2.3),

1Now their work is available online, cf. arXiv:1203.4963v1 [math.NT].
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• DR(G) (resp. Db
R(G)) is the derived category (resp. of bounded complexes) associated with

RepR(G),
• HR(G,H) is the Hecke algebra of locally constant compactly supported H-bi-invariant functions on
G, where H is an open compact subgroup of G,
• Rep(HR(G,H)) is the category of HR(G,H)-modules,
• HomRG and RHomRG denote Hom and RHom taken in the category RepR(G),
• Π ∈ RepR(G) of finite length is said to be π-isotypic for some π ∈ IrrR(G) if every irreducible

subquotient of Π is isomorphic to π.

2.2. Mod l supercuspidal representations. As in [Dat12a, Def 3.0.1], π ∈ RepZl
(GLn(K)) is called

supercuspidal if it does not occur as a Zl[GLn(K)0]-module subquotient of any representation parabolically
induced from a smooth representation on a proper Levi subgroup of GLn(K). This recovers the notion of
supercuspidality for IrrFl

(GLn(K)), cf. [Dat12a, Cor B.1.3]. Write Repsc
Zl

(GLn(K)) for the full subcategory

of RepZl
(GLn(K)) whose objects are supercuspidal representations. It is known ([Dat12a, Prop 3.0.2]) that

the former is a direct factor of RepZl
(GLn(K)), so any π ∈ RepZl

(GLn(K)) decomposes canonically as

π = πsc ⊕ πnon-sc (2.1)

such that πsc belongs to Repsc
Zl

(GLn(K)) and πnon-sc has no Zl[GLn(K)0]-subquotient which is supercuspidal,
and the decomposition (2.1) is functorial in π. In particular any π ∈ RepFl

(GLn(K)) admits a canonical

decomposition (2.1).
Let H be a pro-p principal congruence subgroup of GLn(K), and RepZl

(GLn(K))H-gen denote the sub-
category of RepZl

(GLn(K)) consisting of the representations generated by H-fixed vectors. According to

[Dat07, 3.5.8] (cf. [Dat09, Lem A.3]), π 7→ πH induces a categorical equivalence

RepZl
(GLn(K))H-gen

∼→ Rep(HZl
(GLn(K), H)). (2.2)

Since any object of RepZl
(GLn(K))H-gen is decomposed as in (2.1), any object M of Rep(HZl

(GLn(K), H))

admits a functorial decomposition M = Msc ⊕Mnon-sc via (2.2). By construction (πsc)
H = (πH)sc.

2.3. Mod l Local Langlands and Jacquet-Langlands. We are concerned with the mod l Langlands bi-
jection of Vigneras ([Vig01]) only in the supercuspidal case. Denote by rec such a bijection from Irrsc

Fl
(GLn(K))

onto the n-dimensional representations in IrrFl
(WK). Denote the mod l Langlands-Jacquet map ([Dat12b],

[Dat12a, 2.2.2]) by

LJ : IrrFl
(GLn(K))→ GrothFl

(D×n ).

Both rec and LJ are compatible with the classical local Langlands and Langlands-Jacquet correspondence
via the reduction mod l map rl : GrothQl

(GLn(K))→ GrothFl
(GLn(K)). There is also a Jacquet-Langlands

map due to Dat ([Dat12b, 1.2.4]), for which he writes zJL but we write JL for brevity:

JL : IrrFl
(D×n ) ↪→ IrrFl

(GLn(K))

uniquely characterized by the conditions that

∀ρ ∈ IrrFl
(D×n ), LJ(JL(ρ)) = ±ρ (2.3)

in the Grothendieck group and that the image of JL is the set of “super-Speh” representations (which include
supercuspidal representations). More detail can be found in the articles by Dat and Vigneras cited above.

Lemma 2.1. If π ∈ Irrsc
Fl

(GLn(K)), JL(LJ(π)) = π. If ρ ∈ IrrFl
(D×n ) is such that JL(ρ) is supercuspidal

then LJ(JL(ρ)) = ρ.

Proof. When π is supercuspidal, LJ(π) is (not a virtual but) a genuine representation in view of the definition
of LJ in (2.2.2) (which is equivalent to that of [Dat12b] as explained there) and Step 1 in the proof of Prop
3.1.1 in [Dat12a]. This together with (2.3) implies the second assertion. The first assertion follows as any
π ∈ Irrsc

Fl
(GLn(K)) is in the image of JL. �
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From now on Irrsc
Fl

(D×n ) will denote the collection of ρ as in Lemma 2.1. Define Repsc
Fl

(D×n ) to be the full

subcategory of RepFl
(D×n ) consisting of representations whose irreducible subquotients are in Irrsc

Fl
(D×n ). For

ρ ∈ Irrsc
Fl

(D×n ), define

L (ρ) := rec(JLFl
(ρ)∨)⊗ | · |−(n−1)/2

WK
.

Let Irrsc
Fl

(Q×p × D×n ) denote the collection of ρ̃ = ρ0 ⊗ ρ such that ρ ∈ Irrsc
Fl

(D×n ). For ρ̃ ∈ Irrsc
Fl

(Q×p × D×n )

define

JL(ρ̃) := ρ0 ⊗ JL(ρ) ∈ IrrFl
(Q×p ×GLn(K)), L (ρ̃) := L (ρ0)⊗L (ρ) ∈ IrrFl

(WK).

2.4. Decomposing admissible representations. For π1, π2 ∈ IrrFl
(GLn(K)), it is known (see [EH, Thm

3.2.13] for instance) that Exti(π1, π2) = 0 for all i unless π1 and π2 have the same supercuspidal support. In
particular this implies that any finite length Π ∈ Repsc

Fl
(GLn(K)) decomposes as a direct sum of π-isotypic

(§2.1) subrepresentations Π[π] as π runs over Irrsc
Fl

(GLn(K)). In view of the categorical equivalence (implied

by [Dat12a, Thm 3.2.5]) between Repsc
Fl

(GLn(K)) and Repsc
Fl

(D×n ), any finite length Π ∈ Repsc
Fl

(D×n ) similarly

decomposes as Π '
⊕

ρ∈IrrscFl
(D×n ) Π[ρ].

Lemma 2.2. Any admissible Π ∈ Repsc
Fl

(D×n ) decomposes as

Π '
⊕

ρ∈IrrscFl
(D×n )

Π[ρ]. (2.4)

The same holds if D×n is replaced with Q×p ×D×n .

Proof. By [Dat12a, Prop B.2.1], Π ' ⊕ρΠρ where ρ runs over the set of inertia equivalence classes (i.e. up
to a twist by an unramified character of K×) such that the irreducible subquotients of each Πρ belong to
the class of ρ. Since Π is admissible, Πρ has finite length. Applying the discussion above the lemma, we
obtain (2.4). The last assertion of the lemma is proved in the same way. �

Remark 2.3. The lemma is not immediately obvious since a mod l supercuspidal representation may not be
itself projective in the category with fixed central character, unlike in the case of coefficients in characteristic
0. Also note that without the admissibility condition, (2.4) may not hold even in characteristic 0 unless ρ is
taken up to inertia equivalence. (Consider a compact induction of a supercuspidal representation from D0

n

to D×n .)

2.5. Banal primes. Vigneras ([Vig94]) introduced the notion of banal primes l for a p-adic reductive group
G where l 6= p so that when l is banal, mod l smooth representations of the given group behave as if they were
complex representations. One key property for a banal prime l is that mod l (super)cuspidal representations
of G are injective and projective in the category of smooth G-representations with fixed central character.
For D×n , non-banal primes are those dividing the pro-order of the maximal order of D×n , namely those l
which divide qK(qnK − 1).

3. Lubin-Tate spaces

In our convention a Lubin-Tate space refers to the deformation space of a one-dimensional (not necessarily
formal) Barsotti-Tate group given by quasi-isogenies, as a special case of Rapoport-Zink spaces ([RZ96]).
The usual Lubin-Tate space for formal Basotti-Tate groups is called the basic Lubin-Tate space in this
paper. The case of zero-dimensional (i.e. étale) Barsotti-Tate groups is also considered although the relevant
geometric spaces are not Lubin-Tate spaces. The heart of this section is Dat’s results on the compact support
cohomology complex of Lubin-Tate spaces, built upon work of Harris-Taylor and Faltings-Fargues among
others.
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3.1. Definitions. Let n, h ∈ Z be such that n ≥ 1 and 0 ≤ h ≤ n. Fix a nontrivial ring homomorphism
OK → Fp. (In the global setting of the next section, we will use the reduction map OFw → k(w) for this.)

Let Σ0
n−h be a Barsotti-Tate group of height [K : Qp](n − h) and dimension 1 over Fp with OK-action,

and Σét
h an étale Barsotti-Tate group of height [K : Qp]h with OK-action. As usual, OK is assumed to act

on the one-dimensional Fp-vector space Lie Σ0
n−h via the fixed morphism OK → Fp. Then Σ0

n−h and Σét
h

are unique up to isomorphisms as Barsotti-Tate groups with OK-actions. Set Σn−h,h := Σ0
n−h × Σét

h and
Dn−h,h := EndFp

(Σn−h,h) ⊗Zp Qp. It is a standard fact that Dn−h,h ' Dn−h ×Mh(K) where Dn−h is a

central division algebra over K with invariant 1
n−h .

Write Um for the kernel of the natural projection GLn(OK) → GLn(OK/$m
K). Let {LTn−h,h,Um}m≥1

denote the tower of Lubin-Tate spaces of level Um, each of which is a K̂ur-analytic space. The reader is
referred to [Far04, §2.3.9] for a precise definition. (Also see [Dat07, §3.2] for the crucial h = 0 case.) We
follow Dat ([Dat07, §3.3]) to define a cohomology complex

RΓc(LTn−h,h,Λ) ∈ Db
Λ(GLn(K)×D×n−h,h ×WK)

where Λ ∈ {Fl,Zl,Ql}. Even though Dat did this only for h = 0, the same construction works for any h by
using [Dat06, App B] if D in his paper is replaced with our Dn−h,h. When h = 0, we will simply write LTn

for LTn,0. As usual, define

H i
c(LTn−h,h,Λ) := lim−→

m

H i
c(LTn−h,h,Um ,Λ), i ≥ 0,

which is equipped with a Λ-linear action by GLn(K) ×D×n−h,h ×WK . It is explained in [Dat07, §3.3] that

H i
c(LTn,Λ) computes the cohomology of the complex RΓc(LTn,Λ).

3.2. Dat’s results in the basic case (h = 0). In this subsection we write RΓc,Λ (resp. RΓc,Um,Λ) for
RΓc(LTn,Λ) (resp. RΓc(LTn,Um ,Λ)) and G for GLn(K) to simplify notation. Write RΓc,Λ,sc := (RΓc,Λ)sc

for the G-supercuspidal part (§2.2). Recall from [Dat07, Lem 3.5.9] that RΓc,Um,Λ ' (RΓc,Λ)Um in Db
Λ(D×n ×

HΛ(G,Um)×WK).

Proposition 3.1. RΓc,Zl
as an object of Db

Zl
(D×n ) is isomorphic to a bounded complex of projective D×n -

representations of locally finite type contained in degrees [n− 1, 2n− 2].

Remark 3.2. The analogous fact holds if the roles of D×n and GLn(K) are interchanged, cf. [Dat12a, Prop
2.1.3, 3.1.1]. As our proposition is not fully stated in Dat’s article (although it is implicit there), we derive
it from his results.

Proof. This is [Dat12a, Prop A.2.1].
�

Our major concern is the supercuspidal part of the cohomology. Projectivity is an essential ingredient in
the proof of the main theorem.

Proposition 3.3. (i) RΓc,Zl,sc ' Hn−1
c (LTn,Zl)sc[1− n].

(ii) Hn−1
c (LTn,Um ,Zl)sc is projective in RepZl

(D×n ) for each m ≥ 1.

(iii) Hn−1
c (LTn,Zl)sc is projective and of locally finite type in RepZl

(D×n ).

Proof. Part (i) is proved in (3.1.1.1) of [Dat12a] based on Mieda’s result. Let us prove (ii) and (iii). Proposi-
tion 3.1 shows that RΓc,Zl,sc is locally of finite type as the latter is a direct factor of RΓc,Zl

. For projectivity,
it suffices to check the projectivity of (ii) as Hn−1

c (LTn,Um ,Zl)sc is a direct factor of Hn−1
c (LTn,Zl) as a

G ×D×n -module. (See the paragraph above the lemma 3.5.9 of [Dat07].) Since the cohomology of LTn,Um

is compactly induced from that of LT
(0)
n,Um

, we may as well show that Hn−1
c (LT

(0)
n,Um

,Zl)sc is projective in

RepZl
(D0

n). The latter space is admissible (even finite dimensional), supercuspidal (automatic for D0
n) and

has bounded cohomological dimension thanks to Proposition 3.1 and part (i) of the current proposition.
Now the projectivity can be proved exactly as in the step 3 of the proof of [Dat12a, Prop 3.1.1].

�
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The following deep result relates the cohomology of LTn with the mod l local Langlands and Jacquet-
Langlands correspondences.

Proposition 3.4. Hn−1
c (LTn,Fl)sc ' Hn−1

c (LTn,Zl)sc⊗Zl
Fl equivariantly with D×n ×GLn(K)×WK-actions.

For every m ≥ 1 and ρ ∈ IrrFl
(D×n ), there is an isomorphism of Fl[GLn(K)×WK ]-module

HomFlD
×
n

(Hn−1
c (LTn,Fl)sc, ρ)(1− n) ' JL(ρ)⊗L (JL(ρ))

if ρ ∈ Irrsc
Fl

(D×n ) and HomFlD
×
n

(Hn−1
c (LTn,Fl)sc, ρ) = 0 otherwise. Here (1− n) denotes the Tate twist.

Proof. The first isomorphism is justified by Hn
c (LTn,Zl) = 0 via a long exact sequence. The second is

derived from a deep result of Dat ([Dat12a, Thm 3.2.4]) for the cohomology with Zl-coefficient. Compare
with the théorème 2 of that paper.

�

3.3. The non-basic case (1 ≤ h ≤ n−1). Let Λ ∈ {Fl,Zl,Ql}. We show that supercuspidal representations
do not occur in the cohomology of non-basic Lubin-Tate spaces with Λ-coefficients.

Proposition 3.5. RΓc(LTn−h,h,Λ)sc = 0 if h > 0.

Proof. It suffices to show that H i
c(LTn−h,h,Λ)sc = 0 for all h > 0. Equivalently we may show that H0 of the

formal nearby cycle for the formal model of LTn−h,h has no supercuspidal part in each degree i ≥ 0. For
this we freely borrow notation and facts from [Har05, §4.3]. What has to be checked is that (Ψi

n−h,h)sc = 0.

This follows from Proposition 4.3.14 of that article, which tells us that Ψi
n−h,h is induced from the parabolic

subgroup with Levi factor GLn−h(K) × GLh(K). (We use Λ-coefficient unlike Harris who uses Ql, so one
could be inverting l in the isomorphism (4.3.12) of [Har05] if not careful. Note that the kernel of the mod
$ map GL(n,O/$m)→ GL(n,O/$), to be denoted Km, is a p-group. In constructing (4.3.12), we ignore
m = 1 and for m ≥ 2, replace [GL(n,Om) : Ph,0(Om)] with [GL(n,Om) ∩Km : Ph,0(Om) ∩Km]. The latter
is invertible in Λ and the argument of [Har05] goes through.) �

3.4. Etale case (n = h). In this case Σ0,n = Σét
n is étale. Let us write LTét

n for LT0,n and recall the following

facts from [Far04, Ex 2.3.22, 4.4.8]: For each m ≥ 1, K̂ur-analytic space LTét
n,Um

is zero-dimensional and

have points (all defined over K̂ur) described as LTét
n,Um

= GLn(K)/Um, thus

RΓc(LTét
n,Um

,Λ) = H0
c (LTét

n,Um
,Λ) = C∞c (GLn(K)/Um,Λ) (3.1)

(concentrated in degree 0). The HΛ(GLn(K), Um)-module structure is induced by right translation by a
Um-double coset on GLn(K)/Um. The action of D×0,n = GLn(K) is as follows: (g · φ)(h) = φ(g−1h) for

g ∈ GLn(K) and φ ∈ C∞c (GLn(K)/Um,Λ). The Weil group WK acts trivially.

Lemma 3.6. H0
c (LTét

n,Um
,Λ) is projective and for every ρ ∈ Repadm

Λ (D×n ), there is an isomorphism as
HΛ(GLn(K), Um)⊗ Λ[WK ]-modules

RHomΛD×0,n
(RΓc(LTét

n,Um
,Λ), ρ) ' HomΛD×0,n

(H0
c (LTét

n,Um
,Λ), ρ) ' ρUm (3.2)

where ρ is given its natural GLn(K)-action and trivial WK-action on the right hand side.

Proof. Let us justify the second isomorphism of (3.2). Write 1Um for the trivial representation of Um. Since

C∞c (GLn(K)/Um,Λ) = c-ind
GLn(K)
Um

(1Um), Frobenius reciprocity tells us that canonically

HomΛD×0,n
(C∞c (GLn(K)/Um,Λ), ρ) ' HomUm(1Um , ρ) ' ρUm

and the HΛ(GLn(K), Um)-module structure on C∞c (GLn(K)/Um,Λ) induces the usual HΛ(GLn(K), Um)-
module structure on ρUm . The projectivity of H0

c (LTét
n,Um

,Λ) is easy to see from Frobenius reciprocity as
taking Um-invariants is an exact functor (even an equivalence of categories, cf. [Dat07, 3.5.8]). The first
isomorphism of (3.2) follows from (3.1) and the projectivity. �
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4. Mod l cohomology of Shimura varieties

In this section we fix embeddings Q ↪→ Qp for every prime p and Q ↪→ C.

4.1. GU(1, n− 1)-Shimura varieties. In order to introduce Shimura varieties of our interest, we consider
the following PEL datum (B, ∗, V, 〈·, ·〉, h).

• B is a division algebra with center F , which is finite over Q,
• ∗ is a positive involution on B of second kind,
• V is a finite free left B-module,
• 〈·, ·〉 : V ×V → Q is a nondegenerate alternating pairing such that 〈bv1, v2〉 = 〈v1, b

∗v2〉 for all b ∈ B
and v1, v2 ∈ V ,
• h : C → EndBR(VR) is an R-algebra morphism such that (v1, v2) 7→ 〈v1, h(i)v2〉 is symmetric and

positive definite.

Then F is a CM field and F+ := F ∗=1 is the maximal totally real subfield. Set n := [B : F ]1/2 · rankBV .
Define a Q-group G by the rule

G(R) = {(g, λ) ∈ EndBR
(VR)×R× : ∀v1, v2 ∈ V, 〈gv1, gv2〉 = λ〈v1, v2〉}

for any Q-algebra R. Put G1 := ker(λ : G→ Gm). Then G1 is an inner form of ResF+/QU
∗(n) where U∗(n)

denotes a quasi-split unitary group in n variables relative to F/F+. Let Φ∞ be a CM-type for F such that
Φ∞ and its complex conjugate is a partition of the set of complex embeddings of F . The following will be
in effect throughout this article.

Hypothesis 4.1. V ⊗Q R '
∏
v∈Φ∞

V ⊗F,v C has signature (1, n − 1) at one v = τ and (0, n) at all the

other v’s. (Our notion of signature is as in [HT01, I.6].)2

The PEL data satisfying Hypothesis 4.1 were considered in [Clo91], [HT01] and [Shi11] for instance. (In
[Shi11] B = F and G is quasi-split at all finite places but avoids F+ = Q. In the first two references
rankBV = 1 so that EndB(V ) is a division algebra over F .) Fix a prime p satisfying

Hypothesis 4.2. Every place of F+ above p splits in F .

Then Φ∞ induces the set Vp of p-adic places of F such that Vp and its complex conjugate partition the
set of all p-adic places of F . In particular there is an isomorphism

GQp ' Gm ×
∏
v∈Vp

ResFv/Qp
GLn. (4.1)

As explained in [Kot92, §5] and [HT01, §3.1] (our notation is closest to that of [Shi11, §5.2]), the above
PEL datum gives rise, via a moduli problem for abelian schemes with additional structure, to the projective
system of smooth quasi-projective varieties {ShU} over F , where U runs over sufficiently small open compact
subgroups of G(A∞). By Hypothesis 4.1 ShU has dimension n− 1 over F .

Denote by Shcan
U the canonical model over F by Deligne and Shimura. It is known that ShU is isomorphic

to # ker1(Q, G)-copies of Shcan
U ([Kot92, §8]) and that # ker1(Q, G) ∈ {1, 2} (see the proof of the lemma 3.1

in [Shi11]).

4.2. Main theorem. Let G′ denote an inner form of G over Q, unique up to isomorphism, such that

• G′ ×Q A∞,p ' G×Q A∞,p,
• G′(R) is compact modulo center, and

• G′(Qp) ' Q×p ×D×n,w ×
∏
v∈Vp\{w}GLn(Fv). (cf. J (0)(Qp) of (4.7).)

The existence of G′ is easily checked by the Galois cohomology computation as in [Clo91, §2].
For any open compact subgroup Up ⊂ G(A∞,p) define for i ≥ 0

H i
c(ShUp ,Fl) := lim−→

Up

H i
c(ShUpUp ,Fl)

2We may say instead that G1
R is isomorphic to U(1, n − 1) × U(0, n) × · · · × U(0, n). Given such an isomorphism, one can

always choose a CM-type Φ∞ that works.
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as

Up = Up,0 ×
∏
v∈Vp

Up,v (4.2)

runs over the set of pro-p congruence subgroups of G(Qp) ' GL1(Qp)×
∏
v∈Vp GLn(Fv), cf. (4.1). Namely

Up,0 (resp. Up,v) is a subgroup of GL1(Zp) (resp. GLn(OFv)) congruent to 1 modulo a power of p (resp. a

uniformizer of OFv). Then H i
c(ShUp ,Fl) is a module over HFl

(G(A∞,p), Up) ⊗ Fl[G(Qp) × Gal(F/F )]. We

can take the GLn(Fw)-supercuspidal part of Hn−1
c (ShUp ,Fl) in the sense of (2.1) and denote it by

Hn−1
c (ShUp ,Fl)w-sc.

The latter space is still stable under the action of HFl
(G(A∞,p), Up), G(Qp) and Gal(F/F ). Similarly define

H i
c(Shcan

Up ,Fl) and H i
c(Shcan

Up ,Fl)w-sc. Clearly (cf. §4.1)

H i
c(ShUp ,Fl) = # ker1(Q, G) ·H i

c(Shcan
Up ,Fl) (4.3)

equivariantly with the Hecke and Galois actions.

Put D̃×n,w := Q×p ×D×n,w and view it as a subgroup of G′(Qp) in the obvious manner. Let ρ̃w = ρ0 ⊗ ρw ∈
Irrsc

Fl
(D̃×n,w). Denote the semisimplification of C∞c (G′(Q)\G′(A∞)/Up,Fl) as an HFl

(G(A∞,p), Up)×G′(Qp)×
WFw -representation by C∞c (G′(Q)\G′(A∞)/Up,Fl)ss.

Theorem 4.3. If l is sufficiently large (in a way depending on Up) then Hn−1
c (Shcan

Up ,Fl)w-sc is isomorphic
to  ⊕

ρ̃w∈IrrscFl
(D̃×n,w)

Hom
D̃×n,w

(ρ̃w, C
∞
c (G′(Q)\G′(A∞)/Up,Fl))⊗ JL(ρ̃w)⊗L (JL(ρ̃w))


as an HFl

(G(A∞,p), Up)×G(Qp)×WFw-module. In general, the same holds true in the Grothendieck group

if Hom is taken with C∞c (G′(Q)\G′(A∞)/Up,Fl)ss in the second argument. In all cases,

H i
c(Shcan

Up ,Fl)w-sc = 0 if i 6= n− 1. (4.4)

Remark 4.4. Precisely the condition on l is that l /∈ S(Up) as in Lemma 4.6 below, where S(Up) is defined
via any sequence of Up as in Lemma 4.5.

Although the mod l global Langlands correspondence in general has not been seamlessly formulated yet
to our knowledge, it would be appropriate to view the above result as a local-global compatibility for mod
l Langlands correspondence, the analogue of its l-adic counterpart (e.g. [HT01, Thm VII.1.9], [Shi11, Thm
6.4]). Moreover an interesting feature of Theorem 4.3 is that it realizes a mod l Jacquet-Langlands-type
correspondence between G and G′ in some sense. This is reminiscent of the relationship between elliptic
modular forms and quaternionic modular forms as in [Ser96] (there G = GL2 and G′ is its inner form
ramified precisely at p and ∞). One difference is that Serre considers coherent cohomology whereas we are
concerned with étale cohomology.

4.3. A lemma on semisimple central action. The material of this section will be used in §4.6 to take

care of central characters at the p-adic place.3 Let Z(D̃×n,w) be the center of D̃×n,w, isomorphic to Q×p × F×w .

Let $w be a uniformizer of Fw so that there is a natural isomorphism Z(D̃×n,w) ' (Z×p × pZ)× (O×Fw
×$Z

w).

Let (p, 1), (1, $w) ∈ Z(D̃×n,w) act on G′(A∞) by (right) multiplication (viewing D̃×n,w naturally as a subgroup
of G′(Qp), cf. the product decomposition of G′(Qp) at the start of §4.2).

Lemma 4.5. There are only finitely many primes dividing the cardinality of either a (p, 1)-orbit or a (1, $w)-
orbit on the double quotient G′(Q)\G′(A∞)/UpUp as Up runs over a countable sequence of open compact
normal subgroups of a maximal compact subgroup of G′(Qp) converging to {1} (where Up is fixed).

3I thank the referee for pointing out a mistake in an earlier draft, which is fixed in this subsection.
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Proof. Since G′(R) is compact modulo center, the double quotient is finite and G′(Q) is discrete in G′(A∞),
cf. [Gro99, Prop 1.4, 4.3]. In particular all orbits are finite.

Here is some reduction step. Fix a maximal compact subgroup U0
p of G′(Qp). Let {g1, ..., gr} be a set of

representatives for G′(Q)\G′(A∞)/UpU0
p . Choose a normal subgroup Up of U0

p (in the sequence) which is

small enough such that Up is pro-p and giUpg
−1
i ∩G′(Q) = {1} (in G′(A∞)) for 1 ≤ i ≤ r. The last condition

implies that
gUpg

−1 ∩G′(Q) = {1}, g ∈ G(A∞). (4.5)

(To see this, write g = γgiu
pup for γ ∈ G′(Q), up ∈ Up, up ∈ U0

p and some 1 ≤ i ≤ r, and examine the effect
of conjugation by each of γ, gi, u

p and up.) Now fix such Up. Clearly there are finitely many primes which
divide the cardinality of a (p, 1)-orbit or a (1, $w)-orbit on G′(Q)\G′(A∞)/UpUp (as there are finitely many
orbits). For the lemma it suffices to show that there is no new prime divisor other than p as we replace Up
with any finite index normal subgroup U ′p ⊂ Up.

The proof easily boils down to checking the following abstract statement: Let X be a finite set with a
free action by a finite p-group H. Let α be an automorphism of X commuting with H. (Apply this when
X is G′(Q)\G′(A∞)/UpUp, H is Up/U

′
p, and α is either (p, 1) or (1, $w). Then H acts freely by (4.5).) For

each x ∈ X, write x ∈ X/H for x mod H and let 〈α〉 · x ⊂ X/H (resp. 〈α〉 · x ⊂ X) denote the orbit of
x (resp. x) under the α-action. The assertion to show is that for each x ∈ X, |〈α〉 · x| is |〈α〉 · x| times a
power of p. This is elementary to check. (If m,n ∈ Z≥1 are minimal such that αmx = x and αnx = x, then
obviously |〈α〉 · x| = n, |〈α〉 · x| = m, and m|n. Moreover αmx = xh for some h ∈ H, and n/m is nothing
but the order of h in H, which should be a power of p since H is a p-group.)

�

Let S(Up) be the set of primes l which are either non-banal for D̃×n,w (cf. §2.5) or lie in the finite set of
primes in the preceding lemma for a fixed choice of a sequence of Up as in that lemma. Note that S(Up) is
a finite set.

Lemma 4.6. If l /∈ S(Up) then the center of D̃×n,w acts semisimply on C∞c (G′(Q)\G′(A∞)/Up,Fl).

Proof. Recall that Z(D̃×n,w) ' (Z×p ×pZ)× (O×Fw
×$Z

w). The groups Z×p and O×Fw
act on each vector through

finite quotients, whose orders are prime to l as l is banal. Hence Z×p and O×Fw
act semisimply. It remains to

show that (p, 1), (1, $w) ∈ Z(D̃×n,w) act semisimply on C∞c (G′(Q)\G′(A∞)/UpUp,Fl) for sufficiently small
Up. Partitioning the finite set G′(Q)\G′(A∞)/UpUp into orbits of (p, 1) (resp. (1, $w)), the proof amounts

to checking that the action of 1 ∈ Z/mZ on C(Z/mZ,Fl) by translation is semisimple if l - m. This is
straightforward.

�

4.4. Newton stratification. One important ingredient of proof is a formula due to Harris and Taylor,
which describes the cohomology of GU(1, n− 1)-type Shimura varieties in terms of the cohomology of Igusa
varieties and Lubin-Tate spaces. We will recall the Newton stratification from [HT01] where more details
can be found. Note that we do not need properness for our discussion below although the Shimura varieties
of Harris-Taylor are proper over the base.

An integral model ShUp, ~m over OFw with Drinfeld level structure at p, prescribed by an r-tuple of non-
negative integers ~m = (m1, ...,mr), is defined exactly as in [HT01, III.4] (cf. [Shi11, §5.2]). Denote by
ShUp, ~m the special fiber and by A the universal abelian scheme over ShUp, ~m. Then the Barsotti-Tate group
A[w∞] has dimension 1. In the setting of [Shi11, §5.2], following Harris-Taylor, a (set-theoretic) Newton
stratification

ShUp, ~m =
n−1∐
h=0

Sh
(h)
Up, ~m

was defined such that Sh
(h)
Up, ~m is the locus where A[w∞] has étale height h. In particular Sh

(0)
Up, ~m is the

supersingular stratum. The setting of Harris-Taylor is slightly different in that the B in the PEL datum
is a central division algebra over F of degree n2, but the same Newton stratification works as explained in
[HT01, III.4]. Harris and Taylor showed the following:
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(i) Sh
(h)
Up, ~m has dimension h for 0 ≤ h ≤ n− 1.

(ii) Sh
[h]
Up, ~m := ∪hj=0Sh

(j)
Up, ~m is closed in ShUp, ~m for each 0 ≤ h ≤ n− 1.

In view of (ii) each Sh
(h)
Up, ~m is locally closed in ShUp, ~m. and as such inherits a reduced subscheme structure.

Let Λ ∈ {Fl,Zl,Ql}. (We could consider Fl, Zl and Ql as well.) Define for each i ≥ 0

H i
c(Sh

(h)
Up , RΨΛ) := lim−→

~m

H i
c(Sh

(h)
Up, ~m ×k(w) k(w), RΨΛ),

which is equipped with an action of HΛ(G(A∞,p), Up) × G(Qp) ×WFw , smooth and admissible for G(Qp)
and continuous for WFw as explained in [IM, Lem 4.1] and its proof, relying on the ideas of [Man05].

Lemma 4.7. For each 1 ≤ h ≤ n − 1 the following is an exact sequence of Λ-modules equivariant for the
action of HΛ(G(A∞,p), Up)×G(Qp)×WFw :

· · · → H i
c(Sh

(h)
Up , RΨΛ)→ H i

c(Sh
[h]
Up , RΨΛ)→ H i

c(Sh
[h−1]
Up , RΨΛ)→ H i+1

c (Sh
(h)
Up , RΨΛ)→ · · ·

Proof. As Λ-modules the exact sequence follows from taking cohomology of the exact triangle of [FK88,
I.8.7.(3)] for

Sh
[h−1]
Up ↪→ Sh

[h]
Up and Sh

(h)
Up ↪→ Sh

[h]
Up (4.6)

and taking a direct limit over ~m. The assertion on equivariance follows from the equivariance of (4.6) for the
above action. The desired equivariance is standard except for the G(Qp)-action. Recall from the proof of
[IM, Lem 4.1] that G(Qp) is generated by G+(Qp) and p as a group in their notation. The action of p is trivial
on cohomology in all cases, so it suffices to check the G+(Qp)-equivariance. (In fact the geometric objects
are acted on by not G(Qp) but only G+(Qp).) This is a consequence of the fact that the G+(Qp)-action
disturbs an abelian scheme only within its isogeny class.

�

We are about to recall some basics of Igusa varieties. The reader is invited to refer to [Man04] and [Man05]

for more details. (A short summary for the case at hand is found in [Shi11, §5.2].) Igusa varieties Ig
(h)
Up,m

are finite étale coverings of Sh
(h)

Up,~0
defined by a moduli problem for Igusa level structure, which is roughly

an isomorphism of A[w∞] with a constant family of a fixed Barsotti-Tate group over Fp. The dimension of

Ig
(h)
Up,m is h in view of (i) above. The tower {Ig(h)

Up,m}m≥1 admits a commuting action of Up\G(A∞,p)/Up and

a certain submonoid of J (h)(Qp), where

J (h)(Qp) ' Q×p ×D×n−h,h,Fw
×

∏
v∈Vp\{w}

GLn(Fv). (4.7)

The action of the latter submonoid on

H i
c(Ig

(h)
Up ,Λ) := lim−→

m

H i
c(Ig

(h)
Up,m,Λ), i ≥ 0

uniquely extends to a smooth and admissible action of the whole J (h)(Qp), cf. [Man05, Prop 7]. When h = 0,

the action of J (0)(Qp) is already defined on Ig
(0)
Up := lim←−

m

Ig
(0)
Up,m (before passing to cohomology) and admits

a concrete description. Let us choose an isomorphism (canonical up to G(A∞,p)× J (0)(Qp)-conjugacy)

ιb : G′(A∞) ' G(A∞,p)× J (0)(Qp).

Lemma 4.8. As a G(A∞,p)× J (0)(Qp)-set, we have a non-canonical isomorphism

lim←−
Up

Ig
(0)
Up(Fp) = (G′(Q)\G′(A∞))# ker1(Q,G)

where the action on the latter is induced by the right multiplication of G(A∞,p)× J (0)(Qp) through ι−1
b . For

each Up, Ig
(0)
Up(Fp) is described as the set of Up-cosets.
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Proof. This is the h = 0 case of the lemma V.1.2 of [HT01] (cf. [Shi09, Lem 7.3]). �

The following theorem, essentially due to Harris and Taylor, is a version by Mantovan. (When h = 0,
a slightly weaker statement can be deduced from the Hochschild-Serre spectral sequence of Fargues, cf.
[Far04, Cor 4.5.21, Thm 7.2.1].) Strictly speaking, Mantovan works with PEL data unramified at p, but her
method also applies to Harris-Taylor’s situation and ours where PEL data may be ramified at p, thanks to
Hypotheses 4.1 and 4.2 (and the fact that the deformation of one-dimensional formal OFw -modules is well
understood).

Proposition 4.9. There is a spectral sequence of Λ-modules equivariant for the action of HΛ(G(A∞,p), Up)×
G(Qp)×WFw):

Ei,j2 = lim−→
Up

⊕
s+t=j
s,t≥0

Exti
ΛJ(h)(Qp)

(H2(n−1)−s
c (LT

(h)
Up
,Λ), Ht

c(Ig
(h)
Up ,Λ))(1− n)⇒ H i+j

c (Sh
(h)
Up , RΨΛ) (4.8)

where Up runs over the subgroups of G(Qp) as in (4.2) and (1− n) denotes the Tate twist, and

LT
(h)
Up
' LT1,Up,0 × LTn−h,h,Up,w ×

∏
v∈Vp\{w}

LTét
n,Up,v

. (4.9)

Proof. The theorem 3.2 of [Man11] gives us a formula analogous to (4.8) but without Tate twist and with

Exti and H
2(n−1)−s
c (LT

(h)
Up
,Λ) replaced by Tori and the degree s compact support cohomology of the special

fiber of LT
(h)
Up

, respectively. From here one obtains (4.8) by appealing to the theorem 8.7 of [Man04]. The

switching from Hs
c to H2(n−1)−s and the introduction of Tate twist are explained by the use of Poincaré

duality in the proof of that theorem. on page 323 of [Man04]. The isomorphism (4.9) is explained in [Far04,
2.3.7.1, 2.3.21]. �

4.5. Passing between the generic and special fibers. As in the last subsection let Λ ∈ {Fl,Zl,Ql}.
Under Hypothesis 4.1, the integral models for our Shimura varieties (with Drinfeld level structure) are proper
over OFw provided that [F+ : Q] > 1, in which case G is anisotropic modulo center over Q. This follows
from [Lan08, Thm 5.3.3.1, Rem 5.3.3.2]. The proper case is nice in that the standard theory of nearby cycles
provides an isomorphism of HFl

(G(A∞,p), Up)×G(Qp)×WFw -modules

H i
c(ShUp , RΨΛ) ' H i

c(ShUp ,Λ), i ≥ 0. (4.10)

When F+ = Q, our Shimura varieties are not proper, but a recent result of Imai and Mieda ([IM]) shows
that the supercuspidal parts are still the same:

Proposition 4.10. As HΛ(G(A∞,p), Up)×G(Qp)×WFw-modules,

H i
c(ShUp , RΨΛ)w-sc ' H i

c(ShUp ,Λ)w-sc. (4.11)

Proof. When [F+ : Q] > 1 this is an immediate consequence of (4.10). In general we appeal to the
proof of the theorem 4.2 of [IM]. That theorem states that the kernel and cokernel of the canonical map
H i
c(ShUp , RΨΛ) → H i

c(ShUp ,Λ) have no supercuspidal subquotients as G(Qp)-representations, which is
slightly weaker than what we want. (Note that a non-supercuspidal representation of G(Qp) may still
have a supercuspidal GLn(Fw)-representation as its w-component.) However (ii) and the proof of (iii) in the
proposition 4.12 of [IM] tell us that the kernel and cokernel as G(Qp)-representations are induced from Pj(Qp)

for Qp-rational proper parabolic subgroups Pj . Each Pj arises as the stabilizer of Fm,r,x with x ∈ Sh∆
m,]r[

and r ≥ 1 in [IM, Lem 3.12], where r is the rank of the torus part in the fiber of the semi-abelian scheme
over the toroidal compactification. The fact that the nontrivial torus part admits an action of OF ⊗Z Zp
implies that Pj is a proper parabolic subgroup in each v-factor in (4.1). In particular the above kernel and
cokernel have no GLn(Fw)-supercuspidal subquotients. �
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4.6. Proof of the main theorem. In view of (4.3) we may instead prove the analogous assertion for
H i
c(ShUp ,Fl)w-sc with # ker1(Q, G)-multiplicity. Thanks to Proposition 4.10 it is enough to prove the main

theorem for H i
c(ShUp , RΨFl)w-sc in place of H i

c(ShUp ,Fl)w-sc. We begin by observing that the non-basic
strata have no GLn(Fw)-supercuspidal part.

Lemma 4.11. H i
c(Sh

(h)
Up , RΨFl)w-sc = 0 for all i ≥ 0 if 1 ≤ h ≤ n− 1.

Proof. This results from Propositions 3.5 and 4.9. �

By Lemma 4.11 and Lemma 4.7, for every i ≥ 0

H i
c(Sh

[0]
Up , RΨFl)w-sc = H i

c(Sh
[1]
Up , RΨFl)w-sc = · · · = H i

c(Sh
[n−1]
Up , RΨFl)w-sc (4.12)

as HFl
(G(A∞,p), Up)×G(Qp)×WFw -modules. Hence it suffices to prove the assertions of Theorem 4.3 for

H i
c(Sh

(0)
Up , RΨΛ)w-sc. To this end it is helpful to understand Hn−1

c (LT
(0)
Up
,Fl)w-sc. We see from (4.9) that

RΓc(LT
(0)
Up

) ' RΓc(LT1,Up,0)⊗RΓc(LTn,Up,w)⊗
⊗

v∈Vp\{w}

RΓc(LTét
n,Up,v

) (4.13)

where we suppressed Fl-coefficients for brevity. (We suppress in (4.14) as well.) Proposition 3.3 and Lemma

3.6 tell us that RΓc(LT
(0)
Up

)w-sc is concentrated on degree n− 1 (up to isomorphism), that

Hn−1
c (LT

(0)
Up

)w-sc ' H0
c (LT1,Up,0)⊗Hn−1

c (LTn,Up,w)⊗
⊗

v∈Vp\{w}

H0
c (LTét

n,Up,v
) (4.14)

and that (4.14) is a projective FlJ (0)(Qp)-module.

Lemma 4.12. As an Fl-vector space with HFl
(G(A∞,p), Up)×G(Qp)×WFw)-action,

H i
c(Sh

(0)
Up , RΨFl)w-sc = 0, if i 6= n− 1,

Hn−1
c (Sh

(0)
Up , RΨFl) = lim−→

Up

HomFlJ(0)(Qp)(H
n−1
c (LT

(0)
Up
,Fl)w-sc, H0

c (Ig
(0)
Up ,Fl))(1− n). (4.15)

Proof. Take the supercuspidal part of (4.8) when h = 0. The discussion preceding the lemma and the fact

that Ig
(0)
Up is zero-dimensional imply that Ei,j2 = 0 unless s = n−1 and t = 0. Moreover Ei,j2 = 0 unless i = 0

since Hn−1
c (LT

(0)
Up

)w-sc is projective (Proposition 3.3). The lemma is proved. �

The above lemma verifies (4.4). It remains to prove the first assertion of Theorem 4.3. By Lemma 4.8,
the right hand side of (4.15) is isomorphic to # ker1(Q, G)-copies of

lim−→
Up

HomFlJ(0)(Qp)(H
n−1
c (LT

(0)
Up
,Fl)w-sc, C

∞
c (G′(Q)\G′(A∞)/Up,Fl)).

Let us suppress Fl in the notation from here. Set Gw(Qp) :=
∏
v∈Vp\{w}GLn(Fv) and Uwp :=

∏
v∈Vp\{w} Uv.

By Lemma 3.6 and (4.14) the last expression is isomorphic to

lim−→
Up

Hom
D̃×n,w

(H0
c (LT1,Up,0)⊗Hn−1

c (LTn,Up,w)w-sc, C
∞
c (G′(Q)\G′(A∞)/UpUwp ))(1− n). (4.16)

Note that C∞c (G′(Q)\G′(A∞)/UpUwp ) is admissible and smooth as a D̃×n,w-representation. We can write

C∞c (G′(Q)\G′(A∞)/UpUwp ) = C∞c (G′(Q)\G′(A∞)/UpUwp )w-sc ⊕ C∞c (G′(Q)\G′(A∞)/UpUwp )non-w-sc

where every irreducible D̃×n,w-subquotient of the first (resp. second) direct summand on the right hand side

belongs to (resp. lies outside) Irrsc
Fl

(D̃×n,w). According to the last vanishing of Proposition 3.4, only the first
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direct summand contributes nontrivially to the Hom of (4.16). Applying Lemma 2.2, (4.16) may be written

as below where ρ̃w runs over Irrsc
Fl

(D̃×n,w):

lim−→
Up

⊕
ρ̃w

Hom
D̃×n,w

(H0
c (LT1,Up,0)⊗Hn−1

c (LTn,Up,w)w-sc, C
∞
c (G′(Q)\G′(A∞)/UpUwp )[ρ̃w])(1− n). (4.17)

For the moment let us assume that l /∈ S(Up) as in Lemma 4.6, cf. Remark 4.4. So in particular l is

a banal prime for D̃×n,w, and the center of D̃×n,w acts semisimply on C∞c (G′(Q)\G′(A∞)/UpUwp ). Hence an
extension of ρ̃w by itself in that space has central character, and has to split in light of the projectivity and

injectivity from §2.5. Since C∞c (G′(Q)\G′(A∞)/UpUwp )[ρ̃w] has finite length as a D̃×n,w-representation, it is

a finite direct sum of ρ̃w as a D̃×n,w-representation. We canonically have

C∞c (G′(Q)\G′(A∞)/UpUwp )[ρ̃w] = Hom
D̃×n,w

(ρ̃w, C
∞
c (G′(Q)\G′(A∞)/UpUwp ))⊗ ρ̃w (4.18)

as an H(G′(A∞,p), Up)×H(Gw(Qp), U
w
p )× D̃×n,w-module. Hence in (4.17), the summand is

HomQ×p (H0
c (LT1,Up,0), ρ0)⊗HomD×n,w

(Hn−1
c (LTn,Up,w)w-sc, ρw)(1− n)

⊗Hom
D̃×n,w

(ρ̃w, C
∞
c (G′(Q)\G′(A∞)/Up))U

w
p .

Therefore Proposition 3.4 finishes the proof.
In general when l is arbitrary (but unequal to p), (4.18) holds true in the Grothendieck group if the right

hand side is replaced with [
Hom

D̃×n,w
(ρ̃w, C

∞
c (G′(Q)\G′(A∞)/UpUwp )ss

]
[ρ̃w].

This replacement does not change the summand of (4.17) in the Grothendieck group since H0
c (LT1,Up,0) ⊗

Hn−1
c (LTn)w-sc is a projective D̃×n,w-representation. We conclude again by Proposition 3.4.

Remark 4.13. In the proof we have taken care not to pass to the Grothendieck group of representations
until (4.18). This makes it possible to improve Theorem 4.3 by identifying Hn−1

c (Shcan
Up ,Fl)w-sc as an

HFl
(G(A∞,p), Up) × G(Qp) × WFw -module precisely. One can do this by substituting the description of

H0
c (LT1,Up,0) and Hn−1

c (LTn,Uw) in the théorème 3.2.4.(iii) of [Dat12a] into formula (4.17). The result in-
volves projective generators of suitable mod l representation categories.

5. Scope of generalization

We conclude with comments on the possibility of generalizing our work.

Non-supercuspidal part. We had some advantage by restricting our attention to theGLn(Fw)-supercuspidal
part. Locally the mod l cohomology of Lubin-Tate spaces is completely described in that case. Globally
there was a significant simplification that the supercuspidal part only appears in the basic stratum (where
h = 0). In the basic case Igusa varieties are zero dimensional and their mod l cohomology is easy to describe.
In the non-supercuspidal case the problem is more difficult in both local and global aspects. In particular
the author does not know how to compute the mod l cohomology of Igusa varieties without already knowing
the mod l cohomology of Shimura varieties. A counting point formula of [Shi09] was useful for studying the
Ql-cohomology but does not seem to help in the mod l context. (The case of h = 1 may be doable as Igusa
varieties are curves, but this is not satisfactory.)

Non-constant coefficients. The method of this paper would apply equally well to non-constant coefficients
which come from “p-small weights” in the sense of [LS12, Def 2.29]. Basically one has to run the argument
of this paper after replacing Proposition 4.9 with the non-constant coefficient version of [Man11, Thm 3.2]
(which can be stated in the derived category as in [Man04]).
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Other Shimura varieties. One could try to prove the analogue of Theorem 4.3 for other PEL-type Shimura
varieties. To do this on the G(Qp)-supercuspidal part of the mod l cohomology, two ingredients would be
needed in our approach. First it ought to be shown that the mod l cohomology of non-basic Rapoport-
Zink spaces associated with the Newton strata in the special fibers have no supercuspidal representations in
their mod l cohomology. Next one has to establish results which are similar to those of §3.2 on the mod l
cohomology of the relevant basic Rapoport-Zink spaces.
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