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Abstract

Igusa varieties are smooth varieties over Fp which are higher-dimensional analogues of Igusa
curves. They were introduced by Harris and Taylor ([HT01]) to study the bad reduction of some
PEL Shimura varieties and generalized by Mantovan ([Man04], [Man05]). The present paper
gives a group-theoretic formula for the traces of certain operators on the cohomology of Igusa
varieties, suitable for applications via comparison with the Arthur-Selberg trace formula. Our
formula generalizes the results of [HT01, V.1-V.4] to the case of any PEL Shimura varieties of
type (A) and (C) and puts it in a more natural framework in the spirit of [Kot92].

1 Introduction

This article is mainly concerned with the cohomology of Igusa varieties, which are closely related
to Shimura varieties. To motivate the reader, we begin with briefly discussing what has been worked
out about the cohomology of Shimura varieties in relation with the Langlands correspondence.

The cohomology of Shimura varieties has been studied for decades. Apart from the case GL2,
the case of U3 was extensively studied in [LR92]. Kottwitz and Clozel used some “simple” PEL-type
Shimura varieties of unitary type (a.k.a. type (A)) and attached n-dimensional Galois representations
to automorphic representations of GLn over CM fields satisfying the local-global compatibility of the
Langlands correspondence at unramified primes. Here “simple” means that the Shimura varieties have
no boundary components and that there is no endoscopy. The key inputs in their work are, among
other things, the counting point formula for the good reduction fiber of the Shimura variety of type
(A) or (C) ([Kot92]), to be compared with the Arthur-Selberg trace formula, and the base change
result for simple unitary groups ([Clo91]). Although a stabilized version of the counting point formula
was available ([Kot90]), it hinged on certain forms of the fundamental lemma, which were avoided by
the use of simple unitary groups.

A new method of Harris and Taylor allows us to study the bad reduction of some simple Shimura
varieties associated to the unitary (similitude) groups which arise from division algebras and are
U(1, n − 1) × U(0, n) × · · · × U(0, n) at infinity. This had important consequences such as the proof
of the local-global compatibility at ramified primes and the local Langlands conjecture for GLn over
p-adic fields. Two main ingredients in their argument are new: the first basic identity ([HT01,
Thm IV.2.7]), which was generalized by Mantovan ([Man04], [Man05]), and the second basic identity
([HT01, Thm V.5.4]), which essentially follows from the counting point formula for Igusa varieties.
However, their counting point formula relies heavily on the specifics of their unitary groups and is not
easily generalized.

In this work we formulate and prove a natural generalization of the counting point formula for
Igusa varieties which arise from any PEL Shimura varieties of type (A) or (C). Our new formulation
was inspired by the work of Kottwitz ([Kot92]) and many of his arguments indeed carry over without
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much modification. Our key observation was that reasonable definitions of the analogues of the triple
(γ0; γ, δ) and the cohomological invariant α(γ0; γ, δ) introduced by Kottwitz can be made to work for
Igusa varieties despite the apparent difference of the settings.

Our counting point formula is expected to lead to new applications regarding the computation
of the cohomology of Shimura varieties and Rapoport-Zink spaces, if we combine our result with
Mantovan’s formula ([Man05, Thm 22]). Thereby we may deepen our understanding of the Langlands
correspondence. We will work out these applications in future writings. In many cases our formula
must be stabilized to be ready for applications, as usual in the trace formula method. The stabilization
will be provided in the sequel paper ([Shi]). We merely remark that we do not need the twisted
fundamental lemma for stabilization since our formula does not involve twisted orbital integrals.
(Unlike in the case of Kottwitz’s formula; see [Kot90, p.180].) We also add that the cohomology of
Rapoport-Zink spaces was computed by Fargues ([Far04]) in several cases where the Igusa varieties
are zero-dimensional, using a version of Mantovan’s formula (which is simpler in those cases) and
techniques from rigid analytic geometry, among others. In the cases considered by Fargues, the issue
of stabilization does not arise.

We briefly explain the structure of this article. In §2-§4 we build up background materials. The
readers may skip this part and come back later for references. The main discussion begins in §5
where we construct a Shimura variety X defined over the reflex field E along with an integral model,
starting from an integral Shimura PEL datum (B,OB , ∗, V,Λ0, 〈·, ·〉, h) of type (A) or (C). Apart from
the assumptions ensuring that G is unramified at p, we do not make further restrictions. In particular
X need not be proper over E. Denote by G the associated algebraic group over Q. Let Jb be the
Qp-group arising as the automorphism group of an isocrystal of type b, which turns out to be an inner
form of a Levi subgroup of GQp

. For each Newton polygon datum b ∈ B(G,−µh), we define the Igusa
variety Igb as a projective system. It is worth noting that G(A∞,p)×Jb(Qp) acts on Hc(Igb,Lξ) while
G(A∞) × Gal(E/E) acts on H(X,Lξ), where Lξ is an l-adic sheaf constructed from an algebraic
representation of G.

From §6 until the end is devoted to obtaining the following main result, namely the counting point
formula for the cohomology of Igusa varieties.

Theorem 1 (Theorem 13.1). If ϕ ∈ C∞c (G(A∞,p)× Jb(Qp)) is acceptable, then

tr (ϕ|Hc(Igb,Lξ)) =
∑

(γ0;γ,δ)∈KT eff
b

vol(I∞(R)1)−1|A(I0)| tr ξ(γ0) ·O
G(A∞,p)×Jb(Qp)

(γ,δ) (ϕ)

The proof is done in several steps. We use Fujiwara’s trace formula in §6 to convert the computation
of tr (ϕ|Hc(Igb,Lξ)) into the problem of counting Fp-points of Igb fixed under correspondences. We
define the notion of acceptable functions so that this works whenever ϕ is acceptable. In §7 using the
moduli interpretation of Igb, the counting point problem is essentially reduced to parametrizing the
triples (A, λ, i) that appear in the moduli data and conjugacy classes [a] in the automorphism group
of (A, λ, i) in the isogeny category. We carry out this parametrization in terms of Kottwitz triples
(γ0; γ, δ) which have a purely group-theoretic description.

Useful lemmas for studying (A, i) and λ are provided in §8 and §9, respectively, using tools from
the Honda-Tate theory and Galois cohomology. We remark that Lemma 8.6 looks simple but is
important in working with conjugacy classes [a]. In §10 and §11 we give the definition of Kottwitz
triples (γ0; γ, δ) and an important result on the vanishing of the cohomological invariant (Corollary
11.3). In §12 we complete the proof of the reparametrization of (A, λ, i) and [a] in terms of (γ0; γ, δ).
In going forward the deepest fact seems the vanishing of α(γ0; γ, δ), which is a direct consequence
of Corollary 11.3. In going backward, we recover (A, i) via Honda-Tate theory by reading off the
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necessary data from (γ0; γ, δ). The rationality of λ and a is proved in two steps and follows from the
vanishing of α(γ0; γ, δ). At this point it is easy to deduce the main result, namely Theorem 13.1.

It is worth noting that [a] did not show up in the work of Kottwitz. In some sense the conjugacy
classes [a] reflect the level structure at p of Igusa varieties and add one more layer to the whole argu-
ment. Among the cohomological invariants in §10 β(γ0; γ, δ) is a direct analogue of α(γ0; γ, δ) defined
by [Kot92] and encodes the rationality of (A, λ, i) whereas our α(γ0; γ, δ) encodes the rationality of
(A, λ, i) and the conjugacy class [a]. As such β(γ0; γ, δ) plays only an auxiliary role in the proof of
Lemma 12.3.

Finally we mention that this work is largely based on Chapter 1-3 of the author’s Harvard thesis
([Shi07]) but made more focused on the goal of establishing the counting point formula. We also cor-
rected minor errors in [Shi07] and changed some convention to be more compatible with the literature.
We refer to [Shi07] only once, in the proof of Lemma 6.3, for minor details which are not difficult but
somewhat distracting.
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Notation
First of all, we point out the notations different from those of [Man05]. We write Jb and Igb for

the p-adic group Tb and the Igusa variety Jb of that paper, respectively. The notation Jb seems to
have been widely used (for instance in [RZ96]).

A CM field is by definition an imaginary quadratic extension of a totally real field. A CM field
has a well-defined automorphism of order 2, which is a restriction of the complex conjugation c on C
via any complex embedding.

Suppose that B is a finite dimensional Q-semisimple algebra. For a semisimple element γ ∈ B×,
define F (γ) to be the commutative F -subalgebra generated by γ. For a Q-algebra R, we often write
BR or B ⊗R for B ⊗Q R. If a tensor product is taken over anything other than Q, the base ring will
be written out explicitly.

For a number field F , we define the following notation. When v is a place of F , denote by Fv the
completion of F with respect to the metric defined by v. Write $v for a uniformizer of the integer
ring OFv of Fv. The residue field OFv/($v) is denoted k(v). When S is a finite set of places of F
define AS

F to be the restricted product
∏′

v/∈S Fv. Define AS

F := lim
−→

AS(F ′)
F ′ where F ′ runs over finite

extension fields over F and S(F ′) denotes the set of places of F ′ over S. If F = Q we simply write
AS and AS

.
Now suppose that G is a connected reductive group defined over a field F . For g ∈ G(F ), let

Int(g) denote the inner automorphism x 7→ gxg−1 of G and Int(G) the group of inner automorphisms
of G. We write H1(F,G) for H1(Gal(F sep/F ), G(F sep)) where F sep is a separable closure of F . The
dual group of G will be written as Ĝ. It is a complex Lie group with Gal(F sep/F ) action. When F
is a number field, we define ker1(F,G) := ker(H1(F,G)→ ⊕vH

1(Fv, G)) where v runs over all places
of F .

The notation Z(A) (resp. ZA(a)) will be used to denote the center (resp. the centralizer of a) in
A where A is either a group, an algebra, or an algebraic group.

We use symbols Γ and Γ(v) to mean Γ = Gal(Q/Q) and Γ(v) = Gal(Qv/Qv) starting from §5.
Here v can be any place of Q, including the infinite place ∞.
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When G is a topological group, C∞c (G) denotes the space of locally constant compactly supported
functions with values in a fixed characteristic 0 field, which is often Ql. (In this paper G will be a
p-adic Lie group or a restricted product of such.)

We use the notation Groth(·) for the Grothendieck group of admissible representations of topolog-
ical groups. For precise definition, refer to [HT01, I.2].

2 Hermitian modules

Let C be a finite dimensional Q-algebra with an involution ∗. For any Q-algebra A, the involution ∗
extends to C ⊗Q R, acting as the identity on A.

Definition 2.1. Consider a finite free C ⊗Q A-module V equipped with a non-degenerate A-bilinear
pairing 〈·, ·〉 : V × V → A. We say that (V, 〈·, ·〉) is a ∗-Hermitian C ⊗Q A-module if

〈γx, y〉 = 〈x, γ∗y〉 for all x, y ∈ V and all γ ∈ C ⊗Q A.

In this case, 〈·, ·〉 is called a ∗-Hermitian pairing (with respect to C ⊗Q A).

When 〈·, ·〉 and ∗ are understood, we simply say that V is a Hermitian C ⊗Q A-module. Two
∗-Hermitian C ⊗Q A-modules (V1, 〈·, ·〉1) and (V2, 〈·, ·〉2) are said to be equivalent if there exist an
isomorphism of C ⊗Q A-modules δ : V1

∼→ V2 and an element µ ∈ A× such that 〈x, y〉1 = µ〈δx, δy〉2
for all x, y ∈ V1.

Given a ∗-Hermitian pairing 〈·, ·〉0 on V with respect to C ⊗Q A, define an algebraic group H over
SpecA consisting of self-equivalences by

H(A) = {h ∈ EndC⊗QA(V ⊗Q A) | ∃$(h) ∈ A×, 〈hw1, hw2〉0 = $(h)〈v1, v2〉0 for all v1, v2 ∈ V ⊗Q A}

for any Q-algebra A.
Let F be a field of characteristic 0. Fix a ∗-Hermitian C ⊗Q F -module V . Define St(V ) to

be the set of equivalence classes of ∗-Hermitian C ⊗Q F -modules W which are isomorphic to V as
C⊗QF -modules (without pairing). We view St(V ) as a pointed set where the equivalence class of V is
distinguished. It is possible to construct a natural map St(V )→ H1(F,H) as follows. For W ∈ St(V ),
choose an equivalence h : V ⊗F F

∼→W ⊗F F as C ⊗Q F -Hermitian modules. (Use the fact that any
two C ⊗Q F -Hermitian pairings on a C ⊗Q F -module are equivalent.) Then h−1hσ ∈ H(F ) where
hσ = (1⊗σ)h(1⊗σ)−1 for σ ∈ Gal(F/F ). The cocyle σ 7→ h−1hσ is the desired element of H1(F,H)
associated to W . The following lemma is easy.

Lemma 2.2. The above map defines a natural isomorphism of pointed sets between St(V ) and
H1(F,H).

Now let F be a number field and v denote a place of F . Let

Γ := Gal(F/F ) and Γ(v) := Gal(F v/Fv).

Let G be a connected reductive group over F . We define

A(G) := π0(Z(Ĝ)Γ)D, Av(G) := π0(Z(Ĝ)Γ(v))D (1)

where D means the Pontryagin dual. Note that there is a natural restriction map Av(G)→ A(G). In
terms of the algebraic fundamental group π1(G), we have canonical isomorphisms A(G) ' (π1(G)Γ)tor
and Av(G) ' (π1(G)Γ(v))tor ([Bor98, Prop 1.10]). (The subscript “tor” denotes the torsion subgroup
therein.) Since the construction of π1(G) is functorial in G with respect to any F -morphism of
connected reductive groups over F , it is easy to see that the groups Av(G), A(G) and the map
Av(G)→ A(G) are functorial in G.
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Lemma 2.3. For every place v of F , there is a canonical map

αG,v : H1(Fv, G)→ Av(G)

which is an isomorphism if v is a finite place. This map αG,v is functorial in G (with respect to any
F -morphism). When composed with the natural map Av(G) → A(G), the maps αG,v induce a map
H1(F,G(AF ))→ A(G) fitting into an exact sequence

1→ ker1(F,G)→ H1(F,G)→ H1(F,G(AF ))→ A(G)

Proof. The lemma is proved in [Kot86, Thm 1.2, Prop 2.6] except that the functoriality of αG,v is
proved only for normal morphisms of reductive groups over F . (Some more cases are covered in
Lemma 4.3 of that paper.) However functoriality is easily extended to all cases. When Gder is simply
connected, write DG := G/Gder. Recall from the same paper that αG,v is the same as the composite
map

H1(Fv, G)→ H1(Fv, DG) ∼→ Av(DG) = Av(G) ∼→ (π1(G)Γ(v))tor

where the isomorphisms are canonical. From this it is easy to prove functoriality with respect to
any F -morphism G1 → G2 granted that Gder

1 and Gder
2 are simply connected. The general case of

functoriality is proved as in [Kot86, p.369] using z-extensions.
Alternatively, functoriality can be established in full generality using the following canonical func-

torial maps ([Lab99, Prop 1.6.7, Prop 1.7.3], also [Bor98, Cor 5.5]) in the context of abelianized
cohomology

H1(Fv, G) � H1
ab(Fv, G) ↪→ Av(G) ∼→ (π1(G)Γ(v))tor,

whose composite is αG,v. (Of course the surjection and the injection above are isomorphisms when v
is non-archimedean.)

In the statement of the lemma, the map αG,v is canonical in the sense that it is uniquely determined
by two conditions: (i) αG,v is the canonical map induced by Tate-Nakayama duality when G is a torus
and (ii) αG,v is functorial in G. The meaning of canonicality for βG is taken to be the same in the
following lemma.

Lemma 2.4. There is a canonical map βG : H1(F,G(AF )/Z(G)(F )) → A(G) which is functorial
in G. When βG is composed with the natural map H1(F,G(AF )) → H1(F,G(AF )/Z(G)(F )), the
resulting map H1(F,G(AF ))→ A(G) is identical to the map induced by αG,v. Moreover, the map βG

fits into an exact sequence

1→ H1(F,G(F )/Z(G)(F ))→ H1(F,G(AF )/Z(G)(F ))→ A(G)

Proof. Everything in the lemma is proved in [Kot86, Thm 2.2, Cor 2.5] except that the functoriality
of βG is verified only for normal morphisms. The general case of functoriality is proved as in the first
paragraph of the proof of Lemma 2.3, noting that ([Kot86, p.374]) if Gder is simply connected, βG is
the composition

H1(F,G(AF )/Z(G)(F ))→ H1(F,DG(AF )/DG(F ))→ A(D) = A(G).

From here until the end of this section, let (B, ∗, V, 〈·, ·〉) be a partial Shimura datum in Definition
5.1. By linearly extending 〈·, ·〉, we have a ∗-Hermitian BQv

-module VQv
for each place v of Q and a

∗-Hermitian B⊗Q AS-module V ⊗Q AS . Here AS is the ring of adeles with trivial entries at the places
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contained in the finite set S. Note that we will often write BQv
and VQv

for B ⊗Q Qv and V ⊗Q Qv.
By Lemma 2.2, we have horizontal bijections in the following commutative diagram.

H1(Q, G)
1−1 //

��

St(V )

��
H1(Qv, G)

1−1 // St(VQv
)

3 Conjugacy classes and Galois cohomology

In this subsection, we summarize various results concerning conjugacy classes and Galois cohomol-
ogy of reductive groups from [Kot84b] and [Kot86]. We assume the reader is familiar with the dual
groups and L-groups, for which one can see [Bor79].

Let F be a perfect field. Let F be an algebraic closure of F . Let G be a connected reductive group
over F and assume that its derived subgroup Gder is simply connected.

Definition 3.1. We say that γ, γ′ ∈ G(F ) are (F -)conjugate, or stably conjugate if γ′ = gγg−1 for
some g in G(F ) or G(F ), respectively. Write γ ∼ γ′ or γ ∼st γ

′ (equivalently γ ∼F γ′) in each case.
If F is a number field and γ, γ′ ∈ G(AS

F ), then γ ∼AS
F
γ′ and γ ∼AS

F
γ′ will have obvious meaning.

Write StG(F )(γ) for the set of F -conjugacy classes in the stable conjugacy class of γ ∈ G(F ).
There is a natural isomorphism of pointed sets

StG(F )(γ)
∼→ ker(H1(F,ZG(γ))→ H1(F,G)) (2)

defined as follows: if γ′ = gγg−1 for g ∈ G(F ), then the conjugacy class of γ′ is mapped to the cocycle
σ 7→ g−1gσ.

Now let F be a number field and v denote a place of F . Suppose that γ ∈ G(F ) is semisimple.
By our assumption that Gder is simply connected, I := ZG(γ) is a connected reductive group over F .
As there is a canonical Γ-equivariant embedding Z(Ĝ) ↪→ Z(Î), we may consider the exact sequence
of Γ-modules

1→ Z(Ĝ)→ Z(Î)→ Z(Î)/Z(Ĝ)→ 1

which gives us a long exact sequence ([Kot84b, Cor 2.3]), part of which is

X∗(Z(Î)/Z(Ĝ))Γ → π0(Z(Ĝ)Γ)→ π0(Z(Î)Γ)→ π0((Z(Î)/Z(Ĝ))Γ)
ξ→ H1(F,Z(Ĝ))→ H1(F,Z(Î))

At each place v of F , we have a similar sequence and in particular a homomorphism
ξv : π0((Z(Î)/Z(Ĝ))Γ(v))→ H1(Fv, Z(Ĝ)). We define

K(I/F ) := ξ−1(ker1(F,Z(Ĝ))) and K(I/Fv) := ker ξv.

Since the following diagram commutes with the horizontal maps being obvious ones, we have a canon-
ical map K(I/F )→ K(I/Fv).

π0((Z(Î)/Z(Ĝ))Γ) //

ξ

��

π0((Z(Î)/Z(Ĝ))Γ(v))

ξv

��
H1(F,Z(Ĝ)) // H1(Fv, Z(Ĝ))
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From the definition of K(I/F ) and K(I/Fv) the following exact sequences are immediate.

π0(Z(Ĝ)Γ)→ π0(Z(Î)Γ)→ K(I/F )→ ker1(F,Z(Ĝ))→ ker1(F,Z(Î)) (3)

π0(Z(Ĝ)Γ(v))→ π0(Z(Î)Γ(v))→ K(I/Fv)→ 1 (4)
It is well known that the last arrow in (3) is an isomorphism if G is an algebraic group arising

from the PEL-type moduli problem of Shimura varieties of type A or C (use [Kot92, §7]). We remark
that if γ is elliptic in G(F ) (resp. in G(Fv)), then the first arrow in (3) (resp. (4)) is injective since
the ellipticity means that X∗(Z(Î)/Z(Ĝ))Γ (resp. X∗(Z(Î)/Z(Ĝ))Γ(v)) is trivial.

Suppose that semisimple elements γv and γ′v of G(Fv) are stably conjugate to each other. Lemma
2.3 implies that we have a canonical map

ker(H1(Fv, I)→ H1(Fv, G))→ ker(Av(I)→ Av(G)) ' K(I/Fv)D

where the last natural isomorphism comes from the dual of the sequence (4). Choose an element
g ∈ G(Fv) such that γ′ = gγg−1. We denote by invv(γv, γ

′
v) the image of the 1-cocycle σ 7→ g−1gσ in

K(I/Fv)D under the above map. By abuse of notation, invv(γv, γ
′
v) will also be viewed as an element

of K(I/F )D via the canonical map K(I/F )→ K(I/Fv).
Let γ = (γv) and γ′ = (γ′v) be semisimple elements of G(AF ) that are AF -conjugate to each other.

We define the following element of K(I/F )D

inv(γ, γ′) :=
∑

v

invv(γv, γ
′
v).

The following is an important result regarding rationality of conjugacy classes.

Lemma 3.2. ([Kot86, Thm 6.6]) Suppose that two semisimple elements γ ∈ G(F ) and γ′ ∈ G(AF )
are conjugate in G(AF ). The element γ′ ∈ G(AF ) is G(AF )-conjugate to an element of G(F ) if and
only if inv(γ, γ′) is trivial.

We can relate the conjugacy classes to Hermitian modules. Suppose that (B, ∗, V, 〈·, ·〉) comes
from a partial Shimura PEL datum and G is the associated group (§5). Put F := Z(B). Each
semisimple element γ ∈ G(Q) generates a F -subalgebra F (γ) in B and naturally induces a Hermitian
B ⊗F F (γ)-module structure on V , which we call Vγ . Let us write St(γ, V ) for the set of equivalence
classes of Hermitian B⊗F F (γ)-modules which are equivalent to V as Hermitian B-modules. St(γ, V )
is naturally a pointed set with the equivalence class of Vγ distinguished. From the definition, we have
St(γ, V ) = ker(St(Vγ)→ St(V )). A local analogue St(γv, VQv

) is defined in the exactly same way.
Recall that we earlier had an isomorphism of pointed sets StG(Q)(γ)

∼→ ker(H1(Q, ZG(γ)) →
H1(Q, G)). Lemma 2.2 implies that there is a natural map St(γ, V )→ ker(H1(Q, ZG(γ))→ H1(Q, G)).
There is also a natural map StG(Q)(γ) → St(γ, V ), which we now describe. The element γ maps to
the Hermitian B⊗F F (γ)-module Vγ . If γ′ = gγg−1 for g ∈ G(Q), then γ′ endows V with a Hermitian
B ⊗F F (γ′)-module structure, which we call Vγ′ . As γ 7→ γ′ induces an isomorphism F (γ) ∼→ F (γ′),
we see that Vγ′ is naturally an element of St(γ, V ). The map StG(Q)(γ)→ St(γ, V ) given by γ′ 7→ Vγ′

is well-defined.

Lemma 3.3. For γ ∈ G(Q), the three pointed sets StG(Q)(γ), St(γ, V ) and ker(H1(Q, ZG(γ)) →
H1(Q, G)) are isomorphic to each other via the natural maps defined above. Moreover, these maps
form a commutative diagram.

StG(Q)(γ) //

**TTTTTTTTTTTTTTTT
St(γ, V )

uujjjjjjjjjjjjjjjj

ker(H1(Q, ZG(γ))→ H1(Q, G))
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For γv ∈ G(Qv) there is a similar commutative diagram of isomorphisms among StG(Qv)(γv), St(γv, VQv
)

and ker(H1(Qv, ZG(γv))→ H1(Qv, G)).

Proof. Immediate from the construction of maps.

4 Isocrystals and Barsotti-Tate groups with additional struc-
ture

Here we study isocrystals with additional structure following mainly [RR96], [Kot85] and [Kot97].
We mostly keep their convention but note that some other conventions are also used in the literature.
It is worth noting that a Barsotti-Tate group over Fp of pure slope λ corresponds to an isocrystal of
pure slope −λ under our covariant Dieudonné functor V introduced later in this section. Because of
this the elements b ∈ B(G) parametrizing the Newton polygon strata of Shimura varieties will not lie
in B(G,µ) but in B(G,−µ). (See §5 and also Example 4.3).

We set up the notation for this section.

− W := W (Fp) is the ring of Witt vectors.
− L is the fraction field of W .
− Γ := Gal(Qp/Qp) (In later sections Γ usually denotes Gal(Q/Q).)
− G is a connected reductive group over Qp

− T ⊂ G is a maximal torus defined over Qp with Weyl group Ω.
− A ⊂ G is a maximal Qp-split torus with Weyl group ΩQp

.
− D is the pro-algebraic torus with character group Q.
− σ is the Frobenius element in Gal(L/Qp) inducing x 7→ xp on the residue field.
− Ls is the fixed field of L under σs (s > 0).

We introduce two set-valued functors on the category of connected reductive groups over Qp.

B(G) = G(L)/ ∼, x ∼ y ⇔ ∃g ∈ G(L), x = g−1ygσ

N(G) = (IntG(L)\HomL(D, G))〈σ〉 ' (X∗(T )Q/Ω)Γ ' X∗(A)Q/ΩQp

The last isomorphism is (1.1.3.1) of [Kot84a]. For each connected reductive group G over Qp, there
is a map

νG : G(L)→ HomL(D, G)

characterized by various properties ([RR96, Thm 1.8]). Moreover, ν(·) induces a natural transformation
of functors ν̄ : B(·)→ N(·), yielding the Newton map ν̄G : B(G)→ N(G) for each connected reductive
group G.

We have the following commutative diagram which is functorial in G. (Cf. [RR96, 1.15], noting
that π1(G) = X∗(Z(Ĝ)).) The first row is exact as pointed sets and the second row is exact as abelian
groups. The map δG and the horizontal arrow in the lower right corner are explained in [RR96]. The
left top arrow is basically sending a cocycle in H1(Qp, G) to its evaluation at σ. (See [Kot85, 1.8] for
careful definition.)

H1(Qp, G) //

αG,p

��

B(G)
ν̄G //

κG

��

N(G)

δG

��
Ap(G) // X∗(Z(Ĝ)Γ) // X∗(Z(Ĝ)Γ)⊗Z Q

(5)
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Given a cocharacter µ ∈ X∗(T ) = X∗(T̂ ), the finite subset B(G,µ) of B(G) is defined in [Kot97,
§6] (cf. Example 4.3). Let µ1 ∈ X∗(Z(Ĝ)Γ) be the restriction of µ. Then every element in B(G,µ)
maps to µ1 under κG.

Definition 4.1. An element b̃ ∈ G(L) is called decent if for some s ∈ Z>0, sνG(̃b) arises from a
genuine morphism Gm → G and

b̃σ(̃b) · · ·σs−1(̃b) = sνG(̃b)(p). (6)

From here until the end of the current section, assume that G is quasi-split over Qp. Given
b ∈ B(G), choose a decent representative b̃ ∈ G(L) of b, which is always possible by [Kot85, 4.3]. In
fact, we can choose b̃ such that the centralizer of νG(̃b) is defined over Qp ([Kot85, p.219]). Write Meb
for this Levi subgroup of G. On the other hand, define an algebraic group Jeb over Qp by the relation

Jeb(R) = {g ∈ G(L⊗Qp R) | g = b̃σ(g)̃b−1}

for any Qp-algebra R. The group functor Jeb is shown to be representable in [RZ96, 1.12].
For different representatives b̃, the Qp-groups Jeb are canonically isomorphic to each other over Qp.

For any two b̃ such that Meb is defined over Qp, the pairs (̃b, Meb) are conjugate to each other by an
element of G(Qp) ([Kot85, Prop 6.3]). For future convenience we may and will arrange that b̃ is a
decent element of Meb(L) (not just G(L)) using [Kot85, Prop 6.2]. In practice, we will write Jb (resp.
Mb) for Jeb (resp. Meb) by agreeing that a choice of a decent representative b̃ in the σ-conjugacy class b
will be fixed. We remark that the fibers of the map ν̄G can be described using Jb. For each b ∈ B(G),
the set {b′ ∈ B(G)|ν̄G(b′) = ν̄G(b)} is a principal homogeneous space for H1(Qp, Jb). (See [RR96,
Prop 1.17].)

Lemma 4.2. If b̃ ∈ G(L) is decent for s ∈ Z>0, then b̃ belongs to G(Ls) and there is an isomorphism
Jb 'Mb over Ls by which Jb is an inner form of Mb over Qp. In case b̃ ∈Mb(L), this inner form is
represented by the cocycle σ 7→ Int(̃b) in H1(Ls/Qp, Int(Mb)).

Proof. Corollary 1.9 and 1.14 (and the proof for the latter) in [RZ96].

It is easy to see that the embedding Jb×Qp
Qp ↪→ G×Qp

Qp given by Jb×Qp
Qp 'Mb×Qp

Qp and
the natural embedding Mb ↪→ G is canonical up to G(Qp)-conjugacy.

Example 4.3. Consider the case G = ResK/Qp
GLn where K is a finite extension of Qp.

First observe that N(G) ' (Qn)Sn , where Sn denotes the symmetry group of n variables, can be
identified with the set of the following data:

(r, {λi}1≤i≤r, {mi}1≤i≤r) such that λi ∈ Q, r,mi ∈ Z>0, λ1 < · · · < λr,
r∑

i=1

mi = n.

We exhibit B(G) as the image of the map ν̄G : B(G) → N(G), which turns out to be injective.
Each image ν̄G(b) is given by rational numbers λ1 < · · · < λr and the multiplicities mi of λi. Our
normalization is that if G = GL1 then ν̄G sends the uniformizer of K to 1. The image of ν̄G is
characterized by the condition

∀i, miλi ∈ Z. (7)

9



Suppose that ν̄G(b) = (r, {λi}, {mi}). Then δG(r, {λi}, {mi}) =
∑

i λimi, κG(b) =
∑

i λimi and

Jb = ResK/Qp

r∏
i=1

GLmi/hi
(D−λi), Mb = ResK/Qp

∏
i

GLmi . (8)

where D−λi
denotes the division algebra with center K and invariant −λ ∈ Q/Z, and hi := [D−λi

:

K]1/2. Noting that G ×Qp Qp ' (GLn)
HomQp (K,Qp)

Qp

, consider a cocharacter µ : Gm → G over Qp

represented (up to conjugacy) by

z 7→
∏

τ∈HomQp (K,Qp)

(diag(z, . . . , z︸ ︷︷ ︸
pτ

, 1, . . . , 1︸ ︷︷ ︸
qτ

)

for nonnegative integers (pτ , qτ )τ∈HomQp (K,Qp) such that pτ + qτ = n. Let n′ := [K : Qp]n. Given µ

as above, set
(y1, . . . , yn′) := (1, . . . , 1︸ ︷︷ ︸P

τ pτ

, 0, . . . , 0︸ ︷︷ ︸P
τ qτ

).

For an element b ∈ B(G) corresponding to (r, {λi}1≤i≤r, {mi}1≤i≤r) as above, set

(x1, . . . , xn′) := (−λ1, . . . ,−λ1︸ ︷︷ ︸
[K:Qp]m1

, . . . ,−λr, . . . ,−λr︸ ︷︷ ︸
[K:Qp]mr

).

Then b ∈ B(G,µ) if and only if

j∑
i=1

xi ≤
j∑

i=1

yi for 1 ≤ j < n′ and
n′∑

i=1

xi =
n′∑

i=1

yi. (9)

In particular the condition (9) implies that 1 ≥ −λ1 > · · · > −λr ≥ 0.

Definition 4.4. By an isocrystal, we mean a pair (V,Φ) where V is a finite-dimensional L-vector
space and Φ : V → V is a bijection such that Φ(lv) = σ(l)Φ(v) for all l ∈ L, v ∈ V . The height of
(V,Φ) is the dimension of V as an L-vector space. The height 1 isocrystal (L, pnσ) for n ∈ Z will
be denoted L(n). A morphism of isocrystals from (V1,Φ1) to (V2,Φ2) is a morphism f : V1 → V2 of
L-vector spaces such that f ◦ Φ1 = Φ2 ◦ f . We denote by Isoc the category of isocrystals.

Definition 4.5. By an isocrystal with G-structure or simply a G-isocrystal, we mean an exact faithful
Qp-linear tensor functor

M : RepQp
G→ Isoc.

Here RepQp
G denotes the category consisting of (ρ, V ) where V is a finite dimensional Qp-vector

space and ρ : G→ GL(V ) is a morphism of algebraic groups over Qp. Denote by G-Isoc the groupoid
of isocrystals with G-structure. In other words, morphisms in G-Isoc are isomorphisms of Qp-linear
tensor functors.

For each σ-conjugacy class b ∈ B(G), choose a representative b̃ ∈ G(L). Define a functor Meb by
setting Meb(ρ, V ) = (V ⊗Qp

L, ρL(̃b) · (1⊗ σ)). We will call Meb an isocrystal with G-structure of type
b. Note that if b̃′ is another representative of b, then Meb′ is canonically isomorphic to Meb.
Lemma 4.6. The association b 7→Meb defines a natural bijection from B(G) onto the set of isomor-
phism classes of isocrystals with G-structure.
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Proof. The inverse map to b 7→Meb is given in [RR96, Rem 3.5], using Steinberg’s theorem on vanishing
of H1-cohomology.

Lemma 4.7. There is a natural isomorphism AutG-Isoc(Meb) ' Jeb(Qp).

Proof. Define Mfibeb : RepQp
G→ VectL to be the composition of Meb with the forgetful functor where

VectL denotes the category of L-vector spaces. Then the automorphisms of the functor Meb are those
automorphisms of Mfibeb preserving isocrystal structures. Namely,

Aut(Meb) = {F ∈ Aut(Mfibeb ) : F (ρ, V )ρL(̃b)(1⊗ σ) = ρL(̃b)(1⊗ σ)F (ρ, V ) on VL for all (ρ, V )}.

Using the isomorphism Aut(Mfibeb ) ' G(L), we have

Aut(Meb) = {g ∈ G(L) : ρL(g)ρL(̃b)(1⊗ σ) = ρL(̃b)(1⊗ σ)ρL(g) for all (ρ, V )}

= {g ∈ G(L) : gb̃σ = b̃σg} = Jeb(Qp)

Remark 4.8. Define a category B(G) whose objects are elements of G(L) and Mor(̃b1, b̃2) := {g ∈
G(L) : gb̃1σ = b̃2σg}. Lemma 4.6 and Lemma 4.7 mean that B(G) is equivalent to G-Isoc via b̃ 7→Meb.
Example 4.9. Consider (B, ∗, V, 〈·, ·〉) and the associated Qp-group G as below.

• B is a finite dimensional semisimple algebra over Qp with involution ∗ such that F := Z(B) is
a product of unramified extensions over Qp.

• V is a finite B-module with a ∗-Hermitian pairing 〈·, ·〉 : V × V → Qp.

• G is the Qp-group such that for any Qp-algebra R,

G(R) = {g ∈ EndB(V )⊗Qp
R | 〈gv, gw〉 = $(g)〈v, w〉 for some $(g) ∈ R×,∀v, w ∈ V }.

For instance, the datum as above is obtained by taking ⊗QQp of a Shimura datum (see §5). Define
a category G-Isoc′ whose objects are tuples (V ′,Φ′, C ′, 〈·, ·〉′, i′) where

• (V ′,Φ′) is an isocrystal such that V ′ ' VL as L-vector spaces.

• C ′ is a height 1 isocrystal.

• i′ : B → EndIsoc(V ′,Φ′) is a Qp-algebra map.

• 〈·, ·〉′ : V ′⊗V ′ → C ′ is a map of isocrystals such that the underlying map on L-vector spaces de-
fines an L-linear nondegenerate and alternating ∗-Hermitian pairing (with respect to B-action).

• A morphism from (V ′1 ,Φ
′
1, C

′
1, 〈·, ·〉′1, i′1) to (V ′2 ,Φ

′
2, C

′
2, 〈·, ·〉′2, i′2) is a pair of isomorphisms of

isocrystals α : V ′1
∼→ V ′2 and β : C ′1

∼→ C ′2 such that 〈·, ·〉′2 ◦ (α, α) = β ◦ 〈·, ·〉′1.

Denote by ρ the standard representation G ↪→ GL(V ), which is defined over Qp. It can be shown
that M 7→ M(ρ) gives an equivalence of categories G-Isoc ∼→ G-Isoc′. (cf. [RR96, Rem 3.4.(v)]) If b
belongs to B(G,−µ) where G and µ arise from a Shimura datum (§5), then we may take C ′ = L(−1)
for isocrystals of type b.

We will use the terminology of Barsotti-Tate groups (or simply BT-groups) following [Mes72, Ch1].
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Definition 4.10. Let Σ1 and Σ2 be BT-groups over S. A morphism f : Σ1 → Σ2 is called an isogeny
if f is an epimorphism and ker f is a finite locally free group scheme over S. A quasi-isogeny from
Σ1 to Σ2 is a global section f of the sheaf HomS(Σ1,Σ2)⊗Z Q such that any point of S has a Zariski
neighborhood where pnf is an isogeny for some positive integer n.

Definition 4.11. A polarization (resp. quasi-polarization) of a BT-group Σ over S is an isogeny
(resp. a quasi-isogeny) λ : Σ → Σ∨ over S such that λ∨ = [−1]λ (via the canonical isomorphism
Σ ' Σ∨∨).

Denote by BT 0
S the category whose objects are BT-groups over S and morphisms are given by

HomS(Σ1,Σ2)⊗Z Q. An endomorphism algebra in BT 0
S , written as End0

S(Σ), is a Qp-algebra.
Consider the case S = Spec Fp. Let D be the contravariant Dieudonné functor from the category

of BT-groups over Fp to the category of finite free W -modules equipped with F and V actions which
are semilinear for σ and σ−1, respectively, such that FV = V F = p. This is an anti-equivalence of
categories. (For instance, see [Dem72].) In this paper, we will use a covariant version of the Dieudonné
functor by taking dual vector spaces. The functor V sends a BT-group Σ over Fp to the isocrystal

V(Σ) := (HomL(D(Σ)⊗W L,L), F ∗)

where F ∗ is induced by the F action on D(Σ). We see that V is a fully faithful functor from BT 0
Fp

to Isoc. Observe that V(µp∞) = L(−1) as an isocrystal and that more generally V(Σ) has the set of
slopes {−λi} if Σ has {λi}. The usual height of a BT-group Σ is equal to the height of the isocrystal
V(Σ).
Remark 4.12. The categories Isoc and BT 0

S are Qp-linear categories. In particular, a morphism need
not have an inverse morphism. However when it comes to isocrystals or BT-groups with G-structure,
we will restrict our attention to invertible morphisms in the categories.

Now we consider BT-groups with PEL structure. Recall the notation B, F , V , G from Example
4.9. Fix a maximal order OB of B.

Definition 4.13. The category BT 0,G
S has as objects the triples (Σ, λ, i) such that

• Σ is a BT-group over S,

• λ : Σ→ Σ∨ is a quasi-polarization, and

• i : OB → EndS(Σ) is a Zp-algebra morphism such that λ ◦ i(b) = i(b∗)∨ ◦ λ for all b ∈ OB .

The morphisms from (Σ1, λ1, i1) to (Σ2, λ2, i2) are the quasi-isogenies f : Σ1
∼→ Σ2 satisfying

two conditions: f ◦ i1(b) = i2(b) ◦ f for all b ∈ OB and λ1 = γf ◦ λ2 ◦ f∨ for some γ ∈ Q×p . The
automorphism group of (Σ, λ, i) is denoted by Aut0(Σ, λ, i).

The previous functor V can be made to incorporate the G-structure in this case. Given (Σ, λ, i),
we have the isocrystal (V ′,Φ′) := V(Σ). By functoriality, the map i induces a Qp-algebra map
i′ : B → EndIsoc(V ′,Φ′). The map of BT -groups Σ × Σ → µp∞ coming from λ induces a map of
isocrystals 〈·, ·〉′ : V ′ ⊗ V ′ → L(−1). So V can be extended to BT 0,G

Fp
as follows, using the notation of

Example 4.9. The extended functor is again fully faithful.

V : BT 0,G

Fp
→ G-Isoc′

(Σ, λ, i) 7→ (V ′,Φ′, L(−1), 〈·, ·〉′, i′).

From Lemma 4.7 we deduce the following.
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Lemma 4.14. If V(Σ, λ, i) is a G-isocrystal of type b then there is an isomorphism Jb(Qp) '
Aut0(Σ, λ, i) which is canonical up to an inner automorphism.

Remark 4.15. Using the B-action and the pairing on V , the isocrystal (V ⊗Qp L, b̃(1⊗ σ)) naturally
extends to an object of G-Isoc′, which is canonically isomorphic to the image of Meb under G-Isoc ∼→
G-Isoc′. Call this object V(̃b). The condition that V(Σ, λ, i) is a G-isocrystal of type b is equivalent
to the condition that V(Σ, λ, i) ' V(̃b) in G-Isoc′.

5 PEL-type Shimura varieties and Igusa varieties

We fix the choice of the rational primes p and l. We always assume that p 6= l.

Definition 5.1. A partial Shimura PEL datum is a quadruple (B, ∗, V, 〈·, ·〉) where

• B is a finite-dimensional simple Q-algebra.

• ∗ is an involution of B. We assume ∗ is positive, i.e. tr (bb∗) > 0 for every b ∈ B×.

• V is a finite semisimple B-module.

• 〈·, ·〉 : V × V → Q is a ∗-Hermitian pairing with respect to B-action.

We will denote the center of B by F . We associate a Q-group G to (B, ∗, V, 〈·, ·〉) by

G(R) = {g ∈ EndB⊗R(V ⊗R) | ∃$(g) ∈ R×, 〈gv1, gv2〉 = $(g)〈v1, v2〉 for all v1, v2 ∈ V ⊗R}

for any Q-algebra R.

Given (B, ∗, V, 〈·, ·〉) as above, we can define a simple algebra C := EndB(V ) with an involution #.
The involution # is uniquely determined by the following relation: for each c ∈ C, 〈cv, w〉 = 〈v, c#w〉
for all v, w ∈ V .

Definition 5.2. An (unramified) integral Shimura PEL datum is a septuple (B,OB , ∗, V,Λ0, 〈·, ·〉, h)
where

• (B, ∗, V, 〈·, ·〉) is a partial Shimura PEL datum where B ⊗Q Qp is isomorphic to a product of
matrix algebras over unramified extension fields of Qp.

• h : C → CR is an R-algebra homomorphism with involution (i.e. ∀z ∈ C, h(zc) = h(z)∗) such
that the bilinear pairing (v, w) 7→ 〈v, h(

√
−1)w〉 is symmetric and positive definite.

• OB is a Z(p)-maximal order in B that is preserved by ∗ such that OB ⊗Z Zp is a maximal order
in BQp

.

• Λ0 is a Zp-lattice in VQp
that is preserved by OB and self-dual for 〈·, ·〉.

Put F := Z(B) and F+ := F ∗=1. The above definition implies that for an integral Shimura PEL
datum, F is a finite extension of Q unramified at p and G is unramified over Qp. Let us define a
Q-group G0 by the exact sequence 1→ G0 → G

$→ Gm → 1. Let n := [B : F ]1/2 and d := [F+ : Q].
The map h in the datum induces a group homomorphism ResC/R(Gm)→ GR, again written as h

by abuse of notation. Define a map µh : Gm → G defined over C by the composition

C× ↪→ C× × C× ' (C⊗R C)×
(h,id)→ (C ⊗R C)×.
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The first arrow is the embedding z 7→ (z, 1) and the inverse of the second map is induced by the map
z1⊗z2 7→ (z1z2, z1z̄2) on the underlying C-algebras. We often write µ for µh when there is no confusion.
We obtain a decomposition VC = V 0 ⊕ V 1 where V 0 (resp. V 1) is the C-vector space on which µ(z)
acts by 1 (resp. z). On the other hand, as BC '

∏
τ∈HomQ(F,C)Mn(C), we have a corresponding

decomposition VC = ⊕τVτ . The two decompostions are compatible in the sense that we have further
decomposition Vτ = V 0

τ ⊕ V 1
τ as B ⊗F,τ C-modules such that V 0 = ⊕τV

0
τ and V 1 = ⊕τV

1
τ for each

τ ∈ HomQ(F,C). We define an integer pτ := (dimC V
1
τ )/n for each τ . The field of definition E for the

BC-module V 1 is called the reflex field. Note that E is naturally a subfield of C. As F is unramified
at p, so is the reflex field E.

An (integral) Shimura PEL datum falls into types (A), (C) or (D). Note that the existence of the
map h tells us that N := [F : F+](dimF C)1/2/2 is an integer. When ∗ is of the second kind (i.e.
[F : F+] = 2), G0 defines a unitary group and the PEL datum is said to be of type (A). When ∗ is of
the first kind (i.e. F = F+), CR is isomorphic to either a product of [F : Q]-copies of M2N (R) or a
product of [F : Q] copies of MN (H). The former case is called type (C) and the latter type (D). We
will discard type (D) throughout this paper. For type (C) we have G0(R) '

∏
τ∈Hom(F,R) Sp2N (R).

Note that N = n · rankBV for type (A) and N = n · rankBV/2 for type (C).
Now we give the description of the Shimura variety associated to an integral Shimura PEL datum

(B,OB , ∗, V,Λ0, 〈·, ·〉, h) of type (A) or (C) as a moduli space of abelian schemes with additional
structures. Let U = Up × Umax

p ⊆ G(A∞) where Up is an open compact subgroup of G(A∞,p) and
Umax

p is the stabilizer of Λ0 in G(Qp), which is a hyperspecial subgroup. Consider the following moduli
problem, which extends to the category of arbitrary schemes over OE,(p).

(
connected locally noetherian

schemes over OE,(p)

)
−→ (Sets)

S 7→ {(A, i, λ, η̄p)}/ ∼

where the quadruples on the right consist of

• A is an abelian scheme over S.

• λ : A→ A∨ is a prime-to-p polarization.

• i : OB ↪→ End(A)⊗Z Z(p) such that λ ◦ i(b) = i(b∗)∨ ◦ λ, ∀b ∈ OB .

• η̄p is a π1(S, s)-invariant Up-orbit of isomorphisms of B⊗QA∞,p-modules ηp : V ⊗QA∞,p ∼→ V pAs

which take the pairing 〈·, ·〉 to the λ-Weil pairing up to (A∞,p)×-multiples. Here s is any
geometric point of S. (For any two geometric points s and s′, η̄p may be canonically identified.)

• (Determinant condition) An equality of polynomials detOS
(b |LieA) = detE(b |V 1) holds for all

b ∈ OB , in the sense of [Kot92, §5].

• Two quadruples (A1, λ1, i1, η̄
p
1) and (A2, λ2, i2, η̄

p
2) are equivalent if there is a prime-to-p isogeny

A1 → A2 taking λ1, i1, η̄
p
1 to γλ2, i2, η̄

p
2 for some γ ∈ Z×(p).

If Up is sufficiently small, this functor is representable by a quasi-projective smooth scheme over
OK,(p) of finite type, which we call XU . For the proof of representability, see the comment in [Kot92,
p.391]. Henceforth, we will write (A , λuniv, iuniv, (η̄p)univ) for the universal object. (So A is an
abelian scheme over XU .)

Before considering the special fiber of XU , fix an isomorphism ιp : Qp ' C, which determines an
embedding E ↪→ Qp and thus a place w of E over p. We also fix a reduction map ῑp : OQur

p
� Fp.
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Observe that the maps E ↪→ Qp and ῑp pin down the composite map OE ↪→ OQur
p

� Fp. We choose
an embedding k(w) ↪→ Fp so that the reduction map OE � k(w) followed by k(w) ↪→ Fp coincides
with the last composite map.

Using ιp, we may view µ = µh as a map Gm → G defined over Qp. Define µ1 ∈ X∗(Z(Ĝ)Γ(p))
as follows. Choosing a maximal torus T̂ of Ĝ, obtain a Weyl group orbit of µ̂ in X∗(T̂ ). Then µ1

is the restriction of µ̂ to Z(Ĝ)Γ(p). It is easily seen that µ1 is independent of the choice of h (in its
G(R)-conjugacy class), T̂ and µ̂. Clearly this definition of µ1 is compatible with the one in the last
section.

Put XU := XU ×OE,(p) k(w). Consider the Newton polygon stratification

XU =
∐

b∈B(G)

X
(b)

U

where each stratum is set-theoretically given by

X
(b)

U := {x ∈ XU : (Ax[p∞], λuniv
x , iuniv

x ) ' (Σ, λΣ, iΣ) in BT 0,G

Fp
}.

Note that any (Ax[p∞], λuniv
x , iuniv

x ) is a BT-group of type b for some b ∈ B(G,−µ) by the moduli
problem. Thus X

(b)

U = ∅ if b /∈ B(G,−µ). As X
(b)

U is a locally closed subset of XU , we give X
(b)

U the
reduced subscheme structure.

From now on, we fix b ∈ B(G,−µ) and focus on a single stratum X
(b)

U . Fix once and for all a decent
representative b̃ ∈ G(L) of b (Definition 4.1). We will keep writing X

(b)

U and A for X
(b)

U ×k(w) Fp and
A ×k(w) Fp by abuse of notation.

The result of [Win05, Thm 2] ensures the existence of a BT-group Σ = Σb over Fp equipped with
a polarization λΣ : Σ→ Σ∨ and a Zp-algebra map iΣ : OB ⊗Z Zp ↪→ EndFp

(Σ) such that

(i) V(Σ, λΣ, iΣ) is a G-isocrystal of type b. (See §4.)
(ii) Σ = ⊕r

i=1Σ
i where Σi has slope λi, and 1 ≥ λ1 > · · · > λr ≥ 0.

(iii) (Determinant condition) An equality of polynomials detFp
(a |Lie Σ) = detE(a |V 1) holds for all

a ∈ OB , in the sense of [Kot92, §5]. (The polynomial on the left (resp. right) hand side has
coefficients in Fp (resp. OE,(p)). The two are compared via ῑp : OE,(p) → Fp.)

(iv) The degree of λΣ is prime to p.

We fix a choice of such (Σ, λΣ, iΣ). Define the Fp-subscheme Cb,Up of X
(b)

U as follows. Set-
theoretically

Cb,Up := {x ∈ XU : (Ax[p∞], λuniv
x , iuniv

x ) ' (Σ, λΣ, iΣ) in BTG
Fp
}.

We give Cb,Up the reduced closed subscheme structure, which makes sense since Cb,Up is Zariski closed

in X
(b)

U . Recall that X
(b)

U is smooth over Fp. In fact, Cb,Up is also smooth over Fp ([Man05, prop 1]).
Note that Cb,Up could be an empty set without the condition (iii) on (Σ, iΣ, λΣ).

As we have a natural immersion of Cb,Up into XU = XUp×Umax
p

, we may pull back the BT-group
(with additional structure) of the universal abelian scheme A to define a BT-group G over Cb,Up with
additional structure.

G //

��

A [p∞]

��
Cb,Up // X

(b)

U
// XU
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Then G is completely slope divisible ([Man04, 3.2.3]), which means that G has a slope filtration
(0) = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G such that each quotient griG := Gi/Gi−1 has a pure slope λi and that
Gi is slope divisible with respect to λi where 1 ≥ λ1 > · · · > λr ≥ 0. Of course, the numbers r and λi

are the same as the ones for Σ in the above. The subquotients griG inherit the additional structure
i and λ from G . For more detail, see [Man05, §3].

Now we are ready to define Igusa varieties. They depend on our choice of (Σ, iΣ, λΣ) as Cb,Up

does.

Definition 5.3. Let m be a positive integer. The Igusa variety Igb,Up,m is defined to be the moduli
space of the set of the following isomorphisms of finite flat group schemes over Cb,Up

juniv
m,i : Σi[pm]×Fp

Cb,Up
∼→ griG [pm], 1 ≤ i ≤ r

where juniv
m,i extends étale locally to all higher levels m′ ≥ m and preserves OB ⊗Z Zp-actions and

polarizations, the latter up to (Z/pmZ)×-multiples.

The moduli problem for Igusa varieties is proved to be representable. (See the remark following
Definition 3 of [Man05].) Note that there is a natural projection map from Igb,Up,m to Cb,Up forgetting
the data juniv

m,i . This map Igb,Up,m → Cb,Up is finite étale and Galois ([Man05, prop.5]). Thus Igb,Up,m

is smooth over Fp. However Igb,Up,m is usually not proper over Fp.
Choose an irreducible algebraic representation ξ of G on a finite dimensional Ql-vector space. It

naturally defines a lisse Ql-sheaf Lξ on XUp×Umax
p

whenever Up is small enough. (See [Kot92, §6] for
instance.) The pullback of Lξ to Igb,Up,m is again denoted Lξ by abuse of notation. Let Igb denote
the projective system lim←−Up,mIgb,Up,m and define

Hk
c (Igb,Lξ) := lim−→

Up,m

Hk
c (Igb,Up,m,Lξ), Igb(Fp) := lim←−

Up,m

Igb,Up,m(Fp).

We describe the action of G(A∞,p) on the projective system Igb. In terms of the moduli data,
g ∈ G(A∞,p) acts as

(A, λ, i, η̄p, {jm,i}) 7→ (A, λ, i, η̄p ◦ g, {jm,i}).

We remark that g maps Igb,Up,m to Igb,g−1Upg,m.
Defining the action of Jb(Qp) is more subtle. Recall from Lemma 4.14 that

Jb(Qp) ' Aut0(Σ, λΣ, iΣ).

We fix this isomorphism and define another group consisting of genuine automorphisms (not quasi-
isogenies) in the group Jb(Qp):

Γb := Aut(Σ) ∩ Jb(Qp).

Choose a positive integer s such that sλi ∈ Z for all i. Define an element in End0(Σ), formally written
as fr−s, which acts as p−sλi on Σi for each i. Observe that fr−s belongs to the center of Jb(Qp).
Denote by frs ∈ Jb(Qp) the inverse of fr−s in Jb(Qp).

We recall from [Man05, §4] the definition of a submonoid Sb of Jb(Qp). For δ ∈ Jb(Qp), suppose that
δ−1 is an isogeny. Any δ may be written as δ = (δi)r

i=1 with δi ∈ End0(Σi). For each i ∈ [1, r], we define
e(δi) and f(δi) to be the minimal and maximal integers such that ker[pf(δi)] ⊂ ker[δ−1] ⊂ ker[pe(δi)].
The monoid Sb is defined by

Sb := {δ ∈ Jb(Qp) | δ−1 is an isogeny, f(δi−1) ≥ e(δi), ∀ 2 ≤ i ≤ r}
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We list some properties of Sb. First, the relation Γb ⊂ Sb ⊂ Jb(Qp) holds. Second, Sb contains p−1

and fr−s. Finally, Jb is generated by Sb and the two elements p, frs as a monoid.
An element γ ∈ Γb acts on Igb,Up,m as

(A, λ, i, η̄p, {jm,i}) 7→ (A, λ, i, η̄p, {jm,i ◦ γ})

and this action extends to the projective system Igb. It is possible to extend this to an action of
Sb on Igb (see Lemma 5 and the paragraph below it in [Man05]), but not to an action of Jb(Qp).
Nevertheless, the Sb-action on the cohomology space Hk

c (Igb,Lξ) does extend to a Jb(Qp)-action
since the actions of p−1, fr−s ∈ Sb on Hk

c (Igb,Lξ) are invertible ([Man05, Lem 6]). We define

Up(m) := ker(Γb → Aut(Σ[pm], λΣ, iΣ))

which are subgroups of Γb. They form an open basis around the identity in the group Γb. We know
from ([Man05, Prop 4, Prop 7]) that

(i) Hk
c (Igb,Up,m,Lξ) ' Hk

c (Igb,Lξ)Up×Up(m).

(ii) The natural map Igb,Up,m → Cb,Up is finite and Galois with Galois group Γb/Up(m).

In particular, the action of G(A∞,p)× Jb(Qp) on Hk
c (Igb,Lξ) is continuous and admissible. Define

Hc(Igb,Lξ) :=
∑

k

(−1)kHk
c (Igb,Lξ).

as an object of Groth(G(A∞,p) × Jb(Qp)). Our primary goal is to study this space via a counting
point formula.

6 From trace to counting points

Denote by charH the function which has the value 1 on H and 0 outside H. Set Up(m) :=
Up × Up(m) for any m ∈ Z>0. Any function ϕ ∈ C∞c (G(A∞,p)× Jb(Qp)) can be written as

ϕ = Σg∈IαgcharUp(m)gUp(m)

for some αg ∈ C, g ∈ I where I is a finite subset of G(A∞,p) × Jb(Qp). So the computation of
tr (ϕ|Hc(Igb,Lξ)) comes down to the case where ϕ is of the form charUp(m)gUp(m).

Write Up(m)gUp(m) =
∐

i giU
p(m), which is a finite union. Then the following double coset

action is well-defined.

tr ([Up(m)gUp(m)]|Hc(Igb,Up,m,Lξ)) :=
∑

i

∑
k≥0

(−1)ktr (gi|Hk
c (Igb,Up,m,Lξ)) (10)

It is an elementary matter to check that

tr (charUp(m)gUp(m)|Hc(Igb,Lξ)) = vol(Up(m))tr ([Up(m)gUp(m)]|Hc(Igb,Up,m,Lξ)). (11)

We recall the notion of fixed points of an algebraic correspondence in general. Let α, β : Y → X
be morphisms of k-varieties where k is an algebraically closed field. The correspondence induced by
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α and β will be denoted [γ]. The maps pr1 and pr2 are the projections onto the first and the second
components.

Y

α

��

β

��

(α,β)

��
X ×k X

pr1

{{vvvvvvvvv
pr2

##HHHHHHHHH

X
[γ] //_________ X

Then we have an induced map Y (k)
(α,β)→ X(k)×X(k). Define the set of fixed points

Fix([γ]) := {y ∈ Y (k)|α(y) = β(y)}. (12)

Now we consider correspondences on Igusa varieties. We would like to interpret the action of
[Up(m)gUp(m)] in (10) as an algebro-geometric correspondence to which Fujiwara’s trace formula can
be applied. For this interpretation, we need to assume that g ∈ G(A∞,p)×Sb. Then we may choose a
small enough subgroup V p(m′) contained in Up(m)∩ gUp(m)g−1 so that the map given by g below is
well-defined ([Man05, Lem 6]). The correspondence [Up(m)gUp(m)] is understood as in the following
diagram where pr means the natural projection.

Igb,V p,m′

pr

yyssssssssss
g

%%KKKKKKKKKK

Igb,Up,m Igb,Up,m

(13)

In practice, we may often regard [Up(m)gUp(m)] as a set-theoretic correspondence. Recall that
Igb(Fp) = lim←−Up,mIgb,Up,m(Fp) and Igb,Up,m(Fp) = Igb(Fp)/Up(m) as sets with rightG(A∞,p)×Jb(Qp)-
action. On the level of Fp-points, (13) fits into the following diagram. Note that in general the map
g : Igb(Fp)/(Up(m)∩ gUp(m)g−1)→ Igb(Fp)/Up(m) does not come from a map of algebraic varieties.

Igb(Fp)/V p(m′)

pr

��

g

��

pr

��
Igb(Fp)/(Up(m) ∩ gUp(m)g−1)

pr

ttiiiiiiiiiiiiiiii
g

**UUUUUUUUUUUUUUUU

Igb(Fp)/Up(m) Igb(Fp)/Up(m)

(14)

When we consider [Up(m)gUp(m)] as an algebraic correspondence on Igb,Up,m, we need to think
of it a priori as (13). When dealing with Fp-points, [Up(m)gUp(m)] may also be understood as (14).
The set of fixed points under [Up(m)gUp(m)] as a set-theoretic correspondence will be understood as

Fix([Up(m)gUp(m)]) = {x ∈ Igb(Fp)/(Up(m) ∩ gUp(m)g−1) |x = xg in Igb(Fp)/Up(m)}. (15)

The virtue of the algebro-geometric interpretation is that we may apply Fujiwara’s trace formula
to compute the trace. (See the proof of Lemma 6.3.) The formula that we would like to have is

tr ([Up(m)gUp(m)]|Hc(Igb,Up,m,Lξ)) =
∑

x∈Fix([Up(m)gUp(m)])

tr ([Up(m)gUp(m)]|(Lξ)x). (16)
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where Fix([Up(m)gUp(m)]) is the set of fixed points in the sense of (12) under the algebro-geometric
correspondence [Up(m)gUp(m)] understood as (13) (for a chosen subgroup V p(m′) there). But once
we know the validity of (16), it is an easy exercise to check that the same identity still holds if
[Up(m)gUp(m)] is interpreted as the double coset action in (10) and Fix([Up(m)gUp(m)]) as in (15).

The following definitions are motivated in two ways. On one hand, we want to allow a twist by
high powers of Frobenius so that the fixed point formula is available. On the other hand, we want to
separate slope components of elements in Jb(Qp) in terms of p-adic valuation, which will play a role
in harmonic analysis later.

Definition 6.1. An element δ ∈ Jb(Qp) is called acceptable if δ = (δi) viewed inside
∏r

i=1 End0(Σi)×

verifies the following condition: if λi > λj (i.e. if i < j), any eigenvalue ei of δi and ej of δj satisfy
vp(ei) < vp(ej). Here vp : Q×p → Q is an additive p-adic valuation.

Definition 6.2. A function ϕ ∈ C∞c (G(A∞,p)× Jb(Qp)) is called acceptable if

(i) For any (g, δ) ∈ G(A∞,p)× Jb(Qp) in supp ϕ, the element δ is acceptable and belongs to Sb,

and there exist a finite subset I ⊂ G, a sufficiently small subgroup Up(m) (in particular, having
no finite torsion elements) and (αg)g∈I ∈ C satisfying ϕ = Σg∈IαgcharUp(m)gUp(m) such that

(ii) Fix([Up(m)gUp(m)]) is a finite set for every g ∈ I, and

(iii) For every g ∈ I, the formula (16) holds.

We will show in Lemma 6.4 that acceptable functions are abundant enough to establish an identity
of representations in Groth(G(A∞,p)×Jb(Qp)). So it is harmless to assume that the test function ϕ is
acceptable when computing the trace. First we prove that any given test function becomes acceptable
after enough twists.

Lemma 6.3. For each ϕ ∈ C∞c (G(A∞,p) × Jb(Qp)), there exists a positive integer M such that
whenever N > M , the function ϕ(N) defined by ϕ(N)(g) = ϕ(g · (frs)N ) is acceptable.

Proof. The proof is easily reduced to the case ϕ = charUp(m)gUp(m) where Up(m) is small enough.
From the definition of acceptable elements and the set Sb, there is clearly an integer M such that
every ϕ(N) for N > M satisfies (i) of Definition 6.2.

The conditions (ii) and (iii) can be verified using Fujiwara’s trace formula (a.k.a. Deligne’s con-
jecture). For this purpose, we choose a particular model Jb,Up,m over some finite field Fps such that
Jb,Up,m ×Fps Fp ' Igb,Up,m and F s

ab × 1 = fr−s under this isomorphism. Here F s
ab is the absolute

Frobenius on Jb,Up,m and fr−s ∈ Jb(Qp) acts on Igb,Up,m as described in §5. (That we can choose
Jb,Up,m is explained in [Shi07, §2.3] in more detail. For this we assume that Fps contains k(w) by
enlarging s if necessary.)

According to Fujiwara’s formula([Fuj97, Cor 5.4.5], [Var07, Thm 2.3.2]), the following is true:
there exists an integer M ′ > 0 such that whenever N > M ′, Fix((Frs

ab × 1)N ◦ [Up(m)gUp(m)]) is a
finite set and the identity (16) holds with [Up(m)gUp(m)] replaced by (Frs

ab× 1)N ◦ [Up(m)gUp(m)].
The number M ′ can be chosen independently of the coefficient sheaf.

By the identity of correspondences on Igb,Up,m

[Up(m)g(fr−s)NUp(m)] = ((F s
ab × 1)N ) ◦ [Up(m)gUp(m)],

the conditions (ii) and (iii) are verified by ϕ(N) for every N > M ′. Finally increase M , if necessary,
to ensure M ≥M ′ .
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Lemma 6.4. Suppose that Π1 and Π2 belong to Groth(G(A∞,p) × Jb(Qp)). If trΠ1(ϕ) = trΠ2(ϕ)
for every acceptable function ϕ, then Π1 ' Π2 in Groth(G(A∞,p)× Jb(Qp)).

Proof. For simplicity of notation, let H := G(A∞,p) × Jb(Qp). Let us choose an arbitrary function
ϕ ∈ C∞c (H) (which is not necessarily acceptable). If we show trΠ1(ϕ) = trΠ2(ϕ), then the proof will
be complete.

There are only finitely many irreducible representations {πi}i∈I of H contributing to Π1 or Π2

such that πi(ϕ) is nontrivial. Let mi (resp. ni) be the multiplicity of πi in Π1 (resp. Π2) and set

Π′1 :=
∑
i∈I

miπi, Π′2 :=
∑
i∈I

niπi.

Set t := frs. Note that t belongs to the center of H. Consider the map θ : H × Z→ H given by
(h, z) 7→ (h · tz). Write Π′′1 and Π′′2 for pullbacks of Π′1 and Π′2 along θ. For each i ∈ I, the pullback
of πi by θ has the form πi ⊗ χi for a character χi of Z. Define ϕ(z) ∈ C∞c (H) by ϕ(z)(h) := ϕ(htz).
By Lemma 6.3, there exists a constant C > 0 (depending only on ϕ) such that ϕ(z) is acceptable for
all z > C. By assumption,

trΠ′1(ϕ
(z)) = trΠ′2(ϕ

(z)), ∀z > C. (17)

We claim that for any ψ ∈ C∞c (Z<−C)

trΠ′′1(ϕ× ψ) = trΠ′′2(ϕ× ψ). (18)

Once we prove the claim, since there are finitely many characters {χi}i∈I (not necessarily distinct),
it follows that (18) is true for any ψ ∈ C∞c (Z). In particular, we choose ψ to be a function supported
on 0 ∈ Z to deduce that trΠ′1(ϕ) = trΠ′2(ϕ), or trΠ1(ϕ) = trΠ2(ϕ).

It remains to prove the above claim. It suffices to prove that (18) holds for every ψy (y < −C) such
that ψy(z) equals 1 if z = y and 0 if z 6= y. For any w in the representation space of Π′j , computation
with respect to a Haar measure on H shows

Π′′j (ϕ× ψy)w =
∑
z∈Z

∫
H

(ϕ(h)ψy(z)) ·Π′′j (h, z)w · dh

=
∫

H

ϕ(h)Π′j(ht
y)w · dh

=
∫

H

ϕ(ht−y)Π′j(h)w · dh = Π′j(ϕ
(−y)) · w

Combining with (17), we deduce that (18) holds for ψ = ψy. This proves our claim.

7 Fp-points of Igusa varieties

In order to describe the set of fixed points on Igusa varieties under correspondences, we give here
a moduli-theoretic description of Fp-points on Igusa varieties.

As Igb has a moduli interpretation, we can describe its Fp-points in terms of abelian varieties over
Fp with additional structure. We can see from the construction of Igb in §5 that Igb(Fp) is identified
with the following set Ĩg

p

b .

Ĩg
p

b = {(A, λ, i, ηp, {ji})}/ ∼, where
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• A is an abelian variety over Fp such that there exists an isomorphism A[p∞] ∼→ ⊕r
i=1gr

iA[p∞].

• λ : A→ A∨ is a prime-to-p polarization.

• i : OB ↪→ End(A)⊗Z Z(p) is a map of Z(p)-algebras such that λ ◦ i(b) = i(b∗)∨ ◦ λ, ∀b ∈ OB .

• ηp : V ⊗Q A∞,p ∼→ V pA is an isomorphism of B ⊗Q A∞,p-modules sending 〈·, ·〉 to the λ-Weil
pairing up to (A∞,p)×-multiple.

• {ji}1≤i≤r : Σi → griA[p∞] is an isomorphism in the category BTG
Fp

. (i.e. preserving OB ⊗Z Zp-

actions and polarizations, the latter up to Z×p -multiple.)

• (A, λ, i, ηp, {ji}) and (A′, λ′, i′, ηp′, {j′i}) are equivalent if there is a prime-to-p isogeny A → A′

sending (λ, i, ηp, {ji}) to (γλ′, i′, ηp′, {j′i}) where γ ∈ Z×(p).

We will see that the set Ĩg
p

b is in natural bijection with the following set Ĩgb which is simpler to
describe. Note that the prime-to-p condition is removed below.

Ĩgb = {(A, λ, i, ηp, {ji})}/ ∼, where

• A is an abelian variety over Fp.

• λ : A→ A∨ is a polarization.

• i : B ↪→ End(A)⊗Z Q is a map of Q-algebras such that λ ◦ i(b) = i(b∗)∨ ◦ λ, ∀b ∈ B.

• ηp : V ⊗Q A∞,p ∼→ V pA is an isomorphism of B ⊗Q A∞,p-modules sending 〈·, ·〉 to the λ-Weil
pairing up to (A∞,p)×-multiple.

• {ji}1≤i≤r : Σi → griA[p∞] is a quasi-isogeny, which is an isomorphism in the category BT 0,G

Fp
.

(i.e. preserving BQp-actions and polarizations, the latter up to Q×p -multiple.)

• (A, λ, i, ηp, {ji}) and (A′, λ′, i′, ηp′, {j′i}) are equivalent if there is an isogeny A → A′ sending
(λ, i, ηp, {ji}) to (γλ′, i′, ηp′, {j′i}) where γ ∈ Q×.

Lemma 7.1. (Compare [HT01, Lem V.1.1.1])
There is a natural bijection between Igb(Fp) and Ĩg

p

b . The natural map Ĩg
p

b → Ĩgb is also a bijection.

Proof. The first sentence is clear from the moduli description of the variety Igb. We will prove the
second sentence of the lemma.

We first prove that the map Ĩg
p

b → Ĩgb is injective. In other words, if (A, λ, i, ηp, {ji}) and
(A′, λ′, i′, ηp′, {j′i}) in Ĩg

p

b become equivalent in Ĩgb by an isogeny f : A → A′, then we need to
find a prime-to-p isogeny which identifies the two data in Ĩg

p

b . But f itself has to be a prime-to-p
isogeny since j′i = f ◦ ji for every i where both ji and j′i are isomorphisms. Also if γ ∈ Q× is such
that λ is sent to γλ′, then γ should belong to Z×(p) since both λ and λ′ are prime-to-p polarizations.

Therefore f gives an equivalence in Ĩg
p

b .
We prove the map is surjective. We start from an element (A, λ, i, ηp, {ji}) in Ĩgb and obtain

an element in Ĩg
p

b using the equivalence in Ĩgb. By changing A by an isogeny if necessary, we may
assume that the condition A[p∞] ∼→ ⊕r

i=1gr
iA[p∞] is satisfied. Keeping the last condition, all ji can

be arranged to be isomorphisms. We explain the last point in more detail. First we may assume that
each quasi-isogeny {j−1

i } is an isogeny by applying p-power multiplication map to A if necessary. Let
Hi := ker j−1

i , A′ := A/(⊕iHi) and f : A→ A/(⊕iHi) be the natural quotient map. Then f sends ji
to f ◦ ji, but f ◦ ji : Σi ∼→ griA′[p∞] is an isomorphism for each i by construction.
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Next we want λ to be prime-to-p. This is easy because the equivalence in Ĩgb allows multiplying a
scalar in Q×p to λ. First observe that the following diagram commutes for some γ ∈ Q×p where maps
are allowed to be quasi-isogenies.

Σ
j

∼
//

λΣ

��

A[p∞]

γλ

��
Σ∨ A∨[p∞]

j∨

∼oo

Write γ = pau for a ∈ Z and u ∈ Z×p . Then we simply replace λ with paλ to get a prime-to-p
polarization. (Recall that λΣ is already a prime-to-p polarization.) At this point, it only remains to
check that the image of OB under i lies in End(A)⊗Z Z(p), but this is automatic since OB is a maximal
Z(p)-order of B. Now our new (A, λ, i, ηp, {ji}) belongs to Ĩg

p

b , completing the proof of surjectivity.

In [Man05, §5], it was shown that the action of G(A∞,p) × Sb on Ĩg
p

b extends to an action of
G(A∞,p)× Jb(Qp). When this action is transported to Ĩgb via the bijection in Lemma 7.1, the action
of each element (α, β) ∈ G(A∞,p)× Jb(Qp) on Ĩgb can be described as

(A, λ, i, ηp, {ji}) 7→ (A, λ, i, ηp ◦ α, {ji ◦ β}).

In view of Lemma 7.1, the right G(A∞,p)× Jb(Qp)-set Igb(Fp) will be described in terms of Ĩgb from
now on. To further analyze Igb(Fp), we consider the fibration of this set over the set of the triples
(A, λ, i).

Definition 7.2. We define the set PICb = {(A, λ, i)}/ ∼ whose representatives are those (A, λ, i)
that appear in the description of Igb(Fp) (i.e. ∃ ηp, {ji} such that (A, λ, i, ηp, {ji}) ∈ Igb(Fp)). We
consider (A, λ, i) and (A′, λ′, i′) equivalent if there is an isogeny A→ A′ sending λ, i to γλ′ and i′ for
some γ ∈ Q×.

By construction, we have a natural G(A∞,p) × Jb(Qp)-equivariant (with trivial action on PICb)
surjection of sets

π : Igb(Fp)→ PICb defined by (A, λ, i, ηp, {ji}) 7→ (A, λ, i).

Before we give a group theoretic expression of the fibers of π, we set up some notation. Let
z = [(A, λ, i)] be an equivalence class in PICb. We define the following.

• C(A,λ,i) := End0
B(A),

• M(A,λ,i) := Z(C(A,λ,i))

• ‡(A,λ,i) is the Rosati involution f 7→ λ−1f∨λ on C(A,λ,i),

• H(A,λ,i) is the Q-group scheme such that H(A,λ,i)(R) := {g ∈ C(A,λ,i) ⊗Q R|gg‡(A,λ,i) ∈ R×}

Suppose that [(A, λ, i)] = [(A′, λ′, i′)] and let f : A→ A′ be an isogeny providing the equivalence of
triples. Then the induced identification M(A,λ,i) = M(A′,λ′,i′) is independent of the choice of f . But f
induces an isomorphism of the pairs (C(A,λ,i), ‡(A,λ,i)) and (C(A′,λ′,i′), ‡(A′,λ′,i′)) and an isomorphism
of Q-groups H(A,λ,i) ' H(A′,λ′,i′) which are canonical only up to H(A,λ,i)(Q)-conjugacy. Keeping this
in mind, we may sometimes write C(A,λ,i), M(A,λ,i), ‡(A,λ,i) and H(A,λ,i) as Cz, Mz, ‡z and Hz when
H(A,λ,i)(Q)-conjugacy is harmless.
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Let us give an embedding ι(A,λ,i) : H(A,λ,i)(A∞) ↪→ G(A∞,p)× Jb(Qp). For this we need to choose
some (ηp

0 , {j0,i}) which defines a point in Igb(Fp) together with (A, λ, i). First consider the composite
map

End0
B(A)⊗ A∞,p ↪→ EndB(V pA)'EndB(V ⊗ A∞,p)

where the latter isomorphism is g 7→ (ηp
0)−1gηp

0 . Thereby we get an embedding of groups

H(A,λ,i)(A∞,p) ↪→ G(A∞,p).

On the other hand, we have maps

End0
B(A)⊗Qp ↪→ End0

B(A[p∞])'End0
B(Σ)

where the second map is induced from the quasi-isogeny Σ → A[p∞] given by {j0,i}. By restricting
to the elements preserving polarizations on both sides, obtain

H(A,λ,i)(Qp) ↪→ Jb(Qp).

Putting these together, we obtain an embedding ι(A,λ,i) : H(A,λ,i)(A∞) ↪→ G(A∞,p)×Jb(Qp), which
is canonical up to G(A∞,p)×Jb(Qp)-conjugacy. The next lemma, whose proof is straightforward, gives
a description of the fibers of π.

Lemma 7.3. See [HT01, Lem V.1.2]
Choose of a base point x̃ in π−1[(A, λ, i)]. This gives a bijection of sets with right G(A∞,p)×Jb(Qp)-

action

π−1[(A, λ, i)] ' ι(A,λ,i)(H(A,λ,i)(Q))\ (G(A∞,p)× Jb(Qp))
x̃g ↔ g

If we choose x̃′ = x̃h (h ∈ G(A∞,p) × Jb(Qp)) as a base point, the above isomorphism changes by
multiplication by h while ι(A,λ,i) changes by conjugation by h.

Suppose that g is an element of G(A∞,p)×Sb and that [Up(m)gUp(m)] satisfies the conditions (ii)
and (iii) of Definition 6.2. For simplicity let us write U for Up(m) in this section. We deduce from
(11) and (16) that

tr (charUgU |Hc(Igb,Lξ)) = vol(U)
∑

x∈Fix([UgU ])

tr ([UgU ]|(Lξ)x) (19)

The sum has finitely many nonzero terms and is finite. Our next task is to analyze the set Fix([UgU ]),
which is given by (15). Let us write Gb for G(A∞,p)× Jb(Qp). Arguing as in [HT01, p.153-155], the
expression in (15) can be rewritten as

Fix([UgU ]) =
∐

z∈PICb

∐
[a]∈Hz(Q)/∼

ιz(Hz(Q))\{y ∈ Gb|y−1ιz(a)y ∈ gU}/U ∩ gUg−1 (20)

where the equivalence relation in Hz(Q) is given by Hz(Q)-conjugacy action. Again proceeding as in
[HT01, Lem V.1.4], we obtain the first form of the counting point formula.

Lemma 7.4. Suppose that ϕ ∈ C∞c (G(A∞,p)× Jb(Qp)) is an acceptable function. Then

tr (ϕ|Hc(Igb,Lξ)) =
∑

z∈PICb

∑
[a]∈Hz(Q)/∼

vol(ιz(ZHz (a)(Q))\ZGb
(ιz(a))) OGb

ιz(a)(ϕ) · tr ξ(ιz(a)) (21)

The sum has finitely many nonzero terms and is finite. The measure on ιz(ZHz
(a)(Q)) is chosen such

that every point has measure 1. Haar measures on other groups are chosen to be compatible with each
other.
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Remark 7.5. Since the group Hz(R) is compact modulo center, any element a ∈ Hz(Q) is semisimple
and elliptic in Hz(R).

8 Honda-Tate theory

In this section we use a version of Honda-Tate theory to parametrize the pairs (A, i) by p-adic
types over F . We also give a necessary condition for (A, i) to appear in the set PICb. We generalize
the notion of p-adic types in [HT01, V.2] in order to classify isogeny classes of abelian varieties over
Fp which are not necessarily simple. Before defining p-adic types, we will set up some notation.

• Let I be a finite index set.

• Let Mt be a CM field or a totally real field for each t ∈ I. Note that Mt has a well-defined
complex conjugation c, an automorphism of order 2 or 1, respectively.

• Let PMt
be the set of places of Mt over p, also written as Pt for simplicity.

• Q[Pt] := ⊕x∈Pt
Q · x is the Q-vector space with basis Pt.

• If a is a fractional ideal of Mt, we define [a] :=
∑

x∈Pt
x(a) · x ∈ Q[Pt].

• If i : M ↪→ N is a finite extension of fields where M , N are totally real or CM, we define a
Q-linear map i∗ : Q[PM ]→ Q[PN ] by x 7→

∑
y|x ey/xy.

Definition 8.1. Let F0 be a number field. A p-adic type over F0 is a quadruple (M,~η, ~n, κ) where

• M =
∏

t∈I Mt is a product of totally real or CM fields for a nonempty index set I,

• ~η = (ηt)t∈I where ηt =
∑

x∈Pt
ηt,xx ∈ Q[Pt],

• ~n = (nt)t∈I is a collection of positive integers and

• κ : F0 →M is a Q-algebra homomorphism.

such that for all t ∈ I, ηt + c∗ηt = [p] and ∀x ∈ Pt, ηt,x ≥ 0. We will often drop κ from the data
when κ is well understood as the F0-algebra structure map of M .

Definition 8.2. A p-adic type (M,~η, ~n, κ) is called simple if M is a field and ~n = (1). Such a p-adic
type will often be written as (M,η) when κ is understood.

Remark 8.3. The p-adic types defined in [HT01, V.2] correspond to our simple p-adic types.

We say (M ′, ~η′, ~n′, κ′) and (M ′′, ~η′′, ~n′′, κ′′) are equivalent over F0 if there exist a p-adic type
(M,~η, ~n, κ) and F0-algebra embeddings i′ : M ′ ↪→M , i′′ : M ′′ ↪→M (F0-structure given by κ, κ′, κ′′)
such that

(i) Whenever t′1 6= t′2 and t′′1 6= t′′2 , we have i′(M ′t′1)i
′(M ′t′2) = 0 and i′′(M ′′t′′1 )i′′(M ′′t′′2 ) = 0.

(ii) There is a partition of the index set I ′ =
∐

t∈I I
′
t (I ′t 6= ∅) for (M ′, ~η′, ~n′) satisfying the following:

∀t′ ∈ I ′t, i′ induces M ′t′ ↪→Mt, i′∗ηt′ = ηt, and
∑

t′∈I′t
nt′ = nt. There is a partition I ′′ =

∐
t∈I I

′′
t

such that an exactly analogous condition holds for (M ′′, ~η′′, ~n′′).

Two p-adic types (M ′, ~η′, ~n′, κ′) and (M ′′, ~η′′, ~n′′, κ′′) over F0 are said to be isomorphic if there
exists an F0-algebra isomorphism M ′

∼→M ′′ sending ~η′, ~n′ to ~η′′, ~n′′.
We can define an F0-minimal representative of any equivalence class of p-adic types over F0.

We begin with simple p-adic types first. A simple p-adic type (M,η) over F0 is minimal if for any
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other simple p-adic type (M ′, η′) equivalent to (M,η), there exists an F0-algebra homomorphism
i′ : M →M ′ such that η′ = i′∗η. It can be easily seen that any equivalence class of simple p-adic types
over F0 has a minimal representative: we can pushforward a given p-adic type into any big CM field
M̃ which is Galois over F0 to get (M̃, η̃) and take the fixed field M of M̃ under Galois automorphisms
preserving the η. Then the descended p-adic type (M,η) is F0-minimal.

Now we consider p-adic types that are not necessarily simple. We say that a p-adic type (M,~η, ~n)
is minimal over F0 if every constituent (Mt, ηt) is minimal as a simple p-adic type over F0 and no
two constituents (Mt1 , ηt1) and (Mt2 , ηt2) are equivalent over F0 for t1 6= t2. It is easy to check that
the new definition of minimality coincides with the one for simple p-adic types and that there exists
a unique minimal representative over F0 up to isomorphism in any equivalence class of p-adic types.

We are about to explain a version of Honda-Tate theory. One may see [HT01, p.158-159] for more
detail and other references in the case of simple p-adic types over Q or F . Let A be a simple abelian
variety over Fp, which has a model over a finite field Fps . Let πA be the geometric Frobenius with
respect to Fps , viewed as an element of the division algebra End0(A). Then we associate the simple
p-adic type (M,η) := (Q[πA], [πA]/s) to the abelian variety A. The equivalence class of the resulting
p-adic type is independent of the choice of Fps . According to Honda-Tate theory, this construction
gives a natural bijection between the set of isogeny classes of simple abelian varieties over Fp and the
set of equivalence classes of simple p-adic types over Q. The following facts are among the assertions
of Honda-Tate theory.

• M = Z(End0(A)).

• A[x∞] has pure slope ηx/ex/p and height [Mx : Qp][End0(A) : M ]1/2 for each place x of M over
p.

We consider the category AV 0
B whose objects are the pairs (A, i) where A is an abelian variety

over Fp and i : B → End0(A) is a Q-algebra homomorphism. The morphisms from (A, i) to (A′, i′)
are elements f ∈ Hom(A,A′)⊗Z Q such that f ◦ i(b) = i′(b)◦f for all b ∈ B. We denote by End0(A, i)
or End0

B(A) an endomorphism algebra in AV 0
B . By an easy extension of the Poincaré reducibility

theorem, AV 0
B is an F -linear semisimple category. We classify simple objects of AV 0

B using [Kot92,
§2]. If (A, i) is a simple object, then A is isogenous to Am

0 for a simple abelian variety A0 over Fp

and m ∈ Z>0. Moreover, the centralizer of B in Mm(End0(A0)) is a division algebra, whose center is
denoted M . Let (M0, η0) be the minimal simple p-adic type (over Q) associated to A0. The field M
is equipped with Q-algebra maps j : M0 →M and κ : F →M coming from i. Then

(A, i) 7→ (M, j∗η0, (1), κ)

is how we associate a simple p-adic type over F to each simple object (A, i) of AV 0
B . This induces a

well-defined bijection between the set of isomorphism classes of simple objects of AV 0
B and the set of

equivalence classes of simple p-adic types over F .
As AV 0

B is a semisimple category, any object (A, i) is isomorphic to ⊕t∈I(At, it)nt for a finite set
I and simple objects (At, it) such that there is no nontrivial morphism between (At, it) and (At′ , it′)
for t 6= t′. If (At, it) corresponds to (Mt, ηt, (1), κt) for each t ∈ I, we define the following association:

(A, i) 7→

(∏
t∈I

Mt, (ηt)t∈I , (nt)t∈I , (κt)t∈I

)
. (22)

We construct from a simple minimal p-adic type (Mt, ηt, κt) a division algebra Ct with center
Mt whose invariants at places x of Mt are given by the following. (Recall that B ⊗Q Qp splits by
assumption.)
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invx(Ct) =

 1/2− invx(B ⊗F Mt,x), x : real
ηxfx/p, x|p
−invx(B ⊗F Mt,x), x - p, x -∞

. (23)

Proposition 8.4. The map (22) gives a natural bijection between the following two sets.

(i) The set of isomorphism classes in AV 0
B.

(ii) The set of equivalence classes of p-adic types over F .

We can find a minimal representative (
∏

tMt, (ηt)t∈I , (nt)t∈I , (κt)t∈I) corresponding to ⊕t∈I(At, it)nt ,
where (At, it) are simple objects in distinct isomorphism classes of AV 0

B, such that the following are
true for each t ∈ I.

• Mt = Z(End0(At, it)) and Ct ' End0(At, it).

• At[x∞] has pure slope ηx/ex/p for each place x of Mt over p, and height [Mt,x : Qp][B : F ]1/2[Ct :
Mt]1/2.

Proof. The bijection between (i) and (ii) is straightforward given the discussion preceding this propo-
sition. The assertions about Mt, Ct and the slope follow from the case of simple p-adic types over Q
using general facts in [Kot92, §3].

Let v be a place of F over p and (Mt, ηt) a simple p-adic type over F . For λ ∈ Q, we define Sλ,v(Mt)
to be the places x of Mt over v such that λ = ηx/ex/p. Recall that the BT-group Σ = ⊕r

i=1Σ
i has

an action by OF ⊗Z Zp '
∏

v|pOF,v. Correspondingly we have a decomposition Σi = ⊕v|pΣi[v∞] for
each i.

Corollary 8.5. The bijection in Proposition 8.4 restricts to the bijection of the following two sets.

(i) The set of isomorphism classes of (A, i) in AV 0
B for which there exists a quasi-isogeny j : Σ →

A[p∞] compatible with the action of BQp .

(ii) The set of equivalence classes of p-adic types (
∏

t∈I Mt, (ηt)t∈I , (~nt)t∈I) over F such that

• For each λ ∈ Q, there exist t ∈ I and a place v|p of F such that Sλ,v(Mt) 6= ∅ if and only
if there exists i (1 ≤ i ≤ r) such that λ = λi (i.e. λ is among the slopes of Σ.)
• For each 1 ≤ i ≤ r, λ = λi and each place v|p of F ,∑

t∈I

∑
x∈Sλ,v(Mt)

nt[Mt,x : Qp][B : F ]1/2[Ct : Mt]1/2 = height(Σi[v∞]).

Proof. Given Proposition 8.4, we only need to check that the additional conditions in (i) and (ii)
match. Since B ⊗F Fv is a matrix algebra over Fv, the problem boils down to comparing the slope
decompositions of Σ[v∞] and A[v∞]. The first condition in (ii) means that Σ and A[p∞] have the
same set of slopes. The second condition in (ii) implies that the heights of each slope component are
the same for Σ[v∞] and A[v∞].

The following lemma, generalizing [HT01, Lem V.2.2], is indispensable in later argument.
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Lemma 8.6. Let z = [(A, λ, i)] be an equivalence class in PICb. Let ιz(a) = (ap, ap) be the image of
a ∈ Hz(Q) in G(A∞,p)× Jb(Qp). Suppose that ap is acceptable. Then Mz ⊂ F (a) (as F -subalgebras
in End0

B(A)) and
ZG(A∞,p)×Jb(Qp)(ιz(a)) = ιz((ZHz

(a)(A∞))) (24)

Proof. We explain how the first assertion implies the second assertion. Clearly the inclusion ⊃ always
holds in (24). In case Mz ⊂ F (a), we have the other inclusion. Indeed, if g ∈ G(A∞,p) × Jb(Qp)
centralizes ιz(a) then g centralizes F (a) so it also centralizes Mz (viewed inside EndB(V ⊗Q A∞,p)×
End0

B(Σ)), therefore g belongs to Hz(A∞).
We will prove the first assertion in several steps. Let (A, i) = (⊕t∈I(At, it)nt) where (At, it) are

simple objects and no two of them are isomorphic in AV 0
B . The pair (A, i) corresponds to a minimal

p-adic type (
∏

t∈I Mt, (ηt)t∈I , (nt)t∈I , (κt)t∈I) over F so that no two (Mt, κt) are isomorphic over F .
Note that Mz =

∏
t∈I Mt. Write a = (at) in

∏
t∈I Mnt

(End0(At, it)). The proof of Mz ⊂ F (a)
reduces to showing Mt ⊂ F (at) for each t ∈ I.

We decompose F (at) into a product of fields F (at) =
∏

i Ft,i. We have Ft,i ⊗F Mt =
∏

j Mt,i,j

where Mt,i,j are fields. To prove Mt ⊂ F (at), it suffices to prove that Mt ⊂ Ft,i in Mt,i,j for all i, j.
In the following, we work with fixed i,j and write M , F̃ , M̃ for Mt, Ft,i, Mt,i,j .

We introduce some notation. Let S := {λ1, . . . , λr} be the set of all slopes of the BT-group Σ (or
equivalently, A[p∞]). Let N be the Galois closure of M̃ over F̃ ∩M (the intersection taken in M̃).
Let u denote a place of F̃ ∩M over p. Define Pu(K) to be the set of places of K over u where K is
either M , M̃ , F̃ , or N . We have obvious maps Pu(N) → Pu(M̃) → Pu(M) given by restriction of
places.

Write ap ∈ Jb(Qp) as ap = (ai)r
i=1 ∈

∏r
i=1 End0(Σ) via Jb(Qp) ⊂ End0(Σ). Since ap is acceptable,

we may find positive real numbers ε0, . . . , εr such that for any i (1 ≤ i ≤ r) and any eigenvalue ei of ai,
the inequality εi−1 < |ei|p < εi holds. Then we define a map s eF,u : Pu(F̃ )→ S by v 7→ λi if i is such

that εi−1 < |a|
1/[ eFv :Qp]
v < εi. We also define a map sM,u : Pu(M)→ S by w 7→ ηw/ew/p. This means

that At[w∞] has pure slope sM,u(w) by Honda-Tate theory. We induce maps sfM,u
: Pu(M̃)→ S and

sN,u : Pu(N)→ S from sM,u. On the other hand, we induce a map s′fM,u
: Pu(M̃)→ S from s eF,u.

Our first claim is that sfM,u
= s′fM,u

. To prove this, let x be a place in Pu(M̃) and put w := x|M .

By definition, s′fM,u
(x) = λi means that εi−1 < |a|

1/[fMx:Qp]
x < εi. This is equivalent to the fact that

a acts on A[w∞] by an eigenvalue whose p-adic absolute value is between εi−1 and εi, which means
that A[w∞] has slope λi. Thus the first claim follows.

We prove our second claim that sM,u is a constant function. Observe that σ ∈ Gal(N/F̃ ∩M)
acts on sN,u by f 7→ f ◦σ. We assert that Gal(N/F̃ ) fixes sN,u. Indeed, if y is a place in Pu(N) such
that sN,u(y) 6= sN,u(σy), then s eF,u(y| eF ) 6= s eF,u(σy| eF ), but this contradicts y| eF = σy| eF . It is obvious

that Gal(N/M) also fixes sN,u. Since Gal(N/F̃ ∩M) is generated by Gal(N/F̃ ) and Gal(N/M), we
conclude that sN,u is fixed under Gal(N/F̃ ∩M). The latter group is transitive on Pu(N), implying
that sN,u is a constant function. So sM,u is also a constant function.

Now we construct a simple p-adic type (F̃∩M ,ξ,κ) over F . The map κ is induced from κr : F ↪→M .
Let λu be the common image of sM,u. We define ξu := eu/pλu for each place u. Then we readily check
that (F̃ ∩M ,ξ,κ) is equivalent to (Mt, ηt, κt) over F . Recall that we agreed to write M for Mt. By
the minimality of the p-adic type that was originally chosen, we conclude that Mt = F̃ ∩Mt, namely
Mt ⊂ F̃ .
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9 Polarizations

This section serves as a preparatory step for parametrizing polarizations using Galois cohomology.
In this section we do not assume that (A, λ, i) represents an element of PICb until Definition 9.7.

We start with a general discussion of C-polarizations. Consider (C, ∗) where C is a finite dimen-
sional semisimple Q-algebra whose center Z(C) is a product of CM or totally real fields and ∗ is an
involution on C which acts on Z(C) as complex conjugation. Let A be an abelian variety over Fp and
i : C → End0(A) be a Q-algebra homomorphism. When λ : A → A∨ is a polarization, denote by ‡λ
the λ-Rosati involution on End0(A).

Definition 9.1. We call a polarization λ : A → A∨ a (C, ∗)-polarization for (A, i) as above if
‡λ(i(c)) = i(c∗) for all c ∈ C. Two (C, ∗)-polarizations λ1 and λ2 are equivalent if there exists
f ∈ End0

C(A)× such that λ2 = γf∨λ1f for some γ ∈ Q×. When there is no ambiguity, a (C, ∗)-
polarization is simply called a C-polarization.

Lemma 9.2. Given any (A, i) as above, there exists a C-polarization λ0 for (A, i). If the Q-group
Hλ0 is defined so that for any Q-algebra R,

Hλ0(R) = {g ∈ End0
C(A)⊗Q R : gg‡λ0 ∈ R×}, (25)

then the set of equivalence classes of C-polarizations for (A, i) is in natural bijection with ker(H1(Q,Hλ0)→
H1(R,Hλ0)).

Proof. [Kot92, Lem 9.2] for the existence of a C-polarization. For the bijection, see [HT01, Lem
V.3.1].

We go back to the notation of the previous section. From now on, whenever we consider triples
(A, λ, i) we will assume that λ is a B-polarization for (A, i). Suppose we have two such triples (A, λ, i)
and (A′, λ′, i′). We say that they are Q-isogenous if there is an element f ∈ (Hom(A,A′)⊗Z Q)× such
that f ◦ i′(b) = i(b)◦f for all b ∈ B and f∨λ′f = γλ for some γ ∈ Q×. A usual isogeny (or Q-isogeny)
of two triples is defined analogously with f ∈ (Hom(A,A′)⊗Z Q)× and γ ∈ Q×. Note that this notion
of isogeny is the same as the equivalence relation in Definition 7.2.

For a triple (A, λ, i), define a Q-group Hλ as in (25), using λ and B instead of λ0 and C. Whenever
a triple (A′, λ′, i′) is Q-isogenous to (A, λ, i), it defines a cocycle τ 7→ f−1 ◦ fτ in H1(Q,Hλ). This
association defines the bijection in the following lemma.

Lemma 9.3. Let (A, i) be an object of AV 0
B. Choose λ0 as in Lemma 9.2. Then the set of isogeny

classes of the triples (A′, λ′, i′) which are Q-isogenous to (A, λ0, i) is in natural bijection with the set
ker(H1(Q,Hλ0)→ H1(R,Hλ0)).

Proof. [Kot92, Lem 17.1].

Definition 9.4. We say that (A, λ, i) and (A′, λ′, i′) are nearly equivalent if there exists an isogeny
f : A→ A′ satisfying f ◦ i(b) = i′(b) ◦ f for all b ∈ B such that the map f induces

(i) an equivalence of V pA and V pA′ as (∗ ⊗ c)-Hermitian B ⊗F M ⊗Q A∞,p modules with Weil
pairings given by λ, λ′, respectively. Here M denotes M[(A,λ,i)] 'M[(A′,λ′,i′)] (identified via f).

(ii) an isogeny A[p∞]→ A′[p∞] over Fp compatible with B ⊗F M ⊗Q Qp-actions and polarizations,
the latter up to Q×p -multiple.
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We say that equivalence classes [(A, λ, i)] and [(A′, λ′, i′)] are nearly equivalent if their representa-
tives are nearly equivalent.

If (A, λ, i) and (A′, λ′, i′) are nearly equivalent, then they are Q-isogenous. (One can use the
same argument as in the first paragraph of page 436 of [Kot92].) So (A′, λ′, i′) gives an element of
ker(H1(Q,Hλ)→ H1(R,Hλ)) via Lemma 9.3.

Lemma 9.5. Given (A, λ, i) as before, the set of isogeny classes [(A′, λ′, i′)] that are nearly equivalent
to [(A, λ, i)] is in natural bijection with ker1(Q,Hλ).

Proof. In the definition of near equivalence, the condition (i) means that the Galois cocycle for
[(A′, λ′, i′)] belongs to ker(H1(Q,Hλ) → H1(Q,Hλ(A∞,p

))) and (ii) means that the same cocycle
belongs to ker(H1(Q,Hλ) → H1(Qp,Hλ)). With this observation, the current lemma follows from
Lemma 9.3.

Lemma 9.6. When [(A, λ, i)] and [(A′, λ′, i′)] are nearly equivalent, there is an isomorphism

H(A,λ,i) ' H(A′,λ′,i′),

canonical up to conjugation by an element of H(A,λ,i)(Q).

Proof. The triple (A′, λ′, i′) defines a cocycle c : τ 7→ f−1 ◦ fτ in ker1(Q,Hλ). Since ker1(Q,Hλ) '
ker1(Q, Z(Hλ)) by [Kot92, §7], modifying (A′, λ′, i′) by an isogeny if necessary, we may assume that
f−1 ◦ fτ ∈ Z(Hλ) ⊗Q Q for all τ ∈ Gal(Q/Q). Composing f with an isogeny, we may also assume
that f belongs to (M(A,λ,i)⊗Q Q)× since the cocycle c is trivialized under the map ker1(Q, Z(Hλ))→
H1(Q,M×(A,λ,i)), the latter being a trivial group by Hilbert 90.

It suffices to prove that ‡λ = ‡λ′ . This follows from the basic fact that f ∈ Z(End0(A) ⊗Q Q)×

and thus f∨ ∈ Z(End0(A∨)⊗Q Q)×. Indeed, λ = γ−1f∨λ′f for some γ ∈ Q× by near equivalence and

‡λ(g) = λ−1g∨λ = (f∨λ′f)−1g∨(f∨λ′f) = λ′
−1
g∨λ′ = ‡λ′(g)

Definition 9.7. The set FPAV
b is defined to be the set of pairs (z, [a]) where

(i) z = [(A, λ, i)] is a near equivalence class in PICb and

(ii) [a] is the Hz(A)-conjugacy class of a ∈ Hz(Q), where a is an acceptable element in Hz(Qp). (We
consider a acceptable if its image under the embedding ιz : Hz(Qp) ↪→ Jb(Qp) is acceptable.
This property is unchanged if ιz is replaced with a Jb(Qp)-conjugate.)

10 Kottwitz triples and Kottwitz invariants

In this section, we define Kottwitz triples which will be used to parametrize the set FPAV
b . The

Kottwitz invariant α(γ0; γ, δ) is associated to each Kottwitz triple (γ0; γ, δ) and tells us exactly when
a Kottwitz triple arises from the moduli data of Igusa varieties.

Definition 10.1. By a Kottwitz triple (of type b), we mean a triple (γ0; γ, δ) where

• γ0 ∈ G(Q) is semisimple, and elliptic in G(R)
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• γ ∈ G(A∞,p) and γ0 ∼A∞,p γ.

• δ ∈ Jb(Qp) is acceptable (see Definition 6.1) and γ0 ∼Qp
δ in G(Qp) via any embedding in the

canonical G(Qp)-conjugacy class of embeddings Jb(Qp) ↪→ G(Qp) (as in the paragraph below
Lemma 4.2).

Two Kottwitz triples (γ0; γ, δ) ∼ (γ′0; γ
′, δ′) are said to be equivalent if γ0 ∼st γ

′
0, γ ∼A∞,p γ′, and

δ ∼ δ′.

Remark 10.2. The notion of Kottwitz triples clearly depends on b ∈ B(G,−µ), but not on the extra
choice of b̃ in the following sense: the equivalence classes of Kottwitz triples for any two decent
representatives b̃ and b̃′ of b are in canonical bijection with each other via Jeb ' Jeb′ .
Definition 10.3. For each b ∈ B(G,−µ), we define KTb to be the set of equivalence classes of all
Kottwitz triples of type b.

We explain how to attach a p-adic type over F to a Kottwitz triple. Denote by F (γ0) the F -algebra
generated by γ0 in EndB(V ). It admits a product decomposition F (γ0) '

∏
t∈I Ft into fields. Let It

be the set of places of Ft over p so that Ft ⊗Q Qp '
∏

y∈It
Ft,y is a product of fields. Since γ0 ∼Qp

δ,
we are able to choose an isomorphism FQp

(γ0) ' FQp
(δ) such that γ0 7→ δ. Under this isomorphism,

each Ft,y is mapped nontrivially into End0
B(Σk(t,y)) for only one k(t, y) ∈ Z (1 ≤ k(t, y) ≤ r). Since

δ is acceptable, k(t, y) is independent of the choice of the isomorphism. For each t ∈ I, we define a
simple p-adic type (Ft, η̃t, κ̃t) over F by η̃t,y = ey/pλk(t,y). The map κ̃t : F → Ft is the F -algebra
structure map of Ft. Finally we find a minimal representative (Mt, ηt, κt) over F for (Ft, η̃t, κ̃t).

Write Mt⊗Q Qp '
∏

x∈Jt
Mt,x as a product of fields. As the BT-group Σ is acted on by FQp

(δ) =∏
t∈I Ft⊗Q Qp, it is also acted on by

∏
x∈Jt

Mt,x via Mt ↪→ Ft, allowing a decomposition up to isogeny

Σ ' ⊕t∈I ⊕x∈Jt Σt,x.

There is induced a Qp-algebra map B ⊗F Mt,x ' Mn(Mt,x) → End0(Σt,x). Using an idempotent in
Mn(Mt,x), we find a BT-group Σred

t,x such that Σt,x ' (Σred
t,x )⊕n with compatible Mt,x-actions in the

isogeny category. We define a rational number

nt :=
height(Σred

t,x )
[Mt,x : Qp][Ct : Mt]1/2

.

Lemma 10.4. The following are true.

(i) The number nt is an integer and independent of x.

(ii) The map

(γ0; γ, δ) 7→

(∏
t∈I

Mt, (ηt), (nt), (κt)

)
gives a well-defined map from KTb to the set of equivalence classes of p-adic types over F .

(iii) The image of the above map lies in the set decribed in (ii) of Corollary 8.5.

Remark 10.5. Note that the p-adic type (
∏

t∈I Mt, (ηt), (nt), (κt)) we constructed above is not neces-
sarily minimal. It may happen that (Mt, ηt, κt) and (Mt′ , ηt′ , κt′) are equivalent for t 6= t′.
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Proof. Assuming we have proved (i), we obtain (ii) as an easy consequence since the construction of
the map does not change if we replace γ0 with a stably conjugate element or δ by a conjugate element.
To see (iii), observe that

height(Σt,x) = height(Σred
t,x )[B : F ]1/2 = nt[Mt,x : Qp][B : F ]1/2[Ct : Mt]1/2.

For each slope λk of Σ for 1 ≤ k ≤ r and each place v|p of F ,∑
t∈I

∑
x∈Sλk,v(Mt)

height(Σt,x) =
∑

(t,x) with x|v, k(t,x)=λk

height(Σt,x) = height(Σk[v∞]).

This verifies (iii) of the lemma.
We begin the proof of (i). As we have Mt ↪→ Ft and B⊗F F (γ0) '

∏
tB⊗F Ft acts on V preserving

B-action and Hermitian pairing, we have a decompostion V ' ⊕tVt where Vt is a Hermitian B⊗F Mt-
module. Let r̃t := rankMtVt. As Mt⊗Q Qp '

∏
x|pMt,x, we have Vt⊗Q Qp ' ⊕x|pVt,x correspondingly.

Then Vt,x is a module over Mn(Mt,x) which is an r̃t-dimensional vector space over Mt,x. Therefore
rt := r̃t/n is an integer. Since there is an isomorphism V(Σt,x) ' Vt,x ⊗Qp

L as L-vector spaces,

height(Σred
t,x ) = rt[Mt,x : Qp]. (26)

What we need to prove is that nt = rt/[Ct : Mt]1/2 belongs to Z. As Ct is a division algebra with
center Mt, it suffices to prove that rt · invxCt = 0 ∈ Q/Z for every place x of Mt. At this point recall
that invxCt is given in (23) by Honda-Tate theory.

Consider the case x|p. Let k be k(t, x) defined in the paragraph preceding Lemma 10.4. Recall
that Σred

t,x is a BT-group of pure slope λk = ηx/ex/p with Mt,x-action. Find mt such that Σred
t,x consists

of mt copies of simple BT-groups of slope λk. Write λk = ak/bk for coprime integers ak and bk. We
deduce that rtinvxCt = rt[Mt,x : Qp]ak/bk is 0 in Q/Z from the equalities height(Σred

t,x ) = mtbk and
(26).

We deal with the case where x - p and x - ∞. Suppose that x divides a rational prime q(6= p).
According to Mt⊗Q Qq '

∏
x|q Mt,x, we decompose Vt⊗Q Qq '

∏
x|q Vt,x. Let dt,x be the denominator

of invx(B⊗F Mt,x) so that B⊗F Mt,x 'Mn/dt,x
(Dt,x) for some central division algebra Dt,x over Mt,x

with degree d2
t,x. As Vt,x is a module over B⊗F Mt,x, it follows that ndt,x divides rankMt,x

Vt,x = nrt.
Therefore rtinvx(Ct) = −rtinvx(B ⊗F Mt,x) is 0 ∈ Q/Z.

A real place x occurs only when F and Mt are totally real fields, for a PEL datum of type (C).
We know that Vt ⊗Q R is a Hermitian B ⊗F Mt ⊗Q R-module. We decompose Vt ⊗Q R into a product
of B⊗F Mt,x-modules Vt,x as x runs over real places of Mt. If B⊗F Mt,x does not split, invx(Ct) = 0.
If B ⊗F Mt,x splits, we know that rt is even from the existence of a symplectic pairing on Vt,x and
this is enough for conclusion.

Corollary 10.6. The maps in Lemma 10.4 and Corollary 8.5 induce a map from KTb to the set
of those isomorphism classes (A, i) in AV 0

B for which there exists a quasi-isogeny j : Σ → A[p∞]
compatible with BQp-action.

Proof. Immediate from Lemma 10.4 and Corollary 8.5.

As preparation for the definition of the invariants α(γ0; γ, δ) and β(γ0; γ, δ), we introduce two
algebraic groups I0 and H0 for a Kottwitz triple (γ0; γ, δ). Using Lemma 10.4, we find an F -algebra
M =

∏
tMt appearing in the minimal p-adic type for (γ0; γ, δ). Define

H0(R) = {g ∈ EndB⊗F M (V )⊗Q R|gg# ∈ R×} (27)
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for each Q-algebra R. Also define I0 := ZG(γ0) so that I0(R) = {g ∈ EndB⊗F (γ0)(V )⊗QR|gg# ∈ R×}.
Clearly I0 ⊂ H0 ⊂ G.

Now we introduce local components αv and βv, which lead to the invariants α(γ0; γ, δ) and
β(γ0; γ, δ). We begin with αv, βv for v 6= p,∞. Denoting the v-component of γ by γv ∈ G(Qv),
there exists g ∈ G(Qv) such that gγ0g

−1 = γv. From this, we construct a cocycle cv := (τ 7→ g−1gτ )
in ker(H1(Qv, I0) → H1(Qv, G)). In the diagram below which is commutative by Lemma 2.3, we
define αv ∈ Av(I0) and βv ∈ Av(H0) as the image of cv. Then αv and βv map to the trivial element
in Av(G). We will also view αv, βv as elements of X∗(Z(Î0)Γ(v)) and X∗(Z(Ĥ0)Γ(v)), respectively.

H1(Qv, I0) //

��

H1(Qv,H0) //

��

H1(Qv, G)

��
Av(I0) // Av(H0) // Av(G)

(28)

Next we deal with αp and βp. We freely borrow notation from §4. Observe that the L-vector spaces
V ⊗QL and V(Σ, λΣ, iΣ) are Hermitian modules with respect to the natural action of B⊗F FQp

(γ0) '
B ⊗F FQp

(δ), where the last isomorphism is chosen so that γ0 7→ δ. As V ⊗Q L is equivalent to
V(Σ, λΣ, iΣ) as Hermitian B ⊗F FQp

(γ0) ⊗Qp
L-modules (by Steinberg’s vanishing theorem of H1),

choose any such equivalence f and transport the map Φ on V(Σ, λΣ, iΣ) to Φ0 on V ⊗L. Define b̃δ by
the relation Φ0 = b̃δ(1⊗ σ). (So b̃δ = f−1b̃fσ.) Then b̃δ belongs to I0(L) and defines bδ ∈ B((I0)Qp

),
which is independent of the choice of the above isomorphisms. Define αp := κI0(bδ). (In view of
Remark 4.15, we may replace V(Σ, λΣ, iΣ) by V(̃b) in the definition of αp. The action of δ on V(̃b)
is defined via the Qp-isomorphism Jb(Qp) ' Aut0(V(̃b)), which is canonical up to Jb(Qp)-conjugacy.)
Consider the following commutative diagram coming from the functoriality of the map κ(·) (see §4).
The element βp ∈ X∗(Z(Ĥ0)Γ(p)) is defined to be the image of αp. Since bδ maps to b in B(GQp

,−µ),
both αp and βp map to −µ1 ∈ X∗(Z(Ĝ)Γ(p)) by the bottom arrows. Recall that κG0(b) = −µ1.

B((I0)Qp
) //

κI0

��

B((H0)Qp) //

κH0

��

B(GQp)

κG0

��
X∗(Z(Î0)Γ(p)) // X∗(Z(Ĥ0)Γ(p)) // X∗(Z(Ĝ)Γ(p))

Finally we describe α∞, β∞. We can choose an elliptic maximal real torus T of G containing γ0.
We also choose a G(R)-conjugate of h : ResC/R(Gm) → G factoring through T and use it to define
µh (see §5). Then we see that µh belongs to X∗(T ) = X∗(T̂ ) and that the image of µh in X∗(T̂Γ(∞))
is independent of choices (See [Kot90, p.167]). By restricting this image via the canonical embedding
Z(Î0) ↪→ Z(Ĥ0) ↪→ T̂ , we get elements

α∞ ∈ X∗(Z(Î0)Γ(∞)) and β∞ ∈ X∗(Z(Ĥ0)Γ(∞)).

We are ready to define the elements α(γ0, γ, δ) ∈ K(I0/Q)D and β(γ0, γ, δ) ∈ K(H0/Q)D. As
we assumed that γ0 is elliptic, it follows that K(I0/Q) = (

⋂
v Z(Î0)Γ(v)Z(Ĝ))/Z(Ĝ) ([Kot90, p.166]).

We extend αv to an element α′v of X∗(Z(Î0)Γ(v)Z(Ĝ)) so that on Z(Ĝ), α′v is −µ1 if v = p, and
µ1 if v = ∞, and trivial if v 6= p,∞. Similarly, we define β′v ∈ X∗(Z(Ĥ0)Γ(v)Z(Ĝ)). The elements
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α(γ0; γ, δ) in K(I0/Q)D and β(γ0; γ, δ) in K(H0/Q)D are defined by

α(γ0; γ, δ) =

 ∏
v 6=p,∞

α′v|K(I0/Q)

 · (α′pα′∞)|K(I0/Q),

β(γ0; γ, δ) =

 ∏
v 6=p,∞

β′v|K(H0/Q)

 · (β′pβ′∞)|K(H0/Q).

In terms of the vanishing of α(γ0; γ, δ), we want to single out those Kottwitz triples which are
expected to come from the moduli data of Igusa varieties. This motivates the following definition.

Definition 10.7. A Kottwitz triple (γ0; γ, δ) is called effective if α(γ0; γ, δ) is trivial. We define the
set KT eff

b to be the subset of KTb consisting of the equivalence classes of effective Kottwitz triples.

For later use, we record two lemmas regarding a Kottwitz triple (γ0; γ, δ). Define Iδ := ZJb
(δ).

Lemma 10.8. The group Iδ is an inner form of I0 over Qp.

Proof. Let s be the positive integer in the decency equation (6) for b̃. Denote by σ the Frobenius
element in Gal(L/Qp) or Gal(Ls/Qp). To avoid confusion, for any τ ∈ Γ(p) we will sometimes write
τM (resp. τJ) for the τ -action on the points of Mb (resp. Jb). Recall from Lemma 4.2 that there is
an isomorphism ψ : Mb

∼→ Jb over Ls such that ψ−1ψσ = Int(̃b). Viewing ψ as a Qp-morphism by
base change, define cτ ∈ Mb(Qp) for each τ ∈ Γ(p) so that Int(cτ ) = ψ−1ψτ . (Here ψτ is τJψτ−1

M by
definition.) The condition δ ∼st γ0 means that there exists x ∈ G(Qp) such that

ψ−1(δ) = xγ0x
−1. (29)

Define a Qp-morphism θ := ψ ◦ Int(x). This induces a Qp-isomorphism I0
∼→ Iδ. Indeed, θ(γ0) = δ

implies that θ induces a Qp-isomorphism ZMb
(γ0)

∼→ Iδ, but I0 = ZMb
(γ0) by the acceptability of δ.

For any τ ∈ Γ(p),
θ−1θτ = Int(x−1)ψ−1ψτ Int(xτM ) = Int(x−1cτx

τM ).

On the other hand,

xτMγ0x
−τM = ψ−1(δ)τM = Int(cτ )ψ−1(δτJ ) = Int(cτ )ψ−1(δ). (30)

By (29) and (30), we conclude that x−1cτx
τM ∈ I0(Qp). Therefore Iδ is a Qp-inner form of I0 given

by τ 7→ Int(x−1cτx
τ ) in H1(Qp, Int(I0)).

Lemma 10.9.

αp(γ0; δ′) = αp(γ0; δ) + invp(δ, δ′) (31)
αp(γ′0; δ) = αp(γ0; δ) + invp(γ0, γ

′
0) (32)

hold in X∗(Z(Î0)Γ(p)), where invp(δ, δ′) is viewed as an element of X∗(Z(Î0)Γ(p)) via the canonical
Γ(p)-equivariant isomorphism Z(Îδ) ' Z(Î0) (by Lemma 10.8).
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Proof. Before the proof, we record a general fact in the first paragraph. Let r be a positive integer.
Let γ1 and γ2 be semisimple elements of G(Lr) which are conjugate in G(Qp). Then γ1 and γ2 are
conjugate in G(L). This follows from an easy application of Steinberg’s vanishing theorem. Now
suppose that γ1, γ2 ∈ G(Qp). Let x0 ∈ G(Qp) and x ∈ G(L) be such that γ2 = x0γ1x

−1
0 and

γ2 = xγ1x
−1. Let I1 := ZG(γ1). Recall ([Kot85, 1.7-1.8]) that the map H1(Qp, I1)→ B(I1) of (5) is

given by
H1(Qp, I1) ↪→ H1(L/Qp, I1) ' H1(L/Qp, I1) ' B(I1) (33)

where the inverse of the second map is given by the inflation map. (It is an isomorphism by Steinberg’s
vanishing theorem.) The last isomorphism sends a cocycle σ 7→ γ to the image of γ in B(I1). It is
easy to see that the cocycle τ 7→ x−1

0 xτ
0 (up to coboundary) in H1(Qp, I1) maps to the image of x−1xσ

in B(I1) under the composite map of (33).
Now we begin to prove (31). Recall from the proof of Lemma 10.8 that we have an Ls-isomorphism

ψ : Mb
∼→ Jb. Let y ∈ G(L) be an element such that ψ−1(δ) = yγ0y

−1. Such a y exists by
the discussion of the last paragraph since ψ−1(δ) and γ0 are conjugate in G(Qp). We may view
y as an equivalence (in the sense of §2) from V ⊗Q L (= VQp

⊗Qp
L) with the natural Hermitian

B ⊗F FQp
(γ0)⊗Qp

L-module structure onto V ⊗Q L with the natural Hermitian B ⊗F FQp
(δ)⊗Qp

L-
module structure, where the latter is the underlying Hermitian structure of the G-isocrystal V(̃b)
(defined in Remark 4.15). Recall that V(Σ, λΣ, iΣ) may be replaced by V(̃b) in the definition of the
αp-invariant. We let y play the role of f in the definition of αp(γ0; δ). Then

b̃δ = y−1b̃yσ

and αp(γ0; δ) = κI0(bδ). On the other hand, it is easy to check that ψ ◦ Int(y) gives an L-isomorphism
I0
∼→ Iδ, which will be called θ.
Consider the following commutative diagram where the left rectangle comes from (5) and the right

rectangle from [Kot97, 4.13].

H1(Qp, Iδ) //

αIδ,p

��

B(Iδ)
·bδ //

κIδ

��

B(I0)

κI0

��
Ap(Iδ) // X∗(Z(Îδ)Γ(p))

κI0 (bδ)
// X∗(Z(Î0)Γ(p))

(34)

The right top horizontal arrow is induced by i 7→ θ−1(i)̃bδ. The right bottom arrow is simply the
addition by κI0(bδ) via the canonical identification Z(Îδ) = Z(Î0). On the other hand, there exist
j0 ∈ Jb(Qp) and j ∈ Jb(L) such that δ′ = j0δj

−1
0 and δ′ = jδj−1. Let c(δ, δ′) ∈ H1(Qp, Iδ) be given

by the cocycle τ 7→ j−1
0 jτ

0 . By the earlier discussion c(δ, δ′) maps to j−1jσ under H1(Qp, Iδ)→ B(Iδ).
Observe that b̃δ′ may be defined using the equivalence ψ(j)y in the same way as b̃δ was defined using
y. Thus

b̃δ′ = (jy)−1b̃(jy)σ = y−1ψ(j)−1b̃ψ(j)σyσ.

The image of c(δ, δ′) in B(I0) is given by θ−1(j−1jσ )̃bδ ∈ I0(L), which is equal to

y−1ψ−1(j−1jσ)yy−1b̃yσ = y−1ψ−1(j−1)Int(̃b)(ψ−1(j)σ )̃byσ = y−1ψ−1(j−1)̃bψ−1(j)σyσ = b̃δ′ .

Since αIδ,p(c(δ, δ′)) = invp(δ, δ′), the commutativity of (34) shows that

κI0(bδ′) = κI0(bδ) + invp(δ, δ′)
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which is nothing but (31).
We prove (32) in a similar way using an analogue of the diagram (34), with Iδ (resp. I0) replaced

by I0 (resp. I ′0) where I ′0 := ZG(γ′0).

11 Auxiliary invariants and vanishing of invariants

Throughout this section, let (A, i) be an object of AV 0
B such that there is a quasi-isogeny j :

Σ→ A[p∞] compatible with OB ⊗Z Zp-action. Let M := Z(End0
B(A)). Let λ be a (B ⊗F M, ∗ ⊗ c)-

polarization of A. We do not suppose that (A, λ, i) represents an equivalence class of PICb. Let
(γ0; γ, δ) ∈ KTb be such that it corresponds to the p-adic type for (A, i) via Lemma 10.4. Recall that
an F -embedding M ↪→ F (γ0) is given. Let i′ : B ⊗F F (γ0)→ End0(A) be any map extending i.

Let us define α(γ0; (A, λ, i′)) and β(γ0; (A, λ, i)). First define αv and βv for v 6= p,∞. Let (cv)v 6=p,∞
be the element in H1(Q, I0(A

∞,p
)) measuring the difference of V ⊗ A∞,p and (V pA)λ as Hermitian

B ⊗F F (γ0) ⊗Q A∞,p-modules, using Lemma 3.3. (The Hermitian B ⊗F F (γ0) ⊗Q A∞,p-module
structure on V ⊗A∞,p is induced by i′.) Let (dv)v 6=p,∞ be the element in H1(Q,H0(A

∞,p
)) measuring

the difference of V ⊗A∞,p and V pA as Hermitian B ⊗F M ⊗Q A∞,p-modules. Using the maps in the
diagram (28), we get elements αv ∈ Av(I0) and βv ∈ Av(H0) corresponding to cv and dv. We will
also view αv and βv as elements of X∗(Z(Î0)Γ(v)) and X∗(Z(Ĥ0)Γ(v)), respectively. To define αp for
(γ0; (A, λ, i′)) and βp for (γ0; (A, λ, i)), we only need to replace V(Σ, λΣ, iΣ) equipped withB⊗FFQp

(δ)-
action by V(A[p∞], λ, i′) with B ⊗F FQp

(γ0)-action in the definition of αp and βp for (γ0; γ, δ). The
resulting elements αp ∈ X∗(Z(Î0)Γ(p)) and βp ∈ X∗(Z(Ĥ0)Γ(p)) map to −µ1 ∈ X∗(Z(Ĝ)Γ(p)) as
before. The local components α∞ and β∞ are defined to be the same as for (γ0; γ, δ). Finally
the element α(γ0; (A, λ, i′)) in X∗(Z(Î0)Γ) is defined to be

∏
v αv|Z( bI0)Γ

. Likewise, β(γ0, (A, λ, i)) in

X∗(Z(Ĥ0)Γ) is defined to be
∏

v βv|Z( cH0)Γ
.

Now we introduce a variant of the above construction. Here we assume that ((A, λ, i), [a]) ∈ FPAV
b .

Recall that there exists an embedding ι(A,λ,i) : H(A,λ,i)(A∞) ↪→ G(A∞,p) × Jb(Qp). Let γ0 ∈ G(Q)
be as before. (Namely, there exist γ and δ such that (γ0; γ, δ) lies in KTb and corresponds to (A, i).)
Suppose that ι(A,λ,i)(a) is conjugate to γ0 in G(A∞), via any Jb(Qp) ↪→ G(Qp) as in Definition 10.1.
Then we can define α(γ0; (A, λ, i), [a]) in X∗(Z(Î0)Γ) as

∏
v αv|Z( bI0)Γ

where αv are as follows. In case
v 6= p,∞, we reuse the previous definition of αv for α(γ0; (A, λ, i′)) where (V pA)λ is viewed as a
Hermitian B⊗F F (γ0)⊗Q A∞,p via an isomorphism F (a)⊗Q A∞,p ' F (γ0)⊗Q A∞,p such that a 7→ γ0.
For v = p and v =∞, the definition of αv is the same as in the case of α(γ0; (A, λ, i′)).

We will need yet another auxiliary invariant where no reference to (γ0; γ, δ) is made. Let (A, i) be
as in the beginning of this section. (Drop the assumption ((A, λ, i), [a]) ∈ FPAV

b .) Suppose that N
is a product of fields which are totally real or CM, and that N embeds into End0

B(A) as a maximal
commutative semisimple F -subalgebra. Then i naturally extends to i′ : B ⊗F N → End0(A). Let
λ be a (B ⊗F N, ∗ ⊗ c)-polarization of A with respect to i′. Assume that W is a B ⊗F N -module
with a ∗ ⊗ c-Hermitian pairing 〈·, ·〉W such that W ' V as B-modules. Define a Q-torus T by
T (R) = {g ∈ N ⊗Q R | ggc ∈ R×} for any Q-algebra R. Then we construct

α(N,W ; (A, λ, i)) =
∏
v

αv|bTΓ ∈ X∗(T̂Γ)

where the local components αv ∈ X∗(T̂Γ(v)) are given as follows. The elements αv for v 6= ∞
are defined in the same way as for α(γ0; (A, λ, i′)) except that we replace V , I0, F (γ0) respectively
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with W , T , N in the previous definition. To describe α∞, choose an R-algebra homomorphism
h′ : C → EndBR(WR) such that the pairing (v, w) 7→ 〈v, h′(

√
−1)w〉W is positive definite on WR.

Viewing h′ as an R-morphism ResC/RGm → GR, choose a G(R)-conjugate h′′ of h′ that factors
through T . We get µh′′ ∈ X∗(T ) = X∗(T̂ ) from h′′ (as in §5). Via restriction this gives the element
α∞ ∈ X∗(T̂Γ(∞)), which is independent of the choice of h′ and h′′.

We conclude this section with the following lemma which is an important step in proving the
vanishing of Kottwitz invariants in certain cases.

Lemma 11.1. Suppose that (A, i) is an object of AV 0
B such that there is an isomorphism j : Σ ∼→

A[p∞] compatible with OB ⊗Z Zp-action. Put M := Z(End0(A, i)). Suppose that N is a product of
fields which are totally real or CM, and that N embeds into End0(A, i) as a maximal commutative
semisimple F -subalgebra. Then we can find a (B ⊗F N, ∗ ⊗ c)-polarization λ0 : A → A∨ and a
B ⊗F N -module W0 with a ∗ ⊗ c-Hermitian pairing 〈·, ·〉0 : W0 ×W0 → Q such that

(i) W0 ⊗Q A∞,p and (V pA)λ0 are equivalent as B ⊗Q A∞,p-Hermitian modules where (V pA)λ0 is
the B ⊗F N ⊗Q A∞,p-module V pA with the λ0-Weil pairing, and

(ii) W0⊗Q R and V ⊗Q R are equivalent as B⊗Q R-modules with Hermitian pairings 〈·, ·〉0 and 〈·, ·〉
(the latter from the PEL datum), respectively.

Remark 11.2. Given any object (A, i) of AV 0
B such that there exists a quasi-isogeny j : Σ → A[p∞]

compatible with OB ⊗Z Zp-action, we can always find an object (A′, i′) which is isomorphic in AV 0
B

to (A, i) such that there is an isomorphism j : Σ ∼→ A[p∞] compatible with OB ⊗Z Zp-action. This is
possible using the argument in the proof of Lemma 7.1.

Proof. Note that i naturally extends to an F -algebra map B ⊗F N ↪→ End0(A), which we call i′.
Write N =

∏
tNt as a product of fields, and decompose (A, i′) = ⊕t∈I(At, it) accordingly where it is a

Q-algebra map B⊗F Nt ↪→ End0(At). Then Nt is a maximal commutative subalgebra of End0(At, it)
for each t. By maximality of Nt, there is an isomorphism B ⊗F Nt ' Mn(Nt). By Lemma 9.2, we
may choose a (B ⊗F Nt, ∗ ⊗ c)-polarization λt : At → A∨t for each t. By putting them together, we
have a (B ⊗F N , ∗ ⊗ c)-polarization λ0 : A→ A∨.

Arguing as in [HT01, p.170-171], we find a lifting (Ãt, λ̃t, ĩt) of (At, λt, it) with respect to the fixed
reduction map ιp : OQur

p
→ Fp, where Ãt is an abelian scheme over OQur

p
, λ̃t is a polarization of Ãt,

and ĩt : B ⊗F Nt → End0(Ãt) such that ‡eλt
restricts to ∗ ⊗ c via ĩt.

Set Wt := H1((Ãt ×OQur
p

,ιp C)(C),Q). This is a B ⊗F Nt-module with a ∗ ⊗ c-Hermitian pairing

coming from λ̃t. So W0 := ⊕t∈IWt is equipped with a B ⊗F N -module structure with a ∗ ⊗ c-
Hermitian pairing 〈·, ·〉0 : W0 ×W0 → Q. By construction we see that W0 ⊗ A∞,p is equivalent to
V pA as Hermitian B ⊗F N ⊗Q A∞,p-modules.

It remains to prove that W0 ⊗R ' V ⊗R as Hermitian B ⊗R-modules. Put Ã =
∏

t Ãt. Observe
that Lie Ã is a module over OF ⊗Z OQur

p
'
∏

ξ OQur
p

where ξ runs over the set HomZ(OF ,OQur
p

).
Accordingly we decompose Lie Ã = ⊕ξ(Lie Ã)ξ. Similarly, we have decompositions of OF ⊗Z Fp-
modules LieA = ⊕ζ(LieA)ζ and Lie Σ = ⊕ζ(Lie Σ)ζ where ζ runs over the set HomZ(OF ,Fp). We
have

rankOQur
p

(Lie (Ã))ξ = dimFp
(Lie (A))ιp◦ξ

via j
= dimFp

(Lie (Σ))ιp◦ξ = dimC(V 1
ιp◦ξ) (35)

in which the last equality follows from the determinant condition imposed on Σ (see §5).
Now observe that there is an isomorphism of OF ⊗Z C-modules

W0 ⊗Q R ' (Lie Ã)⊗OQur
p

,ιp
C.
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According to OF ⊗Z C '
∏

τ∈Hom(OF ,C) C, we decompose the left hand side as W0⊗Q R ' ⊕τ (W0⊗Q
R)τ . We deduce from (35) that

dimC(W0 ⊗Q R)τ = dimC V
1
τ .

Hence W0⊗R and V ⊗R are isomorphic B⊗R-modules. In the case of a PEL datum of type (C) (i.e.
symplectic case), we are done since there is a unique Hermitian B ⊗ R-module structure on V ⊗ R
up to equivalence. In the case of type (A), the argument of [HT01, p.172-173] shows that W0 ⊗ R
with 〈·, ·〉0 is equivalent to V ⊗ R with 〈·, ·〉 as Hermitian B ⊗ R-modules. (The argument of Harris
and Taylor shows that the classifying invariants ([HT01, p.49]) for the two Hermitian pairings are
respectively given by the numbers dimC(W0 ⊗Q R)τ and dimC V

1
τ , which are the same by the above

identity.)

Corollary 11.3. Suppose that N , W0 and (A, λ0, i) are as in Lemma 11.1. Then α(N,W0; (A, λ0, i))
is trivial.

Proof. By Lemma 11.1, αv(N,W0; (A, λ0, i)) vanishes when v 6= p,∞. The key fact that αpα∞ is
trivial is proved using the same argument as in the last paragraph of §13 in [Kot92].

12 Main lemmas

First we will describe how we associate a Kottwitz triple (γ0, γ, δ) to an element ((A, λ, i), [a]) ∈
FPAV

b . This will lead to a natural map from the set FPAV
b to the set KTb.

We begin with a fixed element ((A, λ, i), [a]) ∈ FPAV
b and put z = [(A, λ, i)]. Recall that we

defined an embedding ιz : Hz(A∞) ↪→ G(A∞,p)×Jb(Qp) which is well-defined up to G(A∞,p)×Jb(Qp)-
conjugacy. We simply let (γ, δ) be the image of a ∈ Hz(A∞) under ιz.

It requires more effort to determine the element γ0. The point is that there is an F -algebra
embedding i′ : F (a) ↪→ EndB(V ) compatible with involutions c and #, respectively on the source and
the target, by Lemma 14.1 of [Kot92]. In fact, we need to check two implicit assumptions underlying
Lemma 14.1 of Kottwitz since it is those assumptions that make his proof work. Firstly, we verify
that there exists an F -algebra embedding of F (a) into EndB(V ) (with no condition on involutions).
This can be checked locally at every place v. For v 6= p,∞, ιz gives such an embedding. For v = p,
it is enough to remark that BQp

splits. For v = ∞, one can easily check case by case for types (A)
and (C). Secondly, we verify that the Qp-group G0 given by G0(Qp) = {g ∈ EndB(V )Qp

|gg# = 1} is
quasi-split over Qp. This follows from our original assumption on the PEL datum.

Now we are ready to describe γ0. Using the embedding i′ in the last paragraph, we set γ0 to be
the element i′(a) in EndB(V ). As i′ is compatible with involutions, we see that γ0 lies in G(Q). Note
that by construction there is an isomorphism of F -algebras F (γ0) ' F (a) such that γ0 7→ a.

It remains to show that the triple (γ0; γ, δ) we just constructed is a Kottwitz triple and well-defined
up to equivalence. The well-definedness is immediate from the construction: the triple changes only
within its equivalence class as we vary the choice of i and ιz and the representative ((A, λ, i), [a]) in
its equivalence class in FPAV

b . The element γ0 is semisimple and elliptic over R since a is so. The
acceptability of δ is inherited from a. By construction γ0 and γ are conjugate in G(A∞,p) and γ0 and
δ are conjugate in G(Qp).

Lemma 12.1. The image of the natural map from FPAV
b to KTb defined above is contained in KT eff

b .

Proof. Let (γ0; γ, δ) be the image of ((A, λ, i), [a]). The long exact sequence arising from

1→ Z(Ĝ)→ Z(Î0)→ Z(Î0)/Z(Ĝ)→ 1
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yields a natural map Z(Î0)Γ → K(I0/Q) which is surjective ([Kot92, p.425]). Thus we get an injection
of groups K(I0/Q)D ↪→ X∗(Z(Î0)Γ). The Kottwitz invariants are defined so that α(γ0; γ, δ) maps
to α(γ0; (A, λ, i), [a]) under this map. Therefore the proof of the lemma boils down to showing that
α(γ0; (A, λ, i), [a]) is trivial.

Before further reduction steps, we need some preparation. Set I = ZHz
(a). Arguing as in the top

of [Kot92, p.424], we see that the Q-groups I0 and I are inner forms of each other. Note that there
are natural inclusions I0(Q) ⊂ EndB⊗F F (γ0)(V ) and I(Q) ⊂ End0

B⊗F F (a)(A). We choose a maximal
torus T of I so that T is elliptic at ∞ and all the finite places where I0 is not quasi-split. Then
T transfers to I0 locally at every place. As T is elliptic over R, the argument at the end of proof
of Lemma 14.1 in [Kot92] shows that T transfers globally to I0. Let N be the centralizer of T (Q)
in End0

B⊗F F (a)(A). Then N is a product of fields which are CM or totally real. Moreover N is a
maximal commutative semisimple F -subalgebra of End0

B(A) equipped with an F -algebra embedding
F (a) ↪→ N . By the second paragraph of [Kot92, p.426], the transfer of T into I0 provides an inclusion
N ↪→ EndB⊗F F (γ0)(V ) which maps a ∈ N to γ0. To summarize we have the following commutative
diagram where all maps are compatible with involutions (complex conjugation c on F (γ0), F (a), N ;
# on EndB(V ); ‡λ on End0

B(A)).

F (γ0)
∼

γ0 7→a
//

� _

��

� r

$$IIIIIIIII
F (a)� _

��

lL

zzvvvvvvvvv

NlL

zzvvvvvvvvv
� r

$$HHHHHHHHH

EndB(V ) End0
B(A)

(36)

These maps induce (1) aB⊗FN -polarization λ′ which extends theB⊗FF (a)-polarization structure
of λ (2) an F -algebra map i′ : B ⊗F N ↪→ End0(A) extending B ⊗F F (a) ↪→ End0(A) given by i
and a, and (3) a Hermitian B ⊗F N -module structure on V with the pairing 〈·, ·〉 which extends the
Hermitian B ⊗F F (γ0)-module structure given by γ0. So the invariant α(N,V ; (A, λ′, i′)) ∈ X∗(T̂Γ)
makes sense.

We claim that α(N,V ; (A, λ′, i′)) maps to α(γ0; (A, λ, i), [a]) ∈ X∗(Z(Î0)Γ)) via the inclusion
Z(Î0) ↪→ T̂ . Keeping the compatibility (36) in mind, let us verify that αv(N,V ; (A, λ′, i′)) is sent to
αv(γ0; (A, λ, i), [a]) for every v. This is clear from the definition when v = ∞. For v 6= p,∞, this
follows from the functoriality of the map α(·),v in Lemma 2.3. For v = p, we use the functoriality of
the map κ(·) in §4. In other words, we appeal to the following commutative diagrams for v 6= ∞, p
and v = p, respectively.

H1(Qv, T ) //

αT,v

��

H1(Qv, I0)

αI0,v

��
X∗(T̂Γ(v)) // X∗(Z(Î0)Γ(v))

B(T ) //

κT

��

B(I0)

κI0

��
X∗(T̂Γ(p)) // X∗(Z(Î0)Γ(p))

As a result of the above claim, it suffices to prove that α(N,V ; (A, λ′, i′)) is trivial. By Lemma
11.1, we can find a B ⊗F N -polarization λ0 and a Hermitian B ⊗F N -module W = W0 satisfying
the conditions in that lemma. Thus the invariants α(N,W ; (A, λ′, i′)) and α(N,W ; (A, λ0, i

′)) may be
considered. As further reduction steps, we make two claims, which are very similar to the ones found
in the proof of [Kot92, Lem 13.2].
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The first claim is that α(N,V ; (A, λ′, i′)) = α(N,W ; (A, λ′, i′)). To prove this, denote by t the
element of H1(Q, T ) measuring the difference of V and W as Hermitian B ⊗F N -modules. For
each place v, write tv for the image of t under H1(Q, T ) → H1(Qv, T ) → X∗(T̂Γ(v)). We see that
αv(N,V ; (A, λ′, i′)) = αv(N,W ; (A, λ′, i′)) + tv in X∗(T̂Γ(v)). Taking product over all v, we get
α(N,V ; (A, λ′, i′)) = α(N,W ; (A, λ′, i′)) since

∏
v tv = 1 by the exact sequence of Lemma 2.3.

The second claim is that α(N,W ; (A, λ′, i′)) = α(N,W ; (A, λ0, i
′)) . Observe that T is isomor-

phic to Hλ′ defined by Hλ′(Q) = {g ∈ EndB⊗F N (A)|gg‡λ′ ∈ Q×}. We write t for the element
of ker(H1(Q,Hλ′) → H1(R,Hλ′)) measuring the difference between λ′ and λ0 (Lemma 9.2). Let
tv be the image of t under H1(Q, T ) → H1(Qv, T ) → X∗(T̂Γ(v)). Then αv(N,W ; (A, λ0, i

′)) −
αv(N,W ; (A, λ′, i′)) = tv in X∗(T̂Γ(v)) for every place v (including the case v = ∞ where both
sides are trivial). Therefore an application of Lemma 2.3 as before shows that α(N,W ; (A, λ, i′)) =
α(N,W ; (A, λ0, i

′)).
As a result of the previous claims, we only need to prove that α(N,W ; (A, λ0, i

′)) is trivial. This
is exactly Corollary 11.3.

Corollary 12.2. Suppose that (γ0; γ, δ) ∈ KTb corresponds to (A, i) via Lemma 10.4 and Corollary
8.5. Let ĩ : B ⊗F F (γ0) ↪→ End0(A) be an extension of i and λ be a B ⊗F F (γ0)-polarization of A
with respect to ĩ. Then α(γ0; (A, λ, ĩ)) and β(γ0; (A, λ, i)) are trivial.

Proof. As in the second through the fourth paragraph of the proof of the last lemma, we can find
α(N,V ; (A, λ′, i′)) which maps to α(γ0; (A, λ, ĩ)). To do so, it is enough to replace a by γ0 in the
argument. (So I = ZHz

(γ0), N is the centralizer of T (Q) in End0
B⊗F F (γ0)(A), etc.) The triviality of

α(N,V ; (A, λ′, i′)) is proved in the same way as in the last lemma. Therefore α(γ0; (A, λ, ĩ)) is trivial.
Similarly we repeat the argument of the last lemma to find α(N,V ; (A, λ′, i′)) which maps to

β(γ0; (A, λ, i)) under the natural map X∗(T̂Γ)→ X∗(Z(Ĥ0)Γ). To see this, replace I0, I, F (a), F (γ0)
by H0, H(A,λ,i), M , M in the proof of Lemma 12.1, respectively. Again, α(N,V ; (A, λ′, i′)) is proved
to be trivial in the same way. The proof is complete.

The next lemma will play a crucial role in rewriting the counting point formula in a group-theoretic
way.

Lemma 12.3. The map in Lemma 12.1 defines a set bijection from FPAV
b onto KT eff

b .

Proof. We will construct the backward map from KT eff
b to FPAV

b which is inverse to the map in
Lemma 12.1. So our starting point is a Kottwitz triple (γ0; γ, δ) with α(γ0; γ, δ) being trivial.

Suppose that (γ0; γ, δ) is mapped to a minimal p-adic type (M,~η, ~n) under the map in Lemma 10.4.
This p-adic type over F naturally corresponds to a pair (A, i) as in (i) of Corollary 8.5. We choose an
M -algebra embedding F (γ0) ↪→ End0

B(A) whose existence is guaranteed since the embedding exists
locally at every place (use (23)). This amounts to choosing an F -algebra embedding i′ : B⊗F F (γ0) ↪→
End0(A). With respect to i′, there exists a B ⊗F F (γ0)-polarization λ1 by Lemma 9.2.

Our plan is to find a polarization λ such that [(A, λ, i)] ∈ PICb and an element a ∈ H(A,λ,i)(Q)
such that ((A, λ, i), [a]) belongs to FPAV

b and maps to (γ0; γ, δ) via the map of Lemma 12.1. First
off, we will search for a B⊗F M -polarization λ. For this we will use the fact that β(γ0; γ, δ) is trivial.
The last fact is an immediate consequence of the fact that α(γ0; γ, δ) is trivial.

Let H1 be the Q-algebraic group with

H1(Q) = {g ∈ End0
B(A)|g‡λ1 g ∈ Q×}.
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Note that H1 is an inner form of H0 as we may argue as in [Kot92, p.424]. (Recall the definition of
H0 from (27).) For each v, let dv = βv(γ0; γ, δ)− βv(γ0; (A, λ1, i)) as an element of X∗(Z(Ĥ0)Γ(v)) =
X∗(Z(Ĥ1)Γ(v)). In fact, each dv for v 6= ∞ is trivial on the connected component of Z(Ĥ0)Γ(v) and
may be viewed as an element of Av(H0). Since d∞ is trivial by the definition of β∞(γ0; (A, λ1, i)), we
will view d∞ as the trivial element of A∞(H0). We know that both β(γ0; γ, δ) and β(γ0; (A, λ1, i))
are trivial in X∗(Z(Ĥ0)Γ). Indeed, the former is trivial by assumption and the latter by Corollary
12.2. So their difference is trivial, namely the image of (dv)v under H1(Q,H1(A)) → ⊕vAv(H1) →
A(H1) is trivial. We deduce from Lemma 2.3 that there exists d ∈ H1(Q,H1) mapping to (dv)v ∈
H1(Q,H1(A)). In particular, we have d ∈ ker(H1(Q,H1) → H1(R,H1)), which implies by the
argument in the proof of [HT01, Lem V.4.3] that there exists a B ⊗F M -polarization λ on A (with
respect to i′|B⊗F M ) such that for all v 6=∞, βv(γ0; γ, δ)−βv(γ0; (A, λ, i)) is trivial. The last condition
can be interpreted as the existence of the following isomorphisms.

V ⊗ A∞,p ' (V pA)λ as B ⊗F M ⊗Q A∞,p-modules (37)
V(Σ, λΣ, iΣ) ' V(A[p∞], λ, i) as isocrystals with B ⊗F M ⊗Q Qp-action (38)

which preserve Hermitian pairings up to (A∞,p)× and L×, respectively. This proves that (A, λ, i)
represents an element of PICb.

Next we construct an element a ∈ H(A,λ,i)(Q). Recall that we have a B ⊗F F (γ0)-polarization λ1

with respect to i′. Let I1 be the Q-algebraic group with

I1(Q) = {g ∈ End0
B⊗F (γ0)(A)|g‡λ1 g ∈ Q×}.

As it was the case for H1 and H0, we see that I1 is an inner form of I0. We basically repeat the
argument in the last paragraph, replacing B ⊗F M with B ⊗F F (γ0) and H1 with I1. When v 6=∞,
let ev := αv(γ0; γ, δ) − αv(γ0; (A, λ1, i

′)), which may be viewed as elements of Av(I0) = Av(I1). Let
e∞ ∈ A∞(I1) be the trivial element. We know that both αv(γ0; γ, δ) and αv(γ0; (A, λ1, i

′)) are trivial
by the initial assumption and Corollary 12.2, respectively. As in the last paragraph, we can find
e ∈ ker(H1(Q, I1) → H1(R, I1)) which maps to (ev)v under H1(Q, I1) → H1(Q, I1(A)). Moreover, e
can be chosen so that e maps to d under H1(Q, I1)→ H1(Q,H1). This can be seen from the following
commutative diagram coming from Lemma 2.3. The left vertical map is surjective by [HT01, p.174].

1 // ker1(Q, I1) //

����

H1(Q, I1) //

��

H1(Q, I1(A)) //

��

A(I1)

��
1 // ker1(Q,H1) // H1(Q,H1) // H1(Q,H1(A)) // A(H1)

The cocycle e naturally corresponds to a B⊗F F (γ0)-polarization λ′ (with respect to i′) by Lemma
9.3. The following properties of λ′ result from the construction of e.

(i) V ⊗ A∞,p and (V pA)λ′ are equivalent as B ⊗F F (γ0)⊗Q A∞,p-Hermitian modules

(ii) V(Σ, λΣ, iΣ) ' V(A[p∞], λ′, i′) as isocrystals with B⊗FF (γ0)⊗QQp-action, preserving Hermitian
pairings up to L×

(iii) λ′ is equivalent to λ as B ⊗F M -polarizations (via B ⊗F M ↪→ B ⊗F F (γ0))

The part (iii) implies that there exists h ∈ End0
B(A)× such that h∨λ′h = γλ for some γ ∈ Q×.

Then the association g 7→ hgh−1 defines an M -algebra map End0
B(A) ∼→ End0

B(A) compatible with
involutions ‡λ and ‡λ′ . The fact that λ′ is a B ⊗F F (γ0)-polarization means that the map i′ induces
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an M -algebra map F (γ0) ↪→ End0
B(A) compatible with involutions c and ‡λ′ . Finally we define

a := h−1i(γ0)h. Then a‡λa = γc
0γ0 ∈ Q×. Hence a ∈ H(A,λ,i)(Q), which is the desired element.

Now that we have explained how to associate ((A, λ, i), [a]) to a Kottwitz triple (γ0; γ, δ) whose
Kottwitz invariant vanishes, we need to verify that ((A, λ, i), [a]) is an element of FPAV

b . For this,
(37) and (38) tell us that (A, λ, i) represents an element of PICb, and the acceptability of a ∈ Hz(Q) is
inherited from δ. The well-definedness of ((A, λ, i), [a]) is easy to check. By changing γ and δ in their
conjugacy classes we change (A, λ, i) within its near equivalence class and a within its A-conjugacy
class. Although replacing γ0 with a stably conjugate element may change H0, it is easy to check that
the resulting ((A, λ, i), [a]) is unchanged.

Finally, we verify that the map constructed above is the inverse of the map in Lemma 12.1.
Surjectivity follows from our construction. If (γ0; γ, δ) maps to ((A, λ, i), [a]) then it is readily checked
that ι(A,λ,i)(a) is conjugate to (γ, δ) in G(A∞,p) × Jb(Qp). Since the stable conjugacy class of γ0 is
determined by the conjugacy class of (γ, δ), the image of a under the map in Lemma 12.1 is stably
conjugate to γ0 in G(Q).

To see injectivity, suppose that both ((A, λ, i), [a]) and ((A′, λ′, i′), [a′]) map to (γ0; γ, δ). Let
z := [(A, λ, i)] and z′ = [(A′, λ′, i′)]. Consider the minimal p-adic type over F for (A, i), defined on
the F -algebra Mz (see Proposition 8.4). Using the F -algebra embedding ζ : Mz ↪→ F (a) in Lemma
8.6, get an equivalent p-adic type (F (a), (ηt), (~nt)). We claim that the last p-adic type is equivalent
to the p-adic type constructed from (γ0; γ, δ) in Lemma 10.4 under an isomorphism F (a) ' F (γ0)
taking a to γ0. This is so because (ηt) and (~nt) are determined by the valuation of at at each
place over p of the fields F (at), if we write F (a) =

∏
t F (at) as a product of fields and denote by

(at) the image of a. The point is that since a is acceptable, the p-adic valuation of at recovers the
slope of the part of A[p∞] on which at acts. So (ηt) and (~nt) can be recovered in view of (ii) of
Corollary 8.5. In fact, we constructed a p-adic type from (γ0; γ, δ) using the p-adic valuations of γ0

in the fields Ft where F (γ0) =
∏

t Ft is a decomposition into fields. This proves our claim. As a
consequence, the p-adic type for (A, i) is equivalent to the one for (A′, i′) since both are equivalent
to the one constructed from (γ0; γ, δ). It is easy to verify that (A, λ, i) and (A′, λ′, i′) are nearly
equivalent using the earlier part of the current proof involving βv-invariant. Therefore there is an
isomorphism Hz ' Hz′ by Lemma 9.6, which is well-defined up to Q-conjugacy. It remains to see that
a and a′ are Hz(A)-conjugate via this isomorphism. Without loss of generality we may assume that
(A′, λ′, i′) = (A, λ, i). Since C-conjugacy and R-conjugacy coincide in Hz(R), it suffices to check that
a and a′ are Hz(A∞)-conjugate. By Lemma 3.3, a and a′ are Hz(A∞,p)-conjugate if and only if the
Hermitian B⊗F F (a)⊗QA∞,p-module (V pA)λ and the Hermitian B⊗F F (a′)⊗QA∞,p-module (V pA)λ

are equivalent via F (a) ' F (a′) with a 7→ a′. Similarly, a and a′ are Hz(Qp)-conjugate if and only if
the isocrystal V(A[p∞], λ, i) with the Hermitian B ⊗F FQp

(a)-pairing is isomorphic to the isocrystal
V(A[p∞], λ, i) with the Hermitian B ⊗F FQp

(a′)-pairing such that the two pairings match up to L×.
(The last fact, an analogue of (part of) Lemma 3.3, can be proved analogously as that lemma.) But
we know that ιz(a) and ιz(a′) are conjugate in G(A∞,p) × Jb(Qp) since they are conjugate to (γ, δ)
therein. This implies that the two Hermitian modules above are equivalent and the two isocrystals
above are isomorphic with additional structure.(Apply Lemma 3.3 and its analogue for isocrystals
again.) Therefore a and a′ are Hz(A∞)-conjugate.

13 Final form of the counting point formula

We go back to the analysis of cohomology of Igusa varieties. Assuming that ϕ ∈ C∞c (G(A∞,p) ×
Jb(Qp)) is an acceptable function, we combine Lemma 7.4 and Lemma 8.6 to obtain the following
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expression for tr (ϕ|Hc(Igb,Lξ)).

∑
z∈PICb

∑
[a]∈Hz(Q)/∼

vol(ιz(ZHz
(a)(Q))\ιz(ZHz

(a)(A))) · tr ξ(ιz(a)) ·O
G(A∞,p)×Jb(Qp)

ιz(a) (ϕ).

In view of Lemma 9.6, the summand in the above sum depends only on Hz(A)-conjugacy class of
a and near equivalence class of (A, λ, i). Thus we merge terms to rewrite the sum over the set FPAV

b .
Proceeding exactly as in the proof of [HT01, Lem V.3.3] (but keeping the expression |A(ZHz

(a))| and
not changing it into κB in their notation), we arrive at the expression (39). In the equality ZHz (a)(R)1

denotes the kernel of the map ZHz (a)(R)→ R×>0 given by x 7→ |x‡zx|R. For the choice of appropriate
Haar measures on ZHz

(a), one may read Theorem 13.1 below, replacing I0 with ZHz
(a).

tr (ϕ|Hc(Igb,Lξ)) =
∑

(z,[a])∈FP AV
b

vol(ZHz
(a)(R)1)−1|A(ZHz

(a))| ·tr ξ(ιz(a)) ·O
G(A∞,p)×Jb(Qp)

ιz(a) (ϕ) (39)

Recall that I0 = ZG(γ0) as usual. The R-group I∞ denotes the inner form of I0 over R which is
compact modulo center. (In fact, I∞(R) ' ZHz

(a)(R) since both are compact modulo center inner
forms of I0 over R.) We define I0(A)1 to be the kernel of I0(A) → R×>0 given by x 7→ |x#x|A× .
Applying Lemma 12.3, we rewrite (39) in terms of Kottwitz triples to obtain the final result.

Theorem 13.1. If ϕ ∈ C∞c (G(A∞,p)× Jb(Qp)) is acceptable, then

tr (ϕ|Hc(Igb,Lξ)) =
∑

(γ0;γ,δ)∈KT eff
b

vol(I∞(R)1)−1|A(I0)| · tr ξ(γ0) ·O
G(A∞,p)×Jb(Qp)

(γ,δ) (ϕ)

with the following choice of Haar measures. Choose the Tamagawa measure on I0(A)1. Choose Haar
measures on I0(A∞) and I0(R)1 compatibly with the measure on I0(A)1 via the exact sequence

1→ I0(R)1 → I0(A)1 → I0(A∞)→ 1.

We define Haar measures on ZG(γ)(Qv) (v 6= p,∞), Iδ(Qp) and I∞(R)1 compatibly with those on
I0(Qv), I0(Qp) and I0(R)1, respectively (i.e. compatible choice of measures on inner forms in the
sense of [Kot88, p.631]).

Remark 13.2. The only implicit assumption for the above theorem is that the Igusa variety Igb should
arise from an unramified integral PEL datum (Definition 5.2). In particular G should be unramified
over Qp.

Remark 13.3. It is worth noting that our formula is very similar to Kottwitz’s formula [Kot92, (19.5)]
and indeed inspired by it. However there is no naive explicit relation between the two formulas.
Observe that our orbital integrals at p are quite different from those of Kottwitz and that the triples
(γ0; γ, δ) have a somewhat different meaning.
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