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Abstract

Igusa varieties are algebraic varieties that arise in the study of special fibers of Shimura varieties, and have
proved useful in the Langlands program via a Langlands–Kottwitz style point-counting formula in the case
of PEL type. In this paper we formulate and prove an analogue of the Langlands–Rapoport conjecture for
Igusa varieties of Hodge type, building off the work of Kisin and Kisin–Shin–Zhu on the Langlands–Rapoport
conjecture for Shimura varieties of abelian type. We then use this description of the points to derive a point-
counting formula for Igusa varieties of Hodge type, generalizing the formula in PEL type of Shin.
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1 Introduction

1.1 Context
In this paper we investigate the representations appearing in the cohomology of Igusa varieties, with a view
towards applications in the cohomology of Shimura varieties and Langlands program.

A great deal of inspiration comes from the Langlands–Kottwitz method, pioneered by Langlands [Lan73;
Lan76; Lan77; Lan79a; Lan79b] and developed further by Kottwitz in [Kot90; Kot92], which uses geometric
and group-theoretic techniques to obtain a trace formula for the cohomology of Shimura varieties that can
be compared to the automorphic trace formula, which comparison eventually allows us to relate Galois and
automorphic representations. The case treated in [Kot90; Kot92] is that of PEL type and hyperspecial level at p.
This case is favorable since Shimura varieties have good reduction and represent a moduli problem in terms of
abelian varieties with extra structure.

To see ramified representations we must go beyond hyperspecial level at p, and the resulting Shimura varieties
have bad reduction. An approach in the case of modular curves (i.e., GL2) was described in Deligne’s letter to
Piatetski-Shapiro. This approach was extended to some simple Shimura varieties by Harris–Taylor [HT01], where
the role of Igusa varieties became clear; and further developed by Mantovan [Man04; Man05] and Shin [Shi09;
Shi10; Shi11; Shi12]. In short, Mantovan’s formula [Man05, Thm. 22] allows us to express the cohomology of
Shimura varieties in terms of that of Igusa varieties and Rapoport–Zink spaces, with the bad reduction going to
the Rapoport–Zink space and the remaining global information going to the Igusa variety. Then a Langlands–
Kottwitz style analysis of Igusa varieties [Shi09; Shi10] allows us to draw conclusions about Shimura varieties
[Shi11] and Rapoport–Zink spaces [Shi12].

Beyond PEL type, the construction of integral models of Shimura varieties no longer represents moduli
problems in a similar fashion, so more work is needed to describe points in the special fiber. In particular, the
Langlands–Rapoport conjecture describes the points on the special fiber of more general Shimura varieties in a
way that is suitable for counting points. This conjecture has been proven by Kisin [Kis17] for Shimura varieties
of abelian type, up to a possible twist in a group action; subsequent work of Kisin–Shin–Zhu [KSZ21] has shown
that the twist can be controlled enough to derive the correct point-counting formula.

Igusa varieties and Mantovan’s formula have been generalized to Hodge type by Hamacher and Hamacher–
Kim [Ham19; HK19]. The goal of the present work is to derive a trace formula for the cohomology of Igusa
varieties of Hodge type, analogous to those for Shimura varieties given in [Kot90; Kot92; KSZ21] and generalizing
the formula for Igusa varieties of PEL type [Shi09]. This provides an important missing tool for developing our
understanding of Shimura varieties of Hodge type, and fits in well with many other recent works in the same
thread (cf. §1.3).

1.2 Main results and methods
Our methods draw heavily from [Shi09; Kis17; KSZ21] mentioned above. For readers who are not intimate with
these sources, some details are presented at greater length in [MC21].

As in the case of Shimura varieties, Igusa varieties of Hodge type do not admit representable moduli problems
for counting points. Our first main theorem, the subject of §3, addresses this problem by establishing an analogue
of the Langlands–Rapoport (LR) conjecture for Igusa varieties of Hodge type.

To explain the theorem and put it in the context, we begin by recalling (e.g., [Kis17, Conj. 3.3.7]) that the LR
conjecture for Shimura varieties predicts a Frobenius-Hecke equivariant bijection

SKp(G, X)(Fp)
∼−→ ⨿

[ϕ]:adm.
Iϕ(Q)\

(
Xp(ϕ)× Xp(ϕ)

)
, (1.2.1)

where SKp = SKp(G, X) is the special fiber of the Shimura variety associated to a datum (G, X) with hyperspecial
level Kp at p and infinite level away from p. On the right hand side, the objects are defined in terms of Galois
gerbs; the disjoint union is over conjugacy classes [ϕ] of admissible morphisms of certain Galois gerbs. Intuitively
each conjugacy class represents an isogeny class on the Shimura variety. The sets Xp(ϕ) and Xp(ϕ) represent
away-from-p isogenies and p-power isogenies respectively preserving the “G-structures”; Xp(ϕ) is a right torsor
under the finite adelic group G(A

p
f ), and Xp(ϕ) is a set with a Frobenius action as recalled below. The group

Iϕ(Q) represents self-isogenies, acting on the sets Xp(ϕ) and Xp(ϕ) on the left.
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The main difference between Shimura varieties and Igusa varieties is the structure at p. Igusa varieties IgΣ
lie over SKp , and augment the moduli description by restricting to a fixed an isomorphism class Σ of p-divisible
groups (with extra structures) and adding the data of a trivialization of the p-divisible group associated to the
abelian variety at each point. To formulate an analogue of the LR conjecture for Igusa varieties, we expect this
difference to reflect in the set Xp(ϕ).

In the case of Shimura varieties we have the affine Deligne–Lusztig set

Xp(ϕ) ∼= Xυ(b) = {g ∈ G(L)/G(OL) : gbσ(g)−1 ∈ G(OL)v(p)G(OL)}

(cf. 3.1.1), where v is a cocharacter of G arising from the Shimura datum, and b ∈ G(L) is an element essentially
recording the Frobenius on the isocrystal associated to a chosen point on the Shimura variety (here L = Q̆p is
the completion of the maximal unramified extension of Qp).

For Igusa varieties we replace this Xυ(b) by a set XIg
p (ϕ) (denoted Xb

p (ϕ) in the main text), which is a right
torsor under the group

Jb(Qp) = {g ∈ G(L) : gbσ(g)−1 = b}

(cf. 2.2.1). There is a natural “‘forgetting trivialization” map XIg
p (ϕ)→ Xp(ϕ). Intuitively, replacing the condition

gbσ(g)−1 ∈ G(OL)v(p)G(OL) by the condition gbσ(g)−1 = b corresponds to fixing an isomorphism class of
p-divisible group or Dieudonné module (rather than fixing an isogeny class or an isocrystal); and replacing
G(L)/G(OL) by G(L) corresponds to adding a trivialization of the p-divisible group (i.e., choosing a basis rather
than simply a lattice). We have no need to modify the term Xp(ϕ) ∼= G(A

p
f ) away from p.

The other change in our LR conjecture for Igusa varieties is to define a notion of b-admissible morphism (Defini-
tion 3.3.1) to replace the admissible morphisms appearing in the LR conjecture. Since IgΣ fixes an isomorphism
class of p-divisible groups, in particular it fixes an isogeny class, and therefore it lies over a single Newton
stratum of SKp labeled by a Kottwitz isocrystal, which we denote by b. Restricting to b-admissible morphisms
corresponds to restricting to isogeny classes in the b-stratum. Indeed, one of the main ideas of the proof (un-
dertaken in §3.2) is to relate isogeny classes on IgΣ and SKp . Namely, we show that taking the preimage of
an isogeny class on SKp along the natural map IgΣ → SKp gives a bijection between the set of isogeny classes
on IgΣ and the set of isogeny classes contained in the b-stratum of SKp (Corollary 3.2.5). This relation allows
us to use the methods of [Kis17] to establish a bijection between the set of isogeny classes on IgΣ and the set
of conjugacy classes of b-admissible morphisms of Galois gerbs, as well as bijections between each individual
isogeny class and its parametrizing set. Thus it is reasonable to formulate (see 3.6.2 below for a comment on
relaxing the assumptions in the conjecture):

Conjecture A (LR conjecture for Igusa varieties). Let (G, X) be a Shimura datum of Hodge type with G unramified at
p, and IgΣ an associated Igusa variety. Then there exists a G(A

p
f )× Jb(Qp)-equivariant bijection

IgΣ(Fp)
∼−→ ⨿

[ϕ]:b-adm.
Iϕ(Q)\

(
Xp(ϕ)× XIg

p (ϕ)
)
,

where the disjoint union ranges over conjugacy classes of b-admissible morphisms.

Our first goal is to prove the conjecture up to an ambiguity that is harmless for the computation of cohomol-
ogy. In [Kis17] the LR conjecture for Shimura varieties (1.2.1) is proven only up to possibly twisting the action of
Iϕ(Q) on Xp(ϕ)× Xp(ϕ), which factors through an action of Iϕ(A f ), by an inner automorphism τ(ϕ) ∈ Iad

ϕ (A f )

for each ϕ. That is, [Kis17] proves the conjecture with the quotient by the twisted action

Iϕ(Q)τ(ϕ)\
(
Xp(ϕ)× Xp(ϕ)

)
on the right hand side of (1.2.1). The subscript τ(ϕ) indicates the twist, which may well interfere with point-
counting. The problem will go away if the LR conjecture is proved in full strength, namely if τ(ϕ) is shown to
be trivial for every ϕ; however this seems infeasible at this time even for Siegel modular varieties.

Here [KSZ21] comes in crucially to show that the family of twisting data ϕ 7→ τ(ϕ) can be taken to satisfy
tori-rationality and a certain compatibility for the family to lie in Γ(H)0 (see 3.5). This turns out to be enough
constraints on τ(ϕ) for them to deduce the expected point-counting formula for Shimura varieties.
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We adapt the methods of [KSZ21] to Igusa varieties of Hodge type to prove our first main theorem towards
Conjecture A, where the twist τ is an exact analogue of the twist for Shimura varieties; as such, τ will be harmless
for point-counting.

Theorem B (cf. Theorem 3.6.1). In the setting of Conjecture A, there exists a family of tori-rational elements τ(ϕ) lying
in Γ(H)0 such that there is a G(A

p
f )× Jb(Qp)-equivariant bijection

IgΣ(Fp)
∼−→ ⨿

[ϕ]:b-adm.
Iϕ(Q)τ(ϕ)\

(
Xp(ϕ)× XIg

p (ϕ)
)
.

Here is the idea of proof. As already mentioned above, there is a natural bijection between isogeny classes
of IgΣ and those of SKp contained in the b-stratum. Combined with [Kis17] or [KSZ21], this leads to a (non-
canonical) bijection between isogeny classes of IgΣ and conjugacy classes of b-admissible morphisms. Thus the
core problem is to identify each isogeny class of IgΣ with the quotient as in the theorem for the corresponding
[ϕ]. The desired bijection for Igusa varieties is not deduced from the main results of [KSZ21] but obtained by
delicately reassembling ingredients from loc. cit.

From Theorem B, we derive the point-counting trace formula for Igusa varieties of Hodge type in §4. Here
ξ is a finite-dimensional representation of G, Lξ the associated ℓ-adic local system on IgΣ, and Hc(IgΣ, Lξ) the
compactly supported ℓ-adic cohomology of IgΣ viewed in a suitable Grothendieck group of G(A

p
f ) × Jb(Qp)-

modules. Refer to §4 for the notion and notation in the theorem that are not yet defined.

Theorem C (cf. Theorem 4.5.11). For every ϱ-acceptable function f ∈ C∞
c (G(A

p
f )× Jb(Qp)), we have

tr( f | Hc(IgΣ,Lξ)) = ∑
γ0

∑
(a,[b0])

|XG(Q, G◦γ0
)|

|(Gγ0 /G◦γ0
)(Q)| vol

(
I◦c (Q)\I◦c (A f )

)
O

G(A
p
f )×Jb(Qp)

γ×δ ( f ) tr ξ(γ0),

where γ0 runs over the set of stable conjugacy classes in G(Q) that are R-elliptic, and (a, [b0]) runs over pairs such
that (γ0, a, [b0]) is a Kottwitz parameter. The group Ic is the inner form of G◦γ0

associated to the Kottwitz parameter
c = (γ0, a, [b0]) as in 4.5.4, and γ× δ ∈ G(A

p
f )× Jb(Qp) are the elements belonging to the classical Kottwitz parameter

(γ0, γ, δ) assigned to c as in 4.2.18.

Conceptually the argument consists of two main steps. The first step proves a preliminary counting formula
as a sum over the so-called Langlands–Rapoport (LR) pairs. To get started, we interpret a sufficiently large
class of test functions as correspondences on our Igusa varieties, and use Fujiwara–Varshavsky’s trace formula
to convert the problem of computing traces of the action on cohomology to the problem of computing fixed
points of these correspondences. We can apply our first main theorem above to describe the fixed points of
these correspondences, resulting in a preliminary form of our point-counting formula as a linear combination of
orbital integrals over the conjugacy classes of LR pairs (ϕ, ε) consisting of b-admissible ϕ and a conjugacy class
in Iϕ(Q), cf. Definition 4.2.1. This is undertaken in §4.1 and the early part of §4.5.

The second step is to re-parametrize LR pairs in the more group-theoretic terms of Kottwitz parameters (cf.
4.2.8). For this we adapt the techniques of [KSZ21, §3]. The theory required is quite analogous, but the relevant
class of LR pairs is different; instead of their pn-admissible pairs, we define notions of b-admissible and acceptable
pairs (Definitions 4.2.1 and 4.2.5). Then we need to re-work a substantial part of the theory under these new
hypotheses. Fortunately we manage to prove essentially the same results, though the arguments are often quite
different. This is undertaken in §§4.2–4.4 and the rest of §4.5.

1.3 Applications
For applications, it is necessary to stabilize our formula. This is work by Bertoloni Meli and Shin [BMS], gener-
alizing [Shi10].

As described in §1.1, we expect our formula to be useful in combination with Mantovan’s formula (due to
Hamacher–Kim [HK19] in Hodge type) to investigate the cohomology of Shimura varieties and Rapoport–Zink
spaces, as has been done to great effect in [HT01; Shi11; Shi12] for the case of PEL type. A particular example
is the recent work of Bertoloni Meli and Nguyen [BMN21] who prove the Kottwitz conjecture for a certain class

4



of unitary similitude groups; their method uses the point counting formula for Igusa varieties of PEL type.
Therefore our formula in Hodge type is expectedly an important ingredient in extending their results.

Another promising application is to generalize the results of Caraiani–Scholze on torsion cohomology of
Shimura varieties of PEL type [CS17; CS19]. A crucial part of their approach transfers problems from a Shimura
variety to an associated flag variety via the Hodge–Tate period map. The fibers of this map are essentially Igusa
varieties, whose cohomology can be understood thanks to the point-counting formula in the PEL case [Shi09;
Shi10]. Thus our second main theorem above is needed to generalize their arguments to Hodge type.

More recently, Kret and Shin [KS23] combined our point-counting formula with automorphic trace formula
techniques to give a description of the H0 cohomology of Igusa varieties in terms of automorphic representations,
with an application to the discrete part of the Chai–Oort Hecke orbit conjecture. With the work of d’Addezio
and van Hoften [DvH], this settled the conjecture for Hodge-type Shimura varieties under a mild hypothesis.

1.4 Notation

When k is a field, k denotes an algebraic closure, and write Galk for the full Galois group over k. For each place v
of Q, we fix an embedding iv : Q ↪→ Qv. Throughout we fix distinct primes p and ℓ as well as algebraic closures
Qp, Fp, and Qℓ. For r ∈ Z≥1, write Qpr for the finite unramified extension of Qp of degree r (in Qp). When T
is a torus or pro-torus over k, write X∗(T) (resp. X∗(T)) for the group of cocharacters (resp. characters) defined
over k. When H is an algebraic group over k, let H◦ denote the connected component of the identity. For a
locally profinite group H, write C∞

c (H) for the space of locally constant compactly supported functions on H;
such functions will have values in Qℓ in this paper. Given a finite set S, write |S| or #S for its cardinality. When
X is an object, e.g., a module or an algebraic group, over a base ring R (determined in the context), write XR′ for
the base change of X from R to R′. Finally we often confuse the set of equivalence or isomorphism classes with
a set of representatives in favor of simpler language.

2 Background

2.1 Isocrystals and p-divisible groups

2.1.1 Let L = Q̆p the completion of the maximal unramified extension of Qp and σ the lift of Frobenius on L
(coming from Z̆p = W(Fp)). An isocrystal over Fp is a finite-dimensional vector space V over L equipped with a
σ-semilinear bijection F : V → V, which we call its Frobenius map. A morphism of isocrystals is an L-linear map
intertwining their Frobenius maps. For G a reductive group over Qp, an isocrystal with G-structure is an exact
faithful tensor functor

RepQp
(G)→ Isoc

from the category of finite-dimensional representations of G over Qp to the category of isocrystals [RR96,
Def. 3.3].

2.1.2 An element b ∈ G(L) gives rise to an isocrystal with G-structure

Eb : RepQp
(G)→ Isoc

(V, ϱ) 7→ (VL, ϱ(b)(idV ⊗σ)),

where VL := V ⊗Qp L. The association b 7→ Eb identifies the set of isomorphism classes of isocrystals with
G-structure with the set of σ-conjugacy classes in G(L), where b0, b1 ∈ G(L) are said to be σ-conjugate if b1 =
gb0σ(g)−1 for some g ∈ G(L). We denote this common set by B(G), and write [b] ∈ B(G) for the σ-conjugacy
class of b ∈ G(L). If G is connected, then every element of B(G) has a representative in G(Qpr ) for some finite
unramified extension Qpr of Qp [Kot85, p. 4.3]. Given a cocharacter µ of G over Qp, there is a distinguished finite
subset B(G, µ) of µ-admissible classes, defined in [Kot97, §6].
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2.1.3 Given b ∈ G(L), each representation (V, ϱ) ∈ RepQp
(G) produces an isocrystal on VL = V ⊗Qp L via

Eb. The slope decomposition VL = ⊕λ∈QVλ by the Dieudonné-Manin classification determines a fractional
cocharacter νϱ : D → GL(VL) such that D acts on Vλ by the character λ ∈ Q = X∗(D). The slope homomorphism
(a.k.a. Newton cocharacter) of b is the unique fractional cocharacter νb : D→ G over L satisfying νϱ = ϱ ◦ νb for
all p-adic representations ϱ of G. Tautologically νϱ = νϱ(b), by considering ϱ(b) ∈ GL(VL).

Alternatively, νb can be defined (cf. [Kot85, p. 4.3]) as the unique element of HomL(D, G) for which there
exist n > 0 and c ∈ G(L) such that

• nνb ∈ HomL(Gm, G),

• Int(c) ◦ nνb is defined over a finite unramified extension Qpn of Qp, and

• c(bσ)nc−1 = c · nνb(p) · c−1 · σn (considered in G(L)⋊ ⟨σ⟩).

From this we see how νb changes under σ and conjugation:

νσ(b) = σ(νb), νgbσ(g)−1 = Int(g) ◦ νb, g ∈ G(L).

The following lemma states that, to check if an element g ∈ G(L) commutes with νb, it suffices to check on a
single faithful representation.

Lemma 2.1.4. Let b ∈ G(L), defining an isocrystal with G-structure. Let ϱ : G → GL(V) be a faithful p-adic represen-
tation, and (VL, ϱ(b)σ) the associated isocrystal. If g ∈ G(L) (acting via ϱ(g)) preserves the slope decomposition of this
isocrystal, then g commutes with the slope homomorphism νb.

Proof. We have
ϱ ◦ νb = νϱ = Int(ϱ(g)) ◦ νϱ = ϱ ◦ Int(g) ◦ νb,

where the first and third equalities are by definition of νb, and the second follows from the assumption on g.
Since ϱ is a monomorphism, this shows νb = Int(ϱ(g))νb.

2.1.5 Following [RZ96] (and references therein), we will freely use the notion of p-divisible groups over a general
base scheme S equipped with isogenies and quasi-isogenies between them. In particular we consider the isogeny
category of p-divisible groups over S in which quasi-isogenies are isomorphisms.

We write G 7→ D(G ) for the contravariant Dieudonné module functor, which gives a contravariant equiva-
lence between the category of p-divisible groups over Fp and the category of Dieudonné modules (e.g., [Dem72]).
By composing with the functor from Dieudonné modules to isocrystals, we get a contravariant functor G →
V(G ), which is an equivalence of categories between the isogeny category of p-divisible groups over Fp and the
category of isocrystals.

2.1.6 A p-divisible group is isoclinic if it has only a single slope (possibly with multiplicity). A slope filtration for
a p-divisible group G is a filtration 0 = G0 ⊂ · · · ⊂ Gr = G such that each successive quotient Gi/Gi−1 is isoclinic
of slope λi with λ1 > · · · > λr. If it exists, it is unique. A slope filtration always exists for a p-divisible group
over a field of positive characteristic, and the filtration splits canonically if the field is perfect [Gro74].

We say G is completely slope divisible if it has a slope filtration such that for each successive quotient X of slope
λ = a

b , the quasi-isogeny p−a Frobb : X → X(pb) is an isogeny. Over Fp, this is equivalent to being a direct sum
of isoclinic p-divisible groups defined over finite fields [OZ02].

2.2 Acceptable Elements of Jb(Qp)

2.2.1 For b ∈ G(L), define an algebraic group Jb (or JG
b when it is helpful to remember G) over Qp by defining

its points for a Qp-algebra R by

Jb(R) = {g ∈ G(R⊗Qp L) : gbσ(g)−1 = b},

and define Mb to be the centralizer in G of νb. By definition Jb(Qp) ⊂ Mb(L). Define Pb to be the unique parabolic
subgroup of G over L such that every (nonzero) root α of AMb in Lie Pb satisfies ⟨α, ν⟩ > 0. The opposite parabolic
is denoted by Pop

b . Write Nb and Nop
b for the unipotent radicals of Pb and Pop

b .
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Changing b by σ-conjugation in G(L) does not essentially change the situation: if b0 = gb1σ(g)−1, then
Mb0 = Int(g)Mb1 and we have a canonical isomorphism

Jb1

∼−→ Jb0 (2.2.2)

x 7−→ gxg−1.

Since G is quasi-split, we may and will change b inside its σ-conjugacy class to ensure that Mb is defined over Qp
and that b is decent. (By the proof of [Kot85, Prop. 6.2] b can be σ-conjugated in G such that νb is defined over Qp
and b is basic in Mb(L). A further σ-conjugation in Mb(L) ensures that b is decent without changing νb.) Then Jb
is the automorphism group of the isocrystal with G-structure defined by b (indeed, the condition gbσ(g)−1 = b
precisely means that g commutes with bσ), and furthermore Jb is an inner form of Mb. Since νb ∈ X∗(Mb)Q is a
central fractional cocharacter, νb can also be viewed as a central fractional cocharacter of Jb.

2.2.3 Choose a faithful representation ϱ : G ↪→ GL(V) over Qp. Then our isocrystal with G-structure associated
to b produces an isocrystal (VL, ϱ(b)σ) The group Jb(Qp) acts on this isocrystal by linear automorphisms via its
natural inclusion in G(L). Write VL =

⊕r
i=1 Vλi for the slope decomposition of our isocrystal, with slopes in

decreasing order λ1 > λ2 > · · · > λr.

Definition 2.2.4. Define an element δ ∈ Jb(Qp) to be ϱ-acceptable (or say δ is ϱ-acceptable with respect to b) if,
regarding ϱ(δ) = (δi) ∈ ∏i GL(Vλi ), any eigenvalues ei of δi and ej of δj with i < j (i.e., λi > λj) satisfy
vp(ei) < vp(ej).

A more general definition can be given for δ ∈ Mb(L) only in terms of νb (without requiring νb be defined
over Qp); in that case ϱ(δ) ∈ ∏i GL(Vλi ) since ϱ(δ) commutes with ϱ ◦ νb, so the definition can be given by the
same condition as above. In particular, if νb = νb′ for b, b′ ∈ G(L) then δ is ϱ-acceptable for b if and only if it is
for b′. (The converse is Lemma 2.2.11 below.) Next we verify that ϱ-acceptability is invariant under σ-conjugacy.

Lemma 2.2.5. Suppose that x0 ∈ Jb1(Qp) and x1 ∈ Jb0(Qp) correspond via (2.2.2). Then x1 is ϱ-acceptable in Jb1(Qp) if
and only if x0 is ϱ-acceptable in Jb0(Qp).

Proof. The isocrystals (VL, ϱ(b1)σ) and (VL, ϱ(b0)σ) are isomorphic by ϱ(g); in particular the isomorphism re-
spects the slope decomposition. The isomorphism is equivariant for the Jb1(Qp)-action on the former isocrystal
and the Jb0(Qp)-action on the latter via (2.2.2). Now the lemma follows from inspecting Definition 2.2.4.

Definition 2.2.6. Define an element δ ∈ Jb(Qp) to be acceptable if the adjoint action of δ (as an element of Mb(L))
on Lie Nb(L) is dilating, i.e., has eigenvalues λ with |λ| > 1.

If δ, δ′ ∈ Jb(Qp) are conjugate in Jb(Qp) then clearly δ is acceptable if and only if δ′ is. It is also obvious that
the isomorphism (2.2.2) maps acceptable elements in one group to those in the other.

Lemma 2.2.7. Let b, ϱ be as above. If δ ∈ Jb(Qp) is ϱ-acceptable then it is acceptable.

Proof. Since ϱ(δ) ∈ ∏i GL(Vλi ) acts on Lie Nϱ(b) by eigenvalues eie−1
j with λi < λj, if δ ∈ Jb(Qp) is ϱ-acceptable

then ϱ(δ) is acceptable as an element of Jϱ(b)(Qp) by definition. On the other hand, νϱ(b) = ϱ ◦ νb, so ϱ maps Pb
into Pϱ(b), inducing an injection Lie Nb(L) ↪→ Lie Nϱ(b)(L). The latter is compatible with the adjoint actions of
Jb(Qp) and Jϱ(b)(Qp) via ϱ : Jb(Qp) ↪→ Jϱ(b)(Qp). Since ϱ(δ) is dilating on Lie Nϱ(b)(L), it follows that δ is dilating
on Lie Nb(L).

2.2.8 An important example of an acceptable element is defined as follows. Choose an integer s ∈ Z such that
sνb is a cocharacter of GL, i.e., sνb : D → GL factors through Gm → GL. In view of our observation on νb in
2.2.1, sνb is a central cocharacter of Mb over Qp, also viewed as a central cocharacter of Jb over Qp. For each
faithful representation ϱ : G → GL(V), the slopes λi of Eb(V, ϱ) satisfy sλi ∈ Z (as they correspond to the weight
decomposition of VL by sνb). Define a central element

f rs := sνb(p) ∈ Jb(Qp).

Lemma 2.2.9. For s as above, suppose s > 0. The element f rs is ϱ-acceptable for every ϱ : G ↪→ GL(V). It is also
acceptable. Given ϱ and δ ∈ Jb(Qp), there exists s0 ∈ Z such that f r−sδ is ϱ-acceptable for every s ≥ s0.

7



Proof. Write VL = ⊕iVλi as before. Then ϱ( f rs) acts on Vλi by psλi , so f rs is ϱ-acceptable by definition; the
existence of s0 as in the lemma is also clear from this. The acceptability of f rs follows from Lemma 2.2.7 (or can
be verified directly from the definition).

Lemma 2.2.10. Let ε ∈ G(L) be a semi-simple element contained in the subset Jb(Qp). If ε is ϱ-acceptable as an element
of Jb(Qp) then Gε ⊂ Mb.

Proof. As in 2.2.3, the isocrystal (VL, ϱ(b)σ) admits a slope decomposition

VL =
⊕

i
Vλi .

Since ε is semi-simple, its action on VL is diagonalizable. Since ε ∈ Jb(Qp), it preserves the slope components
Vλi . Thus each Vλi has a basis of eigenvectors for the action of ε. The ϱ-acceptable condition implies that ε has
different eigenvalues on different slope components, so each slope component is a direct sum of full eigenspaces
of ε. Now, each x ∈ Gε must preserve the eigenspaces of ε. Since the slope components are direct sums of
eigenspaces of ε, we see that x preserves the slope decomposition. By Lemma 2.1.4 this implies x ∈ Mb.

Lemma 2.2.11. Let b0, b1 be σ-conjugate elements of G(L). Suppose that there is a semi-simple element ε ∈ G(L) such
that ε lies in both Jb0(Qp) and Jb1(Qp) and furthermore is ϱ-acceptable with respect to both b0 and b1. Then νb0 = νb1 .

Proof. The isocrystal structures (VL, ϱ(b0)σ) and (VL, ϱ(b1)σ) induce two slope decompositions

VL =
⊕

i
Vλi ,0 and VL =

⊕
i

Vλi ,1.

Since b0, b1 are σ-conjugate, these two isocrystals are isomorphic. In particular we can use the same index set for
i, and dim Vλi ,0 = dim Vλi ,1 for each i.

Consider ε as in the lemma. As in the proof of Lemma 2.2.10, each slope component Vλi ,j is a direct sum
of full eigenspaces of ε for j ∈ {0, 1}. Since dim Vλi ,0 = dim Vλi ,1 and since (by the ϱ-acceptable condition)
the eigenspaces appearing in the various slope components must be ordered by the p-adic valuation of the
corresponding eigenvalue, this shows that Vλi ,0 and Vλi ,1 must consist of the same eigenspaces. That is, Vλi ,0 =
Vλi ,1 for all slopes λi. Thus νϱ(b0)

= νϱ(b1)
. Since ϱ is a monomorphism, we conclude that νb0 = νb1 .

2.3 Igusa Varieties of Siegel Type
We review the case of Siegel type, as it is required for understanding Hodge type. Henceforth we fix a field
isomorphism C ∼= Qp. Many objects will be decorated with a tick •′ to distinguish them from the analogous
objects of Hodge type introduced in §2.4.

2.3.1 Let V be a free Z-module of finite rank 2r and ψ a perfect symplectic pairing on V. Let GSp = GSp(V)
denote the corresponding symplectic similitude group over Z. For any ring R, we write VR = V ⊗Z R. Write S±

for the Siegel double space as in [Kis10, (2.1.5)]. This data gives rise to a Siegel Shimura datum (GSp, S±). Set
K′p = GSp(Zp) ⊂ GSp(Qp), which is a hyperspecial subgroup. We write K′ = K′pK′p, where K′p ⊂ GSp(Ap

f ) is a
sufficiently small compact open subgroup. The corresponding Shimura variety ShK′(GSp, S±), whose canonical
model is defined over Q, has a canonical integral model SK′(GSp, S±) over Z(p). The scheme SK′(GSp, S±) is a
smooth Z(p)-scheme representing the following moduli functor:

Schemes/Z(p)
−→ Sets

X 7−→ {(A, λ, η
p
K′)}/ ∼

where

• A is an abelian scheme over X up to prime-to-p isogeny;

• λ is a weak polarization of A, i.e., a prime-to-p quasi-isogeny λ : A → A∨ modulo scaling by Z×
(p), some

multiple of which is a polarization;
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• η
p
K′ ∈ Γ(X, Isom(V

A
p
f
, V̂p(A))/K′p) is a K′p-level structure, where we regard T̂p(A) = lim←−p∤n A[n] and

V̂p(A) = T̂p(A)⊗Z Q as étale sheaves on X, and define Isom(V
A

p
f
, V̂p(A)) to be the étale sheaf of isomor-

phisms compatible with the pairings induced by ψ and λ up to A
p
f
×-scalar; and

• two triples are equivalent (A1, λ1, η
p
K′ ,1) ∼ (A2, λ2, η

p
K′ ,2) if there is a prime-to-p quasi-isogeny A1 → A2

sending λ1 to λ2 and η
p
K′ ,1 to η

p
K′ ,2.

We often abbreviate ShK′(GSp, S±) and SK′(GSp, S±) as ShK′ and SK′ . By virtue of the moduli structure, it
carries a universal polarized abelian scheme A′ → SK′ . Denote the special fiber by

S K′ = S K′(GSp, S±) := SK′ ⊗Z(p)
Fp.

2.3.2 The universal polarized abelian scheme gives rise to a universal polarized p-divisible group (A′[p∞], λ)

and hence an isocrystal with GSp-structure over S K′ .
Fixing a class b ∈ B(GSp) whose Newton stratum is non-empty, let (Σ, λΣ) be a p-divisible group with

GSp-structure of type b, i.e.,

• Σ is a p-divisible group over Fp and

• λΣ is a polarization of Σ, such that

• there is an isomorphism D(Σ) ∼→ VOL preserving the pairings induced by λΣ and ψ up to scaling by O×L ,
and taking the Frobenius on D(Σ) to an endomorphism bσ on VOL with b a representative of the class
b ∈ B(GSp).

The last point is independent of the choice of the isomorphism. Indeed, a different choice changes b by σ-
conjugation by GSp(OL). We define the Newton stratum

S
(b)
K′ := {x ∈ S K′ : (A′x[p∞], λx)×k(x) k(x) is isogenous to (Σ, λΣ)×Fp

k(x)},

where k(x) is the residue field of x, and k(x) denotes its algebraic closure. Then S
(b)
K′ is a locally closed subset of

S K′ , which we promote to a subscheme by taking the reduced subscheme structure. This definition is equivalent
to the definition in terms of isocrystals as in 2.4.3.

The central leaf C′Σ,K′ corresponding to (Σ, λΣ) is defined by changing “isogenous” to “isomorphic” in the

definition of S
(b)
K′ above. Then C′Σ,K′ is a closed subset of S

(b)
K′ , which is smooth when equipped with the

reduced subscheme structure, cf. [Man05, Prop. 1].

2.3.3 Now we assume that Σ is completely slope divisible. Such a p-divisible group is guaranteed to exist when
b has a representative over Qpr for some r, which is always the case when our group is connected, as GSp is.
Then the universal p-divisible group A′[p∞] over C′Σ,K′ , being isomorphic to Σ (over each geometric generic point

of C′Σ,K′ ), is also completely slope divisible. Let A′[p∞](i) be the successive quotients of the slope filtration, and

define A′[p∞]sp =
⊕

iA′[p∞](i) to be the associated split p-divisible group, which inherits a polarization from
A′[p∞]. Denote its pm-torsion by A′[pm]sp.

The level-m Igusa variety of Siegel type Ig′Σ,K′ ,m is a smooth Fp-scheme, finite étale and Galois over C′Σ,K′ ,
defined by the moduli problem

Ig′Σ,K′ ,m(X) =
{
(A, λ, η

p
K′ , jm) : (A, λ, η

p
K′) ∈ C′Σ,K′(X),

jm : Σ[pm]×Fp
X ∼→ A′[pm]sp ×C′

Σ,K′
X
}

,

where jm is an isomorphism preserving polarizations up to (Z/pmZ)×-scalar, and extending étale locally to any
higher level m′ ≥ m.

9



Define the Igusa variety at infinite level Ig′Σ,K′ := lim←−m
Ig′Σ,K′ ,m, and J ′

Σ,K′ := Ig′(p−∞)
Σ,K′ its perfection. Then

J ′
Σ,K′ is the moduli space over C′Σ,K′ parametrizing trivializations of the universal p-divisible group; that is, for

an Fp-algebra R,

J ′
Σ,K′(R) =

{
(x, j) : x ∈ C′Σ,K′(R), j : Σ×Fp

R ∼→ A′x[p∞]
}

where j is an isomorphism preserving polarizations up to scaling [Ham19, Lem. 3.5], [CS17, Def. 4.3.1, Prop. 4.3.8].
The slope filtration splits canonically over a perfect base [Man20, p. 4.1], so we no longer need to impose the
splitting on A′[p∞]. The group GSp(Ap

f ) acts on the system of Ig′Σ,K′ over varying K′, thus also on the system

of J ′
Σ,K′ , by acting on the level structure η

p
K′ . This action is inherited from the Siegel modular variety, since it

happens away from p (i.e., it does not interact with the Igusa level structure).

2.3.4 The system Ig′Σ,K′ also receives an action of a submonoid SGSp
b ⊂ JGSp

b (Qp) which we now define. Recall
from 2.3.2 that we have chosen Σ a p-divisible group of type b admitting an isomorphism V(Σ) ∼→ VL which
identifies the Frobenius on V(Σ) with bσ for a representative b of b. In this setup we get an action of the
group JGSp

b (Qp) on Σ by quasi-isogenies. Let δ ∈ JGSp
b (Qp), and suppose that δ−1 is an isogeny. Regard

δ = (δi) ∈ ∏ GL(Vλi ) as in 2.2.3–2.2.4. For each i write ei(δ) and fi(δ) for the minimal and maximal integers
such that

ker p fi(δ) ⊂ ker δ−1
i ⊂ ker pei(δ).

Then SGSp
b is the submonoid of JGSp

b (Qp) defined by

SGSp
b := {δ ∈ JGSp

b (Qp) : δ−1 an isogeny, and fi−1(δ) ≥ ei(δ) for all i}.

Note that p−1, f r−s ∈ SGSp
b , for s as in 2.2.8. Furthermore Jb(Qp) is generated as a monoid by Sb together with

p and f rs. In other words, every element of Jb(Qp) can be translated into SGSp
b by multiplying by high enough

powers of p−1 and f r−s.
The details of the action of SGSp

b on Ig′Σ,K′ are given in [Man05, Lem. 5]. (Our JGSp
b , resp. Ig′Σ,K′ ,m are denoted

Tb, resp. Jb,m there.) The action of SGSp
b on IgΣ,K′ extends to an action of the full group JGSp

b (Qp) on the perfections
J ′

Σ,K′ and on étale cohomology, cf. [CS17, §4.3].

2.4 Igusa Varieties of Hodge Type

2.4.1 Let (G, X) be a Shimura datum of Hodge type: G is a connected reductive Q-group, which we further
assume to be unramified at p; X is a G(R)-conjugacy class of homomorphisms h : ResC/R Gm → GR; and
there exists a closed embedding G ↪→ GSp which sends X to S±. Denote by E the reflex field of (G, X). We
permanently fix a Hodge embedding G ↪→ GSp. By composing with the standard embedding GSp ⊂ GL(V), we
obtain the embedding ϱ : G ↪→ GL(V).

Each x ∈ X is associated with hx : ResC/R Gm → GR by definition. Each hx gives rise to a cocharacter
µx = µhx : Gm → GC, cf. [KMPS22, p. 1.2.3]. Denote by {µX} the canonical G(C)-conjugacy class of such
cocharacters, which is also viewed as a conjugacy class of cocharacters of G

Qp
via the fixed isomorphism C ∼= Qp.

Unless specified, write µ for a representative of {µX}.
As GQp is unramified, it has a reductive model GZ(p)

over Z(p) and corresponding hyperspecial subgroup
Kp = GZ(p)

(Zp) ⊂ G(Qp). As in [Kis17, p. 1.3.3], there is a Z(p)-lattice VZ(p)
⊂ VQ such that the embedding G ↪→

GSp is induced by an embedding GZ(p)
↪→ GL(VZ(p)

). Enlarging our symplectic space V if necessary, we may
assume ψ induces a perfect pairing on VZ(p), so we can define a hyperspecial subgroup K′p = GSp(VZ(p)

)(Zp) ⊂
GSp(Qp) which is compatible in the sense that the embedding G ↪→ GSp takes Kp into K′p.

For each compact open Kp ⊂ G(A
p
f ) write ShK(G, X) for the canonical model over E. Given Kp, there is a

K′p ⊂ GSp(Ap
f ) such that K = KpKp ⊂ K′ = K′pK′p and the natural map

ShK(G, X)→ ShK′ ×Q E
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is a closed embedding over E. Our integral models are not defined by a moduli problem. Instead, consider the
composition

ShK(G, X)→ ShK′ ×Q E→ SK′ ×Z(p)
OE,(p),

and let SK(G, X) be the closure of ShK(G, X) in SK′ ⊗Z(p)
OE,(p), where OE,(p) = OE ⊗Z Z(p). Then SK(G, X) is

the canonical integral model of ShK(G, X). (By [Kis10], the normalization of SK(G, X) is the canonical integral
model, and recently it has been shown [Xu20] that the normalization is unnecessary).

Pulling back the universal abelian scheme A ′ → SK′ along the map SK(G, X) → SK′ we obtain a universal
abelian scheme A → SK(G, X) and p-divisible group A[p∞]. Henceforth we usually write ShK and SK for
ShK(G, X) and SK(G, X).

2.4.2 For a vector space or module W, we write W⊗ be the direct sum of all finite combinations of tensor powers,
duals, and symmetric and exterior powers of W. Since we include duals, we can identify W⊗ with (W∨)⊗.

As in [Kis10, p. 2.3.2], our reductive model GZ(p)
over Z(p) can be defined as the subgroup of GL(VZ(p)

)

stabilizing a finite collection of tensors {sα} ⊂ V⊗Z(p)
. Fix such a collection of tensors {sα}. Our G-structures

essentially amount to transporting the tensors {sα} to all relevant spaces. Let S be an OE,(p)-scheme. Following
[Kis17, pp. 1.3.6–10], to each point x ∈ SK(S) we assign a finite set of tensors

{sα,ℓ,x} ⊂ H1
ét(Ax, Qℓ)

⊗ ∼= Vℓ(Ax)
⊗, ℓ ̸= p

and to each point x ∈ SK(Fp) a finite set of tensors

{sα,0,x} ⊂ H1
crys(Ax/OL)

⊗ ∼= D(Ax[p∞])⊗

(defined even over Zpr for r sufficiently divisible). These tensors are compatible with the original tensors {sα}
in the following way. As in [Kis10, p. 3.2.4], for x ∈ SK(S) with associated Siegel data (Ax, λ, η

p
K′), the section

η
p
K′ ∈ Γ(S, Isom(V

A
p
f
, V̂p(Ax))/K′p)

can be promoted to a section
η

p
K ∈ Γ(S, Isom(V

A
p
f
, V̂p(Ax))/Kp),

and this isomorphism η
p
K takes sα to sα,ℓ,x. At p, there is an isomorphism

V∨Zpr
∼−→ D(Ax[p∞])(Zpr )

taking sα to sα,0,x. Furthermore, the pointwise tensors sα,0,x ∈ D(Ax[p∞])⊗ can be interpolated to global tensors
sα,0 ∈ D(A[p∞])⊗ as in [Ham19, p. 2.2] and [HP17, p. 3.1.5].

2.4.3 Fix an embedding Q ↪→ Qp, and let v be a prime of E over p determined by this embedding. Denote the
residue field by k(v), and let S K := SK ×OE,(p)

k(v). We denote again by A → S K the pullback of the abelian
scheme A → SK.

By [Lov17] (cf. [HK19, §4]), the p-divisible group A[p∞] equipped with polarization and tensors on D(A[p∞])
gives rise to an isocrystal with G-structure over S K in the sense of [RR96]. Restricting to a geometric point
x → S K gives an isocrystal with G-structure bx ∈ B(G) depending only on the point x ∈ S K underlying x.
Thereby we obtain a Newton stratification

S
(b)
K = {x ∈ S K : bx = b}

parametrized by classes b ∈ B(G), cf. 2.3.2. (Even if x is not an Fp-point, bx ∈ B(G) is defined via [RR96,

Lem. 1.3].) As in Siegel type, S
(b)
K are locally closed subsets [RR96, Thm. 3.6] (cf. [Ham19, pp.726–727]), which

we equip with the reduced subscheme structure. The b-stratum is non-empty exactly when b ∈ B(G, µ−1),
which we assume henceforth, where µ is as in 2.4.1.
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2.4.4 Fix a Borel B and maximal torus T in GZ(p)
. We choose µ ∈ X∗(T) to be the dominant cocharacter

representing {µX}, and let υ = σ(µ−1).
We will need the following data for the definition of Igusa varieties of Hodge type. Fix a σ-conjugacy class

b ∈ B(G, µ−1) and let (Σ, λΣ, {sα,Σ}) be a p-divisible group with G-structure over Fp of type b, namely

• Σ a p-divisible group over Fp,

• λΣ a polarization of Σ, and

• {sα,Σ} ⊂ D(Σ)⊗ a collection of tensors,

such that there is an isomorphism D(Σ) → VOL preserving the pairings induced by λΣ and ψ, taking sα,Σ to
sα, and taking the Frobenius on D(Σ) to an endomorphism bσ on VOL with b ∈ b; here b is well defined up to
σ-conjugation by G(OL).

Define the central leaf CΣ,K corresponding to (Σ, λΣ, {sα,Σ}) to be the set of points x : Spec Fp → S
(b)
K that

admit an isomorphism of p-divisible groups with G-structure

(Ax[p∞], λx, {sα,0,x}) ∼= (Σ, λΣ, {sα,Σ})

is closed in S
(b)
K (Fp), cf. [HK19, Cor. 4.12]. This defines a closed subset of S

(b)
K , which is equipped with the

reduced subscheme structure and still denoted by CΣ,K. By [Ham19, Prop. 2.5] CΣ,K is smooth over Fp. We
know from [KS23, Prop. 5.3.5] that CΣ,K is nonempty if and only if the σ-conjugacy orbit of b by G(OL) meets
the double coset G(Zur

p )υ(p)G(Zur
p ). We assume this condition from now on, as Igusa varieties will be empty

otherwise. Moreover, following [KS23, §5.3, §6.2] we can change b by an element of G(OL) by σ-conjugation and
choose a sufficiently divisible r ∈ Z≥1 such that

• (Σ, λΣ, {sα,Σ}) and CΣ,K are defined over Fpr ,

• b ∈ G(Zpr )υ(p)G(Zpr ),

• Fpr ⊃ k(v),

• rνb is a cocharacter of G over Qpr (so f rs ∈ Jb(Qp) is defined whenever r|s),

• bσ(b) · · · σr−1(b) = rνb(p) (decency equation).

The condition on (Σ, λΣ, {sα,Σ}) is not explicitly stated in loc. cit., but it follows from Dieudonné theory and
the transportation of structures via the isomorphism D(Σ) → VOL which descends to an isomorphism of Zpr -
modules. For the remainder of the paper, we fix these choices of b, b, (Σ, λΣ, {sα,Σ}), and r.

2.4.5 Following [Ham19, p. 4.1], we define the perfect infinite level Igusa variety of Hodge type

JΣ,K ⊂ (Ig′Σ,K′ ×C′
Σ,K′

CΣ,K)
(p−∞)

to be the locus of points where j∗(sα,0,x) = sα,Σ. That is, JΣ,K parametrizes isomorphisms Σ⊗Fp
CΣ,K

∼→ A[p∞]

preserving polarizations (up to scaling) and tensors. The projective limit JΣ := lim←−K
JΣ,K is equipped with a

commuting action of G(A
p
f ) and Jb(Qp). The former action is inherited from the prime-to-p Hecke action on

S Kp(Fp). The action of Jb(Qp) is restricted from the action of JGSp
b (Qp) on (Ig′Σ,K′)

(p−∞) in §2.3.3; see [Ham19,
Prop. 4.10].

Define (un-perfected) infinite level and finite level Igusa varieties of Hodge type by

IgΣ,K := im(JΣ,K → Ig′Σ,K′ ×C′
Σ,K′

CΣ,K),

IgΣ,K,m := im(JΣ,K → Ig′Σ,K′ ,m ×C′
Σ,K′

CΣ,K).
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We will work primarily with the Igusa variety with infinite level at m and infinite level away from p

IgΣ := lim←−
Kp

IgΣ,KpKp ,

and analogously Ig′Σ for the Siegel version. The Igusa variety IgΣ (or system IgΣ,K,m) receives an action of G(A
p
f )

inherited from the Shimura variety, and a commuting action of the submonoid Sb := SGSp
b ∩ Jb(Qp) of Jb(Qp).

The perfection of IgΣ is naturally isomorphic to JΣ equivariantly for the G(A
p
f )× Sb-action, by the argument

of [CS17, Prop. 4.3.8] (which works in the case of Hodge type, cf. [KS23, Prop. 6.2.1 (3)]. Since perfection does not
change Fp-points nor étale cohomology, for these purposes it is essentially similar to work with the perfect Igusa
variety. An important example is that the natural map JΣ,K →J ′

Σ,K′ is a closed embedding [Ham19, Prop. 4.10],
so we can regard IgΣ(Fp) as a subset of Ig′Σ(Fp). Since G(A

p
f )× Jb(Qp) acts on JΣ and its compact support

cohomology (defined as a direct limit over K), we see that the Sb-action on the compact support cohomology of
IgΣ extends to an action of Jb(Qp) (necessarily in a unique way), which commutes with the G(A

p
f )-action.

The Igusa variety IgΣ is not an honest moduli space, but we can nonetheless attach useful data to its points,
which we will refer to as partial moduli data. A point x ∈ IgΣ(Fp) parametrizes the equivalence class of data

(Ax, λx, ηp, {sα,0,x}, j),

where (Ax, λx, ηp, {sα,0,x}) is the data associated with the image of x in S Kp(Fp), and

j : Σ ∼→ Ax[p∞]

is the Igusa level structure attached to the image of x in the Siegel Igusa variety Ig′Σ(Fp), an isomorphism of
p-divisible groups over Fp respecting polarizations up to scaling and sending sα,Σ to sα,0,x.

Consider two sets of data to be equivalent if there is a prime-to-p isogeny between the abelian varieties
sending one set of data to the other. With this equivalence, points are distinguished by their partial moduli data.

2.4.6 Let ξ be a finite-dimensional representation of G, and Lξ the system of sheaves (omitting K, m by abuse of
notation) on IgΣ,K,m defined by ξ. These sheaves are pullbacks of the sheaves on S K arising from ξ as in [Kot92,
§6] or [KSZ21, §1.5.2]. Denote by Hi

c the étale cohomology with compact supports. Define

Hi
c(IgΣ, Lξ) := lim−→

Kp ,m
Hi

c(IgΣ,K,m, Lξ),

Hc(IgΣ, Lξ) := ∑
i
(−1)i Hi

c(IgΣ, Lξ),
(2.4.7)

the former as a G(A
p
f )× Jb(Qp)-module and the latter as an element of Groth(G(A

p
f )× Jb(Qp)). Our eventual

goal is to a counting point formula for Hc(IgΣ, Lξ).
We can describe the action of G(A

p
f ) × Jb(Qp) on IgΣ(Fp) as follows. Let x ∈ IgΣ(Fp) be a point with

associated partial moduli data (Ax, λx, ηp, {sα,0,x}, j). Note that we can regard Jb(Qp) as the group of self-quasi-
isogenies of Σ.

The action of G(A
p
f ) is inherited from the Shimura variety, and as there, it acts on the level structure ηp: for

gp ∈ G(A
p
f ), the data associated to x · gp is

(Ax, λx, ηp ◦ gp, {sα,0,x}, j).

To describe the action of gp ∈ Jb(Qp), regard it as a quasi-isogeny gp : Σ → Σ, and choose m ≥ 0 such that
pmg−1

p : Σ→ Σ is an isogeny. The Igusa level structure j : Σ ∼→ Ax[p∞] allows us to transfer this to Ax. The data
associated to x · gp is

(Ax/j(ker pmg−1
p ), g∗pλx, ηp, {sα,0,x}, g∗p j)
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where g∗pλx is the induced polarization; we can take the same level structure ηp because Ax is unchanged away
from p, and the same tensors {sα,0,x} because Jb(Qp), being a subgroup of G(L), preserves tensors; and

g∗p j : Σ ∼−→ Ax·gp [p
∞] = Ax[p∞]/j(ker pmg−1

p )

is the unique map making the following diagram commute.

Σ
j //

pmg−1
p

��

Ax[p∞]

��
Σ

g∗p j
// Ax[p∞]/j(ker pmg−1

p )

Note that the choice of m does not matter because multiplication by pk induces an isomorphism A/ ker pk → A,
and this gives an equivalence between moduli data for different choices of m.

2.4.8 There is an alternative partial moduli description which admits a simpler description of the group actions,
but has the downside that it makes the map to S Kp(Fp) more opaque. By [Shi09, Lem. 7.1], we have the
following moduli description of the Siegel Igusa variety:

Ig′Σ(Fp) = {(A, λ, ηp, j)}/ ∼

where

• A is an abelian variety over Fp,

• λ is a polarization of A,

• ηp : V
A

p
f

∼→ V̂p(A) is an isomorphism preserving the pairings induced by ψ and λ up to scaling,

• j : Σ→ A[p∞] is a quasi-isogeny preserving polarizations up to scaling, and

• two tuples are equivalent if there is an isogeny A1 → A2 sending λ1 to a scalar multiple of λ2, and sending
η

p
1 to η

p
2 and j1 to j2. (It is equivalent to replace “isogeny” here with “quasi-isogeny”).

Note the difference that we allow j to be a quasi-isogeny rather than an isomorphism, and equivalence requires
only an isogeny A1 → A2, rather than a prime-to-p isogeny.

Under this moduli description, Ig′Σ(Fp) has a right action of GSp(Ap
f )× JGSp

b (Qp) (where we write b again
for the image of b in GSp(L)) described by

(gp, gp) : (A, λ, ηp, j) 7→ (A, λ, ηp ◦ gp, j ◦ gp).

As noted in 2.4.5, we can regard IgΣ(Fp) ⊂ Ig′Σ(Fp), and furthermore this is compatible with the actions of

G(A
p
f ) × JG

b (Qp) ⊂ GSp(Ap
f ) × JGSp

b (Qp). Thus each point of IgΣ(Fp) can be associated data (A, λ, ηp, j) as

above, with distinct points having distinct data, and we can write the action of G(A
p
f )× JG

b (Qp) in a precisely
similar way.

2.5 Galois Gerbs
In this section we review Galois gerbs. We refer to §3 of [Kis17] and §2 of [KSZ21] for details omitted here. Let
k′/k be a Galois extension of characteristic zero fields. Recall Galk := Gal(k/k).
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2.5.1 A k′/k-Galois gerb is a pair (G,G) consisting of a connected linear algebraic group G over k′ and an
extension of topological groups (giving G(k′) the discrete topology)

1→ G(k′)→ G→ Gal(k′/k)→ 1

satisfying certain technical conditions [Kis17, p. 3.1.1]. Often we use G to refer to the whole data (G,G). By the
kernel of G, we mean the algebraic group G, and write G∆ for it. A k/k-Galois gerb is simply called a Galois gerb
over k.

A k′/k-Galois gerb G induces a k/k-Galois gerb via pullback by Galk → Gal(k′/k) and pushout by G(k′) →
G(k). Similarly, for each place v of Q, a Galois gerb G over Q and iv : Q ↪→ Qv induce a Galois gerb G(v) over
Qv by pulling back by GalQv → GalQ and pushing out by G(Q)→ G(Qv).

An important example is the neutral k′/k-Galois gerb attached to a linear algebraic group G over k, defined to
be the semi-direct product GG = G(k′)⋊ Gal(k′/k), where Gal(k′/k) acts on G(k′) according to the k-structure
on G.

A morphism of k′/k-Galois gerbs f : G1 → G2 is a continuous homomorphism of topological group exten-
sions compatible with the identity map on Gal(k′/k) such that the restricted map f |G1(k′) : G1(k′) → G2(k′)
is induced by a map of algebraic groups f ∆ : G1 → G2. If G1,G2 are Galois gerbs over Q, then f induces a
morphism f (v) : G1(v) → G2(v) of Galois gerbs over Qv. Two morphism G1 → G2 are conjugate if they are
related by conjugation by an element of G2(k′). We denote the conjugacy class of a morphism f by [ f ].

Let f : G1 → G2 be a morphism. Then we can define the automorphism group scheme I f over k such that for
k-algebras R,

I f (R) = {g ∈ G2(k′ ⊗k R) : Int(g) ◦ fR = fR},

where fR : G1,R → G2,R induced by f , and Gi,R is the pushout via Gi(k′) → Gi(k′ ⊗k R) for i = 1, 2. In the case
that G2 = GG is the neutral Galois gerb attached to a linear algebraic group G, we have the following lemma.

Lemma 2.5.2 ([Kis17, Lem. 3.1.2]). Let f : G1 → GG be a map of k′/k-Galois gerbs.

• The map I f ,k′ → Gk′ given by

I f ,k′(R) ↪→ G(k′ ⊗k R)→ G(R), R : k′-algebra,

identifies I f ,k′ with the centralizer ZG( f ∆) in Gk′ .

• The set of morphisms f ′ : G1 → GG with f ′∆ = f ∆ is in bijection with Z1(Gal(k′/k), I f (k′)), via the map sending
e ∈ Z1(Gal(k′/k), I f (k′)) to the morphism e f defined such that, if f (q) = g ⋊ ρ, we have e f (q) = eρg ⋊ ρ.
Furthermore, e f is conjugate to e′ f exactly when e is cohomologous to e′.

2.5.3 Following [KSZ21, Def. 2.1.11] we can define the category of pro-k′/k-Galois gerbs, e.g., when k′ = k or
when k′/k = Qur

p /Qp. An object, namely a pro-k′/k-Galois gerb, is a projective limit of k′/k-Galois gerbs over a
direct set. We are particularly interested in a morphism from a pro-Galois gerb to a Galois gerb. The preceding
discussion extends to this generality, e.g., Lemma 2.5.2 is still valid when G1 is a pro-Galois gerb, cf. [KSZ21,
p. 2.1.14].

2.5.4 There is a distinguished pro-Galois gerb over Q called the quasi-motivic Galois gerb, and denoted Q, which
plays a central role in point counting. Here we review the essential properties we will need, leaving full details
to [Kis17, p. 3.1].

For L/Q a finite Galois extension, define

QL = (ResL(∞)/QGm × ResL(p)/Q Gm)/Gm,

where the action of Gm is the diagonal action, and L(∞) = L ∩R and L(p) = L ∩Qp. This group is equipped
with cocharacters ν(p)L over Qp and ν(∞)L over R defined by

ν(v)L : Gm → ResL(v)/Q Gm → QL.
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For L′/L Galois there is a natural map QL′ → QL, and the limit is a pro-torus Q = lim←−L
QL over Q equipped

with a fractional cocharacter ν(p) : D → Q over Qp and cocharacter ν(∞) : Gm → Q over R. The kernel of the
quasi-motivic Galois gerb is this pro-torus Q∆ = Q.

The quasi-motivic Galois gerb Q comes with a morphism

ζv : Gv → Q(v)

from a distinguished (pro-)Galois gerb over Qv for each place v of Q. Let us recall the definition of Qv. For
ℓ ̸= p, ∞, Gℓ = Gal(Qℓ/Qℓ) is the trivial Galois gerb, and G∞ is isomorphic to the real Weil group as an
extension of Gal(C/R) by C×. At p, we have a pro-Galois gerb

Gp = lim←−
L

GL
p

where L runs over finite Galois extensions of Qp, and GL
p is the L/Qp-gerb (induced to Qp) with kernel GL,∆

p = Gm

given by the fundamental class in H2(Gal(L/Qp), L×). The kernel G∆
p = D is a pro-torus with character group Q.

At p and ∞ we have ζ∆
p = ν(p) and ζ∆

∞ = ν(∞); these cocharacters will play a role in some later arguments.
The quasi-motivic Galois gerb is also equipped with a distinguished morphism ψ : Q → GRes

Q/Q
Gm , which

allows us to construct a new morphism as follows. Let T be a torus over Q, and µ a cocharacter of T defined
over a finite Galois extension L/Q. Then µ induces a map ResL/Q Gm → T, thus also a morphism of Galois gerbs
GResL/Q

→ GT . We define a morphism ψT,µ : Q→ GT by the composition

ψT,µ : Q
ψ−→ GRes

Q/Q
−→ GResL/Q

−→ GT . (2.5.5)

2.5.6 In the definition of the pro-Galois gerb Gp above, we can restrict L to run over only finite unramified
extensions of Qp to define a Qur

p /Qp-Galois gerb D with kernel D∆ = D, which becomes Gp when induced
to Qp. Writing σ ∈ Gal(Qur

p /Qp) for the Frobenius, there is a distinguished element dσ ∈ D lying over σ and

such that dn
σ maps to p−1 ∈ Gm = G

Qpn ,∆
p under the projection to G

Qpn
p . Write Gur

G for the neutral Qur
p /Qp-gerb

attached to a connected linear algebraic group G over Qp.

Definition 2.5.7. A morphism θ : Gp → GG is unramified if it is induced by a morphism θur : D → Gur
G . To such

a θ we assign an element bθ ∈ G(Qur
p ) by θur(dσ) = bθ ⋊ σ.

2.5.8 In the setting of 2.5.6, every morphism f : Gp → GG is conjugate to an unramified morphism [KSZ21,
Lem. 2.2.4 (i)]. If θ and θ′ are unramified morphisms conjugate to f , then bθ and bθ′ are σ-conjugate in G(Qur

p ),
so we can associate to f a well-defined class [bθ ] ∈ B(G).

Lemma 2.5.9 ([KSZ21, Prop. 2.2.6]). Let G be a connected linear algebraic Qp-group, θ : Gp → GG an unramified
morphism, and ν the fractional cocharacter θur,∆ : DQur

p → GQur
p . Then

• ν = −νbθ
, where νbθ

is the slope homomorphism of bθ , and

• there are natural Qp-isomorphisms Jbθ
∼= Iθur ∼= Iθ .

2.5.10 Now let (G, X) be a Shimura datum, which determines a conjugacy class {µX} of cocharacters of GC

defined over the reflex field E. Since the reflex field E is unramified over Q at p, we can choose a cocharacter
µ : Gm → GZur

p whose base change to C (via C ∼= Qp) belongs to {µX}, cf. [KSZ21, p. 2.4.1].
The morphisms Q → GG that will be used in our point-counting are required to satisfy an admissibility

condition. For ℓ ̸= p, ∞, let ξℓ : Gℓ → GG(ℓ) be the map sending ρ 7→ 1 ⋊ ρ. At ∞, write ξ∞ : G∞ → GG(∞) for
the morphism constructed in [Kis17, p. 3.3.5].

Definition 2.5.11. A morphism ϕ : Q→ GG is admissible if

• for v ̸= p (including v = ∞), the morphism ϕ(v) ◦ ζv : Gv → GG(v) is conjugate to ξv;
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• at p, the morphism ϕ(p) ◦ ζp : Gp → GG(p) is conjugate to an unramified morphism θ such that bθ ∈
G(Zur

p )µ(p)−1G(Zur
p );

as well as satisfying a global condition [KSZ21, Def. 2.4.2 (i)]. (The latter is a correction of the definition in [Kis17,
p. 3.3.6]. See [KSZ21, Rem. 2.4.3].)

2.5.12 Let S be a set of places of Q containing ∞. As in Lemma 2.5.2 we can twist a morphism ϕ : Q→ GG by a
cocycle e ∈ Z1(Q, Iϕ). Define

XS
G(Q, Iϕ) ⊂ H1(Q, Iϕ)

to be the subset of classes which become trivial in H1(Qv, Iϕ) under the localization maps at v ∈ S and also
trivial under the composite map

H1(Q, Iϕ)→ H1
ab(Q, Iϕ)→ H1

ab(Q, G),

where H1
ab is the abelianized cohomology; the first map is the abelianization map, cf. [KSZ21, p. 1.1.6], and the

second is [KSZ21, (2.6.10.1)]. For our purposes S will be {∞} or {p, ∞} or {all places of Q}. In the last case, we
also write XG(Q, Iϕ) for XS

G(Q, Iϕ). See [KSZ21, p. 1.2.5] for more details.

Proposition 2.5.13 ([KSZ21, Prop. 2.6.11]). If ϕ is an admissible morphism and e ∈ Z1(Q, Iϕ), then eϕ is admissible
exactly when e lies in X∞

G (Q, Iϕ).

2.5.14 For an admissible morphism ϕ we can define a set

Xp(ϕ) = {x = (xℓ) ∈ G(A
p
f ) : Int(xℓ) ◦ ξℓ = ϕ(ℓ) ◦ ζℓ}.

It is non-empty by the admissible condition for ℓ ̸= p, ∞, and furthermore is a G(A
p
f )-torsor under the natural

right action. Note that Iξℓ(Qℓ) = G(Qℓ). The set Xp(ϕ) is equipped with a natural action of Iϕ(A
p
f ) by left

multiplication via Iϕ(A
p
f ) ⊂ G(A

p
f ).

Define a cocycle ζ
p,∞
ϕ : Gal(Q/Q) → G(A

p
f ) by ρ 7→ xρ(x)−1 for any choice of x ∈ Xp(ϕ). This does

not depend on the choice because any other choice x′ is related by x′ = xg for some g ∈ G(A
p
f ). For each

ℓ ̸= p, ∞, define the cocycle ζϕ,ℓ to be the projection of ζ
p,∞
ϕ to the ℓ-component. From the definitions we see that

(ϕ(ℓ) ◦ ζℓ)(ρ) = ζϕ,ℓ(ρ)⋊ ρ for all ρ ∈ Gal(Qℓ/Qℓ).

2.5.15 For xp ∈ G(Qp), write θxp := Int(x−1
p ) ◦ ϕ(p) ◦ ζp. If θxp is unramified then it gives rise to bθxp

∈ G(Qur
p )

as in Definition 2.5.7. Define

Xp(ϕ) = {xp ∈ G(Qp) : θxp is unramified and bθxp
∈ G(Zur

p )µ−1(p)G(Zur
p )},

which is a left Iϕ(Qp)-set via left multiplication and non-empty by definition if ϕ is admissible.

3 Langlands–Rapoport Conjecture for Igusa Varieties of Hodge Type

3.1 Isogeny Classes on Shimura Varieties of Hodge Type

3.1.1 Following [Kis17, p. 1.4.1] we define a cocharacter v of G and an element b ∈ G(L). These are needed
to define the affine Deligne-Lusztig variety Xυ(b), which records the p-part of an isogeny class on the Shimura
variety. Recall that we fixed a maximal torus T contained in a Borel subgroup of GZ(p)

, a cocharacter µ ∈ X∗(T)
defined over Zpr coming from {µX}, and υ := σ(µ−1).

Let x ∈ S K(Fp). As in 2.4.2, there is an isomorphism

V∨OL

∼→ D(Ax[p∞])(OL) (3.1.2)

taking sα to sα,0,x, under which the Frobenius action on the Dieudonné module is transported to bxσ with
bx ∈ G(L). We know from [Kis17, p. 1.4.1] that bx ∈ G(OL)υ(p)G(OL). The element bx is canonical up to
σ-conjugacy by G(OL).
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3.1.3 For b0 ∈ G(L), define the affine Deligne-Lusztig variety

Xυ(b0) := {g ∈ G(L)/G(OL) : g−1b0σ(g) ∈ G(OL)υ(p)G(OL)}

as a left Jb0(Qp)-set via left multiplication, equipped with a Frobenius operator

Φ(g) = (b0σ)rg = b0 · σ(b0) · · · σr−1(b0) · σr(g).

Following [Kis17, p. 1.4.2] we define a map Xυ(bx)→ S Kp(Fp) as follows. Choose a base point x ∈ S Kp(Fp),
with associated p-divisible group Ax[p∞]. For g ∈ Xυ(bx), the lattice g ·D(Ax[p∞]) ⊂ V(Ax[p∞]) is again a
Dieudonné module, and corresponds to a p-divisible group Ggx equipped with a quasi-isogeny Ax[p∞]→ Ggx.

Let Agx be the corresponding abelian variety equipped with the polarization and level structure induced
from Ax. Sending g 7→ Agx with polarization and level structure defines a map Xυ(bx) → S K′p(GSp, S±)(Fp).

By [Kis17, Prop. 1.4.4] this map has a unique lift to a map ix : Xυ(bx) → S Kp(Fp) satisfying sα,0,x = sα,0,ix(g) ∈
D(Agx[p∞]). Extending by the action of G(A

p
f ), we get a map

ix : G(A
p
f )× Xυ(bx) −→ S Kp(Fp) (3.1.4)

which is equivariant for the action of G(A
p
f ) and intertwines the action of Φ on Xυ(bx) with the action of

geometric pr-Frobenius on S Kp .

Definition 3.1.5. For x ∈ S Kp(Fp), the isogeny class of x, denoted I Sh
x , is the image of the map (3.1.4).

3.1.6 Define a Q-group AutQ(Ax) by the rule AutQ(Ax)(R) = (EndQ(Ax)⊗Q R)× for Q-algebras R. Let Ix ⊂
AutQ(Ax) denote the subgroup preserving the polarization of Ax up to scaling and fixing the tensors sα,ℓ,x
(ℓ ̸= p) and sα,0,x.

The level structure ηp : V
A

p
f

∼−→ V̂p(Ax) away from p identifies the tensors sα and (sα,ℓ,x)ℓ ̸=p, and therefore

identifies G(A
p
f ) with the subgroup of GL(V̂p(Ax)) fixing (sα,ℓ,x)ℓ ̸=p. Thus the embedding AutQ(Ax)(Q) ↪→

GL(V̂p(Ax)) induces an embedding Ix(Q) ↪→ G(A
p
f ), canonical up to conjugation by G(A

p
f ). Similarly, (3.1.2)

allows us to identify Jbx (Qp) with the subgroup of GL(V(Ax[p∞])) fixing the tensors sα,0,x and commuting with
the Frobenius. Thus the embedding AutQ(Ax)(Q) ↪→ GL(V(Ax[p∞])) induces an embedding Ix(Q) ↪→ Jbx (Qp),
canonical up to conjugation by Jbx (Qp). Thus we have a group embedding

Ix(Q) ↪→ G(A
p
f )× Jbx (Qp),

canonical up to conjugation. We fix such a choice of embedding, through which we take a quotient. By [Kis17,
Prop. 2.1.3], the map (3.1.4) induces an injective map

ix : Ix(Q)\
(
G(A

p
f )× Xυ(bx)

)
↪→ S Kp(Fp). (3.1.7)

Thus the points in the isogeny class I Sh
x are parametrized by the set Ix(Q)\(G(A

p
f )× Xυ(bx)). We can also give

a description of isogeny classes in terms of the partial moduli structure, which (in addition to being useful) gives
a plain relation to isogenies of the moduli data.

Proposition 3.1.8 ([Kis17, Prop. 1.4.15]). Two points x, x′ ∈ S Kp(Fp) lie in the same isogeny class exactly when there
is a quasi-isogeny Ax → Ax′ preserving polarizations up to scaling and such that the induced maps D(Ax′ [p∞]) →
D(Ax[p∞]) and V̂p(Ax)→ V̂p(Ax′) send sα,0,x′ to sα,0,x and sα,ℓ,x to sα,ℓ,x′ .

3.2 Isogeny Classes on Igusa Varieties of Hodge Type

Let x ∈ IgΣ(Fp). Write x′ for the image of x in S
(b)
Kp

(Fp), and often write Ix, bx for Ix′ , bx′ . Since x determines
a tensor-preserving quasi-isogeny j : Σ ∼= Ax′ [p∞] (see 2.4.8), it induces an isomorphism Jb

∼= Jbx′
. So we obtain

a canonical embedding
Ix(Q) ↪→ G(A

p
f )× Jb(Qp)
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from the embedding Ix(Q) ↪→ G(A
p
f )× Jbx (Qp) of 3.1.6. We begin by giving the definition and parametrization

of an isogeny class in IgΣ(Fp).

Lemma 3.2.1. For x ∈ IgΣ(Fp), the map

ix : Ix(Q)\
(
G(A

p
f )× Jb(Qp)

)
→ IgΣ(Fp)

(gp, gp) 7→ x · (gp, gp)

is well-defined and injective.

Proof. We need to show that Ix(Q) is the stabilizer of x under the action of G(A
p
f )× Jb(Qp). Let (A, λ, ηp, j) be

the data associated with x by 2.4.8. Then the data corresponding to x · (gp, gp) is (A, λ, ηp ◦ gp, j ◦ gp). Again in
light of 2.4.8, x = x · (gp, gp) if and only if there is a quasi-isogeny θ : A → A preserving λ up to Q×-scaling
and sending ηp to ηp ◦ gp and sending j to j ◦ gp. This means that θ acts as ηpgp(ηp)−1 on V̂p(A), and therefore
preserves the tensors sα,ℓ,x. Likewise the θ-action on V(A[p∞]) preserves the tensors sα,0,x. Thus we can regard θ
as an element of Ix(Q), which is identified with (gp, gp) under our embedding, i.e., (gp, gp) = θ ∈ Ix(Q). Hence
the stabilizer of x is Ix(Q) as desired.

Definition 3.2.2. Let x ∈ IgΣ(Fp). The isogeny class of x, denoted I
Ig
x , is the image of the map of 3.2.1, i.e., the

G(A
p
f )× Jb(Qp)-orbit of x. By an isogeny class I Ig we mean a G(A

p
f )× Jb(Qp)-orbit in IgΣ(Fp).

Hence IgΣ(Fp) is partitioned into isogeny classes. The next two lemmas relate isogeny classes on the Igusa
variety and the Shimura variety. Since bx ∈ G(OL)υ(p)G(OL), we have 1 ∈ Xυ(bx). Hence there is a natural
composite map Jb(Qp) ∼= Jbx (Qp) → Xυ(bx), where the first map is given by x as above, and the second
map is induced by the identity map on the ambient group G(L). We extend this map to G(A

p
f ) × Jb(Qp) →

G(A
p
f )× Xυ(bx) by the identity map on G(A

p
f ).

Lemma 3.2.3. Let x ∈ IgΣ(Fp), and x′ ∈ S Kp(Fp) the image of x under the natural map. The isogeny class maps for x
and x′ fit into a pullback diagram as below, where the left vertical map is as above.

Ix(Q)\
(
G(A

p
f )× Jb(Qp)

) ix //

��

IgΣ(Fp)

��
Ix(Q)\

(
G(A

p
f )× Xυ(bx)

)
ix′

// S Kp(Fp)

In particular, an isogeny class on the Igusa variety is the preimage of an isogeny class on the Shimura variety.

Proof. First we show that this diagram commutes. For this we can ignore the quotients by Ix(Q). The whole
diagram is G(A

p
f )-equivariant, so it suffices to check commutativity for elements of Jbx (Qp). Let (1, gp) ∈

G(A
p
f ) × Jbx (Qp). Write (Ax, λ, ηp, {sα,0,x}, j) for the data at x described in 2.4.5. Then the data at x · gp,

namely ix(1, gp) ∈ IgΣ(Fp), is
(Ax/j(ker pmg−1

p ), g∗pλ, {sα,0,x}, ηp, g∗p j),

and the data at the image in S Kp(Fp) (following the right vertical arrow of the diagram) is the same, simply
forgetting g∗p j.

Going the other way around the diagram, ix′(1, gp) ∈ S Kp(Fp) is defined as in 3.1.3 by taking the p-divisible
group Ggpx associated to the Dieudonné module gp ·D(Ax[p∞]), with quasi-isogeny Ax[p∞]→ Ggpx induced by
the isomorphism g−1

p : gp ·V(Ax[p∞])
∼→ V(Ax[p∞]), then the corresponding abelian variety Agpx with induced

polarization and level structure, and the same tensors sα,0,x (as usual note gp preserves tensors).
Since gp is (the image of) an element of Jbx (Qp), which consists of self -quasi-isogenies, we see that Ggpx is iso-

morphic to Ax[p∞], and the quasi-isogeny Ax[p∞]→ Ggpx corresponds via j to g−1
p . Thus, taking m large enough
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that pmg−1
p is an isogeny, we can identify Ggpx with Ax[p∞]/j(ker pmg−1

p ) and Agpx with Ax/j(ker pmg−1
p ), with

the induced polarization and away-from-p level structure, the same tensors, and the Igusa level structure g∗p j.
This matches the data produced by traversing the diagram the other way, and we see that the diagram commutes.

To show the diagram is a pullback, let x1 ∈ IgΣ(Fp) be any point whose image x′1 in S Kp(Fp) is in the
isogeny class of x′. We want to show that x1 is in the isogeny class of x.

Since x′1 and x′ lie in the same isogeny class, they are related by a pair (gp, g0) ∈ G(A
p
f )× Xυ(bx). In particu-

lar, the p-divisible groups are related by a quasi-isogeny Ax[p∞]→ Ax1 [p
∞] corresponding to the isomorphism

V(Ax1 [p
∞]) ∼= g0 ·D(Ax[p∞])⊗Zp Qp

∼→ V(Ax[p∞]).

Using the Igusa level structures j at x and j1 at x1, we can translate this to a quasi-isogeny Σ → Σ given by an
element g−1

p ∈ Jbx (Qp) (i.e., we define gp to be the inverse of this quasi-isogeny). We claim that x1 is related to x
by (gp, gp) ∈ G(A

p
f )× Jbx (Qp).

Indeed, gp maps to g0 ∈ Xυ(bx) because by construction they send D(Ax[p∞]) to the same lattice g0 ·
D(Ax[p∞]) = gp ·D(Ax[p∞]) in V(Ax[p∞]). Thus x1 and x · (gp, gp) have the same image in S Kp(Fp), so
it only remains to show they have the same Igusa level structure. This is also essentially by construction: gp was
defined to make the left-hand diagram commute, and the Igusa level structure g∗p j at x · (gp, gp) is defined to
make the right-hand diagram commute.

Σ

g−1
p

��

j // Ax[p∞]

��

Σ
j //

pmg−1
p

��

Ax[p∞]

��
Σ

j1
// Ax1 [p

∞] Σ
g∗p j
// Ax[p∞]/j(ker pmg−1

p )

But Ax1 [p
∞] = Ax[p∞]/j(ker pmg−1

p ), because x1 and x · (gp, gp) have the same associated abelian variety. Thus
(after adjusting the vertical arrows by pm in the first diagram to make them isogenies), we see that j1 and g∗p j
both make the same diagram commute. Since there is a unique isomorphism making the diagram commute, we
conclude j1 = g∗p j as desired.

Recall that in 2.4.4 we have fixed a class b ∈ B(G), which specifies the isogeny class of our fixed p-divisible
group Σ with G-structure, and therefore the Newton stratum over which our Igusa variety IgΣ lies. We also fixed
b ∈ G(Zpr )υ(p)G(Zpr ) representing b and specifying the isomorphism class of Σ.

Lemma 3.2.4. Each isogeny class in S Kp(Fp) is contained in a single Newton stratum. The isogeny classes in S Kp(Fp)

which give rise to a non-empty isogeny class in IgΣ(Fp) are precisely those contained in the b-stratum S
(b)
Kp

(Fp).

Proof. The first assertion follows from the definitions of isogeny classes and Newton strata.
By Lemma 3.2.3, the isogeny classes in S Kp(Fp) which give rise to non-empty isogeny classes in IgΣ(Fp) are

precisely those which intersect the central leaf CΣ. Thus to prove the second assertion, it suffices to show that

every isogeny class in S
(b)
Kp

(Fp) intersects the central leaf. Let x ∈ S
(b)
Kp

(Fp). Then [bx] = b, so there exists

gp ∈ G(L) such that b = g−1
p bxσ(gp). Since b ∈ G(OL)υ(p)G(OL), gp ∈ Xυ(bx). Then x′ := ix(1, gp) lies in the

isogeny class of x and bx′ = b (more precisely their G(OL)-orbits under σ-conjugation are equal), so x′ ∈ CΣ(Fp).
The second assertion is proved.

We summarize the results of this section as follows.

Corollary 3.2.5. There is a canonical bijection between isogeny classes on IgΣ(Fp) and isogeny classes on S Kp(Fp)

contained in the b-stratum, given by taking preimage under the map IgΣ(Fp)→ S Kp(Fp).

Proof. This follows from Lemma 3.2.3 and Lemma 3.2.4.
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3.3 b-admissible Morphisms of Galois Gerbs

Recall from 2.4.4 that we fixed a representative b ∈ G(L) of b such that b ∈ G(Qpr ) and satisfying the decency
equation bσ(b) · · · σr−1(b) = rνb(p). This allows us to define a morphism θur

b : D → Gur whose algebraic part
θur,△

b : DQur
p → GQur

p is νb and maps dσ ∈ D to b ∈ G(Qpr ). (Clearly there is at most one such θur
b . The decency

equation implies that there is indeed such a morphism θur
b , and it factors through Dr in the notation of [KSZ21,

p. 2.2.1].) By pulling back θur,△
b we obtain a morphism of (pro-)Galois gerbs over Qp:

θb : Gp → GG.

By construction bθb = b.

Definition 3.3.1. A morphism ϕ : Q → GG is b-admissible if it is admissible (Definition 2.5.11) and if ϕ(p) ◦ ζp :
Gp → GG(p) is conjugate to an unramified morphism θ with [bθ ] = b.

The notion of b-admissibility is visibly well defined for a conjugacy class [ϕ] of admissible morphisms. The
condition at p in the definition is equivalent to the condition that ϕ(p) ◦ ζp is conjugate to θb. Define

Xb
p (ϕ) := {xp ∈ G(Qp) : Int(xp) ◦ θb = ϕ(p) ◦ ζp},

which is non-empty if ϕ is b-admissible. If so, Xb
p (ϕ) is a right Jb(Qp)-torsor under right multiplication. (A

priori Jb(Qp) is only a subgroup of G(L), and the latter is not contained in G(Qp), but since b is decent, the proof
of [RZ96, Cor. 1.14] shows that Jb(Qp) ⊂ G(Qur

p ).) Moreover Iϕ(Qp) has a natural left multiplication action on
Xb

p (ϕ) via the inclusion Iϕ(Qp) ⊂ G(Qp). The identity map on G(Qp) induces a natural Iϕ(Qp)-equivariant map
Xb

p (ϕ)→ Xp(ϕ).
If ϕ : Q→ GG is b-admissible then we define a G(A

p
f )× Jb(Qp)-set

SIg(ϕ) = Iϕ(Q)\
(
Xp(ϕ)× Xb

p (ϕ)
)
, (3.3.2)

by letting Iϕ(Q) act through Iϕ(A
p
f ) and Iϕ(Qp) on Xp(ϕ) and Xb

p (ϕ), respectively. The set SIg(ϕ) will be used

to parametrize the isogeny class I Ig corresponding to [ϕ], up to a twist to be described in §3.5.

3.4 Kottwitz Triples
To make the connection between isogeny classes and admissible morphisms, we import the technique of [Kis17].

3.4.1 A Kottwitz triple of level m ∈ Z≥1 is a triple k = (γ0, γ, δ) consisting of

• γ0 ∈ G(Q) a semi-simple element which is elliptic in G(R),

• γ = (γℓ)ℓ ̸=p ∈ G(A
p
f ) conjugate to γ0 in G(A

p
f ), and

• δ ∈ G(Qpm) such that γ0 is conjugate to γp = δσ(δ) · · · σm−1(δ) in G(Qp);

this data is required to satisfy the further condition that

(∗) there is an inner twist I of I0 over Q with I ⊗Q R anisotropic mod center, and I ⊗Q Qv is isomorphic to Iv
as inner twists of I0 for all finite places v of Q,

where I0 is the centralizer of γn
0 in G, and Iℓ for ℓ ̸= p is the centralizer of γn

ℓ in GQℓ
, and Ip is a Qp-group

defined on points by
Ip = {g ∈ G(W(Fpn)⊗Zp R) : g−1δσ(g) = δ}

for sufficiently divisible n ∈ Z≥1. This makes sense as all of these groups stabilize for n sufficiently divisible.
A Kottwitz triple is an equivalence class of Kottwitz triples of various level, where we take the smallest

equivalence relation such that a triple (γ0, γ, δ) of level m is equivalent to the triple (γn
0 , γn, δ) of level mn, where

m, n ∈ Z≥1. Two Kottwitz triples k, k′ are equivalent if there exist representatives (γ0, γ, δ), (γ′0, γ′, δ′) of the same
level m for k, k′ such that (i) γ, γ′ are conjugate in G(A

p
f ) and (ii) δ, δ′ are σ-conjugate in G(Qpm). (If so, γ0, γ′0 are

conjugate in G(Q) by (i).) Define a Kottwitz triple (γ0, γ, δ) to be b-admissible if the σ-conjugacy class of δ is b.
This is clearly seen to be preserved under the equivalences above.
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3.4.2 Let x ∈ IgΣ(Fp) and write x ∈ S Kp(Fp) for the image of x. We will attach a Kottwitz triple to x on the
Igusa variety, following [Kis17, p. 4.4.6]. The same construction assigns a Kottwitz triple to x′ on the Shimura
variety. Since it is the same construction the triples for x and x match by Corollary 3.2.5.

We may assume that the data (Ax, λ, {sα,ℓ,x}, {sα,0,x}) are defined over some finite field Fpm . The level
structure ηp at x identifies the group GQℓ

with the subgroup of GL(H1
ét(Ax, Qℓ)) fixing the tensors {sα,ℓ,x} ⊂

H1
ét(Ax, Qℓ)

⊗, and this allows us to write the geometric pm Frobenius on H1
ét(Ax, Qℓ) as an element γℓ ∈ G(Qℓ).

Let γ = (γℓ) ∈ G(A
p
f ). At p, we similarly have an isomorphism

V∨Zpm
∼−→ D(Ax[p∞])(Zpm)

which identifies GZpm with the subgroup of GL(D(Ax[p∞])(Zpm)) fixing the tensors {sα,0,x}, and allows us to
write the Frobenius on D(Ax[p∞]) as δσ for some δ ∈ G(Qpm). With this choice of γ and δ, [Kis17, Cor. 2.3.1,
2.3.5] states that there is an element γ0 ∈ G(Q) that makes (γ0, γ, δ) a Kottwitz triple, which we denote k(x).
Since the equivalence class of k(x) depends only on the isogeny class I

Ig
x containing x, we also write k(I

Ig
x ) for

it. Similarly k(I Sh) denotes the Kottwitz triple (up to equivalence) attached to an isogeny class in S Kp(Fp).
We establish a simple compatibility between isogeny classes and their associated Kottwitz triples.

Lemma 3.4.3. Let I Sh be an isogeny class in S Kp(Fp). The associated Kottwitz triple k(I Sh) is b-admissible if and only
if I Sh is contained in the b-stratum.

Proof. The Kottwitz triple k(I Sh) = (γ0, γ, δ) is b-admissible if the σ-conjugacy class of δ is b. Since δ arises from
the Frobenius on the Dieudonné module at some point in I Sh, the σ-conjugacy class of δ records the Newton
stratum in which the isogeny class lies.

3.4.4 Let ϕ : Q→ GG be an admissible morphism and pick y = (yp, yp) ∈ Xp(ϕ)× Xb
p (ϕ). Write y = (yp, yp) ∈

Xp(ϕ)×Xp(ϕ) for the image under the left Iϕ(Qp)-equivariant map Xb
p (ϕ)→ Xp(ϕ). We refer to [Kis17, p. 4.5.1]

for the construction of a Kottwitz triple k(ϕ, y), which depends only on the the conjugacy class [ϕ] and the image
of y in the quotient Iϕ(Q)\(Xp(ϕ)× Xp(ϕ)). We record two facts from loc. cit. (where our yp, yp are gp, g0): (i)
the element δ appearing in the Kottwitz triple k(ϕ, y) is σ-conjugate to the element bθ produced by an unramified
morphism θ conjugate to ϕ(p) ◦ ζp as in Definition 2.5.11; (ii) the Kottwitz triple k(ϕ, y) = (γ0, γ, δ) has a natural
refinement k̃(ϕ, y) taking I = Iϕ.

We observe below that b-admissibility is passed down from admissible morphisms to Kottwitz triples, as it
was the case for isogeny classes.

Lemma 3.4.5. An admissible morphism ϕ : Q → GG is b-admissible if and only if the associated Kottwitz triple k(ϕ) =
(γ0, γ, δ) is b-admissible.

Proof. The b-admissibility of an admissible morphism ϕ depends on the σ-conjugacy class [bθ ] produced by an
unramified morphism θ conjugate to ϕ(p) ◦ ζp, while for a Kottwitz triple (γ0, γ, δ) it depends on the σ-conjugacy
class of δ. But δ is a σ-conjugate of bθ , so these conditions are equivalent.

3.5 τ-twists

Our goal is to parametrize each isogeny class I Ig ⊂ IgΣ(Fp) by a set SIg(ϕ). However, we will only identify the
action of Ix(Q) with Iϕ(Q) up to twisting by an element τ ∈ Iad

ϕ (A f ). We develop the necessary theory in this
section, following [KSZ21, §2.6].

3.5.1 Let ϕ be an admissible morphism, and define

H(ϕ) = Iϕ(A f )\Iad
ϕ (A f )/Iad

ϕ (Q),

Ep(ϕ) = Iϕ(A
p
f )\Iad

ϕ (A
p
f ).

These sets can be given the structure of abelian groups (by comparison with certain abelianized cohomology
groups, see [KSZ21, 2.6.13, Lemma 2.6.14]).
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Let AM be the set of admissible morphisms. Since we want to consider assignments of an element of
H(ϕ) for all ϕ simultaneously, it is convenient to consider H(ϕ) as the stalks of a sheaf H on AM (regarded as a
discrete topological space), and similarly Ep(ϕ) the stalks of a sheaf Ep. Let Γ(H) and Γ(Ep) be the global sections
of these sheaves, so an element τ ∈ Γ(H) assigns to each admissible morphism ϕ an element τ(ϕ) ∈ H(ϕ), and
similarly for Ep.

By weak approximation the natural inclusion Iad
ϕ (A

p
f )→ Iad

ϕ (A f ) induces a surjection Ep(ϕ)→ H(ϕ), which

allows us to lift an element of H(ϕ) to Iad
ϕ (A

p
f ), or further Iϕ(A

p
f ). We will often do this implicitly so that τ(ϕ)

also denotes a lift in Iad
ϕ (A

p
f ) for each τ ∈ Γ(H), when the ambiguity in the lift is harmless. The surjections

Ep(ϕ)→ H(ϕ) produce surjections Ep → H and Γ(Ep)→ Γ(H).
Define an equivalence relation ϕ1 ≈ ϕ2 if ϕ∆

1 is conjugate to ϕ∆
2 by G(Q). If ϕ1 ≈ ϕ2, then there are canonical

isomorphisms

Compϕ1,ϕ2
: H(ϕ1)→ H(ϕ2)

CompEp

ϕ1,ϕ2
: Ep(ϕ1)→ Ep(ϕ2)

satisfying the relations Compϕ2,ϕ3
◦Compϕ1,ϕ2

= Compϕ1,ϕ3
and Compϕ1,ϕ1

= idH(ϕ1)
, and similarly for Ep.

These isomorphisms show that H and Ep are pulled back from sheaves H/ ≈ and Ep/ ≈ on AM/ ≈, under
the natural quotients

AM→ AM/conj→ AM/ ≈ .

Write H/conj and Ep/conj for the intermediate pullbacks to AM/conj, the set of admissible morphisms up to
conjugacy.

3.5.2 Let Γ(H)0 be the set of global sections of H that descend to AM/ ≈, and Γ(H)1 those that descend to
AM/conj, so we have Γ(H)0 ⊂ Γ(H)1 ⊂ Γ(H). Define Γ(Ep)0 ⊂ Γ(Ep)1 ⊂ Γ(Ep) similarly. The surjection
Γ(Ep)→ Γ(H) induces a surjection Γ(Ep)0 → Γ(H)0.

There is one further technical definition we will need, namely the notion of tori-rationality of an element of
Γ(H) or Γ(Ep). For this we refer to [KSZ21, Def. 2.6.19]. We will also need the fact [KSZ21, Lem. 2.6.20] that an
element of Γ(H) is tori-rational exactly when one (equivalently, every) lift to Γ(Ep) is tori-rational.

Let τ ∈ Γ(H)1. We define a τ(ϕ)-twisted analogue of (3.3.2):

SIg
τ (ϕ) := Iϕ(Q)τ(ϕ)\

(
Xp(ϕ)× Xb

p (ϕ)
)
, (3.5.3)

where the quotient is taken with respect to the τ(ϕ)-twisted embedding

Iϕ(Q) ↪→ Iϕ(A f )
τ(ϕ)∼= Iϕ(A f )

followed by the natural action of Iϕ(A f ) on Xp(ϕ)× Xb
p (ϕ).

3.6 Langlands–Rapoport-τ Conjecture for Igusa Varieties of Hodge Type
A crucial ingredient for us is the analogue of

Theorem 3.6.1. There exists a tori-rational element τ ∈ Γ(H)0 admitting a G(A
p
f )× Jb(Qp)-equivariant bijection

IgΣ(Fp)
∼−→⨿

[ϕ]

SIg
τ (ϕ),

where the disjoint union ranges over conjugacy classes of b-admissible morphisms ϕ : Q→ GG.

Proof. Let us start by recalling relevant results for Shimura varieties. Following [KSZ21, Thm. 5.13.9] (summa-
rized in §0.4 and elaborated in §6 therein) we have a bijection (inverse of the bijection B therein)

B−1 :
{

isogeny classes
in S Kp(Fp)

}
←→

{
conjugacy classes of

admissible morphisms

}
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such that if an isogeny class I corresponds to a conjugacy class [ϕ], then (I , [ϕ]) is an amicable pair [KSZ21,
Def. 5.10.1]. In particular, the bijection is compatible with the maps from both sides to the equivalence classes
of Kottwitz triples. To the above bijection they assign τ ∈ Γ(H)0, which is tori-rational by [KSZ21, Thm. 5.12.2,
Lem. 6.1.7]. (In their notation, our [ϕ], τ are J , τB . Roughly speaking, τ measures the difference between
refined Kottwitz triples arising from the two sides of the bijection.)

By Corollary 3.2.5 we can consider the set of isogeny classes in IgΣ(Fp) as the set of isogeny classes in
S Kp(Fp) contained in the b-stratum. By Lemma 3.4.3, the latter set is characterized as the set of isogeny classes
whose Kottwitz triples are b-admissible. On the other side, we can regard the set of conjugacy classes of b-
admissible morphisms as a subset of the set of conjugacy classes of admissible morphisms. By Lemma 3.4.5,
this subset is characterized as those conjugacy classes whose associated Kottwitz triple is b-admissible. Because
the bijection B−1 is compatible with Kottwitz triples, it induces a bijection, again denoted by B−1, between the
subsets on each side corresponding to b-admissible Kottwitz triples:

B−1 :
{

isogeny classes
in IgΣ(Fp)

}
←→

{
conjugacy classes of

b-admissible morphisms

}
.

As IgΣ(Fp) can be partitioned into isogeny classes, it suffices to show that, for the tori-rational τ ∈ Γ(H)0

above, there is a G(A
p
f )× Jb(Qp)-equivariant bijection

I Ig ∼→ SIg
τ (ϕ)

for each isogeny class I Ig on the left hand side and the corresponding conjugacy class of b-admissible ϕ. Let
x̃ ∈ I Ig. Write I for the isogeny class in S Kp(Fp) determined by I Ig. Denote by x ∈ I the image of x̃. To
find the desired bijection, we follow the ideas of [KSZ21, 5.10.3, Prop. 5.10.4] and use the notation from there. So
we fix a point x ∈ I and ỹ ∈ Xp(ϕ)× Xb(ϕ). Note that there is a tautological map from Xp(ϕ)× Xb(ϕ) to Y(ϕ)
and further to its quotient Y(ϕ). We choose a marking (y, y′) for the amicable pair (I , [ϕ]) such that y′ ∈ Y(ϕ)
equals the image of ỹ. Further we choose lifts

y = (yp, yp) ∈ Y(x) = Yp(x)×Yp(x) and y′ = (y′,p, y′p) ∈ Y(ϕ) = Xp(ϕ)×Yp(ϕ)

of y and y′ as in loc. cit. Here Yp(x) is the G(A
p
f )-torsor of tensor-preserving trivializations V

A
p
f

∼= V̂p(Ax),

and Yp(x) is the G(Qur
p )-torsor of tensor-preserving trivializations VZur

p
∼= V(Ax[p∞]) (as Zur

p -modules). The

G(Qur
p )-torsor Yp(ϕ) is the subset of y′′p ∈ G(Qp) such that θy′′p is unramified, cf. 2.5.15.

The element τy,y′ ∈ Iϕ(Q)\Iad
ϕ (A f )/Iad

ϕ (Q) in [KSZ21, p. 5.10.3] maps to τ(ϕ) ∈ H(ϕ), cf. [KSZ21, 5.10.6,
Def. 5.10.9]. Put G(A∗f ) := G(A

p
f )× G(Qur

p ). The base points y, y′ induce trivializations of the torsors Y(x) ∼=
G(A∗f ) and Y(ϕ) ∼= G(A∗f ) as well as embeddings

ιy : Ix(Q) ↪→ Ix(A f ) ↪→ G(A∗f ), ιy′ : Iϕ(Q) ↪→ Iϕ(A f ) ↪→ G(A∗f ).

As in the first four lines in the proof of [KSZ21, Prop. 5.10.4], we have (without taking the right quotients) right
G(A∗f )-equivariant bijections

ξy : Ix(Q)\Y(x) ∼= ιy(Ix(Q))\G(A∗f ),

ξy′ : Iϕ(Q)τ(ϕ)\Y(ϕ) ∼= ιy(Ix(Q))\G(A∗f ).

The Jb(Qp)-torsor Xb
p (ϕ) is a subset of the G(Qur

p )-torsor Yp(ϕ) by definition, compatibly with Jb(Qp) ⊂ G(Qur
p ).

(We remarked on the latter embedding in §3.3.) So ξy′ restricts to a G(A
p
f )× Jb(Qp)-equivariant bijection

SIg
τ (ϕ)

def
= Iϕ(Q)τ(ϕ)\

(
Xp(ϕ)× Xb

p (ϕ)
) ∼= ιy(Ix(Q))\

(
G(A

p
f )× Jb(Qp)

)
.

Write YIg
p (x) ⊂ Yp(x) for the subset of isomorphisms VZur

p
∼= V(Ax[p∞]) which are compatible with the Frobenius

actions: bσ on VZur
p and the usual one on V(Ax[p∞]). Then YIg

p (x) is nonempty since x lies in the b-stratum, and
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it is a right Jb(Qp)-torsor with a left Ix(Q)-action. Although yp chosen above may not lie in YIg
p (x), there exists

gp ∈ G(Qur
p ) such that yp ◦ gp ∈ YIg

p (x). Thus the right translation by g−1
p on Ix(Q)\Y(x) followed by ξy restricts

to a G(A
p
f )× Jb(Qp)-equivariant bijection

Ix(Q)\
(
Yp(x)×YIg

p (x)
) ∼= ιy(Ix(Q))\

(
G(A

p
f )× Jb(Qp)

)
.

The left hand side is exactly I Ig, cf. §3.2, so we conclude by combining the last two displayed bijections.

3.6.2 Only in this paragraph we consider general Shimura data (G, X), where GQp need not be unramified. Let
b ∈ B(G, µ−1), where µ belongs to the conjugacy class {µX}. Given b ∈ b, we expect to be able to define a
perfect Igusa variety Igb over Fp with a G(A

p
f )× Jb(Qp)-action; see the relevant discussion in [BMS, pp. 3.3.8–

3.3.10]. Notice that b-admissible morphisms still make sense as well as the right G(A f )× Jb(Qp)-set SIg(ϕ) for
each b-admissible morphism ϕ. Assuming Igb is non-empty, we may still contemplate a Langlands–Rapoport
conjecture for Igusa varieties as a conjectural G(A f )× Jb(Qp)-equivariant bijection

Igb(Fp)
?∼= ⨿

[ϕ]

SIg(ϕ),

where the disjoint union is over conjugacy classes of b-admissible morphisms. The analogue of the Langlands–
Rapoport-τ conjecture for Igusa varieties can also be formulated, and this weaker version should suffice for the
purpose of deriving a point-counting formula.

4 Point-Counting Formula for Igusa Varieties of Hodge Type

We continue to use the notation of the previous sections. In particular, we have an Igusa variety from a Shimura
datum (G, X) of Hodge type, a class b ∈ B(G, µ−1), and a representative b ∈ G(L) of this class satisfying the list
of conditions in 2.4.4 for some r ∈ Z≥1. We fixed these data.

4.1 Acceptable Functions and Fujiwara–Varshavsky’s Trace Formula

4.1.1 The (right) action of G(A
p
f )× Sb on IgΣ extends to an (left) action of G(A

p
f )× Jb(Qp) on Hi

c(IgΣ, Lξ) as in

(2.4.7). Let f ∈ C∞
c (G(A

p
f )× Jb(Qp)), a smooth compactly supported function on G(A

p
f )× Jb(Qp). We write

tr( f | Hc(IgΣ, Lξ)) = ∑
i
(−1)i tr( f | Hi

c(IgΣ, Lξ)).

Any f ∈ C∞
c (G(A

p
f ) × Jb(Qp)) is a finite linear combination of indicator functions 1UgU for varying U ⊂

G(A
p
f )× Jb(Qp) compact open and g ∈ G(A

p
f )× Jb(Qp), so by linearity of trace it suffices to consider f = 1UgU .

Writing UgU = ⨿i gigU for some finite collection gi ∈ U, the action of 1UgU on Hi
c(IgΣ, Lξ) is given by∫

G(A
p
f )×Jb(Qp)

1UgU(x)x · v dx = ∑
i

gig
∫

U
x · v dx.

Now vol(U)−1
∫

U x · v dx is a projection onto Hi
c(IgΣ, Lξ)

U . Thus vol(U)−11UgU acts on Hi
c(IgΣ, Lξ)

U as the
following double coset operator, called [UgU]:

[UgU] : v 7→∑
i

gig · v on Hi
c(IgΣ, Lξ)

U .

A neighborhood basis of the identity in Jb(Qp) is given by the following open compact subgroups for m ≥ 1:

Up(m) := ker(Aut(Σ, λΣ, {sα,Σ})→ Aut(Σ[pm], λσ, {sα,Σ})) ⊂ Jb(Qp).
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So we can assume U = Up ×Up(m) for Up ⊂ G(A
p
f ) compact open. Then

Hi
c(IgΣ, Lξ)

U = Hi
c(IgΣ,Up ,m, Lξ).

Taking the alternating sum over i, we have

vol(U)−1 tr(1UgU | Hc(IgΣ, Lξ)) = tr([UgU] | Hc(IgΣ,Up ,m, Lξ)). (4.1.2)

4.1.3 Now assume g = gp × gp ∈ G(A
p
f )× Sb (recall Sb from 2.3.4), so that we can consider the action of g on

finite-level Igusa varieties. Then the double coset operator [UgU] is induced by the following correspondence,
considered on the sets of Fp-points as this is enough for our purpose.

IgΣ(Fp)/(U ∩ gUg−1)

[·1]

vv

[·g]

((
IgΣ(Fp)/U IgΣ(Fp)/U

Definition 4.1.4. Define the fixed point set of the above correspondence by

Fix(UgU) = {x ∈ IgΣ(Fp)/(U ∩ gUg−1) : x = xg in IgΣ(Fp)/U}.

Recall from 2.4.1 that a Q-embedding ϱ : G ↪→ GL(V) was fixed.

Definition 4.1.5. A function f ∈ C∞
c (G(A

p
f )× Jb(Qp)) is ϱ-acceptable if

1. for all (g, δ) ∈ supp f , we have δ ∈ Sb and δ is ϱ-acceptable (Definition 2.2.4);

2. there is a sufficiently small compact open subgroup U = Up×Up(m) ⊂ G(A
p
f )× Jb(Qp) and a finite subset

I ⊂ G(A
p
f )× Jb(Qp) such that f = ∑g∈I cg1UgU with cg ∈ Qℓ; and for each term in this sum, we have

(a) Fix(UgU) is finite, and
(b) the trace of the correspondence on cohomology is given by Fujiwara’s formula:

tr([UgU] | Hc(IgΣ,Up ,m, Lξ)) = ∑
x∈Fix(UgU)

tr([UgU] | (Lξ)x). (4.1.6)

Lemma 4.1.7. Let f ∈ C∞
c (G(A

p
f )× Jb(Qp)) be a ϱ-acceptable function, written as f = ∑g∈I cg1UgU as above. Then

tr( f | Hc(IgΣ, Lξ)) = ∑
g∈I

cg vol(U) ∑
x∈Fix(UgU)

tr([UgU] | (Lξ)x). (4.1.8)

Proof. Combine (4.1.2) and (4.1.6).

We would like to know that ϱ-acceptable functions are a sufficient class of test functions to determine a
representation such as Hc(IgΣ, Lξ) in the Grothendieck group. This is addressed by the next two lemmas,
slightly adjusted from Lemmas 6.3 and 6.4 of [Shi09]. Recall from 2.2.8 that p and f rr = rνb(p) denote central
elements of Jb(Qp). Write Groth(G(A

p
f )× Jb(Qp)) for the Grothendieck group of admissible representations of

G(A
p
f )× Jb(Qp).

Lemma 4.1.9. For any f ∈ C∞
c (G(A

p
f ) × Jb(Qp)), the function f (m,n) defined by f (m,n)(x) := f (x · pm( f rr)n) is a

ϱ-acceptable function for sufficiently large m, n.

Proof. The exact analogue in the setting of some PEL Shimura varieties was shown in [Shi09, Lem. 6.3]. The
proof there carries over to our case without change, as long as we verify the following nontrivial point: we need
a model J of our Igusa variety over a finite field Fps such that the s-th power of the absolute Frobenius on J
is transported to the action of f rs ∈ Jb(Qp) on our Igusa variety. This point is justified by part (2) of [KS23,
Lem. 6.2.1] when s equals our fixed integer r.
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Lemma 4.1.10. If Π1, Π2 ∈ Groth(G(A
p
f )× Jb(Qp)) satisfy tr( f | Π1) = tr( f | Π2) for all ϱ-acceptable functions f ,

then Π1 = Π2 in the Grothendieck group.

Proof. The purely representation-theoretic proof of [Shi09, Lem. 6.4] works in our setting verbatim. The only
change is that Lemma 6.3 used in that paper is justified by Lemma 4.1.9 in our case.

Thus it is enough to work in the setting of Lemma 4.1.7 and analyze the right hand side, in particular the
set Fix(UgU) (Definition 4.1.4). This is where the Langlands–Rapoport conjecture for Igusa varieties (Theorem
3.6.1) comes in. After some preparation, we will return to (4.1.8) in §4.

4.2 Langlands–Rapoport Pairs and Kottwitz Parameters
We introduce Langlands–Rapoport pairs and Kottwitz parameters to parametrize fixed points in the trace for-
mula. We will define a notion of acceptability for them. The definition depends on the embedding ϱ : G ↪→
GL(V), but with this understanding, we will simply call it acceptability (omitting the reference to ϱ) since ϱ is
fixed throughout.

Definition 4.2.1. A Langlands–Rapoport (LR) pair is a pair (ϕ, ε) where ϕ : Q→ GG is a morphism of Galois gerbs
and ε ∈ Iϕ(Q). The element ε can also be regarded as an element of G(Q) via Iϕ(Q) ⊂ G(Q). Two LR pairs
(ϕ1, ε1) and (ϕ2, ε2) are conjugate if there is an element g ∈ G(Q) which conjugates ϕ1 to ϕ2 and ε1 to ε2. An
LR pair (ϕ, ε) is semi-admissible if ϕ is admissible, and b-admissible if ϕ is b-admissible, cf. Definitions 2.5.11 and
3.3.1.

Definition 4.2.2. An LR pair (ϕ, ε) is gg (abbreviated from günstig gelegen, German for “well-positioned”) if

• ϕ∆ is defined over Q;

• ε lies in G(Q) (not just in G(Q)) and is semi-simple and elliptic in G(R);

• for any ρ ∈ Gal(Q/Q), letting qρ ∈ Q a lift of ρ and ϕ(qρ) = gρ ⋊ ρ, we have gρ ∈ G◦ε .

If (ϕ, ε) is a semi-admissible LR pair then ε is semi-simple, as Iϕ/ZG is compact over R; see [KSZ21, p. 3.1.2].
The notion of gg LR pairs is independent of the choice of qρ by [KSZ21, Rem. 3.2.2].

4.2.3 Let (ϕ, ε) be an LR pair. As in 2.5.8, the morphism ϕ(p) ◦ ζp : Gp → GG(p) is conjugate by some g ∈ G(Qp)

to an unramified morphism θg : Gp → GG(p), which defines an element bθg ∈ G(Qur
p ). Since ε commutes with

ϕ, its conjugate εg := gεg−1 ∈ G(Qp) commutes with θg. Then for any ρ ∈ Gal(Qp/Qur
p ) we have

1 ⋊ ρ = θ(ρ) = Int(εg) ◦ θg(ρ) = Int(εg)(1 ⋊ ρ) = εgρ(εg)
−1 ⋊ ρ.

Hence εg ∈ G(Qur
p ). Furthermore, since εg commutes with θur

g , it must σ-centralize bθg , and we can regard εg as
an element of Jbθg

(Qp).

If ϕ(p) ◦ ζp is conjugated to an unramified morphism by another g′ ∈ G(Qp) then g′g−1 ∈ G(Qur
p ), and we

see that the resulting pair (bθg′
, εg′) is conjugate to (bθg , εg) in that

bθg′
= (g′g−1)bθg σ(g′g−1)−1 (4.2.4)

and conjugation by g′g−1 gives an isomorphism Jbθg
→ Jbθg′

sending εg to εg′ . To simplify notation, we will often

write (bθ , ε′) for (bθg , εg), which is well defined up to conjugation. By (4.2.4), [bθ ] is a well-defined element of
B(G).

Definition 4.2.5. Let (ϕ, ε) be an LR pair with (bθg , εg) as above. Define (ϕ, ε) to be acceptable if εg is ϱ-acceptable
as an element of Jbθg

(Qp). (This does not depend on the choice of g by the paragraph just above.)
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We denote the set of LR pairs by LRP . The subset of semi-admissible pairs, b-admissible pairs, acceptable,
and gg pairs are respectively denoted by

LRP sa, LRPb, LRPacc, LRPgg.

The first three subsets are closed under conjugation by elements of G(Q), cf. Definition 4.2.1, but the last one is
not. Nevertheless we can define the equivalence relation by conjugacy on all four subsets. We write LRP sa/conj.,
etc. for the quotient sets. We will impose more than one conditions by using multiple superscripts or subscripts,
e.g., LRPb,acc stands for the set of b-admissible and acceptable LR pairs.

4.2.6 A special point datum is a triple (T, hT , i) where

• T is a torus,

• hT : S→ TR is a morphism from the Deligne torus, and

• i : T → G is an embedding realizing T as a maximal torus of G defined over Q, and sending hT into X.

We simply write (T, hT) if it is clear what i is, e.g., if T is a subtorus of G.
A special point datum induces an admissible morphism as follows. We obtain µT ∈ X∗(T) from hT by

restricting the base change hT ×R C to the copy of Gm in SC
∼= Gm ×Gm corresponding to the identity map of C.

From ψT,µT constructed in (2.5.5), we obtain a morphism

ϕ := i ◦ ψT,µT : Q
ψT,µT−→ GT

i−→ GG,

which is admissible by [Kis17, Lem. 3.5.8].
Furthermore, in this setup T(Q) as a subgroup of G(Q) lies inside Iϕ(Q), so any ε ∈ T(Q) makes a semi-

admissible LR pair (ϕ, ε). Moreover this LR pair is gg as the conditions in Definition 4.2.2 are readily checked.
An LR pair is said to be special if it is conjugate to the LR pair arising from a special point datum (T, hT , i)

and ε ∈ T(Q) as above. It is a fact [KSZ21, p. 3.3.9] that every semi-admissible pair is special. In particular, every
semi-admissible pair is conjugate to a gg LR pair.

The following definition is inspired by [Shi09, Def. 10.1] and [KSZ21, Def. 1.6.2].

Definition 4.2.7. A classical Kottwitz parameter of type b is a triple (γ0, γ, δ) where

• γ0 ∈ G(Q) is semi-simple and elliptic in G(R),

• γ = (γℓ)ℓ ∈ G(A
p
f ) such that γℓ is stably conjugate to γ0 in G(Qℓ), and

• δ ∈ Jb(Qp) is conjugate to γ0 in G(Qp) under the embedding Jb(Qp) → G(Qp). If δ is ϱ-acceptable, the
parameter (γ0, γ, δ) is said to be acceptable.

We say that (γ0, γ, δ) and (γ′0, γ′, δ′) are equivalent if γ0 is stably conjugate to γ′0 in G(Q), γ is conjugate to
γ′ in G(A

p
f ), and δ is conjugate to δ′ in Jb(Qp). The set of classical Kottwitz parameters of type b is denoted by

CKPb. By CKPb,acc we mean the subset of acceptable parameters.

In order to handle the case that Gder is not simply connected, we need a closely related but more Galois-
cohomological treatment.

Definition 4.2.8 (cf. [KSZ21, Def. 1.6.4]). A Kottwitz parameter is a triple c = (γ0, a, [b0]) where

1. γ0 ∈ G(Q) is semi-simple and elliptic in G(R), and we write I0 = G◦γ0
;

2. a is an element of
D(I0, G; A

p
f ) = ker

(
H1(I0, A

p
f )→ H1(G, A

p
f )
)

;

3. [b0] ∈ B(I0); and

4. the image of [b0] under the Kottwitz map B(I0) → B(G)
κ→ π1(G)Γp is equal to the image of µ−1, where µ

is the cocharacter induced by an(y) element of X.

If b0 ∈ I0(L) is a representative of [b0] then b0 commutes with γ0 so γ−1bσ(γ) = γ−1bγ = b, telling us that
γ0 ∈ Jb0(Qp).
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4.2.9 An isomorphism of Kottwitz parameters is essentially given by conjugation by G(Q). We make this precise
as follows. Let (γ0, a, [b0]) be a Kottwitz parameter, I0 = G◦γ0

, and u ∈ G(Q) an element such that Int(u)γ0 = γ′0
is again in G(Q) and u−1ρ(u) ∈ I0 for all ρ ∈ Gal(Q/Q). Write I′0 = G◦

γ′0
.

To relate the away-from-p parts, we consider the bijection

u∗ : D(I0, G; A
p
f )→ D(I′0, G; A

p
f )

eρ 7→ ueρρ(u)−1

induced by the element u.
To relate the p-parts, we construct a bijection u∗ : B(I0) → B(I′0). The cocycle ρ 7→ u−1ρ(u) ∈ Z1(Qp, I0)

is trivial in H1(Q̆p, I0) by the Steinberg vanishing theorem. That is, we can find d ∈ I0(Q̆p) so that u−1ρ(u) =

d−1ρ(d) for all ρ ∈ Gal(Q̆p/Q̆p). Then we have ud−1 = ρ(ud−1) for all such ρ, so u0 := ud−1 lies in G(Q̆p).
Since d commutes with γ0, we have u0γ0u−1

0 = γ′0, and thus u0 induces a bijection

u∗ : B(I0)→ B(I′0)

[b] 7→ [u0bσ(u0)
−1].

This bijection is independent of d (and therefore deserves the name u∗) because any other choice of d is related
by an element of I0(Q̆p) and therefore its σ-conjugation of b does not change the class in B(I0).

Now with the above setup, an isomorphism between Kottwitz parameters (γ0, a, [b0]) and (γ′0, a′, [b′0]) is an
element u ∈ G(Q) such that

• Int(u)γ0 = γ′0 and u−1ρ(u) ∈ I0 for all ρ ∈ Gal(Q/Q) (i.e., u stably conjugates γ0 to γ′0),

• the bijection u∗ : D(I0, G; A
p
f )→ D(I′0, G; A

p
f ) sends a to a′, and

• the bijection u∗ : B(I0)→ B(I′0) sends [b0] to [b′0].

Definition 4.2.10. A Kottwitz parameter (γ0, a, [b0]) is b-admissible if the map B(I0) → B(G) sends [b0] to b.
Note that we have fixed b in B(G, µ−1), so a b-admissible Kottwitz parameter automatically satisfies item 4
of Definition 4.2.8. Say that (γ0, a, [b0]) is acceptable if γ0 is ϱ-acceptable as an element of Jb0(Qp) for some
representative b0 of [b0].

The acceptability is insensitive to the choice of b0: if b′0 = ub0σ(u)−1 for u ∈ I0(L) then conjugation by u
induces an isomorphism Jb0

∼→ Jb′0
sending γ0 to itself, and ϱ-acceptability of γ0 does not change under the

isomorphism by Lemma 2.2.5.
Write KP for the set of Kottwitz parameters. When decorated with subscripts b and acc, they designate the

subsets of b-admissible and acceptable parameters, respectively.

Lemma 4.2.11. If (γ0, a, [b0]) is acceptable then [b0] is basic in B(I0).

Proof. It follows from Lemma 2.2.10 that I0 we have I0 ⊂ Mb0 . Since νb0 is central in Mb0 , it is also central in
I0.

4.2.12 Let c = (γ0, a, [b0]) be a Kottwitz parameter, I0 = G◦γ0
, and consider the group

E(I0, G; A/Q) = coker
(

H0
ab(A, G)→ H0

ab(A/Q, I0 → G)
)

where H0
ab is the abelianized Galois cohomology of [Col99]. We write α(c) ∈ E(I0, G; A/Q) for the Kottwitz

invariant of c as defined in [KSZ21, p. 1.7].
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4.2.13 We now define a map from semi-admissible LR pairs to Kottwitz parameters, following [KSZ21, p. 3.5.1].
Let (ϕ, ε) be a semi-admissible LR pair, and τ(ϕ) ∈ Iad

ϕ (A
p
f ). After conjugation by an element of G(A

p
f ) we

may assume that (ϕ, ε) is gg; the construction will be shown to be insensitive to this conjugation in Lemma 4.2.15
below. We will define a Kottwitz parameter t(ϕ, ε, τ(ϕ)) = (γ0, a, [b0]) associated to (ϕ, ε) and τ(ϕ).

Define γ0 = ε. By the gg condition, ε is contained in G(Q) and is semi-simple and elliptic in G(R), verifying
the requirements for γ0 in Definition 4.2.8. We write I0 = G◦γ0

= G◦ε .
Next we consider a. Recall the cocycles ζ

p,∞
ϕ and ζϕ,ℓ of 2.5.14. The gg condition

ϕ(qρ) = gρ ⋊ ρ has gρ ∈ G◦ε = I0 for qρ any lift of ρ ∈ Gal(Q/Q) (4.2.14)

implies that ζ
p,∞
ϕ is valued in I0(A

p
f ).

Choose a lift τ̃ ∈ Iϕ(A
p
f ) of τ(ϕ), and define a cocycle A : Gal(Q/Q)→ I0(A

p
f ) by

A(ρ) = tρζ
p,∞
ϕ (ρ)

where tρ = τ̃−1ρ(τ̃) ∈ ZIϕ
(A

p
f ), acting by ρ via the Q-structure of Iϕ. We can regard tρ as an element of I0(A

p
f )

because the natural embedding ZIϕ
→ G factors through I0.

The cocycle A splits over G(A
p
f ). To see this, we write τ̃G for the image of τ̃ in G. We distinguish these

because τ̃ is subject to the Galois action given by the Q-structure on I0, while τ̃G is subject to that given by the
Q-structure on G. With respect to the Galois action on G, the element ρ(τ̃) becomes ζ

p,∞
ϕ (ρ)ρ(τ̃G)ζ

p,∞
ϕ (ρ)−1, and

so

A(ρ) = τ̃−1ρ(τ̃)ζ
p,∞
ϕ (ρ)

= τ̃−1
G ζ

p,∞
ϕ (ρ)ρ(τ̃G)ζ

p,∞
ϕ (ρ)−1ζ

p,∞
ϕ (ρ)

= τ̃−1
G ζ

p,∞
ϕ (ρ)ρ(τ̃G).

Combined with the fact that ζ
p,∞
ϕ splits in G(A

p
f ) (realized as ρ 7→ xρ(x)−1 for x ∈ Xp(ϕ)), this shows that A

splits in G(A
p
f ) as well.

We define a ∈ D(I0, G; A
p
f ) in our Kottwitz parameter to be the class defined by the image of A. This does

not depend on the choice of lift τ̃, because two choices differ by an element of ZIϕ
(A

p
f ) which commutes with

ζ
p,∞
ϕ .

Finally we construct [b0]. The same gg condition (4.2.14) above implies that ϕ factors

ϕ : Q
ϕ0−→ GI0 → GG.

Then (ϕ0, ε) is again an LR pair for I0, giving rise to a well-defined class [b0] := [bθ ] ∈ B(I0) by 4.2.3. This finishes
the construction of t(ϕ, ε, τ(ϕ)) = (γ0, a, [b0]).

Note that we have taken τ(ϕ) ∈ Iad
ϕ (A

p
f ), but by [KSZ21, Prop. 3.5.2] this construction only depends on its

image in Ep(ϕ) = Iϕ(A
p
f )\Iad

ϕ (A
p
f ), so we have a well-defined Kottwitz parameter t(ϕ, ε, τ(ϕ)) associated to a

semi-admissible pair (ϕ, ε) and an element τ ∈ Γ(Ep).
We want to show that this construction only depends on the conjugacy class of the LR pair. In particular,

after conjugating we have worked in the case that our LR pair is gg, so we want to show that if two gg pairs are
conjugate then the resulting Kottwitz parameters are isomorphic. For this we need to assume that the τ-twists
are well-behaved under conjugation as well.

Lemma 4.2.15. Let (ϕ, ε) and (ϕ′, ε′) be gg LR pairs, and τ ∈ Γ(Ep)1. Write t(ϕ, ε, τ(ϕ)) = (γ0, a, [b0]) and
t(ϕ′, ε′, τ(ϕ′)) = (γ′0, a′, [b′0]) for the associated Kottwitz parameters. If u ∈ G(Q) conjugates (ϕ, ε) to (ϕ′, ε′), then

1. uρ(u)−1 ∈ G◦ε′ for all ρ ∈ Gal(Q/Q), and

2. u gives an isomorphism (γ0, a, [b0]) ∼= (γ′0, a′, [b′0]).

30



Proof. The proof is the same as in [KSZ21, Prop. 3.5.3].

Thus for any τ ∈ Γ(Ep)1 we have a well-defined map

tτ : LRP sa/conj.→ KP/isom. (4.2.16)
(ϕ, ε) 7→ t(ϕ, ε, τ(ϕ)).

Lemma 4.2.17. Let (ϕ, ε) be a semi-admissible pair, and τ ∈ Γ(Ep)1. Consider the associated Kottwitz parameter
tτ(ϕ, ε) = (γ0, a, [b0]).

1. (γ0, a, [b0]) is b-admissible if and only if (ϕ, ε) is b-admissible.

2. (γ0, a, [b0]) is acceptable if and only if (ϕ, ε) is acceptable.

Proof. For the first claim, recall that a semi-admissible pair (ϕ, ε) is b-admissible if ϕ(p) ◦ ζp : Gp → GG(p) is
conjugate to an unramified morphism θ with bθ ∈ b. On the other hand, [b0] is the class (in B(I0)) defined by
precisely such a bθ , and (γ0, a, [b0]) is defined to be b-admissible if [b0] maps to the class b under B(I0)→ B(G).
These conditions are manifestly equivalent.

For the second claim, by conjugation we may assume that (ϕ, ε) is gg (as acceptability only depends on the
conjugacy or isomorphism class). In view of Definition 2.2.4 as well as 4.2.10, it is enough to check that (b0, γ0)
is a pair of the form (bθg , εg) arising from (ϕ, ε) by the construction of 4.2.3. This follows from the fact that b0 is
defined by an unramified morphism that is conjugate to ϕ(p) ◦ ζp by g ∈ I0(Qp). Indeed bθg = b0 by construction,
and εg = gεg−1 = γ0 since ε = γ0 is in the center of I0.

4.2.18 Next we define a map cl : KPb/isom. → CKPb/equiv. Let (γ0, a, [b0]) be a b-admissible Kottwitz
parameter. The element γ0 of our classical Kottwitz parameter is chosen to be the same element γ0 of our
Kottwitz parameter. The class a determines a conjugacy class in G(A

p
f ) stably conjugate to γ0, and we choose

γ to be an arbitrary element of this class. Finally, let b0 ∈ I0(L) be a representative of [b0]. Then γ0 ∈ Jb0(Qp).
Since b0 becomes σ-conjugate to the fixed element b in G(L), there is a Qp-isomorphism Jb0

∼= Jb canonical up
to Jb(Qp)-conjugacy. We obtain δ ∈ Jb(Qp) by transporting γ0 via this isomorphism. It is readily checked that
(γ0, γ, δ) is a classical Kottwitz parameter whose equivalence class depends only on the isomorphism class of
(γ0, a, [b0]). Moreover (γ0, a, [b0]) is acceptable if and only if (γ0, γ, δ) is so.

Finally, recall that [b0] is basic if (γ0, a, [b0]) is acceptable; in this case, J◦b,δ (the connected centralizer of δ in

Jb0 ) is isomorphic to the inner form J I0
b0

of I0 defined by [b0]. Indeed, Jb,δ
∼= Jb0,γ0 by construction, and Jb0,γ0 = J I0

b0
as Qp-subgroups of Jb since centralizing γ0 is equivalent to being contained in I0 (inside of G).

4.2.19 In light of (4.2.16), 4.2.18, and Lemma 4.2.17, we have constructed the following maps

LRPb/conj. tτ−→ KPb/isom. cl−→ CKPb/equiv.

restricting to

LRPb,acc/conj. tτ−→ KPb,acc/isom. cl−→ CKPb,acc/equiv.

4.3 Kottwitz parameters arising from LR pairs

Recall from §4.2 we have defined a map tτ : LRP sa/conj. → KP/isom. for any τ ∈ Γ(Ep)1. We have seen
in 4.2.19 that the image of acceptable b-admissible LR pairs lies in the set of acceptable b-admissible Kottwitz
parameters. Its image also has trivial Kottwitz invariant by the following lemma. The goal of this section is a
surjectivity result, namely that every acceptable b-admissible Kottwitz parameter with trivial Kottwitz invariant
is in the image of tτ for τ ∈ Γ(Ep)0 tori-rational.

Lemma 4.3.1 ([KSZ21, Prop. 3.6.3]). Let (ϕ, ε) be a semi-admissible LR pair, τ ∈ Γ(Ep)1 a tori-rational element, and
c = t(ϕ, ε, τ(ϕ)) the associated Kottwitz parameter. Then the Kottwitz invariant α(c) is zero.
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4.3.2 Given a connected reductive group H over Qp and a cocharacter µ : Gm → H
Qp

, we define [bbas(µ)] ∈ B(H)

to be the unique basic class in B(H, µ). For each x ∈ X, write hx : S→ GR for the corresponding morphism.

Lemma 4.3.3. Let (γ0, a, [b0]) ∈ KPb,acc. Write I0 := G◦γ0
. Possibly after changing (γ0, a, [b0]) within its isomorphism

class (cf. 4.2.9), there exist a maximal torus T ⊂ I0 over Q and x ∈ X such that

• hx factors through TR (so µx ∈ X∗(T); the notation is as in 2.4.1) and

• [bx] ∈ B(T) maps to b in B(G), where [bx] := [bbas(µ
−1
x )],

• νbx = νb0 , where bx ∈ T(L) and b0 ∈ I0(L) are representatives of [bx] and [b0]. (It is implicit here that νbx , νb0 are
independent of choice of bx, b0.)

Proof. This lemma and its proof are inspired from [KMPS22, Prop. 1.2.5]. The main difference lies in the third
bullet point and the requirement that T ⊂ I0, which are not found in loc. cit. (In their setting, there is simply no
I0.) The basic idea is to find suitable Tp ⊂ I0,Qp and T∞ ⊂ I0,R, and then to globalize them to a maximal torus in
I0 over Q. We will sketch the argument while explaining in some detail how to ensure the additional properties.

At p, we need some preparation to apply [KMPS22, Cor. 1.1.17]. Since [b0] is basic in B(I0) (Lemma 4.2.11),
the morphism νb0 : D → G is defined over Qp and factors through the center of I0. Thus I0 is contained in
the Qp-rational Levi subgroup Mb0 of GQp . By [KMPS22, Cor. 1.1.15], we have [b0] ∈ B(Mb0 , µ−1

0 ) for a suitable
cocharacter µ0 : Gm → Mb0 which belongs to the G-conjugacy class {µX}; thus ([b0], µ0) is Mb0 -admissible in the
terminology of loc. cit. Moreover [b0] is basic in B(Mb0) as νb0 remains central in Mb0 . On the other hand, the
basic class [b0] determines an inner form J I0

b0
of I0,Qp . The Qp-group J I0

b0
is contained in Jb0 , where Jb0 is defined

with GQp (rather than I0,Qp ) as the ambient group, but since [b0] is basic in B(Mb0), the definition of Jb0 does not
change if the ambient group is Mb0 ; moreover Jb0 is an inner form of Mb0 . Choose an elliptic maximal torus T′ in
I0,Qp , then it transfers to a maximal torus of J I0

b0
, still to be denoted by T′. Thus T′ may be viewed as a maximal

torus of Jb0 , which in turn transfers to a maximal torus Tp of Mb0 .
In the setting of the preceding paragraph, the existence result of [KMPS22, Cor. 1.1.17] applies with our

b0, µ0, Mb0 playing the roles of their b, µ, G. As in the second paragraph in the proof of [KMPS22, Prop. 1.2.5],
the output is a cocharacter µp ∈ X∗(Tp) which belongs to the conjugacy class {µX} (under Tp ⊂ GQp ) such that
[bbas(µ

−1
p )] ∈ B(Tp) maps to [b0] ∈ B(Mb0). If we write bp ∈ Tp(L) for a representative of [bbas(µ

−1
p )], then as an

immediate consequence, [bbas(µ
−1
p )] maps to b ∈ B(G), and νbp = νb0 . (A priori νbp and νb0 are only conjugate in

Mb0 but since νb0 is central, the two are equal.)
Now we turn to the matter at ∞. Since γ0 is elliptic in G(R), we can choose a maximal torus T∞ ⊂ GR

containing γ0, that is, T∞ ⊂ I0,R. Since every element of X factors through an elliptic maximal torus of GR and
all such tori are G(R)-conjugate, we can choose x ∈ X such that hx factors through T∞.

We are ready to globalize. First, there exists a maximal torus T ⊂ I0 over Q such that TQp and TR are
conjugate to Tp and T∞ by elements of I0(Qp) and I0(R), respectively, by [KMPS22, Lem. 1.2.2]. Next, the rest
of the argument in [KMPS22, Prop. 1.2.5] (other than we chose Tp, T∞, T, µp somewhat differently from loc. cit.)
applies verbatim and shows the existence of x ∈ X such that T and x satisfy the properties stated in the lemma;
the properties for bx follow from those for bp since the argument produces (T, [bx]) that is conjugate to (Tp, [bp])
by an element of I0(Qp).

Proposition 4.3.4. Let (γ0, a, [b0]) ∈ KPb,acc. Possibly after changing (γ0, a, [b0]) by an isomorphism, there is an
admissible morphism ϕ0 such that (ϕ0, γ0) ∈ LRP

gg
b,acc.

Proof. By Lemma 4.3.3, there exist a maximal torus T ⊂ I0 over Q and x ∈ X such that hx factors through TR and
[bbas(µ

−1
x )] ∈ B(T) maps to b ∈ B(G). In particular, (T, hx) forms a special point datum. Write i : T ↪→ G for the

embedding induced by I0 ⊂ G.
Let ϕ0 = i ◦ ψµx be the admissible morphism induced from the special point datum (T, h) as in 4.2.6. Ob-

serving that γ0 ∈ T(Q), we can form the gg LR pair (ϕ0, γ0) as explained there. Let us show that this LR pair is
b-admissible and acceptable.

We check b-admissibility first. Consider ψµx : Q → GT and its p-part ψµx (p) ◦ ζp : Gp → GT(p). As in 2.5.8,
the latter is conjugate by some element y ∈ T(Qp) to an unramified morphism θ : Gp → GT(p) which gives
rise to an element bθ ∈ T(Qur

p ) and a class [bθ ] ∈ B(T). By [KSZ21, Lem. 2.2.10], the image κT([bθ ]) ∈ X∗(T)Γp
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of [bθ ] under the Kottwitz map is equal to the image of µ−1
x ∈ X∗(T). It follows that [bθ ] = [bbas(µ

−1
x )]. The

second condition of Lemma 4.3.3 tells us that [bθ ] ∈ B(T) maps to b. Since i ◦ ψµx (p) ◦ ζp is conjugate by y to the
unramified morphism i ◦ θ, and since [bi◦θ ] = i([bθ ]) = b, we see that ϕ0 = i ◦ ψµx is b-admissible as desired.

Now we check acceptability. The element y ∈ T(Qp) above commutes with γ0 since T ⊂ I0. So the recipe
of 4.2.3 assigns to (ϕ0, γ0) a pair (bi◦θ , yγ0y−1) = (i(bθ), γ0). Thus we need to show that γ0 is ϱ-acceptable with
respect to i(bθ), cf. Definition 4.2.5. We have assumed that γ0 is ϱ-acceptable with respect to b0 ∈ I0(L). Since
γ0 ∈ Mi(bθ)

(L)∩Mb0(L) (following from the fact that i(bθ), b0 commute with γ0), and since the slope morphisms
of i(bθ) and b0 coincide by the last condition of Lemma 4.3.3, the paragraph below Definition 2.2.4 tells us that
the ϱ-acceptability with respect to b0 ∈ I0(L) implies the same property with respect to i(bθ).

Lemma 4.3.5. Let (ϕ, ε) be an acceptable LR pair, and suppose that ϕ∆ is defined over Q and ε ∈ G(Q) (in particular, this
applies to any acceptable gg pair). Then the inclusion Iϕ,ε ↪→ Gε over Q is an isomorphism.

Proof. Recall from 2.5.2 that Iϕ,Q is the centralizer of (the image of) ϕ∆ in G
Q

, so our goal is to show that any

element commuting with ε must commute with ϕ∆.
We begin by showing that any element commuting with ε must commute with ϕ∆ ◦ ν(p) and ϕ∆ ◦ ν(∞).
At p: let g ∈ G(Qp) such that θ = Int(g) ◦ ϕ(p) ◦ ζp is unramified, and let bθ ∈ G(Qur

p ) defined by θ(dσ) =

bθ ⋊ σ. Write ε′ = Int(g)ε. By Lemma 2.5.9 we have

Int(g) ◦ ϕ∆ ◦ ν(p) = (Int(g) ◦ ϕ(p) ◦ ζp)
∆ = −νbθ

,

so the centralizer of Int(g) ◦ ϕ∆ ◦ ν(p) is Mbθ
. On the other hand, (bθ , ε′) is associated with our acceptable pair

(ϕ, ε) by 4.2.3. In particular, we can apply Lemma 2.2.10 to conclude that Gε′ ⊂ Mbθ
.

Since the centralizer of Int(g) ◦ϕ∆ ◦ ν(p) is Mbθ
we see the centralizer of ϕ∆ ◦ ν(p) is Int(g−1)Mbθ

, and likewise
we have Gε = Int(g−1)Gε′ . The above analysis then shows that Int(g−1)Gε′ = Int(g−1)Mbθ

, which is to say that
the centralizer of ε is contained in the centralizer of ϕ∆ ◦ ν(p), as desired.

At ∞: as in the proof of [KSZ21, Lem. 3.1.9], the fact is that ϕ∆ ◦ ν(∞) is central in G, and therefore any
element commuting with ε trivially commutes with ϕ∆ ◦ ν(∞).

Now, suppose that g ∈ G(Q) commutes with ε, and we want to see that g commutes with ϕ∆.
Recall that ϕ∆ is a morphism Q → G where Q = lim←−L

QL is the kernel of Q. For each finite Galois L/Q, the
torus QL is generated by the Gal(L/Q)-conjugates of the images of ν(p)L and ν(∞)L. Thus Q is generated by
the Gal(Q/Q)-conjugates of the images of ν(p) and ν(∞).

For any ρ ∈ Gal(Q/Q), the conjugate ρ(g) again commutes with ε by our hypothesis that ε is rational, and
therefore by the above arguments ρ(g) commutes with ϕ∆ ◦ ν(v) for v = p, ∞. Applying ρ−1 and using our
hypothesis that ϕ∆ is defined over Q, we see that g commutes with ϕ∆ ◦ ρ−1(ν(v)) for v = p, ∞. Since ρ was
arbitrary and the Gal(Q/Q)-conjugates of the images of ν(v) generate Q, this implies that g commutes with ϕ∆,
as desired.

4.3.6 Let (ϕ, ε) be a gg acceptable pair, so that letting qρ ∈ Q a lift of ρ ∈ Gal(Q/Q), we have ϕ(qρ) = gρ ⋊ ρ

with gρ ∈ G◦ε . The group Iϕ is defined as an inner form of ZG(ϕ
∆) by the cocycle

ρ 7→ Int(gρ) ∈ Aut((G◦ε )Q
) ρ ∈ Gal(Q/Q).

In view of the isomorphism of Lemma 4.3.5, this produces compatible inner twists

(I◦ϕ,ε)Q

∼−→ (G◦ε )Q
,

(Iϕ,ε)Q

∼−→ (Gε)Q

defined by the same cocycle.

Lemma 4.3.7. Suppose that (γ0, a, [b0]), (γ0, a1, [b1]) ∈ KPb,acc share the same element γ0. Then νb0 = νb1 .

Proof. Both Kottwitz parameters are assumed to be b-admissible, so [b0] and [b1] both map to b in B(G). In
particular, b0 and b1 are σ-conjugate in G(L). Furthermore, the semi-simple element γ0 as an element of G(L)
lies in both Jb0(Qp) and Jb1(Qp), and is acceptable with respect to both. Thus we are in the situation of Lemma
2.2.11, and we conclude that νb0 = νb1 .
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Proposition 4.3.8. Suppose that (γ0, a, [b0]) ∈ KPb,acc has trivial Kottwitz invariant and that there is a ϕ0 such that
(ϕ0, γ0) belongs to LRPgg

b,acc. Then there exists (ϕ1, ε1) ∈ LRP
gg
b,acc such that

t(ϕ1, ε1, 1) ∼= (γ0, a, [b0]).

This is the analogue of [KSZ21, Prop. 3.5.9], except that their “pn-admissible” hypothesis has been replaced
by our “acceptable b-admissible” hypothesis. We briefly sketch how their proof carries over to our case.

Proof. Write t(ϕ0, γ0, 1) = (γ0, a′, [b′0]), and I0 = G◦γ0
. By Lemma 4.2.17, our hypothesis that (ϕ0, γ0) is acceptable

and b-admissible implies that (γ0, a′, [b′0]) is acceptable and b-admissible.
Lemma 4.2.11 tells us that νb′0

is central in I0. This is the first ingredient; we also need the fact from Lemma

4.3.7 that νb0 = νb′0
; and the fact from 4.3.6 of a canonical inner twisting (I◦ϕ0,γ0

)
Q

∼→ I0,Q.
In the presence of these three ingredients, the proof of [KSZ21, Prop. 3.5.9] carries over without modification

to show the existence of a gg semi-admissible LR pair (ϕ1, ε1) with t(ϕ1, ε1, 1) = (γ0, a, [b0]). By Lemma 4.2.17,
(ϕ1, ε1) is acceptable and b-admissible.

The last step is to incorporate τ-twists. We collect the full result in the following proposition.

Proposition 4.3.9. Let τ ∈ Γ(Ep)0 be a tori-rational element. If (γ0, a, [b0]) ∈ KPb,acc has trivial Kottwitz invariant,
then there exists (ϕ, ε) ∈ LRPgg

b,acc such that

t(ϕ, ε, τ(ϕ)) = (γ0, a, [b0]).

Proof. This is our analogue of [KSZ21, Prop. 3.6.5]. The proof in their case applies equally well here, with our
Propositions 4.3.4 and 4.3.8 replacing their and Propositions 3.4.8 and 3.5.9 respectively.

The resulting LR pair (ϕ, ε) is furthermore acceptable and b-admissible by Lemma 4.2.17.

4.3.10 As before, τ ∈ Γ(Ep)0 is tori-rational. Having completed this result, and combining it with the discussion
at the beginning of this section, we conclude that the image of the map (4.2.19)

tτ : LRPb,acc/conj.→ KPb,acc/isom., (ϕ, ε) 7→ t(ϕ, ε, τ(ϕ)),

consists of exactly those with trivial Kottwitz invariant.

4.4 LR pairs mapping to the same Kottwitz parameter
Now that we understand the image of the map tτ : LRPb,acc/conj.→ KPb,acc/isom., we now examine the fibers
of this map in terms of cohomological twists.

4.4.1 Recall from 2.5.2 that we can twist a morphism ϕ : Q → GG by a cocycle e ∈ Z1(Q, Iϕ) to get another
morphism eϕ. We saw in 2.5.13 that if ϕ is admissible, then eϕ is again admissible exactly when e lies in
X∞

G (Q, Iϕ). We can also twist LR pairs. For an LR pair (ϕ, ε) and cocycle e ∈ Z1(Q, Iϕ,ε) ⊂ Z1(Q, Iϕ), we define
the twist to be (eϕ, ε) by simply twisting the morphism. By [KSZ21, Lem. 3.2.5] this is again an LR pair. As in
the case of twisting morphisms, two twists (eϕ, ε) and (e′ϕ, ε) are conjugate by G(Q) exactly when e, e′ define
the same class in H1(Q, Iϕ,ε) ([KSZ21, Lem. 3.2.6]).

Now, suppose that (ϕ, ε) is gg. Then [KSZ21, Lem. 3.2.5] also tells us that if e ∈ Z1(Q, I◦ϕ,ε) ⊂ Z1(Q, Iϕ,ε) then
the twist (eϕ, ε) is again gg. This gives us a map Z1(Q, I◦ϕ,ε)→ LRPgg, which descends to a map

H1(Q, I◦ϕ,ε)→ LRPgg/conj.

Lemma 4.4.2. Let (ϕ, ε) a gg acceptable LR pair, and Int(g)ε ∈ G(Q) a rational element stably conjugate to ε, i.e., g ∈
G(Q) and g−1ρ(g) ∈ G◦ε for ρ ∈ Gal(Q/Q). Then the conjugate (Int(g) ◦ ϕ, Int(g)ε) is again gg and acceptable.

Proof. Acceptability is insensitive to conjugacy, so (Int(g) ◦ ϕ, Int(g)ε) is acceptable. That it is also gg is proven
as in [KSZ21, Lem. 3.6.4], with our 4.3.6 replacing their 3.2.14.
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Lemma 4.4.3. Suppose that (ϕ, ε), (ϕ′, ε) ∈ LRPgg
b,acc share the same ε ∈ G(Q). Then ϕ∆ = ϕ′∆.

Proof. By the same reasoning as the last paragraphs of the proof of Lemma 4.3.5, it suffices to show that ϕ∆ ◦
ν(v) = ϕ′∆ ◦ ν(v) for v = p, ∞ (this implies that ϕ∆ and ϕ′∆ agree on a generating set for Q∆ = Q, and being
morphisms they must then agree everywhere).

At ∞: by [KSZ21, Lem. 3.1.9], simply the fact that both ϕ and ϕ′ are admissible implies that ϕ∆ ◦ ν(∞) =
ϕ′∆ ◦ ν(∞).

At p: since (ϕ, ε) is gg, we can factor
ϕ : Q→ GG◦ε → GG,

and therefore we can conjugate ϕ(p) ◦ ζp to an unramified morphism θ by an element u ∈ G◦ε (Q). Let bθ ∈
G◦ε (Qur

p ) be the corresponding element as in 2.5.7. In the same way we can conjugate ϕ′(p) ◦ ζp by an element
u′ ∈ G◦ε (Q) and produce an element b′θ ∈ G◦ε (Qur

p ). Then the pairs (bθ , ε) and (b′θ , ε) are associated with the LR
pairs (ϕ, ε) and (ϕ′, ε) as in 4.2.3, respectively.

We have assumed that our LR pairs are acceptable and b-admissible, which implies that bθ , b′θ and ε satisfy
the hypotheses of Lemma 2.2.11, and we conclude that νbθ

= νb′θ
.

On the other hand, we have

Int(u) ◦ ϕ∆ ◦ ν(p) = (Int(u) ◦ ϕ(p) ◦ ζp)
∆ ∗
= −νbθ

= −νb′θ
∗
= (Int(u′) ◦ ϕ′(p) ◦ ζp)

∆ = Int(u′) ◦ ϕ′∆ ◦ ν(p)

where the starred equalities are given by Lemma 2.5.9. By our acceptable hypothesis, we can apply Lemma 2.2.10
to see that Gε commutes with νbθ

= νb′θ
. But the above equation demonstrates that ϕ∆ ◦ ν(p) and −νbθ

and −νb′θ
and ϕ′∆ ◦ ν(p) are all conjugate by G◦ε (Q), so they must all be equal, and in particular ϕ∆ ◦ ν(p) = ϕ′∆ ◦ ν(p).

Now we are prepared to show that points in the same fiber of t are related by an H1-twist.

Lemma 4.4.4. Suppose that (ϕ, ε), (ϕ′, ε) ∈ LRPgg
b,acc give rise to isomorphic Kottwitz parameters under tτ . Then the

conjugacy classes of (ϕ, ε) and (ϕ′, ε′) are related by twisting by an element of H1(Q, I◦ϕ,ε).

Proof. In fact we only need to make a weaker assumption that the rational elements, say γ0 and γ′0, appearing in
the two Kottwitz parameters are stably conjugate. (This assumption is insensitive to τ-twists.) So our hypothesis
implies that ε and ε′ are stably conjugate, and by Lemma 4.4.2 we can conjugate (ϕ′, ε′) to a gg pair (ϕ0, ε) which
is again acceptable and b-admissible. By Lemma 4.4.3 we have ϕ∆ = ϕ∆

0 . As in Lemma 2.5.2 we can choose
e ∈ Z1(Q, Iϕ) so that ϕ0 = eϕ. Now write

ϕ(qρ) = gρ ⋊ ρ, ϕ0(qρ) = eϕ(qρ) = eρgρ ⋊ ρ

where as usual ρ ∈ Gal(Q/Q) and qρ ∈ Q is a lift of ρ. Since our LR pairs are gg, we have gρ ∈ G◦ε and eρgρ ∈ G◦ε ,
so we conclude that eρ ∈ G◦ε . By 4.3.5 this shows that in fact e ∈ Z1(Q, I◦ϕ,ε), demonstrating that the conjugacy
classes of (ϕ, ε) and (ϕ′, ε′) are related by twisting by H1(Q, I◦ϕ,ε).

We also have an analogue of Proposition 2.5.13 characterizing which twists of a semi-admissible LR pair are
semi-admissible.

Proposition 4.4.5. If (ϕ, ε) ∈ LRPgg
sa and e ∈ Z1(Q, I◦ϕ,ε), then the twist (eϕ, ε) is gg and semi-admissible exactly when

e lies in X∞
G (Q, I◦ϕ,ε). For such an e, if (ϕ, ε) is b-admissible then so is (eϕ, ε); if (ϕ, ε) is acceptable then so is (eϕ, ε).

Proof. The first assertion is [KSZ21, Prop. 3.2.19]. For the second assertion, we may write tτ(ϕ, ε) = (γ0, a, [b0])
and tτ(eϕ, ε) = (γ0, a′, [b′0]) with γ0 = ε ∈ G(Q). By [KSZ21, Prop. 3.5.5], we have that νb0 and νb′0

are conjugate

in I0 and that the difference under the Kottwitz morphism κI0(b0)− κI0(b
′
0) ∈ H1

ab(Qp, I0) is equal to the image
of e under

X∞
G (Q, I◦ϕ,ε)→ ker(H1

ab(Q, I0)→ H1
ab(Q, G))→ ker(H1

ab(Qp, I0)→ H1
ab(Qp, G)),
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in their notation. The fact that κI0(b0) − κI0(b
′
0) maps trivially into H1

ab(Qp, G) tells us that the images of
[b0], [b′0] ∈ B(I0) in B(G) have equal image under the Kottwitz morphism for G. Since νb0 and νb′0

are con-
jugate in G, we deduce that the images of [b0], [b′0] ∈ B(I0) in B(G) are equal by [Kot97, p. 4.13]. Therefore
(γ0, a, [b0]) is b-admissible if and only if (γ0, a′, [b′0]) is. It follows that (ϕ, ε) is b-admissible if and only if (eϕ, ε)
is.

Finally, suppose that (ϕ, ε) is acceptable. Then (γ0, a, [b0]) is also acceptable so νb0 is central in I0 by Lemma
4.2.11. Since νb0 and νb′ are conjugate in I0 again by [KSZ21, Prop. 3.5.5], it follows that νb0 = νb′0

. Now
γ0 ∈ Jb0(Qp) ∩ Jb′0

(Qp) (intersected in G(L)), we see from the discussion below Definition 2.2.4 that if γ0 is
acceptable with respect to b0 then the same is true with respect to b′0; that is, tτ(eϕ, ε) is acceptable. Hence (eϕ, ε)
is acceptable.

Combining Proposition 4.4.5 with the discussion of 4.4.1, we have for each (ϕ, ε) ∈ LRPgg
b,acc a map

ηϕ,ε : X∞
G (Q, I◦ϕ,ε)→ LRP

gg
b,acc/conj.

By Lemma 4.4.4 and Proposition 4.4.5, two LR pairs in LRPgg
b,acc giving rise to isomorphic Kottwitz parameters

must both lie in the image of one such map ηϕ,ε.

4.5 Point-Counting Formula
We return to the task of analyzing the right hand side of (4.1.8), putting ourselves in that setting. To understand
the fixed point set Fix(UgU), a crucial ingredient is a description of IgΣ(Fp) as a G(A

p
f )× Jb(Qp)-set by Theorem

3.6.1. Thereby we have a bijection

IgΣ(Fp)/U ∼−→⨿
[ϕ]

Iϕ(Q)τ(ϕ)\
(
Xp(ϕ)× Xb

p (ϕ)
)
/U, (4.5.1)

where ϕ ranges over a set of representatives for conjugacy classes of b-admissible morphisms, and with the
Iϕ(Q)-action twisted by a tori-rational element τ ∈ Γ(H)0. Recall from 3.5 that we can lift τ(ϕ) ∈ H(ϕ) to
an element of Iad

ϕ (A
p
f ), which we will also call τ(ϕ) by abuse of notation. Before going further, we prove a

group-theoretic lemma that will be needed.

Lemma 4.5.2. Let U be a sufficiently small compact open subgroup of G(A
p
f )× Jb(Qp). Then

1. ZG(Q) ∩U = {1}, and

2. for each b-admissible morphism ϕ and τ(ϕ) ∈ Iad
ϕ (A

p
f ), the stabilizer in Iϕ(Q) of (xp, xp) ∈ G(A

p
f )× Jb(Qp)/U

for the τ(ϕ)-twisted action is ZG(Q) ∩U for every (xp, xp).

Proof. (1) Since G is part of a Shimura datum of Hodge type, Z◦G satisfies the Serre condition—this is (equivalent
to) the condition that Z◦G is isogenous over Q to a torus T+ × T− where T+ is split over Q and T− is compact
over R. This implies that Z◦G(Q) is discrete in Z◦G(A f ) (e.g., [KSZ21, Lem. 1.5.5]), and via

Z◦G(A f ) ↪→ G(A
p
f )× Jb(Qp)

we see Z◦G(Q) is discrete in G(A
p
f )× Jb(Qp) (the embedding ZG ↪→ Jb coming from the fact that Jb is an inner

form of a Levi subgroup of G). Since [ZG(Q) : Z◦G(Q)] is finite, ZG(Q) is also discrete in G(A
p
f )× Jb(Qp). Thus

any sufficiently small compact open subgroup U will intersect ZG(Q) trivially.
(2) The proof of [KSZ21, Lem. 3.7.2(i)] carries over to our case, the only difference being the component at p.

In our case ε ∈ Iϕ(Q) stabilizing an element εxp = xp mod Up implies that ε is contained in the compact subgroup
xpUpx−1

p of Jb(Qp) (or of G(Qp) via the embedding Jb → G over Qp), providing the necessary ingredient for the
proof.
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Returning to the matter of Fix(UgU) and (4.5.1), we consider left Iϕ(Q)-sets

Xϕ :=
(
Xp(ϕ)× Xb

p (ϕ)
)
/U and Yϕ :=

(
Xp(ϕ)× Xb

p (ϕ)
)
/(U ∩ gUg−1),

and maps a, b : Yϕ → Xϕ given by a : x 7→ x mod U and b : x 7→ xg mod U. Write (Iϕ\Yϕ)a=b for the subset of
Iϕ\Yϕ on which a = b. It follows from Definition 4.1.4 and (4.5.1) that

Fix(UgU) = ⨿
ϕ

(Iϕ\Yϕ)a=b,

where the disjoint union runs over the same set of ϕ as above. On the other hand, we can apply Milne’s
combinatorial lemma [Mil92, Lem. 5.3] in this setting (taking C = {1} in the notation there) as the necessary
hypotheses are satisfied by Lemma 4.5.2. The outcome is that

(Iϕ\Yϕ)a=b = ⨿
ε

O(ϕ, ε, g, τ), where

O(ϕ, ε, g, τ) := Iϕ,ε(Q)τ(ϕ)\{x ∈
(
Xp(ϕ)× Xb

p (ϕ)
)
/(U ∩ gUg−1) : εx = xg mod U},

and the disjoint union runs over a set of representatives for conjugacy classes in Iϕ(Q); as usual, Iϕ,ε denotes
the centralizer of ε in Iϕ. Arguing as in the proof of [KSZ21, Lem. 3.7.3], we compute the local term tr([UgU] |
(Lξ)x) = tr ξ(ε) (computed by viewing ε as an element of G(Q). All in all, using the same index sets for ϕ and ε
as above, (4.1.8) for an acceptable function of the form 1UgU can be rewritten as

tr(1UgU | Hc(IgΣ, Lξ)) = vol(U)∑
ϕ

∑
ε

#O(ϕ, ε, g, τ) · tr ξ(ε). (4.5.3)

The formula for a general acceptable function is an obvious linear combination thereof.

4.5.4 Suppose that c = (γ0, a, [b0]) ∈ KPb,acc has trivial Kottwitz invariant. (This is the case when c arises from
a b-admissible acceptable LR pair.) BY Lemma 4.2.11, [b0] is basic in B(I0). We can define an inner form Ic of
I0 = G◦γ0

as follows. Writing a = (aℓ)ℓ ̸=p,∞, let Iℓ be the inner form of I0 over Qℓ defined by aℓ (or to be precise,

the image of aℓ in H1(Qℓ, Iad
0 )). At p, let Ip = J I0

b0
be the inner form of I0 over Qp defined by the basic class

[b0] ∈ B(I0). At ∞, let I∞ be the inner form of I0 over R which is compact modulo ZG. By [KSZ21, Prop. 1.7.12],
these local components determine a unique inner form Ic of I0 over Q such that Ic⊗Qv ∼= Iv for all places v of Q.

Write (γ0, γ, δ) = cl(γ0, a, [b0]) ∈ CKPb,acc for the corresponding classical parameter, well-defined up to
equivalence. By construction Ic ∼= G◦γ over A

p
f . At p we have Ic,Qp

∼= J◦b,δ as observed in §4.2.18.

Since both sides of (4.5.3) are proportional to the Haar measures on G(A
p
f ) and Jb(Qp), it is harmless to fix

the Haar measures giving each of Up and Up volume 1. Every group of Q-points will be endowed with the
counting measure. We choose Haar measures on Ic(A

p
f ) and Ic(Qp), inducing Haar measures on isomorphic

groups G◦γ and J◦b,δ as well as a quotient measure on Ic(Q)\Ic(A f ). For f ∈ C∞
c (G(A

p
f )× Jb(Qp)) define

T f
ξ (c) = T f

ξ (γ0, a, [b0]) := vol
(

I◦c (Q)\I◦c (A f )
)

O
G(A

p
f )×Jb(Qp)

γ×δ ( f ) tr ξ(γ0),

which is independent of the choice of Haar measures on Ic(A
p
f ) and Ic(Qp). The definition of T f

ξ (c) depends on
c only up to isomorphism.

So far c has been assumed to be acceptable. If c is not acceptable (but still b-admissible), simply set T f
ξ (c) := 0.

4.5.5 Now let ϕ, ε be as in (4.5.3). Define ιIϕ
(ε) := [Iϕ,ε(Q) : I◦ϕ,ε(Q)]. From the b-admissible LR pair (ϕ, ε) we

obtain tτ(ϕ, ε) = (γ0, [a], b) ∈ KPb and cl(γ0, [a], b) = (γ0, γ, δ) ∈ CKPb.

Lemma 4.5.6. In the setting above, #O(ϕ, ε, g, τ) = ιIϕ
(ε)−1T f

ξ (c).
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Proof. We can mimic the proof of the analogous assertion [KSZ21, Lem. 3.7.4] for Shimura varieties. The proof
there shows that

vol
(

I◦c (Q)\I◦c (A f )
)
= vol

(
I◦ϕ,ε(Q)\I◦ϕ,ε(A f )

)
.

We can rewrite ιIϕ
(ε)#O(ϕ, ε, g, τ) as

#I◦ϕ,ε(Q)τ(ϕ)\{x ∈
(
Xp(ϕ)× Xb

p (ϕ)
)
/(U ∩ gUg−1) : εx = xg mod U} · tr ξ(ε)

= vol
(

I◦ϕ,ε(Q)\I◦ϕ,ε(A f )
)−1

CpCp tr ξ(ε) = vol
(

I◦c (Q)\I◦c (A f )
)−1

CpCp tr ξ(γ0),

where we used that γ0 and ε are conjugate in G(Q) and we put

Cp := #I◦ϕ,ε(A
p
f )τ(ϕ)\{xp ∈

(
Xp(ϕ)/(Up ∩ gpU(gp)−1) : εxp = xpgp mod Up},

Cp := #I◦ϕ,ε(Qp)\{xp ∈
(
Xp(ϕ)/(Up ∩ gpUg−1

p ) : εxp = xpgp mod Up}.

The formula for Cp has no twisting since τ(ϕ) ∈ Iϕ(A
p
f ) is away from p. The proof of [KSZ21, Lem. 3.7.4]

also shows that Cp = O
G(A

p
f )

γ (1UpgpUp), the situation being the same away from p (except that (gp)−1 is used
in place of gp in that source). It follows from a similar argument, which is only easier thanks to the absence of

twisting, that Cp = O
Jb(Qp)
δ (1UpgpUp). If (ϕ, ε) is not acceptable then δ is not acceptable, but 1UpgpUp is supported

on acceptable elements so Cp = 0. The proof of the lemma is complete by putting everything together.

Proposition 4.5.7. Let τ ∈ Γ(H)0 a tori-rational element satisfying Theorem 3.6.1, lifted to a tori-rational element of
Γ(Ep)0 (still called τ by abuse of notation). For every ϱ-acceptable function f ∈ C∞

c (G(A
p
f )× Jb(Qp)), we have

tr( f | Hc(IgΣ, Lξ)) = ∑
(ϕ,ε)∈LRPb,acc/conj.

ιIϕ
(ε)−1T f

ξ (c),

where (ϕ, ε) ranges over a set of representatives for conjugacy classes of b-admissible acceptable LR pairs, and c = tτ(ϕ, ε)
is the corresponding Kottwitz parameter (well-defined up to isomorphism).

Proof. Write f = ∑g∈I cg1UgU as in Definition 4.1.5. Then a finite linear combination of (4.5.3) holds over g ∈ I, in
which we can plug in Lemma 4.5.6. Then we obtain the equation of the proposition except that the sum a priori
runs over b-admissible LR pairs. Since T f

ξ (c) = 0 if c is not acceptable, or equivalently if (ϕ, ε) is not acceptable,
so we can restrict the sum to acceptable pairs.

It remains to rewrite the sum in Proposition 4.5.7 in terms of Kottwitz parameters.

4.5.8 Let τ ∈ Γ(Ep)0 tori-rational, and (γ0, a, [b0]) ∈ KPb,acc a b-admissible acceptable Kottwitz parameter
with trivial Kottwitz invariant. By Proposition 4.3.9, there exists (ϕ0, γ0) ∈ LRP

gg
b,acc such that tτ(ϕ0, γ0) =

(γ0, a, [b0]). Furthermore Lemma 4.4.4 and Proposition 4.4.5 imply that every (ϕ, ε) ∈ LRPgg
b,acc satisfying

tτ(ϕ, ε) ∼= (γ0, a, [b0]) is contained in the image of ηϕ0,γ0 . Let D(ϕ0, γ0) ⊂X∞
G (Q, I◦ϕ0,γ0

) be the subset of classes e
such that

tτ(eϕ0, γ0) ∼= tτ(ϕ0, γ0) = (γ0, a, [b0]),

i.e., twists that preserve the Kottwitz parameter up to isomorphism. So the composite map

D(ϕ0, γ0) ↪→X∞
G (Q, I◦ϕ0,γ0

)
ηϕ0,γ0−→ LRPgg

b,acc/conj.

is a surjection onto the set of conjugacy classes of LR pairs in the fiber t−1(γ0, a, [b0]). To account for failure for
this map to be a bijection, we compute:

Lemma 4.5.9. Let e ∈ D(ϕ0, γ0). In the setting of 4.5.8, we have

#{fiber of ηϕ0,γ0 containing e} =
|(Ieϕ0,γ0 /I◦eϕ0,γ0

)(Q)|
[Ieϕ0,γ0(Q) : I◦eϕ0,γ0

(Q)]
.
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Proof. This is proven in the last paragraph of the proof of Lemma 3.7.6 in [KSZ21]. (In their notation, ιH(ε) =
[Hε(Q) : H◦ε (Q)] and ιH(ε) = |(Hε/H◦ε )(Q)|.)

Lemma 4.5.10. In the setting of 4.5.8, we have

|D(ϕ0, γ0)| = ∑
(a′ ,[b′0])

|XG(Q, I◦ϕ0,γ0
)|,

where the sum runs over pairs (a′, [b′0]) such that (γ0, a′, [b′0]) is an acceptable b-admissible Kottwitz parameter with trivial
Kottwitz invariant, and XG is defined as in 2.5.12.

Proof. Having fixed an LR pair (ϕ0, γ0) (and not simply a conjugacy class), [KSZ21, Prop. 3.6.2(iii)] tells us that
twisting by an element e ∈ Z1(Q, I◦ϕ0,γ0

) representing a class in X∞
G (Q, I◦ϕ0,γ0

) results in a well-defined Kottwitz
parameter tτ(eϕ0, γ0) (not simply an isomorphism class). Thus we can write

D(ϕ0, γ0) = ⨿
(a′ ,[b′0])

D(a′ ,[b′0])
,

where (a′, [b′0]) runs over all pairs for which (γ0, a′, [b′0]) forms a Kottwitz parameter isomorphic to (γ0, a, [b0]),
and D(a′ ,[b′0])

⊂ D(ϕ0, γ0) is the subset of twists giving rise to the Kottwitz parameter (γ0, a′, [b′0]).
If D(a′ ,[b′0])

is non-empty, then by [KSZ21, Prop. 3.6.2] it must be a coset of XG(Q, I◦ϕ0,γ0
) inside X∞

G (Q, I◦ϕ0,γ0
)

(note that that proposition only uses their “pn-admissible” hypothesis to show that [b0] is basic, which we know
by our “acceptable” hypothesis). The proof that D(a′ ,[b′0])

is indeed non-empty proceeds precisely as in the proof
of [KSZ21, Lem. 3.7.6] (where they call this set Di), replacing their Lemma 3.6.2 with our Lemma 4.4.2 and their
Proposition 3.6.1 with our Lemma 4.2.15.

Since (eϕ0, γ0) is a gg acceptable pair in the last two lemmas, we are in the situation of 4.3.6 and we can
equally well replace Ieϕ0,γ0 and I◦eϕ0,γ0

by Gγ0 and G◦γ0
, respectively. With Lemmas 4.5.9 and 4.5.10 applied to

Proposition 4.5.7, our point-counting formula is transformed into the following final form.

Theorem 4.5.11. For every ϱ-acceptable function f ∈ C∞
c (G(A

p
f )× Jb(Qp)), we have

tr( f | Hc(IgΣ,Lξ)) = ∑
γ0∈ΣR−ell(G)

∑
(a,[b0])∈KP(γ0)

|XG(Q, G◦γ0
)|

|(Gγ0 /G◦γ0
)(Q)| vol

(
I◦c (Q)\I◦c (A f )

)
O

G(A
p
f )×Jb(Qp)

γ×δ ( f ) tr ξ(γ0)

where Ic is the inner form of G◦γ0
associated with the Kottwitz parameter c = (γ0, a, [b0]) as in 4.5.4, and γ, δ are coming

from the classical Kottwitz parameter (γ0, γ, δ) = cl(c) as in 4.2.18.
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