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Abstract. The goal of these lecture notes is to survey progress on the global

Langlands reciprocity conjecture for GLn over number fields from the last

decade and a half. We highlight results and conjectures on Shimura varieties
and more general locally symmetric spaces, with a view towards the Calegari–

Geraghty method to prove modularity lifting theorems beyond the classical
setting of Taylor–Wiles.
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1. Introduction

The Langlands reciprocity conjecture for GLn predicts a precise correspondence
between automorphic representations of GLn and n-dimensional `-adic Galois rep-
resentations over each global field. Over global function fields, this is a celebrated
theorem by L. Lafforgue. While the conjecture is still open over number fields,
Shimura varieties have been at the center of our approach to the problem ever
since Eichler, Shimura, Deligne, Ihara, and Langlands analyzed the special case of
modular curves. This led to the birth of the Langlands–Kottwitz–Rapoport (LKR)
method, consisting of a web of conjectures concerning the geometry of Shimura
varieties and the endoscopic classification of automorphic representations, to study
the `-adic cohomology of Shimura varieties. The LKR method almost reached the
current form at the conjectural level in the 1990s, though there still remains much
to be investigated.

In the early 2010s, new perspectives on Shimura varieties and their cohomology
emerged in connection with Langlands reciprocity conjecture. Calegari–Geraghty
proposed that many new cases of modularity would be accessible if we better under-
stood the torsion cohomology of locally symmetric spaces, of which (the underlying
manifolds of) Shimura varieties are examples; in particular if we had “torsion” Ga-
lois representations attached to the torsion cohomology classes. The existence of
such Galois representations appeared to be a mere dream apart from some computa-
tional evidence in low rank, but Scholze’s revolutionary use of perfectoid Shimura
varieties realized the torsion Galois representations. These developments stimu-
lated further progress on the cohomology of Shimura varieties and locally sym-
metric spaces with torsion coefficients, as well as the modularity lifting theorems
themselves, with a view towards implementing the Calegari–Geraghty method in
some key cases, for example for elliptic curves over CM fields or for abelian surfaces
over totally real fields.

Our goal in this survey is to give a gentle introduction to the aforementioned
conjectures and results with an emphasis on the role of Shimura varieties. In § 2.1 we
review the Langlands reciprocity conjecture for GLn with both characteristic 0 and
torsion coefficients. The rest of § 2 is devoted to one direction of the conjecture,
from the automorphic side to the Galois side. After a brief review of the LKR
method and its consequence on the so-called conjugate self-dual case (§ 2.3), we
proceed to the perfectoid geometry of Shimura varieties and its application to the
construction of torsion Galois representations (§ 2.4).

In § 3 we give a brief introduction to the Calegari–Geraghty method for prov-
ing modularity lifting theorems in the setting of the Betti cohomology of locally
symmetric spaces for GLn over a general number field F . This is a generalization of
the famous Taylor–Wiles method. Firstly, in § 3.1, we discuss the prerequisites to
the Calegari–Geraghty method - what we need to understand about torsion in the
cohomology of these locally symmetric spaces in order to implement the method.
We state several conjectures and discuss the state-of-the-art results towards them.
Secondly, in § 3.2, we aim to give the reader a flavour of the method by contrasting
it with the original Taylor–Wiles method. We sketch both methods in special cases
in order to highlight the role of the various conjectures on locally symmetric spaces.

In § 4, we revisit Shimura varieties and the emerging web of conjectures con-
cerning their cohomology with torsion coefficients. In § 4.1, we discuss the geometry
of the Hodge–Tate period morphism, which has been instrumental in computing
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a suitably generic part of the cohomology of these Shimura varieties and which is
likely to play a fundamental role in obtaining a full understanding. In § 4.2, we
discuss several different approaches towards computing the generic part of the co-
homology of Shimura varieties PEL type A and point towards generalizations. In
§ 4.3, we come back full circle and discuss applications of these results to modularity
via the boundary of the Borel–Serre compactification of these Shimura varieties.

Finally, we confess that we have barely touched on exciting new directions in
the Langlands program such as the derived and categorical aspects as well as further
new geometry over local nonarchimedean fields. The reader is urged to refer to [56],
[49], and [53] in these proceedings to learn about them.

1.1. Notation and conventions. Given a mathematical object V over a ring
R (or SpecR) such as a module or a scheme, let VR′ denote the base change of V
along a ring homomorphism R→ R′.

When k is a field, let k denote its separable closure. For a finite extension k′/k
write Resk′/k for the functor carrying algebraic groups over k′ to those over k. When
k′/k is a Galois extension, write Γk′/k for the Galois group, and set Γk := Γk/k. If

k is a global field, Ak will mean the ring of adèles. Given S a finite set of places of
k, denote by ASk the ring of adèles away from S (with the S-components removed
from Ak). When S is the set of infinite places of k, we also write A∞k . If k is a
global field and v is a place of k, write Wkv for the local Weil group over kv. Upon
choosing a k-algebra embedding iv : k ↪→ kv, we have induced embeddings of Wkv

and Γkv into Γk. The conjugacy class of each induced embedding is independent
of the choice of iv. As this is harmless for representation-theoretic considerations,
we will usually keep the choice of iv implicit. If v a finite place, let Frobv denote a
geometric Frobenius element at v in Wkv or Γkv (or in Γk via iv).

Let G be a connected reductive group over a global field F . We fix a quasi-
split inner form G∗ of G over F together with an inner twist GF ' G∗

F
and a

pinning for G∗ defined over F . Accordingly, as in [89, §1.2], we fix the dual group

Ĝ = Ĝ∗ with an L-action as well as a ΓF -equivariant bijection between the dual
root datum of G and the root datum of Ĝ. This determines the L-group ĜoWF

as in loc. cit., which is useful in the study of endoscopy, but when considering
`-adic Galois representations valued in the L-group, we take the more convenient
definition LG := Ĝ o Gal(F ′/F ) for a finite Galois extension F ′ of F over which
G becomes split; this makes sense as the L-action factors through Gal(F ′/F ). We
will be only brief about C-groups, but the C-group of G can be formed using the
Galois group for the same F ′ over F . (It turns out that the choice of F ′ does not
matter for our purpose.) The pinning for G∗ determines a hyperspecial subgroup
K∗v ⊂ G∗(Fv) at every finite place v where G∗ is unramified (e.g., see [142, §4.1]).
Thereby, via the inner twist, a hyperspecial subgroup Kv ⊂ G(Fv) is determined
at every v where G is unramified.

When ρ is a finite dimensional representation of a group, write ρss for its
semisimplification. If ρ is a continuous representation, so is ρss.

By convention, the algebraic groups Sp2g and GSp2g are defined over Z by the

symplectic form on Zg × Zg given by ((ai), (bj)) 7→
∑g
i=1(aibg+i − ag+ibi).

Write Cp for the completion of Qp, and OCp for the ring of integers in Cp.
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2. Construction of Galois representations with torsion coefficients

2.1. Conjecture and Main Theorems. We recall Buzzard–Gee’s formula-
tion of the global Langlands correspondence for reductive groups in the automorphic-
to-Galois direction. Then we specialize to the case of general linear groups to state
the main theorem of this section, with both characteristic zero and torsion coef-
ficients. Throughout this section, let G be a connected reductive group over a
number field F . We adopt the convention of § 1.1 for the pinning and L-group LG
of G. In particular, LG is the semi-direct product of the dual group Ĝ and a finite
Galois group over F .

2.1.1. On L-normalization vs C-normalization. Buzzard–Gee [24] introduce
the notion of L-algebraicity, resp. C-algebraicity, for automorphic representations π
of G(AF ), according as the infinitesimal characters of the archimedean components
of π are integral, resp. integral after shifting by the half sum of positive roots of G.
(These conditions will be made explicit for G = GLn below.)

They go on to formulate precise conjectures on the corresponding Galois rep-
resentations, building upon Clozel’s work [40]. In the C-algebraic case, the Galois
representations are valued in the so-called C-group CG of G, which can be thought
of either as the L-group of a natural Gm-extension of G [24, §5.3], or as a certain
semi-direct product of LG with Gm, cf. [145, §1.1].

In this article, we are mainly interested in automorphic representations con-
tributing to the cohomology of locally symmetric spaces, which are always C-
algebraic [24, §7.2] (but not necessarily L-algebraic). Hence the associated Galois
representations are to be valued in CG(Q`); compare the conjectures in § 3.2 and
§ 5.3 of [24]. As such, Conjecture 2.1 below should be stated with CG in place
of LG in general. However we made the deliberate choice to use LG everywhere
in favor of simplicity, as this is harmless for G = GLn, our main case of interest.
In fact, CG is isomorphic to the direct product of LG and Gm for GLn and many
other reductive groups (for instance if ρad lifts to a cocharacter of Ĝ; see [145, §1.1,
Example 2 (3)]). For such groups, we can project from CG to LG and forget about
the Gm-factor in CG (since the Galois representation into Gm(Q`) should be given
by the `-adic cyclotomic character, no information is lost). Thereby LG can be
used as the target group of Galois representations.
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Here is an alternative perspective. Whenever G admits a twisting element
in the sense of [24, §5.2], which is the case for G = GLn, one can always twist
a C-algebraic representation π by a character to make it L-algebraic. Since L-
algebraic automorphic representations are expected to correspond to LG-valued
Galois representations, Conjecture 2.1 should be fine as written as long as the
twisting element is incorporated into the statement.

2.1.2. The Buzzard–Gee conjecture. Let ` be a prime. Fix a field isomorphism
ι : C ∼→ Q` (disregarding topology). Let S be a finite set of places of F including all
places above ` or∞ as well as the places where G is ramified. Write S∞ ⊂ S for the
subset of finite places. Let Kv ⊂ G(Fv) be a family of hyperspecial subgroups at
finite places v /∈ S, chosen at almost all places following § 1.1. Set F∞ := F ⊗Q R.
Let K∞ ⊂ G(F∞) be a maximal compact subgroup, and K0

∞ its neutral component
in the archimedean topology. Set K ′∞ := K0

∞AG(R)0, where AG is the maximal
Q-split subtorus in ResF/QZG.

Define Aac(G,F ) to be the set of C-algebraic cuspidal automorphic represen-
tation of G(AF ). Write Arac(G,F ) for the subset consisting of π ∈ Aac(G,F )
that is regular, i.e., πv has regular infinitesimal character at all infinite places v
of F . Define Acoh(G,F ) to be the set of L2-discrete automorphic representations
π of G(AF ) which are cohomological, i.e., there exists an irreducible algebraic rep-
resentation ξ of (ResF/QG) ×Q C such that the relative Lie algebra cohomology
H∗(LieG(F∞),K ′∞, π∞ ⊗ ξ) is non-vanishing in some degree. Write Acoh,c(G,F )
for the subset of cuspidal members in Acoh(G,F ). We have the inclusions

(2.1) Acoh,c(G,F ) ⊂ Arac(G,F ) ⊂ Aac(G,F ).

The second inclusion is strict unless G is a torus. The first inclusion turns out to be
an equality for G = GLn by [40, §3]; for general G, the equality should follow from
[114, Thm. 1.8]. A superscript S over each set will mean the subset consisting of
π such that πv is unramified for every v /∈ S.

Let k ∈ {F`,Q`,C} with the discrete topology on F` and the usual topology on
Q`,C. Here is a variant ofAcoh(G,F ) with k-coefficients. LetKS∞ ⊂

∏
v∈S∞ G(Fv)

be a sufficiently small open compact subgroup, which is allowed to vary. Take
K = KS∞ ×

∏
v/∈S Kv ⊂ G(A∞F ). Consider the locally symmetric space

(2.2) YK := G(F )\G(AF )/KK ′∞.

The double coset algebra TS := Z[KS\G(ASF )/KS ], referred to as the (abstract)
Hecke algebra (away from S), acts on the Betti cohomology:

(2.3) TS 	
⊕
i≥0

(
lim−→
KS∞

Hi(YK , k)
)
.

Let HEScoh(G,F )k denote the set of eigencharacters TS → k appearing in (2.3),
which are also known as Hecke eigensystems or Hecke eigencharacters. We often
denote an eigencharacter by its kernel m ⊂ TS , which is a maximal ideal, under-
standing that the eigencharacter also comes with an embedding TS/m ↪→ k. For

S ⊂ S′ there is a natural inclusion HEScoh(G,F )k ⊂ HES
′

coh(G,F )k compatibly with

the obvious map TS′ → TS .
We can define a more general set HEScoh(G,F )′k by replacing the coefficient field

k in (2.3) with local systems arising from irreducible algebraic representations of
ResF/QG (or a suitable integral model thereof, if char(k) > 0) on k-vector spaces.
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When k = C, we have a natural map

(2.4) AScoh(G,C)→ HEScoh(G,F )′C.

The map assigns to each π the Hecke eigensystem arising from πS . This map is an
injection for G = GLn by the strong multiplicity one theorem but not in general.
When k = F`, it turns out that HEScoh(G,F )′k = HEScoh(G,F )k, namely no new
Hecke eigensystems are obtained from non-constant coefficients. This ultimately
comes from the fact that a continuous representation of an `-adic reductive group
on a finite-dimensional F`-space is trivial on an open subgroup. (To apply this fact,
note that the places of F over ` are in S and that the limit is taken over open
compact subgroups at such places in (2.3).)

Define G(LG,F )k to be the set of weak equivalence classes of continuous semisim-
ple representations ρ : ΓF → LG(k) that are unramified at almost all places of F ,
where ρ1 and ρ2 are considered weakly equivalent if the semisimple parts ρ1(Frobv)ss

and ρ2(Frobv)ss are Ĝ(k)-conjugate at every finite place v - ` where both ρ1 and
ρ2 are unramified. When k = Q`, we introduce the subset GdR(LG,F )Q` consisting

of ρ ∈ G(LG,F )Q` such that ρ|ΓFv is a de Rham representation at every v|`. (An

L-group valued representation is said to be de Rham if its composition with some,
thus every, faithful representation of LG is de Rham in the usual sense.) As in
the automorphic case, if we write GS in place of G, it denotes the subset of (weak
equivalence classes of) ρ which are unramified outside S.

We are ready to state a coarse form of the Buzzard–Gee conjecture (cf. the
conjectures in [24, §3.2, §5.3], and their refinements [75, §4] in the cohomological
case); this is statement (1) below. An analogous conjecture with F`-coefficients was
suggested by Ash [8, 7], at least for G = GLn; see statement (2) below. (Recall
from § 2.1.1 that C-groups should be used to state the conjecture in general, but
that we are glossing over this point.)

Conjecture 2.1. The following are true.

(1) There exists a map (which depends on the choice of ι)

GLCG,Q` : ASac(G,F )→ GSdR(LG,F )Q` , π = ⊗′vπv 7→ ρπ,ι,

such that ιπv corresponds to (ρπ,ι|ΓFv )ss via the unramified local Lang-
lands correspondence at all v /∈ S.

(2) There exists a map

GLCG,F` : HEScoh(G,F )F` → G
S(LG,F )F` , m 7→ ρm,

such that ρm is unramified at v /∈ S and such that char(ρm(Frobv)) is
explicitly described in terms of the Hecke eigenvalues at v encoded in m
for every v /∈ S.

If true, part (1) of the conjecture assigns to each π a (weakly) compatible
system of Galois representations as the prime ` and the isomorphism ι vary in the
following sense: for ι : C ∼→ Q` and ι′ : C ∼→ Q`′ , the conjugacy classes (ρπ,ι|ΓFv )ss

and (ρπ,ι′ |ΓFv )ss are conjugate via ι′ι−1 and moreover defined over Q.
In fact the conjecture by Buzzard–Gee is more precise than part (1) above

in that the Hodge–Tate cocharacter and the image of complex conjugations are
predicted for ρπ,ι. On the other hand, it is nontrivial to formulate the correct
local-global compatibility at ramified places in both (1) and (2). Already in (1)
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(the problem is worse in (2)), one reason is that the local L-packets and A-packets
are only conjectural in general; another problem is the so-called CAP (cuspidal but
associated with parabolic subgroups) automorphic representations. However the
situation is somewhat favorable for G = GLn as we will see below.

The maps GLCG,Q` and GLCG,F` do not uniquely characterize the isomorphism

classes of ρπ,ι and ρm even if the isomorphism classes of ρπ,ι|ΓFv are prescribed at
all places v of F . (See [97, 96] for related discussions.) This is why we phrase the
conjecture in terms of weak equivalence classes of Galois representations. Moreover,
the maps GLCG,Q` and GLCG,F` are not expected to be either injective or surjective.

When the coefficient is Q`, the failure of injectivity is related to the presence of
local packets; the problem with surjectivity amounts to describing the image of
GLCG,Q` , which should incorporate the phenomenon of global A-packets among

other things.

Remark 2.2. The preceding discussion suggests that the characteristic 0 ana-
logue of HEScoh(G,F )F` should be AScoh,c(G,F ) or HEScoh(G,F )′k with k ∈ {C,Q`},
which is less general than ASac(G,F ). Then it is natural to ask whether ASac(G,F )
admits mod ` automorphic analogues, such that the latter accommodates “mod `”
of non-regular members of ASac(G,F ) in particular. In the special case when G is
part of a Shimura datum, a partial answer may be given by the coherent cohomol-
ogy (see the introductory paragraphs in §3) with mod ` coefficients. Other than
that, the authors have no idea.

2.1.3. The GLn-case. Now we specialize to the case of G = GLn, and give more
precise statements and results. Let k ∈ {F`,Q`,C} as before. In this case, we write

A(n, F ), HEScoh(n, F )k, G(n, F )k for A(GLn, F ), HEScoh(GLn, F )k, G(GLn, F )k, and
likewise with more superscripts and subscripts. Each member of G(n, F )k is repre-
sented by an n-dimensional representation ΓF → GLn(k), and each weak equiva-
lence is the same as an isomorphism class in the usual sense.

For each π ∈ A(n, F ) and each embedding τ : F ↪→ C, which determines an
archimedean place v of F together with Fv ↪→ C, the infinitesimal character of
πv may be viewed as a multi-set of n complex numbers by the Harish-Chandra
isomorphism, to be denoted by HCτ (π). Then π is C-algebraic if and only if
HCτ (π)− n−1

2 is integral (i.e., a ∈ Z + n−1
2 for all a ∈ HCτ (π)) for every τ .

We start by specifying the normalization of local Langlands in part (1) of
Conjecture 2.1. Let LL denote the unramified local Langlands correspondence
for GLn over Fv with C-coefficients, with v non-archimedean, carrying Satake pa-
rameters to the eigenvalues of geometric Frobenius elements.1 Then our require-
ment on π 7→ ρπ,ι is that the semisimplification of ι−1ρπ,ι|WFv

is isomorphic to

LL(πv ⊗ | det |(1−n)/2). In this case, the Hodge–Tate weights of ρπ,ι relative to

τ : F ↪→ Q` (defined in [108, §2.2.2], for example) should be given by the multi-set
HCι−1τ (π) + n−1

2 .
Next we make part (2) of Conjecture 2.1 concrete. At each finite place v of F

not above `, write qv for the residue field cardinality at v, and $v for a uniformizer

1That is, if continuous characters χi,v : F×v → C× and σi,v : WFv → C× correspond via

local class field theory (normalized to match uniformizers of Fv with geometric Frobenius elements
of WFv ) for i = 1, ..., n, then the unique irreducible unramified subquotient of the normalized
parabolic induction of ⊗ni=1χi,v from

∏n
i=1 GL1(Fv) to GLn(Fv) is sent to the n-dimensional

representation ⊕ni=1σi,v of WFv .
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of Fv. The square root q
1/2
v ∈ R×>0 is viewed as an element of Q×` via ι, or as an

element of F×` via the reduction map (since q
1/2
v is an `-unit). When v /∈ S, define

Tv,i to be the double coset operator Kv

(
$vIi 0

0 In−i

)
Kv, which is independent of

the choice of $v and viewed as an element of TS . There is a “universal” Hecke
polynomial

Hv(x) := xn − Tv,1xn−1 + qvTv,2x
n−2 + · · ·+ (−1)nqn(n−1)/2

v Tv,n ∈ TS [q1/2
v ][x].

The Hecke polynomial for each Hecke eigencharacter m ∈ HEScoh(n, F )k at v is
defined by applying it to the coefficients of Hv:

Hv(x)/m ∈ (TS/m)(q1/2
v )[x] ⊂ k(q1/2

v )[x].

When k = F`, the condition at each v in Conjecture 2.1 (2) can now be made
concrete: it is the equality

(2.5) char(ρm(Frobv)) = Hv[x]/m.

When k = Q`, if mπ denotes the image of π ∈ AScoh(n, F ) under (2.4) via ι : C ' Q`,
then the equality (2.5) is equivalent to the condition in Conjecture 2.1 (1) that ιπv
corresponds to (ρπ,ι|ΓFv )ss. Thus the two parts of Conjecture 2.1 are consistent
through the operation of taking mod ` on the Galois side.

In the conjecture for G = GLn, the representations ρπ,ι and ρm are uniquely
characterized by the Brauer–Nesbitt theorem and the Chebotarev density theorem.
The map GLCn,Q` , if exists, must be injective by the strong multiplicity one theorem

for GLn. The conjectural map GLCn,Q` should also be injective in view of (2.5).

For each real place v of F , write cv ∈ ΓF for a complex conjugation at v (well-
defined up to conjugacy). Every Galois representation ρ in the image of ASrac(n, F )
under GLCn,Q` is believed to be odd in the sense that |tr ρ(cv)| ∈ {0,±1} at every

real place v of F . (Some non-regular π ∈ ASac(n, F ) also correspond to odd Galois
representations, e.g., if π comes from a holomorphic cuspidal eigenform of weight
1.) Similarly every ρ in the image under GLCn,F` is expected to be odd, i.e.,

|tr ρ(cv)| ∈ {0,±1} at every real v. See §2.2.5 below for known results. Our
definition of oddness does not coincide with the one often found in the literature
(e.g., [52, Def. 1.2]) if n > 2; see Remark 2.3 below for a discussion.

We make further observations on Conjecture 2.1. In this case, the image of
ASac(n, F ) under GLCn,Q` is believed to be exactly the irreducible representations

in GSdR(n, F )Q` . (The dictionary in the GLn-case is that cuspidality corresponds to

irreducibility through GLCn,Q` .) At least when F is totally real, one could guess

that an irreducible ρ ∈ GS(n, F )F` belongs to the image of GLCn,F` exactly when ρ
is odd. This is reasonable for n = 2 as predicted by the Serre modularity conjecture
for Hilbert modular forms. However the situation is unclear for n > 2 as it does
not seem known whether ρ lifts to some ρ ∈ GSdR(n, F )Q` even at the expense of

“raising the level”; this case is not covered by lifting results in the literature such
as [52, Thm. A].

Remark 2.3. One may partly extend from GLn to a general G the expectation
that the Galois representations arising from ASrac(n, F ) should be odd. We propose
the following notion of oddness for ρ ∈ GSdR(LG,F )Q` . For each real place v of

F , write MFv for a fundamental Levi subgroup of GFv (which is unique up to
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G(Fv)-conjugacy). Then ρ is said to be odd if ρ(cv) at every real place v is Ĝ(Q`)-
conjugate to a conjugacy class in LMFv (Q`) satisfying Gross’s oddness condition
for MFv as stated in [52, Def. 1.2] (which applies when the coefficient field is either
Q` or F`). If GFv contains an elliptic maximal torus then MFv = GFv , so our
oddness coincides with that of [52, Def. 1.2], but not in general, e.g., for GLn
with n > 2. In the latter case, our oddness is equivalent to the condition that
|tr ρ(cv)| ∈ {0,±1} at real places v. It seems reasonable to guess that whenever
π ∈ Acoh,c(G,F ) has a local component that is generic (which should be equivalent
to having generic components at almost all places by a version of the Shahidi
conjecture), the corresponding Galois representation should be odd in our sense.
We leave the reader to formulate the analogues for the case of torsion coefficients.

To state results towards the above conjecture, we introduce some terminology.
Let F be a totally real field, or a CM field (a totally imaginary quadratic extension of
a totally real field). Such an F admits a complex conjugation c that is independent
of how F is embedded into C. Write F+ for the fixed subfield of F by c, and NF/F+

for the norm map (which is the identity map if F is totally real). By definition
π ∈ Aac(n, F ) is said to be essentially conjugate self-dual if π◦c ' π∨⊗(χ◦NF/F+)

for a Hecke character χ : (F+)×\A×F+ → C×. (In fact an additional parity condition
used to be imposed on χ when F = F+, but the condition was shown to be
superfluous by [107].) Write Ã?(n, F ) for the subset of essentially conjugate self-
dual representations in A?(n, F ) for ? ∈ {ac, rac}. Let A1

?(n, F ) denote the subset
of conjugate self-dual members, namely π such that π ◦ c ' π∨. If F is totally real,
the word “conjugate” is usually omitted everywhere.

Here is the main theorem of this section. (See the end of § 2.2, resp. § 2.4, for
known results on local-global compatibility at v ∈ S and other comments.) Part
(1) is due to Harris–Lan–Taylor–Thorne [71]. Shortly thereafter, Scholze [119]
proved both parts by a different method based on perfectoid Shimura varieties and
Hodge–Tate period morphisms. Boxer’s thesis [22] suggests an alternative path for
both parts.

Theorem 2.4. Let F be a totally real or CM field, and ι as above.

(1) There exists an injection

GLCn,Q` : ASrac(n, F )→ GSdR(n, F )Q` , π 7→ ρπ,ι,

such that ιπv corresponds to (ρπ,ι|ΓFv )ss via the unramified LLC at all
v /∈ S.

(2) There exists a map

GLCn,F` : HEScoh(n, F )F` → G
S(n, F )F` , m 7→ ρm,

such that char(ρm(Frobv)) = Hv(x)/m for every v /∈ S.

From now, restrict F to be a totally real or CM field. We follow Scholze’s proof
as it has further applications as presented in § 4. The proof breaks up into two
main parts, carried out in the following order:

(A) Prove Theorem 2.4 (1) for π ∈ Ãrac(n, F ).
(B) Prove Theorem 2.4 (2) and its analogue for mod `m-coefficients, m ≥ 1.

Part (A) was completed by a combination of works by Clozel, Kottwitz, et al.,
spanning over nearly two decades, before Theorem 2.4 was proved in general; see
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§ 2.2.5 for a guide to references. The argument will be reviewed in § 2.2. Expla-
nation of Part (B) will take up § 2.3–§ 2.4 below. Once this is done, Theorem 2.4
(1) in full follows from (2) by realizing π in the cohomology and “gluing” Galois
representations modulo powers of `. See the proof of [119, Cor. 5.4.2] for details.

Remark 2.5. Before we restrict ourselves to the regular or cohomological case
from now on, let us mention several results on Conjecture 2.1 in the non-regular
case. The basic principle is that we can often prove the conjecture when π con-
tributes to the so-called coherent cohomology of Shimura varieties (even if π is not
cohomological, i.e., not appearing in the Betti cohomology). When G = GL2 over
Q, such π come from weight 1 cuspforms. Deligne–Serre [47] proved the conjecture
in this case. For GL2 over a totally real field, the problem is about Hilbert cusp-
forms of partial weight 1. Here the result is due to Rogawski–Tunnell, Ohta, and
Jarvis. (See [74] and the references therein.) In semisimple rank greater than 1,
there has been much progress since Taylor’s work [135] on GSp4 over Q; see the
last paragraph of § 2.4 for recent results. All of these results rest on variants and
generalizations of Hasse invariants to be discussed in § 2.4.

However we stress that Conjecture 2.1 is still unsettled even when G = GL2 over
Q. The remaining π (which do not show up in either coherent or Betti cohomology
of modular curves) correspond to Maass cuspforms. Except when π arise from Hecke
characters over real quadratic fields via automorphic induction (the conjecture is
reduced to class field theory for such π), very little is known.

2.2. The conjugate self-dual case. This subsection sketches the proof of
the following special case for essentially conjugate self-dual representations.

Theorem 2.6. Theorem 2.4 (1) is true if π ∈ Ãrac(n, F ).

In fact there is a standard argument, cf. the proofs of [11, Thm. 1.1, 1.2] and
[45, Prop. 4.3.1], to reduce the proof of Theorem 2.6 to the following case, so we
will assume it throughout § 2.2:

• F is a CM field, and π ∈ Ã1
rac(n, F ).

2.2.1. Setup. Before getting to the proof of Theorem 2.6, we explain the basic
strategy to make progress towards constructing the map GLCG,Q` in an idealized

setup, based on the Langlands–Kottwitz–Rapoport method for the cohomology of
Shimura varieties.

Let (G,X) be a Shimura datum [46, §2.1.1]; see § 2.3.1 of Caraiani’s article
in [14] for further explanation. Thus G is a connected reductive group over Q,
and X is a Hermitian symmetric domain with a transitive G(R)-action. From
X we obtain a conjugacy class [µX ] of cocharacters Gm,C → GC. Then [µX ] is
defined over a number field E := E(G,X) ⊂ C called the reflex field. We fix a ΓQ-

pinning (B̂, T̂ , {X̂α}). From the inverse of [µX ] we obtain a B̂-dominant character

−µ ∈ X∗(T̂ ), which is then fixed by the ΓE-action. So there exists a representation

r−µ : LGE = Ĝo ΓE → GL(V−µ),

characterized uniquely up to isomorphism by the two conditions: r−µ|Ĝ is an irre-
ducible representation of highest weight −µ, and ΓE acts trivially on the highest
weight space.

We have a projective system of canonical models of Shimura varieties Sh =
(ShK), which are quasi-projective smooth varieties over E and labeled by neat
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open compact subgroups K ⊂ G(A∞). The system Sh is equipped with the “Hecke”
action defined over E by G(A∞). Each ShK(C) is a complex manifold, identified
with YK in (2.2) by construction (except the technical point that K ′∞ may be
replaced with a larger subgroup of G(R) in which K ′∞ has finite index). Each
ξ ∈ Irr((ResF/QG)C) gives rise via ι to lisse Q`-sheaf Lξ,K over ShK compatibly
with respect to the transition maps between (ShK). The étale cohomology with
compact support

(2.6) Hi
ξ,c := lim−→

K

Hi
c(ShK ×EE,Lξ,K), i ∈ Z≥0,

is a G(A∞)×Gal(E/E)-module, and

[Hξ,c] :=
∑
i≥0(−1)i[Hi

ξ,c]

is a virtual G(A∞)×Gal(E/E)-module (viewed in the Grothendieck group; see [72,
pp.23–25]).

2.2.2. The Langlands–Kottwitz–Rapoport (LKR) method. This is a systematic
way to compute [Hξ,c] at each rational prime p 6= `. We restrict ourselves to the
case where Shimura varieties have good reduction modulo p; see §2.4 below for the
case of bad reduction.

Let p be a prime of E above p. Assume that GQp is an unramified group
and fix a hyperspecial subgroup Kp ⊂ G(Qp). As (sufficiently small) open compact
subgroups Kp ⊂ G(A∞,p) vary, we have a projective system ShKp := lim←−Kp

ShKpKp

over E equipped with a G(A∞,p)-action. By taking the limit in (2.6) over Kp, we
can define Hi

ξ,c,Kp
, which is the Kp-fixed subspace of Hi

ξ,c, as well as a virtual

G(A∞,p)×Gal(E/E)-module [Hξ,c,Kp ]. Let p be a prime of E above p. The LKR
method aims to show that the local Galois action at p is unramified and to describe

the virtual G(A∞,p)× FrobZ
p-module [Hξ,c,Kp ]

via automorphic representations. The method consists of the following steps.

(1) Construct an integral model SKp of ShKp over OE,p, which is canonical
in the sense of [83].

(2) Establish a trace formula for the action of G(A∞,p)× FrobZ
p on [Hξ,c,Kp ]

by studying the structure of points on SKp modulo p.
(3) Stabilize the trace formula.
(4) Compare the outcome with the stabilization of the Arthur-Selberg trace

formula to obtain a representation-theoretic description of [Hξ,c,Kp ].

Part (1) was done for PEL-type Shimura varieties by Kottwitz [87] and for
abelian-type Shimura varieties by Kisin [83] (p > 2) and Kim–Madapusi Pera [79]
(p = 2). Until recently, the best result on (2) and (3) has been due to Kottwitz
[86, 87] in the case of PEL-type Shimura varieties. This has been used to carry
out (4) in some important special cases, which were enough to prove Theorem 2.6.

Now the first two steps are complete more generally for Shimura varieties of
abelian type in [81] following [84]; the key is the proof of a version of the Langlands–
Rapoport (LR) conjecture regarding the structure of points in (2). (The work of
Kottwitz [87], and its recent extension to the case of Hodge type by Lee [98]
bypasses the LR conjecture. However the LR conjecture seems essential to deal
with abelian-type Shimura varieties.) The outcome has been employed to prove
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new cases of Conjecture 2.1 (2) for the groups GSp2n and certain quasi-split forms
of GSO2n over totally real fields. Further applications are being worked out in [80].

2.2.3. Idealized situation. Kottwitz gave a conjectural description of the inter-
section cohomology version of [Hξ,c] (thus also [Hξ,c,Kp ]) in [86, §10] but it is quite
complicated. To convey the basic principle, we restrict our attention to the π∞-
isotypic part of the cohomology, where π ∈ Acoh(G,Q), and make the following
simplifying hypotheses:

(a) Gad is anisotropic over Q,
(b) π is essentially tempered at every place,
(c) we pretend that endoscopy disappears (e.g., conjugacy classes are stable

conjugacy classes, and L-packets are singletons).

Hypothesis (c) is satisfied if G is an inner form of (restriction of scalars of) GL2 but
typically false unless we restrict attention to only a certain subset of π. Hypothesis
(a) implies that Shimura varieties and their canonical integral models are proper
over the base, so that there is no need for compactification; thus we freely write Hξ

instead of Hξ,c. The same hypothesis also implies that each Hi
ξ,c is a semisimple

G(A∞)-module via Matsushima’s formula, since the L2-automorphic spectrum is
semisimple. Hypothesis (b) is supposed to ensure that π contributes to cohomology
only in the middle degree, namely Hd

ξ where d := dim Sh. Consider the assignment

(2.7) π 7→ Rπ,µ,ι := HomG(A∞)(π
∞, Hd

ξ ).

If we had ρπ,ι (whose construction is our goal), then our expectation, i.e., the
Kottwitz conjecture, is essentially that

(2.8) Rπ,µ,ι = r−µ ◦ ρπ,ι
up to twists having to do with normalizations. This leads to:

An approach to Conjecture 2.1. Suppose F = Q. Given G, ι and π, choose
(possibly several) Shimura data and study the resulting representations Rπ,µ,ι.
From this, construct ρπ,ι and show the desired properties of ρπ,ι.

Remark 2.7. If F 6= Q in Conjecture 2.1, then the group G over F in the
conjecture will differ from the reductive groups used in Shimura data, because the
latter are always over Q. Often the latter is chosen to be a form of ResF/QG.

Let us illustrate the mechanism for unitary groups in relation to Theorem 2.6.
Let F be a CM field. We fix an algebraic closure Q ⊂ C. Put F+ := F c=1 for the
totally real subfield fixed by c. Choose a CM type Φ, namely a representative for
the coset space Gal(F/F+)\HomQ(F,Q), so that we have the identification

F ⊗Q R =
∏
τ∈Φ C, s⊗ t 7→ (τ(s)t).

Consider a unitary group U over F+ for the n-dimensional Hermitian space W
over F (with respect to F/F+) whose signature at each τ ∈ Φ is (aτ , bτ ) with
aτ + bτ = n. We identify U ×F+ R = U(aτ , bτ ), where the latter is the real unitary
group for the form

((zi), (wj)) ∈ Cn × Cn 7→
∑aτ
i=1 ziwj −

∑n
i=aτ+1 ziwi.

Now define G := ResF+/QU . Consider the R-morphism h : ResC/RGm → GR =∏
τ∈Φ U(aτ , bτ ), which on R-points sends z ∈ C× to the block diagonal matrix
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diag((z/z)Iaτ , Ibτ ). Setting X to be the G(R)-conjugacy class of h, we obtain a
Shimura datum (G,X). In this example, we have

Ĝ =
∏
τ∈Φ

GLn(C), µ(z) = (diag(zIaτ , Ibτ )),

if we take the upper triangular Borel subgroup in the pinning of Ĝ. So

(2.9) V−µ|Ĝ = ⊗τ∈Φ ∧aτ (Std∨),

where Std∨ denotes the dual of the standard representation of GLn. We leave it as
an exercise for the reader to describe the ΓQ-action on Ĝ and compute the reflex
field E. In light of (2.9), an important case is when U has signatures

(aτ0 , bτ0) = (1, n− 1) for some τ0 ∈ Φ and (aτ , bτ ) = (0, n) for τ ∈ Φ\{τ0}.
The corresponding Shimura varieties have dimension n. In this case, view F as
a subfield of Q (thus also C) via τ0. Then E = F (unless E = Q and n = 2,
but this case is excluded by (a)). The representation V−µ|Ĝ is Std∨ on the τ0-
component and trivial on the other components. This extends to a representation
of LGF = Ĝ o ΓF by making ΓF act trivially. So the expected output from the
cohomology of Shimura varieties is that, under hypotheses (a), (b), and (c),

π ∈ Acoh(G,Q) = Acoh(U,F+) 7→ Rπ,µ,ι = ρ∨π,ι ∈ GdR(n, F )

up to twists.

Remark 2.8. When Theorem 2.6 was proved, it was based on Kottwitz’s result
for PEL-type Shimura data [87] in the case of certain unitary similitude groups.
We have chosen to avoid similitude groups to keep the notation and exposition
simpler. The price to pay is that the Shimura datum above is not of PEL or Hodge
type but only of abelian type. So the recent work [81] is needed to apply the LKR
method; the overall argument mostly stays the same other than that.

Going back to Theorem 2.6, recall that our main interest lies in Π ∈ Ã1
rac(n, F ).

The connection between the two sets Acoh(U,F+) and Ã1
rac(n, F ) is provided by an

automorphic base change due to Clozel and Labesse: 2

BC : Acoh(U,F+)→ Ã1
ra,iso(n, F ),

where the target is by definition the set of isobaric sums �i∈IΠi such that Πi ∈
Ã1

ra(ni, F ) with
∑
i ni = n. Conversely, they also prove that every Π ∈ Ã1

rac(n, F )
is the image of some π ∈ Acoh(U,F+) under BC, namely Π admits a “descent” π
(such a π is typically far from unique), provided that U is quasi-split at all finite
places. In fact there is a parity obstruction (e.g., see [41, §2]) for finding such a U
with signatures (1, n − 1), (0, n), ..., (0, n) at ∞ if n is even (and [F+ : Q] is even
at the same time), leading to complication in § 2.2.4 (b) and (c) below, but let us
ignore it until we revisit the issue.

Thus the construction of ρΠ,ι for Theorem 2.6 would go as follows:

(2.10) Π ∈ Ã1
rac(n, F )

descent
 π ∈ Acoh(U,F+)

[Hξ]
 ρ∨π,ι =: RΠ,ι ∈ GdR(n, F ).

2For instance, see [92, Cor. 5.3, Thm. 5.4] for both base change and descent results, which are

proven under mild technical hypotheses. In practice, one can overcome the hypothesis to obtain

Theorem 2.6. A general base change and descent result follows from the endoscopic classification
for unitary groups in [103, 76], but these works are conditional on some papers to be written.

(See the introduction of [76] for details.)
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A key point is to compute the restriction of RΠ,ι to local Galois groups, at the places
v of F where Π is unramified. The unramified components of π can be described
from those of Π as this is part of the automorphic base change and descent. From
this information, the LKR method discussed above gets us to understand RΠ,ι at
each v to complete the argument.

2.2.4. Reality. The reader is cautioned that the argument sketched in the pre-
ceding paragraph is not rigorous but idealistic. In fact (a) is somewhat harmless
since it is satisfied if F+ 6= Q; even if F+ = Q there is a standard argument [133] to
reduce to the case F+ 6= Q. However we do not know (b) a priori, which amounts
to a generalized Ramanujan conjecture. In other words, (b) cannot be used as an
ingredient. (Rather, it turns out to be a consequence, cf. [30].) More seriously, (c)
cannot be implemented since endoscopy does exhibit itself for unitary groups.

These difficulties can be overcome with more effort, at the expense of modifying
the ideal version (2.10). At first, Theorem 2.6 was proven by [88, 41, 72] under a
technical assumption that Π is essentially square-integrable at a finite place. The
assumption is made to avoid endoscopy (i.e., to implement (c)) via the Jacquet–
Langlands transfer to the unit group D× of a division algebra and by using a
unitary group that is a form of D×. When Ngô proved the fundamental lemma
[106] (also thanks to earlier contributions by Cluckers–Loeser, Hales, Waldspurger
and others), it became possible to embrace endoscopy and prove Theorem 2.6 in
full generality. This is done in [44, 131, 39]. Now we explain more precise ideas
on how to work without hypotheses (a), (b), and (c).

(a) Reducing to the anisotropic case. As mentioned above, the only nontrivial
case is when F+ = Q (so F is imaginary quadratic over Q); then G = U is a unitary
group of Q-rank one so condition (a) fails.

Suppose that the theorem was proved in all cases for F+ 6= Q. We want to
construct RΠ,ι ∈ GdR(n, F ) starting from Π ∈ Ã1

rac(n, F ). The reduction step is
based on the fact that there is a “huge” supply of real quadratic fields F+

0 . For
each F+

0 , set F0 := F+
0 F . Then we have a diagram

Π ∈ Ã1
rac(n, F )

? //

base change

��

RΠ,ι ∈ GdR(n, F )

Res

��

Π0 ∈ Ã1
rac(n, F0)

assumed
// RΠ0,ι ∈ GdR(n, F0),

where the vertical arrows are the Arthur–Clozel base change and the restriction
of Galois representations along F0/F , respectively. If RΠ,ι exists with the correct
restriction to local Galois groups, then it should make the diagram commutative.
Thus the problem is whether we can construct RΠ,ι from the data of RΠ,ι|ΓF0

for

the (infinite) family of real quadratic fields F+
0 . This algebraic problem was solved

by Blasius–Ramakrishnan [15, §4.3]; see [133] for a generalization.
The above argument is flexible. For instance, one can analogously reduce to

the case when [F+ : Q] is even by making similar quadratic base changes.
(b) Concentration in the middle degree and temperedness. We begin with a

slogan: tempered automorphic representations should contribute to the `-adic co-
homology of Shimura varieties only in the middle degree. Although we cannot use
the principle since the relevant case of the Ramanujan conjecture is a priori un-
known, the idea is that an approximation towards Ramanujan can still do the job
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thanks to the Weil conjectures. Moreover the Ramanujan conjecture for relevant
cuspidal automorphic representations can be shown as a by-product.

To be more precise, let Π and π be as in (2.10). We want to show that the
π∞-isotypic part of the cohomology is concentrated in degree d = dim Sh, so that
Rπ,µ,ι in (2.7) is equal to the alternating sum of the π∞-isotypic part of the coho-
mology over all degrees (up to the sign (−1)d). The alternating sum is amenable
to computation by the fixed-point formula in the context of the LKR method, so
we would then have a grip on the local Galois action of Rπ,µ,ι.

As we are in the anisotropic case thanks to (a), mod p Shimura varieties are
proper (and smooth, since the level subgroup Kp at p is hyperspecial), so that
the Weil conjectures apply to the Frobenius eigenvalues on the cohomology. In
particular there is no cancellation between different degrees in the alternating sum.
Now the LKR method relates the Frobp-eigenvalues in the π∞-isotypic part of
cohomology to the Satake parameters of π at p. Now the Jacquet–Shalika bound
on the Satake parameters of Π show that they are not far from essentially tempered.
On the other hand, the Frobp-eigenvalues in degree i 6= d are “far” from those in
degree d by the Weil conjectures. From this one can conclude that the Frobp-
eigenvalues in the π∞-isotypic part must appear in degree d, and further that
πp is essentially tempered (a fortiori its Satake parameters are Weil numbers of
appropriate weight).

If we start from Π ∈ Ã1
rac(n, F ) (rather than π) then we would prove the

Ramanujan conjecture for Π by descending to π as in the first arrow of (2.10)
and run the preceding argument. This can be made to work if n is odd, but
there is a parity obstruction if n is even; see the paragraph above (2.10). For

even n (when [F+ : Q] is also even), the Ramanujan conjecture for Ã1
rac(n, F ) was

completed in [43, 30] by switching to the signature (2, n − 2), (0, n), ..., (0, n) or
(1, n− 1), (1, n− 1), (0, n), ..., (0, n) at ∞ to avoid the obstruction and by making a
more elaborate argument.

(c) Working in the endoscopic setting. This is the most serious problem. A
starting point is the stabilization of the fixed point formula for Sh. This can be
done thanks to the fundamental lemma (which also implies that the Langlands–
Shelstad transfer exists by [141]).

The situation is somewhat favorable when n is odd. Then the construction goes
as in (2.10) as there is no obstruction for finding U and descending Π to π. In this
case the main problem is to run the trace formula portion of the LKR method to
compute the local Galois action of RΠ,ι = ρ∨π,ι. (At primes where π is ramified, one
uses a variant method following [72, 131].) This involves the stabilized formula for
Sh, a comparison with the twisted trace formula for GLn, and the strong multiplicity
one theorem to single out the Π-isotypic part in the twisted trace formula.

The case of even n is complicated due to the obstruction mentioned in part
(b). Here switching to a different signature at ∞ as in the last paragraph of (b) is

not a good idea in view of (2.8) and (2.9). Instead, we go from Π ∈ Ã1
rac(n, F ) to

an isobaric sum Π � χ on GLn+1(AF ) by making an auxiliary choice of conjugate
self-dual Hecke character χ of GL1(AF ). Then we consider a unitary group U in
n + 1 variables which is quasi-split at all finite places and signature (1, n), (0, n +
1), ..., (0, n+ 1); there is no obstruction since n+ 1 is odd. This unitary group gives
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rise to Shimura varieties as before. Then the recipe (2.10) is modified as

Π� χ
descent
 π ∈ Acoh(U,F+)

[Hξ]
 ρ∨π,ι =: RΠ,ι.

One can think of the first arrow as taking advantage of endoscopy. The local
Galois action at p of ρ∨π,ι can be computed using a similar method as for the case
of odd n. However the computation shows that the Galois representation ρ∨π,ι
sometimes corresponds to Π and sometimes to χ; we definitely want the former to
obtain the correct Galois representation RΠ,ι. It turns out that the archimedean
components of Π and χ control which case should occur. As long as Π satisfies a
mild regularity condition at ∞, it is shown in [44, 131] that χ can be chosen such
that RΠ,ι corresponds to Π rather than χ.

In summary, if n is even then we are done as long as Π satisfies a mild regu-
larity hypothesis. The remaining case is covered by a congruence argument due to
Chenevier–Harris [39] utilizing the eigenvarieties for definite unitary groups.

2.2.5. Complements and further references. There are several expository arti-
cles on the Langlands–Kottwitz–Rapoport method with different emphases, includ-
ing [16, 42, 102, 61, 146]. In the case of bad reduction (when the level subgroup
is parahoric but not hyperspecial), one can start from the surveys [111, 65]. See
also [127] for a discussion of the LKR method and a variety of related approaches,
results, and further references.

The proof of Theorem 2.6 along the lines of [72, 131] is surveyed in [132],
where some aspects of § 2.2.1–§ 2.2.4 are more detailed and more references are
given. The argument to prove Theorem 2.6 may be partly simplified by using [123]
(which circumvents Mantovan’s formula and the works [44, 131]) or [57] (which
further avoids endoscopy and reduces to the case covered by [41]).

For a stronger version of Theorem 2.6, including the local-global compatibility
at all finite places, refer to [10, Thm. 2.1.1] and the references therein due to many.
This theorem is complemented by [136, 134, 33], describing the image of complex
conjugation. In fact [33] proves more generally that the `-adic and torsion Galois
representations in Theorem 2.4 are odd in the sense of Remark 2.3.

From Theorem 2.6, one can deduce many cases of part (1) of Conjecture 2.1
for classical groups G over totally real fields F+. The additional work consists
in establishing a Langlands functoriality for the standard embedding of LG into
a general linear group, and showing that the Galois representations in Theorem
2.6 satisfy a certain sign condition so as to yield Galois representations valued
in the L-group (or C-group) of G. The sign has been pinned down by [12]. As
for the functoriality, given π ∈ Aac(G,F+) we want to find a (not necessarily
cuspidal) automorphic representations Π of GLN (AF ) for a suitable N such that
the map π 7→ Π is compatible with the embedding of LG via the unramified local
Langlands at almost all places. Such a map is obtained by [6, 103] in a very
precise form when G is quasi-split, conditionally on some works in preparation.
There is a simpler argument to prove a weaker functoriality that is enough for the
application to Conjecture 2.1. Either way, the result for G requires Π to be regular
and algebraic (up to a character twist) in order to apply Theorem 2.6. This is the
case if π is regular in Aac(G,F+), and if π satisfies a mild extra regularity in the
even orthogonal case. See [128] for further details regarding this paragraph.

As in [91, 90], the LKR method can be applied to obtain Conjecture 2.1 (1)
when G is GSp2n or GSO2n (general symplectic or special orthogonal group) over
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a totally real field under technical hypotheses. The argument also makes use of the
known case of Conjecture 2.1 (1) for Sp2n and SO2nin the last paragraph.

2.3. Perfectoid Shimura varieties. As a preparation for Theorem 2.4 (2),
we need some fundamental results on perfectoid Shimura varieties. We assume
familiarity with basics of adic spaces and perfectoid spaces; see [14, 125] for expo-
sitions and more references therein. From here until the end of § 2 we are in the
setting p = `. This makes our notation close to that of [119].

Let X be an adic space and (Xi) be a filtered projective system of adic spaces
with qcqs transition maps. We write

(2.11) X ∼ lim←−
i

Xi

to mean that X is equipped with maps fi : X → Xi compatible with the system
(Xi) such that (i) (fi) induce a homeomorphism |X | ' lim←−i |Xi| and (ii) over an

affinoid cover of X , the map on the level of Huber rings has dense image. (See
[124, Def. 2.4.1] for the precise definition.) In this article (2.11) will be considered
only when X is perfectoid over a perfectoid field. Then X is unique up to a unique
isomorphism [124, Prop. 2.4.5]. (Given (Xi) as above, the limit always exists in the
category of diamonds. The point of the definition is that the diamond is actually
representable by a perfectoid space.) When a group ∆ acts on each of X and the
system (Xi), we say that (2.11) is ∆-equivariant if (fi) are ∆-equivariant.

Example 2.9. Define R+
r := Zcyc

p 〈t〉, the p-adic completion of Zcyc
p [t], and

Rr := R+
r [1/p] for r ≥ 1 so that Spa (Rr, R

+
r ) is a closed unit disc. Let R+

denote the p-adic completion of lim−→r
R+
r via the “relative Frobenius” transition

maps R+
r → R+

r+1 given by f(t) 7→ f(tp), and define R similarly with Rr in place
of R+

r . (The transition maps become relative Frobenius maps modulo p.) Then
Spa (R,R+) is affinoid perfectoid, known as the “perfectoid closed unit disc”, and

Spa (R,R+) ∼ lim←−
r≥1

Spa (Rr, R
+
r ).

Let (G,X) be a Shimura datum of Hodge type. This means that (G,X) embeds
in the Siegel Shimura datum associated with the symplectic similitude group GSp2g

for some g ∈ Z≥1.3 In this case the Shimura varieties ShK over C for neat open
compact subgroups K ⊂ G(A∞) are equipped with closed embeddings into Siegel
modular varieties of genus g at suitable levels. (We could work over the reflex
field but it is enough for our purpose to stay over a bigger field like C or Cp.) The
Satake–Baily–Borel (a.k.a. minimal) compactification [9] of ShK is denoted by Sh∗K .
The latter is a projective normal variety over C which is typically singular. Write
SK ,S∗K for the adic space over Cp associated with the base change of ShK ,Sh∗K
to Cp via a fixed isomorphism C ' Qp and the embedding Qp ↪→ Cp. In fact the
canonical model of ShK over the reflex field E extends uniquely to a model of Sh∗K
over E, thus SK and S∗K are defined over E as well.

When a hyperspecial subgroup K0
p ⊂ GQp is given (in particular GQp is an

unramified group), we have a canonical integral model SK0
pK

p overOE,p for ShK0
pK

p

at each prime p of E above p, cf. §2.2.2. (One needs not assume that GQp is

3In fact [119] uses a variant of Hodge-type Shimura data in the context of connected Shimura
data; see [119, §4.1]. We ignore this point in our exposition.
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unramified for the analogue of Theorem 2.10 in Remark 2.11 to hold true.) In
that case, write SK0

pK
p for the p-adic completion of SK0

pK
p . Let S◦K0

pK
p denote

its generic fiber, which is an open subspace of SK . We refer to S◦K0
pK

p as the good

reduction locus; when (G,X) is a Siegel datum, for example, Qp-points of S◦K0
pK

p

is the locus where the parametrized abelian varieties have good reduction. For an
open compact subgroup Kp ⊂ K0

p , define S◦KpKp to be the preimage of S◦K0
pK

p in

SKpKp .
The datum (G,X) determines the so-called Hodge cocharacter µ : Gm → GC,

canonical up to G(C)-conjugacy. The cocharacter µ gives rise to a parabolic sub-
group

Pµ :=
{
g ∈ G : lim

t→0
Ad(µ(t))g exists

}
⊂ GC,

well-defined up to conjugacy, and to a flag variety G/Pµ [36, §2.1]. (The parabolic
subgroup Pµ is opposite to the parabolic subgroup used to construct the flag variety
that receives the Borel embedding of the complex Shimura variety.) This flag variety
is a priori defined over C, but in fact it has a model over the reflex field of the
Shimura datum. Write F `G for the adic space over Cp associated with this flag
variety. The dependence of F `G on µ is clear but we omit µ from the notation for
simplicity. When (G,X) is a Siegel Shimura datum, F `G parametrizes maximal
isotropic subspaces of the underlying symplectic space.

Theorem 2.10. Let (G,X) be a Siegel Shimura datum. Then there exists a
perfectoid space S∗Kp over Cp with a G(Qp)-action, as well as a G(A∞,p)-action on
the projective system {S∗Kp} as Kp varies, such that we have G(Qp)-equivariantly

(2.12) S∗Kp ∼ lim←−
Kp⊂G(Qp)

S∗KpKp .

Moreover S∗Kp is equipped with the Hodge–Tate period morphism

πHT : S∗Kp → F `G

enjoying the following properties.

(1) πHT is G(Qp)-equivariant. As Kp varies, the morphism is also G(A∞,p)-
equivariant with respect to the trivial action on F `G.

(2) There exists a finite cover (Ui) of F `G by open affinoid subsets such that
Vi := π−1

HT(Ui) are affinoid perfectoid satisfying: (i) each Vi is the preimage
of an affinoid subset of SKpKp for some open compact Kp ⊂ G(Qp), (ii)
a suitable analogue of (2.12) with Vi in place of S∗Kp holds true.

(3) There is an ample line bundle ωF` over F `G whose pullback ω∗Kp :=
π∗HTωF` is G(Qp)-equivariantly isomorphic to an automorphic ample line
bundle.

Remark 2.11. Assume now that (G,X) is a general Shimura datum of Hodge
type. The analogous statements are true except that (2.12) has to be slightly
modified by introducing certain ad hoc minimal compactifications, which are good
enough for applications. The relation (2.12) still holds if it is stated for Shimura
varieties without compactification, and it holds for the usual minimal compactifica-
tions if ∼ in (2.12) is weakened to an isomorphism of the associated diamonds. For
more details and references, see the discussion between Theorem 3.1 and Example
3.2 in [29].
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Remark 2.12. It is fruitful to study πHT with respect to the Newton strati-
fication of F `G to gather further information. Informally speaking, the geometric
fibers of πHT are perfectoid Igusa varieties, and are constant over each individual
Newton stratum. This fact is shown and exploited to great effect in [36, 35]. We
discuss this more in § 4.1.

Sketch of proof. The rest of § 2.3 is devoted to sketching the proof of The-
orem 2.10 in the Siegel case. So G = GSp2g until the end of § 2.3. The case of
Hodge type can be deduced from this case with further work; refer to [119, §4] and
[36, §2]. See [126] for an analogous result in the case of abelian type.

Recall the convention for the groups Sp2g and GSp2g over Z from § 1.1. Write
Idg for the g × g identity matrix. For r ∈ Z≥0, we introduce the three congruence
subgroups of K0

p := GSp2g(Zp):

Γ(pr) ⊂ Γ1(pr) ⊂ Γ0(pr),

given by the conditions that γ mod pm is congruent to the forms4(
Idg 0
0 Idg

)
,

(
Idg ∗
0 Idg

)
,

(
∗ ∗
0 ∗

)
, respectively.

Step 0. Hasse invariants. It is helpful to recall some key facts about the Hasse
invariant, denoted by Ha, in the setting of modular forms and modular curves,
following [77, §2.1].

(H1) Ha is a Katz modular form of level 1 and weight p−1 over Fp. In particular
it is a section of an ample line bundle.

(H2) Ha lifts to a classical modular form H̃a if p ≥ 5. (The lift can be taken to
be the Eisenstein series Ep−1 of level 1 and weight p− 1.) A power of Ha
lifts to a classical modular form for p ≤ 3.

(H3) Ha is invertible on the ordinary locus and zero on the supersingular locus.
(H4) The q-expansion of Ha is 1.

In general, given an abelian scheme f : A→ S of dimension g such that p = 0 in
S, consider the line bundle ωA/S := ∧g(π∗ΩA/S) over S. Put A(p) := A×S,FrobS S,
where FrobS : S → S is the absolute Frobenius. Then the Verschiebung morphism
A(p) → A induces a map ωA/S → ωA(p)/S ' ω⊗pA/S , hence a section Ha(A/S) ∈
Γ(S, ω

⊗(p−1)
A/S ). The Hasse invariant Ha over SK0

pK
p,Fp is obtained by applying this

construction to the universal abelian scheme; when g = 1, we recover the classical
Hasse invariant above. Property (H3) generalizes to the fact that Ha is invertible
exactly on the ordinary locus. (If g > 1, there are several intermediate strata
between the ordinary and supersingular loci.)

Even though Ha is defined only in characteristic p, it can be used to study the
p-adic formal scheme SK0

pK
p and its adic generic fiber S◦K0

pK
p . For this, one lifts

Ha to H̃a over SK0
pK

p , which is always possible locally on the base. This weaker

version of (H2) is enough to define SK0
pK

p(ε) and SK0
pK

p(ε) for rational numbers

0 ≤ ε < 1/2, which are the loci where H̃a divides pε. The locus SK0
pK

p(ε) of S◦K0
pK

p

should be thought of as the ε-neighborhood of the ordinary locus SK0
pK

p(0). Loosely

4The definition of Γ0(pr) in [119] also requires that det γ ≡ 1 mod pm, but we ignore this
point.
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speaking, the points of SK0
pK

p(ε) correspond to abelian varieties that are “not too

supersingluar” in the sense quantified by ε.
The above construction extends to minimal compactifications. It is classical

that Ha is defined over S ∗K0
pK

p,Fp if g = 1. For g ≥ 2, Ha is extended to S ∗K0
pK

p,Fp
by Hartog’s extension principle (cf. [119, Lem. 3.2.10]; see Remark 3.2.11 therein
for an analogy between C-analytic and p-adic settings), using the normality of

S ∗K0
pK

p,Fp and the fact that the boundary has codimension g. By means of lifts H̃a

locally over S∗K0
pK

p , we can define5

S∗K0
pK

p(ε)→ S∗K0
pK

p over OCp and S∗K0
pK

p(ε)→ S∗K0
pK

p over Cp.

The former is an admissible blow-up in Raynaud’s sense, and the latter is an open
immersion. For open compact subgroupsKp ⊂ K0

p , set SKpKp(ε) to be the preimage
of SK0

pK
p(ε) under the projection map SKpKp → SK0

pK
p . Define S∗KpKp(ε) likewise.

Step 1. Anti-canonical tower at Γ0(p∞)-level. We want to show that the pro-
jective limit lim←−Kp S

∗
KpKp is perfectoid. In light of Example 2.9, we would hope

that the transition maps induce relative Frobenius modulo p. While this is overly
optimistic, the situation is better if we restrict ourselves to the anti-canonical tower
over S∗KpKp(ε) as Kp goes through Γ0-level structures. In such a restricted setup,

(anti-)canonical subgroups are available to help us show that the mod p picture of
such a tower is given by relative Frobenius maps.

Let r ∈ Z≥1 and ε ∈ Q with 0 < ε < 1/2. Let A be an abelian scheme of
dimension g over a p-adically complete OCp -algebra R. If A ×R R/pR is not too
supersingular in terms of r (measured by the Hasse invariant), then A possesses a
unique flat subgroup scheme Cr ⊂ A[pr] of order prg which becomes the kernel of
the r-th power Frobenius on A modulo p1−ε. (See [119, Cor. 3.2.6] for the precise
statement.) Such a Cr is called the weak canonical subgroup of level pr. If A
contains C1, i.e., a canonical subgroup of level p, a level pr anti-canonical subgroup
of A is defined to be a totally isotropic subgroup D ⊂ A[pr] of order prg such that
D[p] ∩ C1 = {0}.

Let SΓ0(pr)Kp(ε)anti denote the open subspace of SΓ0(pr)Kp(ε) on which the
universal subgroup of A[pr] coming from the Γ0(pr)-level structure is the anti-
canonical subgroup. The following commutative diagram is a key:

SΓ0(pr+1)Kp(ε)anti
∼ //

��

SK0
pK

p(p−r−1ε)

��

(A,Dr+1) � //
_

��

A/Dr+1_

��

SΓ0(pr)Kp(ε)anti
∼ // SK0

pK
p(p−rε) (A,Dr) = (A,Dr+1[pr]) � // A/Dr,

where the diagram on the right gives the moduli-theoretic description of the maps
in terms of principally polarized abelian varieties, together with anti-canonical sub-
groups in the left column. The two vertical maps are natural projections. The
horizontal maps are isomorphisms as the inverse maps can be given as the quotient
maps by suitable canonical subgroups, cf. [119, Thm. 3.2.15.(ii)]. The projective
system in the left column as r →∞ is the anti-canonical tower.

5Actually they are defined over Zcyc
p and Qcyc

p respectively, but we do not keep track of

optimal base rings in these notes.



LANGLANDS RECIPROCITY FOR GLn: SHIMURA VARIETIES AND BEYOND 21

The use of anti-canonical subgroups is significant in two ways. First, ε does
not shrink as r → ∞ in the anti-canonical tower. (In a similar construction via
canonical subgroups, ε tends to 0.) Second, the right vertical map A/Dr+1 7→ A/Dr

is a lift of relative Frobenius. Analogously with Example 2.9, this essentially tells us
that a perfectoid limit SΓ0(p∞)Kp(ε)anti of the anti-canonical tower exists, satisfying
SΓ0(p∞)Kp(ε)anti ∼ lim←−r SΓ0(pr)Kp(ε)anti.

The anti-canonical tower extends to the tower of S∗Γ0(pr)Kp(ε)anti over the com-

pactifications; Hartog’s extension principle is used if g ≥ 2 (cf. [119, Lem. 3.2.10]).
Essentially the same argument as above shows the existence of a perfectoid limit

S∗Γ0(p∞)Kp(ε)anti ∼ lim←−
r

S∗Γ0(pr)Kp(ε)anti.

Moreover it is affinoid perfectoid. The intuitive reason is that each S∗Γ0(pr)Kp(ε)anti

is isomorphic to S∗Kp(p−rε), and the latter is affinoid as it is the p−rε-neighborhood

given in terms of a section of an ample line bundle ω⊗p
r(p−1), namely a lift of the pr-

th power of Ha, cf. (H1) above. (Such a lift exists globally for r � 1 by ampleness
of ω.) A precise argument is made from computing the tilts in characteristic p [119,
Cor. 3.2.20].

Step 2. Going up to Γ(p∞)-level. We have shown that lim←−r S
∗
Γ0(pr)Kp(ε)anti is

perfectoid. Since Γ0(pr) do not form a neighborhood basis at 1 in G(Qp) but Γ(pr)
do, we would like to go from the Γ0(p∞)-level all the way up to the Γ(p∞)-level.
This is done in two steps via Γ1(p∞).

Going from Γ1(p∞) to Γ(p∞) is relatively easy. Since

S∗Γ(pr)Kp(ε)anti → S∗Γ1(pr)Kp(ε)anti

are finite étale for all r ≥ 1, one can appeal to almost purity, which means that
an adic space that is finite étale over an affinoid perfectoid space is also affinoid
perfectoid. The hard part is to pass from Γ0(p∞) to Γ1(p∞). Since

SΓ1(pr)Kp(ε)anti → SΓ0(pr)Kp(ε)anti

is finite étale, there is no problem with obtaining a perfectoid limit over the inte-
rior. The main difficulty is how to extend to the boundary since the map between
compactifications is ramified at the boundary. The idea is to tilt the interior to
characteristic p, extend it to an affinoid perfectoid space including the boundary,
and prove that this extension is the correct tilt. The proof involves Hartog’s exten-
sion principle in characteristic 0 and a p-adic version of Riemann’s Hebbarkeitssatz
(“bounded functions have removable singularities”) in characteristic p.

The output is an affinoid perfectoid space

S∗Kp(ε)anti ∼ lim←−
r

S∗Γ(pr)Kp(ε)anti.

Step 3. Topological Hodge–Tate morphism. Motivated by the definition of
(2.11), we define the topological space

|S∗Kp | := lim←−
Kp⊂G(Qp)

|S∗KpKp |,

which is naturally equipped with a continuous G(Qp)-action. One of our goals
is to upgrade |S∗Kp | to a perfectoid space. As a preparation and also as a step
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towards the Hodge–Tate period map, cf. Step 5 below, we construct a continuous
G(Qp)-equivariant map of topological spaces

|πHT| : |S◦Kp | → |F `G|,

described pointwise as follows. Each x ∈ |S◦Kp | can be represented by a Spa (κ, κ+)-
point for a complete nonarchimedean extension κ ⊃ Cp, which corresponds to
a principally polarized abelian variety Ax over κ with a symplectic isomorphism
TpAx ' Z2g

p (matching symplectic forms up to scalars). Then x is sent to the
Hodge–Tate filtration

0→ LieAx(1)→ TpAx ⊗Zp Cx ' C2g
x → (LieA∨x )∨ → 0,

which determines a point of |F `G|. Continuity of |πHT| essentially follows from
the fact that the Hodge–Tate filtration works well in families. In fact, the same
construction defines |πHT| on a larger domain than the good reduction locus S◦Kp ,
namely |S∗Kp | minus the boundary, the point being that the Hodge–Tate filtration
belongs in characteristic zero.

Step 4. Spreading the perfectoid property. Fix 0 ≤ ε < 1/2. Recall from Step 2
that the open subset |S∗Kp(ε)anti| of |S∗Kp | is affinoid perfectoid. In fact

|S∗Kp(ε)| = G(Zp) · |S∗Kp(ε)anti|

so there is a perfectoid space S∗Kp(ε) whose underlying space is |S∗Kp(ε)|. It is
covered by finitely many translates of S∗Kp(ε)anti. (Finiteness comes from continuity
of the G(Zp)-action and the fact that an open subgroup of G(Zp) has finite index.)
Denote by SKp(ε) the open subspace of S∗Kp(ε) away from the boundary.

To promote |S∗Kp | to the desired perfectoid space in Theorem 2.10, it is thus
enough to show that finitely many translates of S∗Kp(ε) under the G(Qp)-action
cover |S∗Kp |. The starting point is the observation that the ordinary locus SKp(0)
maps to F `G(Qp) under |πHT|. Now it is important to take ε > 0 to work with a
strict neighborhood of the ordinary locus. Then one can show the existence of an
open subset U ⊂ F `G containing F `G(Qp) such that

|πHT|−1(U) ⊂ |S∗Kp(ε)|.

On the other hand, G(Qp)U = F `G as this is true for every open subset containing
F `G(Qp); the proof uses an explicit open affinoid covering F `G = ∪JF `G,J coming
from the Plücker embedding, indexed by cardinality g subsets J ⊂ {1, 2, ..., 2g}.
Since F `G is quasi-compact, a finite subset {gi}i∈I ⊂ G(Qp) can be chosen such
that

F `G = ∪i∈IgiU.
The two displayed facts together with the G(Qp)-equivariance of |πHT| imply that
|S∗Kp | = ∪i∈Igi|πHT|−1(U). (The boundary is taken care of by a topological argu-
ment.) Hence

|S∗Kp | = ∪i∈Igi|S∗Kp(ε)|.
Step 5. Finishing the construction of πHT. Now that we have a perfectoid space

SKp , the topological map |πHT| can be upgraded to a map of adic spaces

πHT : S∗Kp → F `G

by largely repeating the same idea for constructing |πHT| and extending the map
to the boundary by a p-adic Hebbarkeitssatz.
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Step 6. Further properties of πHT. We briefly comment on verifying properties
(2) and (3) of πHT in Theorem 2.10. For (2), it turns out that the covering (F `G,J)
of F `G from Step 4 works. The argument again utilizes the outcome of Step 2 and
the G(Qp)-equivariance of πHT. For (3), if WF`G ⊂ O

2g
F`G

denotes the universal
totally isotropic subspace, then it follows from the construction of πHT that there
is a G(Qp)-equivariant isomorphism of locally free rank g modules

LieAKp ' π∗HTWF`G

away from the boundary. Property (3) is obtained by taking the dual of the top
exterior power and extending to the boundary. �

2.4. Construction of torsion Galois representations.

Theorem 2.13. Theorem 2.4 (2) holds true. We also have a suitable analogue
for mod pm coefficients for m ≥ 1, in terms of Chenevier’s determinants [38].

A more precise statement is as follows. Denote by TSGLn
the abstract Hecke

algebra for GLn over F away from S as in § 2.1.2. Let K ′ ⊂ GLn(A∞F ) be an
open compact subgroup as in §2.1.2. Then H∗(YGLn,K′ ,Z/pmZ) is naturally a
TSGLn

-module. Write

TSGLn(K ′,m) := image(TSGLn → EndZ/pmZ(H∗(YGLn,K′ ,Z/pmZ))).

Then the theorem asserts that there exists an n-dimensional determinant D of ΓF
which is unramified away from S and valued in TSGLn

(K ′,m)/J for a nilpotent ideal

J ⊂ TSGLn
(K ′,m) of bounded nilpotence exponent, such that the characteristic

polynomial of D at each Frobv, v /∈ S, is given by Hv(x)/J . (Throughout this
subsection, we use the representation-theoretic notion of determinants from [38].
See therein for a comparison with similar notions such as pseudocharacters.) A
technical remark is that it is advantageous to deal with Hecke algebras and Hecke
modules mod pm rather than Hecke eigensystems mod pm.

The existence of such aD subsumes Theorem 2.4 (2). Indeed, m ∈ HEScoh(n, F )F`
corresponds to a morphism f : TSGLn

(K ′, 1)/J → Fp, so f ◦D is an n-dimensional

determinant of ΓF valued in Fp with the correct Frobenius characteristic poly-
nomials away from S. Since a determinant valued in an algebraically closed field
determines a unique isomorphism class of semisimple n-dimensional representations
(and vice versa) by [38, Thm. A], we obtain the desired ρm as in Theorem 2.4 (2).
As done in [119] one can keep track of topology to check that D and f ◦ D are
continuous; it follows from this that ρm is a continuous representation.

Sketch of proof. We concentrate on the case where F is a CM field and
employ unitary Shimura varieties. If F is totally real, then the argument below can
be adapted to the setting of Siegel modular varieties for the group G = ResF/QSp2n,
cf. [119, §5.1].

Recall that F+ denotes the maximal totally real subfield of F . Let U2n denote
the quasi-split unitary group in 2n variables relative to the quadratic extension
F/F+. For G := ResF+/QU2n, there is a standard choice for X to make (G,X)
a Shimura datum. One has the tower of connected Shimura varieties ShK for G
over Q(µ∞) indexed by neat open compact subgroups K =

∏
v 6=∞Kv ⊂ G(A∞).

(This differs from the convention in the proof part of § 2.3, where G was GSp2g

and ShK denoted the Siegel modular varieties.) Let S be a finite set of places as



24 ANA CARAIANI AND SUG WOO SHIN

in § 2.1.2, which in particular contains {p,∞}, and keep Kv hyperspecial at v /∈ S.
Write I for the ideal sheaf of the boundary of S∗KpKp , and O+ for the +-part of the

structure sheaf of S∗KpKp . Set I+ := I ∩ O+ over S∗KpKp . We still denote by I+

the pullback of I+ to S∗Kp . This sheaf may be thought of as the sheaf of cuspforms.
Define

H̃i(ShKp ,Z/pmZ) := lim−→
Kp

Hi(ShKpKp ,Z/pmZ), i ≥ 0.

The tilde indicates that it is the mod pm version of the completed cohomology.
(0) Overview. The basic strategy is to reduce to the case of § 2.2 where Ga-

lois representations are already constructed, via p-adic congruences. The proof
progresses by studying various cohomology spaces in order:

H∗(YGLn,K′ ,Z/pmZ)
(1)
 H̃∗(ShKp ,Z/pmZ)

(2)
 H∗(S∗Kp , I+/pm)

(3)
 H0(V, I+/pm)

(4)
 H∗(S∗KpKp , ω⊗mkKpKp ⊗ I),

where V is an open affinoid perfectoid subspace of S∗Kp (see (3) below), and ωKpKp

is the automorphic ample line bundle at a finite level Kp ⊂ G(Qp) whose pullback
to the infinite level is as in property (3) of Theorem 2.10. The five cohomology
groups are computed on their respective topological spaces (the first two of which
are real; the next three are p-adic). It is important to compute the second and
third groups also in the étale topology to make the transitions (2) and (3).

Step (1) is a reduction of the problem about locally symmetric spaces for GLn
over F (which are not Shimura varieties if n > 1) to one about Shimura varieties
associated with G = ResF+/QU2n. The next steps (2)–(4) establish p-adic con-
gruences, namely that the mod pm (and p-adically completed) cohomology of the
Shimura varieties can be p-adically approximated by classical cuspforms.

In summary, if we keep a careful track of Hecke algebras along the way, then the
above steps reduce the construction of Galois representations (or rather determi-

nants of the Galois group) for H∗(YGLn,K′ ,Z/pmZ) to that for H0(S∗KpKp , ω
⊗mk
KpKp⊗

I). The latter consists of classical cuspidal automorphic forms on U2n over F+,
so we do have associated Galois representations from the conjugate self-dual case
treated in § 2.2. This completes the proof. Now we give more details on each step
below.

(1) Borel–Serre compactification. The Borel–Serre compactification ShBS
K is a

compact real manifold with corners such that ShK ↪→ ShBS
K is a homotopy equiv-

alence. (See [119, §5.2], cf. the original work [17] and a survey [64, §4].) Write

∂ ShBS
K for the complement of ShK . There is a long exact sequence

· · · → Hi
c(ShK ,Z/pmZ)→ Hi(ShBS

K ,Z/pmZ)→ Hi(∂ ShBS
K ,Z/pmZ)→ · · · ,

where the middle term is identified with Hi(ShK ,Z/pmZ).

The boundary strata in ∂ ShBS
K are indexed by the conjugacy classes of Q-

rational proper parabolic subgroups of U2n. From the basic fact that ResF/F+GLn
is a Levi subgroup of such a parabolic subgroup, it follows that the “parabolic
induction” (for modules over Hecke algebras, as we are working at fixed levels)

of H∗(YGLn,K′ ,Z/pmZ) contributes to H∗(∂ ShBS
K ,Z/pmZ). According to the long

exact sequence, such a contribution to each Hi(∂ ShBS
K ,Z/pmZ) is captured by



LANGLANDS RECIPROCITY FOR GLn: SHIMURA VARIETIES AND BEYOND 25

Hi(ShK ,Z/pmZ) and Hi+1
c (ShK ,Z/pmZ). So we are essentially reduced to attach-

ing mod pm Galois representations to H∗(ShK ,Z/pmZ) and H∗c (ShK ,Z/pmZ).6

Thanks to Poincaré duality, it is enough to deal with H∗c (ShK ,Z/pmZ), or

H̃i
c(ShKp ,Z/pmZ)

after taking the limit over Kp.
(2) A comparison isomorphism. Write j : ShKpKp ↪→ Sh∗KpKp for the open im-

mersion. The main point of (2) is the following isomorphisms which are equivariant
for the Hecke action away from p, where the tensor products are over Z/pmZ:

H̃∗c (ShKp ,Z/pmZ)⊗OCp/p
m ' H̃∗(Sh∗Kp , j!Z/pmZ)⊗OCp/p

m

a' H∗ét(S∗Kp , j!O+/pm) ' H∗ét(S∗Kp , I+/pm).

The first isomorphism is formal. The second map is a comparison [117, Thm. 3.13]
for étale cohomology between a proper (not necessarily smooth) scheme over Cp and
its adification with constructible sheaf coefficients. (The theorem for Fp-sheaves
therein is easily extended to the case of Z/pmZ-sheaves.) Actually it is only an

almost isomorphism, denoted by the symbol
a', but we ignore the technical point

as it does not affect our goal.
(3) Hecke-stable affinoid perfectoid Čech covering. Now it truly matters to pass

to infinite-level at p. We employ the affinoid perfectoid covering (Vi) of S∗Kp from

Theorem 2.10 to compute H∗ét(S∗Kp , I+/pm) as the Čech cohomology of S∗Kp as a
topological space. Here we appeal to cohomological vanishing of affinoid perfectoid
spaces as in [116, Prop. 6.14, 7.13], and also the fact that the boundary of the
perfectoid space S∗Kp is strongly Zariski closed in each Vi.

The outcome is that H∗ét(S∗Kp , I+/pm) can be computed by a Čech complex
whose terms consist of

H0(V, I+/pm),

where V stands for finite intersections made from the covering (Vi). Since each
Vi is stable under the Hecke correspondences away from S in view of part (1) of
Theorem 2.10, so is V. Thus the Hecke algebra action away from S is encoded by
each H0(V, I+/pm).

(4) Fake Hasse invariants. The point of this step is to extend the sections
of I+/pm on V to the whole Shimura variety and also lift to characteristic 0, at
the expense of multiplying the coefficient sheaf by a power of an automorphic
line bundle. This is achieved by introducing fake Hasse invariants, mimicking the
classical Hasse invariants. The name “fake” suggests that, unlike the classical Hasse
invariants, they do not arise as sections of vector bundles over typical integral
models of Shimura varieties at finite level.

In the case of modular forms, when a mod pm modular form is multiplied by
a sufficiently divisible power of the Hasse invariant (or its lift to characteristic 0),
the poles outside the ordinary locus are removed while the q-expansion mod pm is
unchanged. (This argument appears in the proof of [77, Thm. 4.5.1], for instance.)
Moreover the resulting modular form lifts to characteristic 0 by a cohomological
vanishing theorem for ample line bundles.

6More precisely, we construct a pseudo-determinant valued in the Hecke algebra correspond-

ing to each cohomology group. A priori we get a 2n-dimensional pseudo-determinant as ShK are
associated with U2n. It takes an extra twisting argument to obtain the desired n-dimensional

pseudo-determinant from this. See [119, §5.3], cf. [71, §7].
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Fake Hasse invariants are designed to play similar roles. They are sections
of ωKp pulled back via πHT from explicit sections of ωF`, via Theorem 2.10 (3).
One can choose “exotic” formal integral models of S∗Kp and ωKp at finite level
Kp ⊂ G(Qp) where these sections mod pm are defined. (See footnote 19 of [119,
p.1030] for “exotic”.) The key properties of fake Hasse invariants are as follows,
cf. (H1)–(H4) in Step 0 of the proof of Theorem 2.10, besides abundance of fake
Hasse invariants thanks to Theorem 2.10 (2) (i.e., the Hodge–Tate period map is
“affinoid”).

(i) They are sections of ample line bundles.
(ii) Multiplying them commutes with the prime-to-p Hecke action.
(iii) The formal integral model of V at level Kp is the invertible locus of a

suitable fake Hasse invariant.

With these inputs, one can descend to finite levels Kp at p and mimic the classical
arguments, by multiplying a sufficiently divisible power of fake Hasse invariants, to
extend sections from VKp to S∗KpKp and lift the sections from mod pm to character-

istic 0 coefficients, compatibly with the Hecke actions away from p. This completes
Step (4). �

Complements and further references. Regarding §§ 2.3–2.4, we recommend the
survey articles [118, 121, 120, 104, 143] as well as Caraiani’s chapter in [14].

Varma [138] has strengthened Theorem 2.4 (1) by showing the local-global com-
patibility with characteristic 0 coefficients (up to semisimplification) at all primes
away from `, not just at unramified places. See [2, §§3–5] for some local-global
compatibility results at all primes including those above ` (the “` = p case”, which
is most subtle), where Galois representations are valued in suitable Hecke algebras;
this requires understanding of the torsion setting.

Scholze’s method was adapted by Pilloni–Stroh [110, §3] to prove the analogue
of Theorem 2.4 (1) for automorphic representations contributing to the coherent
cohomology of certain Shimura varieties of Hodge type via analogues of Hasse in-
variants. Since such representations can be non-regular (e.g., the archimedean
components can be non-degenerate limits of discrete series), their theorem applies
to new cases that are not covered by Theorem 2.4 (1). Getting around perfectoid
Shimura varieties, Boxer and Goldring–Koskivirta [22, 63] (independently of each
other) develop different analogues of Hasse invariants and their applications; see
therein for further references. The results of [110] are also obtained by [63].

3. The Calegari–Geraghty method for Betti cohomology

The goal of this section is to give a rough outline of the Calegari–Geraghty
method in the Betti setting for the group GLn and to discuss its prerequisites.
The Calegari–Geraghty method is a vast extension of the Taylor–Wiles method
for proving modularity lifting, first proposed in [26]. There are two versions of
the Calegari–Geraghty method in the literature, both introduced in [26]: one that
applies to the Betti cohomology of locally symmetric spaces and one that applies
to the coherent cohomology of Shimura varieties. In both cases, it is essential to
apply the Taylor–Wiles patching method to complexes rather than to individual
cohomology groups.

The remarkable feature of the Betti version is that it applies to locally sym-
metric spaces that are not Shimura varieties - this is the case on which we will
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focus. The coherent version applies to coherent cohomology groups of Shimura
varieties, particularly in non-regular weight. This version has been spectacularly
applied in the work of Boxer–Calegari–Gee–Pilloni to prove the potential modular-
ity of abelian surfaces over totally real fields [20]. Another essential ingredient for
this result comes from higher Hida theory, which was introduced by Pilloni [109]
and is now being further developed by Boxer and Pilloni (see [21] for the modular
curve case of higher Hida theory). There are many beautiful ideas here - see, for
example, [25] for a survey focused on this topic.

3.1. Prerequisites: conjectures on the cohomology of locally sym-
metric spaces. For this section, we let our connected reductive group G be GLn
and we work over an arbitrary number field F . We let ` be a prime and S be a
finite set of places of F containing all the ramified places and all the places above `
and ∞. For a sufficiently small compact open subgroup K ⊂ G(A∞F ) as in § 2.1.2,
we have the locally symmetric space

YK = G(F )\G(AF )/KK ′∞,

which is a smooth Riemannian manifold. This locally symmetric space does not
arise from a Shimura variety except in very special cases.

Example 3.1.

(1) Let n = 2 and F be a totally real field. If F = Q, the locally symmetric
space YK arises from a modular curve defined over Q. If [F : Q] > 1,
the locally symmetric space YK is not a Shimura variety itself. However,
it is closely related to one, since it is essentially a torus bundle over a
Hilbert modular variety. Hilbert modular varieties are Shimura varieties
of abelian type.

(2) Let n = 2 and F be an imaginary quadratic field. Then G(F∞) = GL2(C)
and K ′∞ = U2(R) ·R>0. The quotient G(F∞)/K ′∞ can be identified with
the 3-dimensional hyperbolic space H3. Therefore, the locally symmetric
space YK is an arithmetic hyperbolic 3-manifold as it can be obtained from
a disjoint union of finitely many quotients of H3 by congruence subgroups
of GL2(OF ). In particular, YK does not admit a complex structure. The
manifolds YK are also called Bianchi manifolds.

(3) More generally, if n ≥ 2 and F is not totally real, or if n ≥ 3 and F
is an arbitrary number field, the locally symmetric spaces YK cannot be
directly related to Shimura varieties. This follows from a classification of
groups that admit a Shimura datum.

3.1.1. Existence of Galois representations. The Calegari–Geraghty method re-
lies on a deep understanding of the Betti cohomology of the locally symmetric spaces
YK , including a formulation of the Buzzard–Gee conjecture for torsion classes in
the cohomology. To make this more precise, we introduce certain local systems on
YK .

We will use the following notation throughout this subsection. Let E/Q` be
a finite extension which will be our field of coefficients, with ring of integers O,
uniformizer $, and residue field k. We always assume that E is large enough, for
example so that it contains the image of every embedding of F into Q`.

We let λ be a highest weight vector for ResF/QGLn. In other words, we take

λ ∈ (Zn)HomQ(F,E) such that λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n for every embedding τ ∈
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HomQ(F,E). We let σλ denote the irreducible algebraic representation of ResF/QG

over Q` of highest weight λ. Since E is assumed large enough, we may assume that
σλ is defined over E. We let σ◦λ denote a

∏
v|` GLn(OF,v)-stable lattice in σλ.

We assume that the compact open subgroup K is of the form
∏
vKv, where

v runs over finite places of F and Kv ⊂ GLn(OF,v) is a compact open subgroup.
We let K act on σ◦λ via the projection to

∏
v|`Kv, pull back σ◦λ to a K-equivariant

sheaf on G(F )\G(AF )/K ′∞ and the descend to a local system of O-modules Vλ on
YK . We denote Vλ[1/`] by Vλ.

From now on, we will be interested in understanding the cohomology groups

(3.1) Hi (YK ,Vλ) ,

which can be equipped with an action of the abstract Hecke algebra TS . Perhaps the
most conceptual way of constructing the Hecke action in this setting is by observing
that the pullback of σ◦λ to G(F )\G(AF )/K ′∞ is actually a G(ASF )×KS-equivariant
sheaf. The shadow of the G(ASF )-action on this equivariant sheaf at infinite level
induces an action of the Hecke algebra TS on the finite level complex RΓ(YK ,Vλ),
viewed as an object in an appropriate derived category. Taking cohomology, one
obtains an action of TS on the Hi (YK ,Vλ). See [105, §2] for more details.

The cohomology groups in (3.1) are finitely generated O-modules: this follows
from the existence of the Borel–Serre compactification of YK , which is a compact
manifold with corners that is homotopy equivalent to YK . However, these cohomol-
ogy groups can and do contain torsion. For example, in the Bianchi case the torsion

is conjectured to grow exponentially with the index of K in GL2(ÔF ) - see [13] for
more details. In what follows, the case of torsion classes will be the most subtle.
We define

(3.2) TS(K,λ) := Im

(
TS → EndO

(
dimR YK⊕
i=0

Hi(YK ,Vλ)

))
and formulate several conjectures about TS(K,λ) and about the cohomology groups
it acts on.

To make precise statements, we introduce explicit generators for the spherical
Hecke algebra at a place v /∈ S of F . We assume that, for such a place v, we
have Kv = GLn(OFv ). We let $v denote a uniformizer of Fv and qv denote the
cardinality of the residue field kv := OF,v/$v. For each i = 1, . . . , n, we let Tv,i
denote the double coset operator in the spherical Hecke algebra of GLn(Fv) given
by

Tv,i := GLn(OFv )diag[$v, . . . , $v, 1, . . . 1]GLn(OFv ),

where $v occurs i times on the diagonal.

Conjecture 3.2. Let m ⊂ TS(K,λ) be a maximal ideal; its residue field is a
finite extension k′ of the residue field k of E. Then there exists a unique continuous,
semi-simple Galois representation

ρ̄m : ΓF → GLn(k′)

characterized by the fact that, for any finite v /∈ S, ρ̄m |ΓFv is unramified and the
characteristic polynomial of ρ̄m(Frobv) is equal to the image of the polynomial

Xn − Tv,1Xn−1 + · · ·+ (−1)iqi(i−1)/2
v Tv,iX

n−i + · · ·+ (−1)nqn(n−1)/2
v Tv,n.

modulo m.
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Remark 3.3. This is a version of the second part of Conjecture 2.1 in the case
when G = GLn, formulated for more general coefficients. This can be seen from
the Hochschild–Serre spectral sequence and from the fact that one can trivialize
the local system Vλ/$ by raising the level

∏
v|`Kv. Once again, the normalization

is compatible with the C-algebraic version of the Buzzard–Gee conjecture.

We say that a maximal ideal m ⊂ TS(K,λ) is non-Eisenstein if the Galois
representation ρ̄m exists and is absolutely irreducible. (This is a stronger condition
than the notion of non-Eisenstein ideal going back to the work of Mazur [101].
See [28, §3.8] for a discussion of various related notions for n = 2.)

Conjecture 3.4. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal. Then
there exists a unique continuous Galois representation

ρm : ΓF → GLn

(
TS(K,λ)̂m

)
characterized by the fact that, for any finite place v /∈ S of F , ρm |ΓFv is unram-
ified and the characteristic polynomial of ρm(Frobv) is equal to the image of the
polynomial

Xn − Tv,1Xn−1 + · · ·+ (−1)iqi(i−1)/2
v Tv,iX

n−i + · · ·+ (−1)nqn(n−1)/2
v Tv,n.

in TS(K,λ)̂m[X].

We now discuss the status of Conjectures 3.2 and 3.4. For a general number
field, they are wide open. From now on, we restrict to the case when F is a totally
real or imaginary CM field. In this case, Conjectures 3.2 and 3.4 are essentially
known and their proof, due to Scholze, has been discussed in § 2.4. The Galois rep-
resentation ρm `-adically interpolates both the Galois representations attached to
torsion classes occurring in H∗(YK ,Vλ)m as well as the characteristic 0 automorphic
Galois representations first constructed in [71].

We emphasise that Conjecture 3.4 is only proved up to a nilpotent ideal. More
precisely, by work of Newton–Thorne [105], there exists a nilpotent ideal J ⊂
TS(K,λ)̂m with J4 = 1 such that there exists a Galois representation

ρm : ΓF → GLn

(
TS(K,λ)̂m/J

)
with the right characteristic polynomials at places v 6∈ S of F . This does not
usually cause trouble for applications to modularity lifting theorems, since the key
point there is to understand the support of a certain patched module inside a Galois
deformation ring. Nilpotent ideals do not affect the support. However, nilpotent
ideals can cause trouble for more subtle questions, such as those concerning the
Bloch–Kato conjecture, as in the appendix to [27]. If the prime ` splits completely
in the totally real or imaginary CM field F , then Conjecture 3.4 is known as stated
by the refined construction in [32].

3.1.2. Local-global compatibility. Continue to assume that F is a totally real or
imaginary CM field and assume further that m ⊂ TS(K,λ) is a non-Eisenstein max-
imal ideal. Let Rρ̄m denote the global deformation ring of ρ̄m, which parametrizes
deformations of ρ̄m that are unramified outside S∞. The Galois representation ρm
is itself such a deformation, so by the universal property of Rρ̄m we obtain a map

(3.3) Rρ̄m → TS(K,λ)̂m/J.
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This is an incarnation of the usual map from a Galois deformation ring to a Hecke
ring that shows up in both the classical Taylor–Wiles method and in the extension
due to Calegari–Geraghty. The ultimate goal is to prove that this map is an iso-
morphism, or at least that it is an isomorphism on the underlying reduced rings.
However, in order for the map (3.3) to have a chance of being an isomorphism, we
first need to refine it by imposing appropriate local conditions at the primes in S.
The next conjecture concerns local-global compatibility for the Galois representa-
tion ρm, which will help us refine this map by showing that it factors through a
quotient of Rρ̄m with the appropriate local conditions.

Let p be a prime and let v | p be a place of F , possibly contained in S∞. If
` = p, we set λv = (λτ )τ , where τ ∈ HomQ(F,E) runs over embeddings that induce
the place v. Local-global compatibility can roughly be formulated as the following
question: how does the restriction ρm|ΓFv depend on the level Kv at which m occurs,

on the Hecke eigenvalues at v, and, if ` = p, on λv?
7

For the characteristic 0 automorphic Galois representations constructed in [71],
this can be formulated more precisely by requiring compatibility with a suitable nor-
malization of the classical local Langlands correspondence for GLn/Fv. In the case
` 6= p, this compatibility up to semi-simplification is a theorem of Varma [138]. In
the case ` = p, one needs to first show that the automorphic Galois representations
in question are de Rham at v (or, equivalently, potentially semi-stable at v), then
identify their Hodge–Tate numbers in terms of the sets λv, and finally establish the
compatibility with classical local Langlands. In [1], A’Campo recently proved that
the automorphic Galois representations in question are indeed de Rham at primes
v | ` under certain technical assumptions and identified their Hodge–Tate weights.

The formulation of local-global compatibility for the integral Galois represen-
tations ρm is more subtle, particularly when ` = p. This is because, outside a
restricted family of cases such as the Fontaine–Laffaille and ordinary ones, it is
not (a priori) clear how to formulate integral p-adic Hodge-theoretic conditions
that should be satisfied by ρm|ΓFv . However, it turns out that we can formulate
the local-global compatibility conjecture at v | ` using the potentially semi-stable
Galois deformation rings constructed by Kisin in [82]. This version of the conjec-
ture first appears in the case n = 2 in [60] and it is particularly well-suited for
applications to modularity lifting theorems.

For simplicity, we restrict to the crystalline case. Let ρ̄m,v denote the local rep-

resentation ρ̄m|ΓFv . We let R�
ρ̄m,v denote its framed unrestricted local deformation

ring. We let R�,crys
ρ̄m,v (λv) denote its quotient whose characteristic 0 points param-

etrize crystalline lifts of ρ̄m,v with Hodge–Tate weights equal to {λτ,n, λτ,n−1 +
1, . . . , λτ,1 + n − 1} at each embedding τ : F ↪→ E inducing the place v. This
quotient was constructed by Kisin in [82], first after inverting ` and then integrally
by taking Zariski closure.

Conjecture 3.5. Assume that Kv = GLn(OFv ), that m ⊂ TS(K,λ) is a
non-Eisenstein maximal ideal, and that Conjecture 3.4 holds for m. Consider the

7If F is a totally real field, the description of ρm(c) for a choice of complex conjugation

c ∈ Gal(F/F ) can also be interpreted as a form of local-global compatibility – at the infinite
places.
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composition

(3.4) R�
ρ̄m,v

//

%% %%

R�
ρ̄m

// TS(K,λ)̂m

R�,crys
ρ̄m,v (λv)

88

where the first horizontal map is induced by restriction and the second horizontal
map is induced from the existence of the Galois representation ρm. This composition

factors through R�,crys
ρ̄m,v (λv).

Remark 3.6. We give an equivalent formulation of the local-global compat-
ibility conjecture at a place v | ` when we are in the Fontaine–Laffaille setting.
Concretely, we assume that Kv = GLn(OFv ) as above, but also that ` is unramified
in F and that the vectors λv are all in the Fontaine–Laffaille range, in other words

0 ≤ λτ,n ≤ · · · ≤ λτ,1 ≤ `− n− 1

for every τ : F ↪→ E that induces v. Then it is equivalent to conjecture that ρm|ΓFv
is in the image of the Fontaine–Laffaille functor and has Hodge–Tate weights equal
to {λτ,n, λτ,n−1 + 1, . . . , λτ,1 + n − 1}τ with τ : F ↪→ E running over embeddings
that induce v. One can state a similar explicit local-global compatibility conjecture
in the ordinary case.

Remark 3.7. It should be possible to formulate a version of Conjecture 3.5 in
the potentially crystalline case. For this, one could replace the algebraic represen-
tation σλ with a locally algebraic representation στ,λ := στ ⊗ σλ of GLn(OFv ).
Here, στ should be taken to be a smooth representation of GLn(OFv ) over a
finite-dimensional E′-vector space, which should correspond to an inertial type
τ : IFv → GLn(E′) under the inertial local Langlands correspondence, for some fi-
nite extension E′/E. For more details, see [31, §§3–4], which describes the inertial
local Langlands correspondence for GLn in the potentially crystalline case. One can
further generalize to the potentially semi-stable case by handling the monodromy
operator carefully.

To make progress on Conjecture 3.5, we need a new way to access the Galois
representations ρm. The reason is that the construction of ρm, which is described
in § 2.4, involves increasing the level

∏
v|`Kv as well as losing track of the weight

λ by trivializing the local systems Vλ/$m.
At the moment, all progress on Conjecture 3.5 has relied crucially on a series

of increasingly more powerful vanishing theorems for the cohomology of unitary
Shimura varieties with integral coefficients [36, 35, 85]. We discuss the general
strategy in detail in § 4. Based on this strategy, one can obtain partial results
towards Conjecture 3.5 in the Fontaine–Laffaille case, in the formulation of Re-
mark 3.6. This is done in [2, §4]. One can also obtain partial results in the
ordinary case - see [2, §5].

The recent paper [34] proves Conjecture 3.5 in the case when F is an imaginary
CM field under some additional technical assumptions. Below, we give a flavour of
the main assumptions; see Theorem 4.2.15 of loc. cit. for the precise statement.

(1) There is an assumption on the image of the residual representation ρ̄m,
which is needed in order to appeal to known vanishing results for the
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cohomology of unitary Shimura varieties with torsion coefficients. With
a better understanding of these cohomology groups of Shimura varieties,
this assumption can be progressively weakened.

(2) There is also an assumption that there are “enough” places above ` in the
totally real subfield F+ of F . This is needed in order to play these places
against each other: one focuses on one place v̄ | ` of F+ where one wishes
to prove local-global compatibility, using the remaining places v̄′ | `, v̄′ 6= v̄
as auxiliary ones. At auxiliary places, one employs congruences to vary
the weight. This assumption excludes, for example, the case when F is
an imaginary quadratic field and the YK are Bianchi manifolds.

It should be possible to adapt the method of [34] to the potentially semi-stable
case, under similar technical assumptions as described above. This is the subject
of the upcoming PhD thesis of Bence Hevesi.

3.1.3. Vanishing conjectures for locally symmetric spaces. Conjectures 3.4 and 3.5
are natural generalizations of results that hold true in the classical Taylor–Wiles
setting. For example, they hold true in the conjugate self-dual case, when one can
implement the classical Taylor–Wiles method starting from algebraic automorphic
forms on a definite unitary group, as is done for example in [45].

We now discuss a third conjecture, which roughly says that the non-degenerate
part of the cohomology H∗(YK ,F`) is concentrated in a restricted range of de-
grees. This is the most novel prerequisite to the Calegari–Geraghty method and
it illustrates some of the differences between general locally symmetric spaces and
Shimura varieties.

To state the conjecture, we define the following numerical invariants:

l0 := rk GLn(F ⊗Q R)− rk K ′∞ and q0 :=
1

2
(dimR YK − l0),

which turn out to be non-negative integers. Concretely, if the number field F has
r1 real places and r2 complex places, one can compute that

l0 =

{
r1

(
n
2

)
+ r2n− 1 for n even

r1

(
n+1

2

)
+ r2n− 1 for n odd.

These invariants were first introduced by Borel–Wallach in [18] for a general con-
nected reductive group G over Q. There, they show up naturally in the computation
of (g,K ′∞)-cohomology of tempered representations of G(R).

We consider the range of cohomological degrees [q0, q0 + l0], which is symmetric
about the middle 1

2 dimR YK of the total range of cohomology. The following con-
jecture is formulated in [50] – see the discussion around Conjecture 3.3 in loc. cit.
– and in [26, Conj. B].

Conjecture 3.8. Let m ⊂ TS be a non-Eisenstein maximal ideal in the sup-
port of H∗(YK ,F`). Then Hi(YK ,F`)m 6= 0 only if i ∈ [q0, q0 + l0].

This conjecture is motivated by heuristics to do with Langlands reciprocity, since
the invariant l0 can be recovered naturally from a computation on the Galois side.
We explain this more in § 3.2. We also discuss the analogue of Conjecture 3.8 for
Shimura varieties in § 4.

Example 3.9.
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(1) If n = 2 and F = Q, we have l0 = 0 and q0 = 1. There is only one
interesting degree for the Betti cohomology of modular curves, which is
H1. This is the setting in which the Taylor–Wiles method was first im-
plemented. Conjecture 3.8 can be verified by hand in the case of modular
curves. In fact, the maximal ideals m ⊂ TS in the support of H0(YK ,F`)
can be shown to satisfy

ρ̄m ' χ⊕ χcyclo · χ,

where χ : ΓQ → F×` is some continuous mod ` character and χcyclo is the
mod ` cyclotomic character.

The Taylor–Wiles method was later generalized to other settings in
which l0 = 0. For example, in the conjugate self-dual case, one can arrange
to work with algebraic automorphic forms on a definite unitary group, so
that q0 = l0 = 0.

(2) If n = 2 and F is imaginary quadratic, we have l0 = 1 and q0 = 1. The
interesting degrees of Betti cohomology for Bianchi manifolds are H1 and
H2. One can again prove Conjecture 3.8 by hand in this case. By Poincaré
duality, which applies after localization at a non-Eisenstein ideal m, it is
enough to control H0, which can be computed explicitly.

(3) It should be possible to control another handful of low-dimensional cases
by employing the congruence subgroup property to control H1. If n = 2
and F is totally real, the locally symmetric spaces are closely related to
Hilbert modular varieties and one should be able to deduce (most of)
Conjecture 3.8 from [37, Thm. A]. For arbitrary n and an arbitrary num-
ber field F , Conjecture 3.8 is still open, even in the case when F is an
imaginary CM field.

One can formulate an analogous conjecture with Q` rather than F` coefficients.
This is a strictly weaker conjecture, but it can be proved for arbitrary n when
F is a CM or totally real field and this turns out to be extremely important for
applications.

Conjecture 3.10. Let m ⊂ TS be a non-Eisenstein maximal ideal in the
support of H∗(YK ,Z`). Then Hi(YK ,Q`)m 6= 0 only if i ∈ [q0, q0 + l0].

To prove Conjecture 3.10, one needs to compute the Betti cohomology groups
H∗(YK ,Q`) in terms of automorphic representations of GLn(AF ). This goes back
to a theorem of Franke [58] that uses harmonic analysis. If m is non-Eisenstein and
such that H∗(YK ,Z`)m[1/`] 6= 0, then it is the reduction modulo ` of a system of
Hecke eigenvalues occurring in a cuspidal automorphic representation of GLn(AF ).
In that case, one can eliminate all the terms in Franke’s computation coming from
proper parabolic subgroups of GLn/F , and one controls what is left by appealing
to the computation of tempered cohomology in [18]. See [2, Thm. 2.4.10] for the
detailed argument. We emphasise, however, that one needs Conjecture 3.2 in order
to formulate the notion of non-Eisenstein maximal ideal, so one needs to work over
a CM or totally real field to prove Conjecture 3.10.

Remark 3.11. When l0 = 0 and m ⊂ TS is a maximal ideal in the support
of H∗(YK ,Z`), Conjecture 3.8 implies that H∗(YK ,Z`)m is concentrated in degree
q0 and `-torsion free. This can be shown by playing around with the long exact
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cohomology sequences associated to the short exact sequences of sheaves

0→ Z/`m−1Z ·`−→ Z/`mZ→ F` → 0

on YK for m ∈ Z≥2.

Remark 3.12. All the conjectures discussed in this section can be formulated
for the faithful quotient of TS that acts on the cohomology of YK with compact
support. A useful observation is that, after localizing at a non-Eisenstein maximal
ideal, the natural map from cohomology with compact support to usual cohomology
becomes an isomorphism. This follows from a now standard argument that involves
a detailed study of strata in the boundary of the Borel–Serre compactification of YK .
See [105, §4] for more details. Moreover, one could formulate Conjecture 3.8 instead
by asking that H∗(YK ,F`)m is only non-zero in some range of degrees of length l0.
By the observation just above, Poincaré duality shows that this apparently weaker
conjecture is equivalent to the original one.

3.2. A sketch of the Calegari–Geraghty method. In this subsection, we
briefly sketch the Taylor–Wiles patching method for proving modularity lifting the-
orems and then we discuss its improvement due to Calegari–Geraghty. The goal
is to motivate and illustrate the role of Conjectures 3.4 and 3.5 and especially of
Conjecture 3.8 in proving modularity lifting theorems. We suppress many techni-
cal details in our account. For a more thorough expository account of the classical
Taylor–Wiles method, see [59], and for the same on the Calegari–Geraghty en-
hancement of this method, see [137].

3.2.1. The case l0 = 0. We let G = GL2/Q, in which case the YK are (open)
modular curves, considered as Riemann surfaces. We let m ⊂ TS be a non-
Eisenstein maximal ideal in the support of H1(YK ,Vλ). This cohomology group is
torsion-free, as discussed above, and so ρ̄m is (up to a character twist) the reduc-
tion modulo ` of the Galois representation associated to some cuspidal eigenform
(of weight determined by λ).

In this setting, Conjectures 3.4, 3.5 and 3.8 are known. For simplicity, we
assume that ` > 2, that the level K` is the hyperspecial maximal compact subgroup
GL2(Z`) and that the weight λ is trivial. This means that ρ̄m is the reduction
modulo ` of the Galois representation attached to a cuspidal eigenform f of weight
2 and level K (prime to `). The lift

ρm : Gal(Q/Q)→ GL2

(
T(K,λ)̂m

)
.

can be constructed by interpolating the 2-dimensional `-adic Galois representations
attached to all the cuspidal eigenforms of weight 2 and level K and which are
congruent to f modulo m. Local-global compatibility for each of these Galois
representations implies that ρm|ΓQ`

is Barsotti–Tate, which after inverting ` means

crystalline with Hodge–Tate weights equal to {0, 1}.
We let RBT

ρ̄m denote the global deformation ring for ρ̄m which parametrizes
deformations that are unramified outside a fixed finite set of primes containing `,
and that are Barsotti–Tate at `. The corresponding local deformation problem
at ` turns out to be smooth and this is necessary for the argument we present.
(In practice, we might impose some additional local conditions at ramified primes
other than `, but we suppress this in this sketch.) The existence and local-global
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compatibility for the automorphic Galois representation ρm give rise to a diagram

(3.5) RBT
ρ̄m → T(K,λ)̂m 	 H

1(YK ,Vλ)m.

To prove a modularity lifting theorem, we wish to show that the cohomology
group H1(YK ,Vλ)m has full support over the global deformation ring RBT

ρ̄m . (Since

T(K,λ)̂m acts faithfully on H1(YK ,Vλ)m, this is equivalent to the statement that
the surjective map RBT

ρ̄m → T(K,λ)̂m induces an isomorphism on the underlying
reduced rings.)

Rather than study the diagram (3.5) directly, we first put everything in `-
adic families, in order to smooth out the underlying geometry. For this, we wish
to “thicken” the global deformation ring RBT

ρ̄m into a ring R∞ which we will then
prove to be isomorphic to a power series ring O[[x1, . . . , xg]]. The dimension of
R∞ is determined via a Galois cohomology computation that identifies g with the
dimension over F of a certain Selmer group H1

L (ΓQ, ad ρ̄m).
In order to thicken the diagram (3.5) in a controlled fashion, we “patch”

(co)homology groups8 H1(YKQN ,Vλ/`
N )mN with additional tame level at sets QN

of so-called Taylor–Wiles primes. Patching is a highly non-canonical process that
involves varying the sets QN of Taylor–Wiles primes as N goes to infinity. How-
ever, the cardinality of these sets is a fixed integer r, which can be computed as the
dimension over F of a certain dual Selmer group H1

L⊥ (ΓQ, ad ρ̄m(1)). This fixed
cardinality ensures that the tangent spaces of the deformation rings with additional
tame ramification at the Taylor–Wiles primes stay bounded.

The output of Taylor–Wiles patching is a diagram

(3.6) S∞ → R∞ 	M∞

where S∞ = O[[z1, . . . , z2r]] and R∞ is a priori a complete local O-algebra which
only admits a surjection from O[[x1, . . . , xg]]. The module M∞ is patched from
(co)homology groups of the modular curve with additional tame level. The ring
R∞ is patched from global deformation rings with additional tame ramification at
Taylor–Wiles primes. The ring S∞ keeps track of the additional tame ramification
coming from Taylor–Wiles primes.

Because the growth of the (co)homology groups as we add tame level is strictly
controlled, M∞ will be finite free over S∞; it is also finite over R∞. We have a
sequence of (in)equalities

(3.7) 2r + 1 = dimS∞ = depthS∞(M∞) ≤ depthR∞(M∞) ≤ dimR∞ ≤ g + 1.

The equality dimS∞ = depthS∞(M∞) follows from the freeness of M∞ over S∞.
The first inequality comes from the fact that the action of S∞ on M∞ factors
through R∞. The second inequality comes from the fact that the depth of a finitely
generated module is less than or equal to the dimension of its support.

At this point, Wiles makes use of an Euler characteristic formula in Galois
cohomology that gives 2r − g = l0, which is 0 in this setting. This implies that
all the above inequalities are in fact equalities! In particular, this means that the
given surjection O[[x1, . . . , xg]] � R∞ is in fact an isomorphism. We now apply
the Auslander–Buchsbaum formula for the finitely generated module M∞ over the

8Technically, patching amounts to taking a projective limit as the level varies. For this reason,
it is better to switch from cohomology to homology at this point.
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regular local ring R∞:

(3.8) depthR∞(M∞) + proj. dim.R∞(M∞) = dimR∞ = g + 1.

Since we have also found that depthR∞(M∞) = g + 1, we deduce M∞ is finite free
over R∞.

To recover the original diagram (3.5), we take a tensor product of (3.6) with
⊗S∞O. We have R∞ ⊗S∞ O = RBT

ρ̄m and M∞ ⊗S∞ O is (the O-linear dual of)

H1(YK ,Vλ)m. This shows that the cohomology group H1(YK ,Vλ)m is finite free
over the global deformation ring RBT

ρ̄m and, in particular, has full support.

Remark 3.13. In the above sketch, we can weaken the assumptions that the
level K` is hyperspecial and that the weight λ is trivial. The right perspective here
is due to Kisin [82] and involves constructing R∞ as a power series ring over a
product of local (possibly framed) deformation rings. We can then show that M∞
is maximal Cohen–Macaulay over R∞ and thus supported on a union of irreducible
components of SpecR∞. Therefore, the geometry of the local deformation rings
determines the kind of modularity lifting result we can prove. A key problem is how
to extend the known support of M∞ from one irreducible component to another, e.g.
as in Taylor’s Ihara avoidance. See [59] for more details. The same phenomenon
arises in the case when l0 > 0 and, in this case, it is even more subtle to move
between different irreducible components.

3.2.2. The case l0 > 0. For simplicity and to parallel the case l0 = 0 discussed
above, we restrict to G = GL2/F , where F is now an imaginary CM field. For
a neat compact open subgroup K ⊂ GL2(A∞F ), the spaces YK are smooth real
manifolds. We assume that the prime ` > 2 is unramified in F , that the level Kv

at each v | ` is hyperspecial, and that the weight λ is trivial. We let m ⊂ TS be a
non-Eisenstein maximal ideal in the support of H∗(YK ,Vλ).

We assume Conjectures 3.4, 3.5 and 3.8. As explained above, Conjecture 3.4
is essentially known by [119], and there are many settings where Conjecture 3.5 is
known as well in the case at hand, see [34] for the state of the art result. How-
ever, Conjecture 3.8 is still a significant assumption. The main exception to this
is the case when F is imaginary quadratic, where Conjecture 3.8 is known, but
Conjecture 3.5 is surprisingly subtle and not known even in the case at hand.

We let RBT
ρ̄m denote the universal deformation ring of ρ̄m with appropriate local

conditions: in particular, we require these deformations to be unramified outside a
fixed finite set of finite primes of F and Barsotti–Tate at each prime v | ` of F . As
before, we obtain a diagram

(3.9) RBT
ρ̄m → T(K,λ)̂m 	

q0+l0⊕
i=q0

Hi(YK ,Vλ)m.

To prove a modularity lifting theorem in this setting, we want to show that the
direct sum has full support in RBT

ρ̄m . It is, of course, enough to establish this for any
individual cohomological degree.

We want to proceed as in the case l0 = 0 discussed above. To thicken the
diagram (3.9), we again need to consider a patched deformation ring R∞, with
dimR∞ = g+1, where g is the dimension over F of a Selmer group H1

L(ΓF , ad ρ̄m).
At the same time, the cardinality of the sets of Taylor–Wiles primes must equal r,
the dimension over F of the dual Selmer group H1

L⊥(ΓF , ad ρ̄m(1)). We therefore
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set S∞ = O[[z1, . . . , z2r]] once again. However, if we try to implement the classical
Taylor–Wiles method as outlined above, we get stuck at the Euler characteristic
formula:

(3.10) dimS∞ − dimR∞ = l0 > 0.

This means that there are not enough Galois representations to fill out the entire
space SpecS∞. On the other hand, because the cohomology groups of YK are likely
supported in multiple degrees, if we add tame level at sets of Taylor–Wiles primes
and patch (co)homology groups (in a fixed degree or even taking a direct sum of
cohomological degrees), we will likely not obtain a finite free module M∞ over S∞.
Thus, it seems like there are also not enough automorphic forms to fill out SpecS∞.
Fortunately, as Calegari and Geraghty have observed, these two problems precisely
cancel each other out, when considered from the right point of view!

The idea is to work with a patched complex C∞ instead of a single patched
module M∞. The complex C∞ is obtained from patching chain complexes that
compute the homology of YKQN , with additional tame level at a cardinality r set
of Taylor–Wiles primes QN , and after localizing at a non-Eisenstein maximal ideal
mN obtained from m. Because we are working with the homology of the YKQN
as chain complexes, rather than with individual homology groups, we obtain after
patching a complex C∞ of finite projective S∞-modules. Moreover, Conjecture 3.8
ensures that, up to replacing C∞ by a quasi-isomorphic complex, we can assume
that it is a complex of finite projective S∞-modules concentrated in a range of
degrees of length l0. The following lemma in commutative algebra is now crucial,
see [26, Lem. 6.2] for its proof.

Lemma 3.14. Let S be a regular Noetherian local ring of dimension d. Let C be
a chain complex9 of finite projective S-modules concentrated in the range of degrees
[0, l] for some non-negative integer l ≤ d. Then the dimension of the support of
H∗(C) in S satisfies dimS(H∗(C)) ≤ d− l. Moreover, if equality holds, then Hi(C)
is non-zero only for i = 0,

proj. dim.S(H0(C)) = l, and depthS(H0(C)) = d− l.

(In particular, C is a projective resolution of H0(C) of minimal length.)

In the Calegari–Geraghty extension of the Taylor–Wiles method, we apply this
lemma to S = S∞ and C = C∞[q0] (we shift our patched complex q0 degrees to
the left in order to get the concentration in the range [0, l0]). We have a diagram

S∞ → R∞ 	 C∞,

giving us the sequence of inequalities

(3.11) 2r + 1− l0 ≤ dimS∞(H∗(C∞)) ≤ dimR∞(H∗(C∞)) ≤ g + 1.

The Euler characteristic formula (3.10) implies that all the inequalities in (3.11)
are equalities. Lemma 3.14 implies that the homology of C∞ is non-zero only in
degree q0 and that

depthS∞(Hq0(C∞)) = 2r + 1− l0 = g + 1.

9In [26, Lem. 6.2] the result is stated and proved for a cochain complex.
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At the same time, because the action of S∞ on C∞ factors through R∞, we have
the (in)equalities

g + 1 = depthS∞(Hq0(C∞)) ≤ depthR∞(Hq0(C∞)) ≤ dimR∞ = g + 1.

These are all equalities and the Auslander–Buchsbaum formula applied to Hq0(C∞)
viewed as an R∞-module implies thatHq0(C∞) is free over R∞. To recover (part of)
the original diagram (3.9), we take a tensor product with ⊗S∞O10 and an O-linear
dual to go from homology to cohomology. We ultimately deduce that Hq0(YK ,Vλ)m
has full support over RBT

ρ̄m , as desired.

4. Shimura varieties, p-adic geometry, and torsion classes

In this section, we discuss the steps that led to an unconditional implemen-
tation of the Calegari–Geraghty method for GLn over CM fields. A key input is
an analogue of the vanishing Conjecture 3.8 for Shimura varieties. This analogue
predicts that the part of the cohomology of Shimura varieties outside the middle
degree is somewhat degenerate. In § 4.1, we discuss the geometry of the Hodge–
Tate period morphism, which has allowed us to make significant progress towards
this conjecture, and which is a beautiful and important topic in its own right. In
§ 4.2, we discuss several different approaches towards the conjecture in the case of
Shimura varieties PEL type A and point towards generalizations. Finally, in § 4.3,
we briefly describe how to use these results to make progress on the local-global
compatibility Conjecture 3.5 and mention further applications.

4.1. The geometry of the Hodge–Tate period morphism. The goal of
this subsection is to discuss more in depth the geometry of the Hodge–Tate period
morphism that has already played a key role in Section 2.3. We will briefly explain
how this geometry is illuminated by an infinite-level version of Mantovan’s product
formula [100]. This product formula describes Newton strata in Shimura varieties
in terms of local analogues of Shimura varieties, known as Rapoport–Zink spaces
or local Shimura varieties, and objects of a semi-global nature, known as Igusa
varieties. We end by mentioning an even more general version of the product
formula, which allows us to vary the Newton stratum, conjectured by Scholze and
recently established in many cases by Mingjia Zhang in her Bonn PhD thesis [144].

For simplicity, we work with a Shimura datum (G,X) of PEL type. We assume
that p is an unramified prime for this Shimura datum and ` is a rational prime dif-
ferent from p. We fix a sufficiently small compact open subgroup Kp ⊂ G(Ap,∞).
Consider the minimally compactified perfectoid Shimura variety S∗Kp over Cp in-
troduced in Theorem 2.10 and the associated Hodge–Tate period morphism

πHT : S∗Kp → F `G.

For technical reasons, we restrict the source of this morphism from now on to the
good reduction locus S◦Kp ⊂ S∗Kp .

10Here, one could ask what would happen if we took a derived tensor product ⊗L
S∞
O instead.

This will recover the entire cohomology as an object in a derived category. See the article [56] of

Feng–Harris in these proceedings for more details on derived aspects.
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4.1.1. The Newton stratification. Recall the Kottwitz set B(GQp) classifying
isocrystals with GQp -structure, cf. [112] for example. This set is equipped with
a partial order, known as the Bruhat order. The Hodge cocharacter µ defines a
subset B(GQp , µ

−1) ⊂ B(GQp) of µ−1-admissible elements. The special fiber of the
Shimura variety with hyperspecial level at p admits a Newton stratification

(4.1) ShKpKp =
⊔

b∈B(GQp ,µ
−1)

Sh
b

KpKp

into locally closed strata indexed by this subset. This stratification is defined
moduli-theoretically and detects at geometric points the isogeny class of the uni-
versal p-divisible group G = A[p∞] with GQp -structure living over ShKpKp . The
closure relations between strata are determined by the degenerations of isocrystals
with GQp -structure: for example, the µ-ordinary locus is the unique open and dense
stratum and the basic locus is the unique Zariski closed stratum. The Newton strat-

ification can be extended in a natural way to the minimal compactification Sh
∗
KpKp

using the notion of a well-positioned subset of the special fiber, cf. [93].
There is an analogue of the Newton stratification on F `G that is defined using

purely local ingredients. More precisely, we have a decomposition

(4.2) F `G =
⊔

b∈B(GQp ,µ
−1)

F `bG

into locally closed strata, cf. [36, §3]. Morally, the argument is as follows (although
this language did not exist at the time when [36] was written): one first constructs
a map of v-stacks F `G → BunG, where the latter is the v-stack of G-bundles on
the Fargues–Fontaine curve. To construct this map of v-stacks, it is convenient to
notice that one can identify the diamond associated to F `G with the minuscule
Schubert cell defined by µ inside the B+

dR-Grassmannian for G. Once we have
obtained the map F `G → BunG, we can use Fargues’s result that the points of
BunG are in bijection with the Kottwitz set B(GQp), cf. [54] (see also [5] for an
alternative proof that also works in equal characteristic). Moreover, the Newton
decomposition (4.2) is a stratification, in the sense that, for b ∈ B(GQp , µ

−1), we
have a set-theoretic decomposition

F `bG =
⊔
b′≥b

F `b
′

G,

where ≥ denotes the Bruhat order. The latter fact follows from the analogous result
of Viehmann that applies to BunG, see [139, Thm. 1.1].

Remark 4.1. The closure relations between Newton strata on the special fiber

Sh
∗
KpKp are opposite to the closure relations between Newton strata on F `G. This

is not an inconsistency, because the Hodge–Tate period map respects the Newton
stratification only on points of rank one. The behaviour of πHT on higher rank
points is more subtle and this accounts for the difference in closure relations. See
also [62, Theorem 1.12] for a modern proof that the closure relations on the special
and generic fibres are reversed in the context of the stack of isocrystals with G-
structure B(G) and the stack BunG respectively.

4.1.2. Igusa varieties. For each b ∈ B(GQp , µ
−1), we can choose a (completely

slope divisible) p-divisible group with GQp -structure Xb/Fp, which is in the isogeny
class determined by b and also compatible with µ, and define the corresponding
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Oort central leaf. This is a smooth closed subscheme C Xb of the Newton stratum

Sh
b

KpKp , such that the isomorphism class of the universal p-divisible group G with
GQp -structure over each geometric point of the leaf is constant and equal to that
of Xb:

C Xb =
{
x ∈ Sh

b

KpKp | G × κ(x̄) ' Xb × κ(x̄)
}
.

In general, there can be infinitely many non-empty leaves inside a given Newton
stratum. Over each central leaf, one has the perfect Igusa variety Igb/Fp, a pro-finite

cover of C Xb which parametrizes trivializations of G together with itsGQp -structure.
Variants of Igusa varieties were introduced in [72] in the special case of Shimura

varieties of Harris–Taylor type. They were defined more generally for Shimura
varieties of PEL type by Mantovan [99] and their `-adic cohomology was computed
in many cases using a counting point formula; see [72, Ch.V] as well as [129, 130,
131]. The overall strategy is a variation of the LKR method (§ 2.2.2). Steps (1)–(4)
of § 2.2.2 have analogues for Igusa varieties. See [127, §7] for more details and the
generalization to the case of Hodge or abelian type.

In these references, Igusa varieties are defined as pro-finite étale covers of cen-
tral leaves, which trivialize the graded pieces of the slope filtration, which G admits

after restriction to C Xb . Providing a splitting of the slope filtration amounts to tak-
ing perfection on the level of the Igusa variety, recovering the object Igb introduced
above. From now on, we only consider the perfect Igusa varieties, since they have
a more elegant moduli-theoretic interpretation, but still have the same `-adic co-
homology as the original objects.

Remark 4.2. While the central leaf C Xb depends on the choice of Xb in its
isogeny class, one can show that, up to isomorphism, the perfect Igusa variety Igb

only depends on the isogeny class: this follows from the equivalent moduli-theoretic
description in [36, Lem. 4.3.4] (see also [37, Lem. 4.2.2], which keeps track of the
extra structures more carefully). In particular, the pair (G,µ) is not intrinsically

attached to the Igusa variety Igb – it can happen that Igusa varieties that are a priori
obtained from different Shimura varieties are isomorphic. See [37, Thm. 4.2.4] for
an example of this phenomenon.

Because Igb/Fp is perfect, the base change Igb ×Fp OCp/p admits a canonical

lift to a flat formal scheme over Spf OCp . We let Igb denote the adic generic fibre

of this lift, which is a perfectoid space over Spa(Cp,OCp). The spaces Igb and Igb

both have an action of a locally profinite group Gb(Qp), where Gb is an inner form
of a Levi subgroup of G, and they have a Hecke action away from p. The `-adic
cohomology groups of Igb and Igb are isomorphic, equivariantly for these actions.

4.1.3. Rapoport–Zink spaces. For each b ∈ B(GQp , µ
−1), one can also consider

the associated Rapoport–Zink space, a moduli space of p-divisible groups with GQp -
structure that is a local analogue of a Shimura variety. Concretely in the PEL case,
one considers a moduli problem of p-divisible groups equipped with GQp -structure,
satisfying the Kottwitz determinant condition with respect to µ, and with a modulo
p quasi-isogeny to the fixed p-divisible group Xb. This moduli problem was shown by
Rapoport–Zink [113] to be representable by a formal scheme. We letMb denote the
adic generic fibre of this formal scheme, base changed to Spa(Cp,OCp), and letMb

∞
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denote the corresponding infinite-level Rapoport–Zink space11. The latter object
can be shown to be a perfectoid space using the techniques of [124]. By loc. cit.,
the infinite-level Rapoport–Zink space admits a local analogue of the Hodge–Tate
period morphism

πbHT :Mb
∞ → F `G.

The geometry of πHT is intricately tied up with the geometry of its local analogues
πbHT, as we shall now explain.

4.1.4. The product formula. For each b ∈ B(G,µ−1), we define a locally closed
subset S◦bKp of the good reduction locus S◦Kp by intersecting the pre-image under
the specialization map of the Newton stratum corresponding to b on the special
fiber with the pre-image under πHT of F `bG.

Theorem 4.3. There exists a Cartesian diagram of diamonds over Spd(Cp,OCp)

(4.3) Mb
∞ ×Spd(Cp,OCp ) Ig

b //

��

Mb
∞

πbHT

��

S◦bKp

πHT // F `bG.

Moreover, each vertical map is a pro-étale torsor for the “unipotent group diamond”

G̃b of [55] (identified with AutG(X̃b), in the notation of [36, §4]).

Theorem 4.3 is established in [36, §4], although it is not formulated in terms of
diamonds in loc. cit. It has been generalized to Shimura varieties of Hodge type, in
the context of Kisin–Pappas integral models (and under some additional technical
assumption), by Hamacher–Kim [66]. At the time of writing, a general version
of the Mantovan product formula for Shimura varieties of abelian type is not yet
available.

Assume that the Shimura varieties ShK are compact. We have the following
consequence of Theorem 4.3 for the fibres of πHT: let x̄ : Spa(C,C+) → F `bG be

a geometric point. Then there is an inclusion of Igb into π−1
HT(x̄), which identifies

the target with the canonical compactification of the source, in the sense of [122,
Prop. 18.6].

This computation of the fibres can be extended to minimal and toroidal com-
pactifications of (non-compact) Shimura varieties. For a model of the argument,
see [35, Thm. 1.10], where the computation of the fibres is extended to Shimura
varieties attached to quasi-split unitary groups. In this case, the fibres are obtained
from partial minimal and toroidal compactifications of Igusa varieties. The partial
minimal compactifications of Igusa varieties are affine - this is reflected in the “affi-
noid” nature of πHT for the minimal compactification S∗Kp . This result has been
generalized to Shimura varieties of PEL type AC in the PhD thesis of Mafalda
Santos [115].

Example 4.4. We make the geometry of πHT explicit in the case of the modular
curve, i.e. for G = GL2/Q. In this case, we identify F `G = P1,ad and we have the

11As a consequence of the comparison with moduli spaces of local shtukas in [125], one
obtains a group-theoretic characterisation of Rapoport–Zink spaces as local Shimura varieties

determined by the tuple (G, b, µ). We suppress (G,µ) from the notation for simplicity.
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decomposition into Newton strata (at least on points of rank one):

S◦Kp

πHT

��

= S◦,ord
Kp

��

t S◦,ssKp

��

P1,ad = P1,ad(Qp) t Ω.

The ordinary locus inside P1,ad consists of the set of points defined over Qp and the
basic / supersingular locus is its complement Ω, the Drinfeld upper half-plane.

The fibres of πHT over the ordinary locus are “perfectoid versions” of Igusa
curves. The infinite-level version of the product formula reduces, in this case,
to the statement that the ordinary locus is parabolically induced from Igord, as
in [37, §6]. The fibres of πHT over the supersingular locus are profinite sets: the
corresponding Igusa varieties can be identified with double cosets D×\D×(Af )/Kp,
where D/Q is the quaternion algebra ramified precisely at ∞ and p. In some form,
this result goes back to Deuring–Serre; see [73] for this precise formulation. This
description of the supersingular / basic Igusa varieties together with the Mantovan
product formula recover Rapoport–Zink uniformization in this special case.

Remark 4.5. The Cartesian diagram (4.3) can be obtained from a Cartesian
diagram of v-stacks

(4.4) S◦bKp

πHT //

��

F `bG

��

[Igb/G̃b] // [∗/G̃b]
' // BunbG

.

Indeed, pullback of (4.4) under ∗ → [∗/G̃b] produces a cube with all faces Cartesian
diagrams and one of the faces can be identified with (4.3). In her PhD thesis [144],
Zhang constructs a more general version of (4.4), where the element b, and thus
the Newton stratum, is allowed to vary.

More precisely, for Shimura varieties of PEL type AC and when p is a prime of
good reduction, Zhang constructs a v-stack Igs◦Kp living over BunG, called an Igusa
stack. She then establishes a Cartesian diagram of v-stacks

(4.5) S◦Kp

��

πHT // F `G

��

Igs◦Kp

πHT // BunG

which specializes to (4.4) for fixed b ∈ B(G,µ−1). Under some mild technical
assumptions, Zhang also extends (4.5) to minimal compactifications. That such a
construction should be possible for general Shimura varieties was conjectured by
Scholze.

Morally, one should think of the diagram (4.5) as taking as an input a moduli
space of global G-iso-shtukas with no legs, and creating legs via Beauville–Laszlo
gluing. This intuition cannot be made precise, of course, since we do not have
a good notion of global shtukas in the number field setting. However, this does
suggest that Igusa varieties and, more generally, Igusa stacks are, in some ways,
just as fundamental as Shimura varieties.
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4.2. Vanishing of the cohomology of Shimura varieties with torsion
coefficients. The goal of this subsection is to discuss local counterparts to Conjec-
ture 3.8 in the special case of Shimura varieties, and to describe the state of the art
for results towards these conjectures. We especially focus on the references [36],[35]
and [85] which concern Shimura varieties of PEL type A and a completely split
prime p. However, we end by mentioning work in progress of Hamann and Lee [68]
that goes significantly beyond this case.

In the case of Shimura varieties, the analogue of Conjecture 3.8 predicts that
the non-Eisenstein part of the cohomology with F`-coefficients is concentrated in
the middle degree q0 = d := dimC ShK . The initial progress on this conjecture in
the Shimura variety setting had rather strong additional assumptions: for example
one needed ` to be an unramified prime for the Shimura datum and K` to be
hyperspecial, as in the work of Dimitrov [48] and Lan–Suh [94, 95]. The geometry
of the Hodge–Tate period morphism, as described in § 4.1, has been a game-changer
in this area, allowing us to obtain results that are simultaneously more general and
more precise.

Assume that (G,X) is a Shimura datum of PEL type A. Let ` be a prime num-
ber and m ⊂ TS be a maximal ideal in the support of H∗(c)(ShK(C),F`). Scholze’s

argument with fake Hasse invariants explained in § 2.4 also allows us to associate a
global modulo ` continuous and semi-simple Galois representation ρ̄m to the system
of Hecke eigenvalues determined by m. The non-Eisenstein condition on m makes
sense as a global condition imposed on the Langlands parameter ρ̄m. In what fol-
lows, we will choose an auxiliary prime p 6= ` that is unramified for the Shimura
datum and impose local conditions on the Langlands parameter at p.

Definition 4.6. Let k be a finite field of characteristic `.

(1) Let p 6= ` be a prime, L/Qp be a finite extension, and ρ̄ : ΓL → GLn(k) be
a continuous Galois representation. We say that ρ̄ is generic if it is unram-

ified and the eigenvalues (with multiplicity) α1, . . . , αn ∈ k
×

of ρ̄(FrobL)
satisfy αi/αj 6= |OL/mL| for i 6= j. For a product ρ̄ : ΓL →

∏m
i=1 GLni(k)

of continuous Galois representations, we say that ρ̄ is generic if each factor
in the product is generic.

(2) Let F be a number field and ρ̄ : ΓF → GLn(k) be a continuous repre-
sentation. We say that a prime p 6= ` is decomposed generic for ρ̄ if p
splits completely in F and, for every prime p | p of F , ρ̄|ΓFp

is generic.
We say that ρ̄ is decomposed generic if there exists a prime p 6= ` which is
decomposed generic for ρ̄. (If one such prime exists, then infinitely many
do, by the Chebotarev density theorem.) These notions also extend to
products ρ̄ : ΓF →

∏m
i=1 GLni(k) as above.

Remark 4.7. The condition for a local representation ρ̄ : ΓL → GLn(k) to
be generic implies that any lift to characteristic 0 of ρ̄ corresponds under the local
Langlands correspondence to an irreducible and generic principal series representa-
tion of GLn(L). Such a representation can never arise from a non-split inner form
of GLn/L via the Jacquet–Langlands correspondence. For this reason, a generic ρ̄
cannot be the modulo ` reduction of the L-parameter of a smooth representation
of a non-split inner form of GLn/L.

The genericity condition can also be characterized in terms of the modulo `
semi-simple local Langlands correspondence of Vignéras [140]: the condition is
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that ρ̄ corresponds to an irreducible (and thus generic) modulo ` principal series
representation of GLn(L). If this is the case, then the representation of GLn(L)
attached to ρ̄ by the Emerton–Helm mod ` local Langlands in families [51] is the
same irreducible and generic principal series representation.

Remark 4.8. The condition for a global Galois representation ρ̄ : ΓF →
GLn(k) to be decomposed generic can be ensured in many cases when ρ̄ has suf-
ficiently large image, using the Chebotarev density theorem. For example, if F is
totally real, n = 2, ` > 2 and ρ̄ is totally odd and has non-solvable image, then it
is decomposed generic, cf. [37, Lem. 7.1.8]. A similar result holds if F is CM and
Galois over Q, cf. [4, Lem. 2.3].

As mentioned above, the idea is to impose some kind of genericity condition on
a system of Hecke eigenvalues m in order to restrict the range of degrees in which
m can contribute. The expectation is that, under such a condition,

(4.6) Hi
c(ShK(C),F`)m = 0 if i > d and Hi(ShK(C),F`)m = 0 if i < d.

If either m is non-Eisenstein or the Shimura varieties under consideration are com-
pact, the above cohomology groups would be concentrated only in the middle de-
gree. This would prove Conjecture 3.8 in many cases for Shimura varieties of PEL
type A. For this purpose, the decomposed generic condition works extremely well,
as exhibited by the following result.

Theorem 4.9 ( [36, 35, 85, 115]). Let (G,X) be a Shimura datum of PEL
type A. Let m ⊂ T be a maximal ideal in the support of H∗(c)(ShK(C),F`) with

associated Galois representation ρ̄m. Assume that ρ̄m is decomposed generic. Then
the expectation (4.6) holds true.

Remark 4.10. In the case when (G,X) gives rise to a compact Shimura variety
of Harris–Taylor type, Theorem 4.9 was first proved by Boyer [23]. His argument
uses the canonical integral models of these Shimura varieties. In this setting, Boyer
also goes beyond genericity, in the following sense. Given the eigenvalues (with
multiplicity) α1, . . . , αn of ρ̄m(Frobp), with p | p the relevant prime of F 12, one can
define a “defect” that measures how far ρ̄m is from being generic at p. Concretely,
set δp(m) to be equal to the length of the maximal chain of eigenvalues where the
successive terms have ratio equal to |OFp

/mFp
|. Boyer shows that the cohomology

groups Hi
(c)(ShK(C),F`)m are non-zero at most in the range [d− δp(m), d+ δp(m)].

As noted by both Emerton and Koshikawa, such a result is consistent with Arthur’s
conjectures on the cohomology of Shimura varieties with C-coefficients and points
towards a modulo ` analogue of these conjectures.

Remark 4.11. Let p 6= ` be a prime that splits completely in F , that is unram-
ified for the Shimura datum (G,X), and such that Kp ⊂ G(Qp) is the hyperspecial
compact open subgroup. Then the genericity condition can also be formulated
purely locally, using the spherical Hecke algebra at p. This is the approach taken
in [85]. Indeed, the spherical Hecke algebra Hp for G(Qp) is a product of spheri-
cal Hecke algebras for general linear groups. For each system of Hecke eigenvalues
mp ⊂ Hp, the associated local L-parameter is a product of unramified L-parameters

12In this special case, one does not have to impose the condition that p splits completely in
F , and it suffices to have genericity at one prime p | p.
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valued in general linear groups. The notion of generic as in the first part of Def-
inition 4.6 makes sense and Koshikawa establishes the inequalities in (4.6) after
localizing at a maximal ideal mp with generic L-parameter.

For simplicity, let us first discuss the proof of Theorem 4.9 in the case of compact
Shimura varieties. The two main approaches that work in this generality are due
to [36] and [85] and they are, in some sense, complementary. They both rely
on the Hodge–Tate period morphism and on the intuition that the generic part
of the cohomology of a PEL type A Shimura variety at a completely split prime
should come only from the ordinary locus. The geometry of the Hodge–Tate period
morphism is used to control the non-ordinary Newton strata, showing that the
generic part of their cohomology vanishes.

At this point, the approaches diverge. The best way to think about their
difference is in terms of the infinite-level Mantovan product formula, which describes
a given Newton stratum as a (twisted) product of an Igusa variety and a Rapoport–
Zink space. The original approach due to [36] controls the cohomology of Igusa
varieties using global methods, particularly the computation of their cohomology
via the trace formula. The later approach due to [85] controls the cohomology
of Rapoport–Zink spaces via Fargues–Scholze [55] and its comparison with the
classical construction of the local Langlands correspondence for GLn due to Harris–
Taylor [72].

The original approach starts by analyzing the TS-equivariant diagram

(4.7) SKp

{{

πHT

##

SKpKp F `G.

The standard comparison theorems between various cohomology theories allow us
to identify H∗(ShK(C),F`)m with H∗(SK ,F`)m. The arrow on the left hand side
of (4.7) is a Kp-torsor, so the Hochschild–Serre spectral sequence allows us to re-
cover H∗(SK ,F`)m from H∗(SKp ,F`)m. The idea is now to compute H∗(SKp ,F`)m
in two stages: first understand the complex of sheaves (RπHT∗F`)m on F `, then
compute the total cohomology using the Leray–Serre spectral sequence. In the
decomposed generic case, the structure of (RπHT∗F`)m is particularly simple.

(1) Firstly, (RπHT∗F`)m behaves like a perverse sheaf on F `G (up to shift).
This is because πHT is simultaneously affinoid, as explained in Theo-
rem 2.10 and the subsequent discussion, and partially proper, because the
Shimura varieties were assumed to be compact. In particular, the restric-
tion of (RπHT∗F`)m to a highest-dimensional stratum in its support is
concentrated in one degree. By the computation of the fibres of πHT, this
implies that the cohomology groups RΓ(Igb,Z`)m are concentrated in one
degree and torsion-free.

(2) Secondly, whenever the group Gb(Qp) acting on Igb comes from a non-

quasi-split inner form, the localisation RΓ(Igb,Q`)m vanishes. Recall from

§ 4.1 that we have an isomorphism RΓ(Igb,Q`)m ' RΓ(Igb,Q`)m. The

computation of RΓ(Igb,Q`)m, at least at the level of the Grothendieck
group, can be done using the trace formula method pioneered in [72,
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Ch.V] and [129], which is particularly well-suited to Shimura varieties of
PEL type A (at least when working with a unitary group defined over a
totally real field F+ 6= Q).

(3) Finally, the condition that p splits completely in F guarantees that the
only Newton stratum for which Gb is quasi-split is the ordinary one.

Therefore, the hypotheses of Theorem 4.9 guarantee that (RπHT∗F`)m is as simple
as possible - it is supported in one degree on a zero-dimensional stratum! The
degree in which it is concentrated is in fact equal to d. The Leray–Serre spectral
sequence computing H∗(SKp ,F`)m degenerates right away and the resulting coho-
mology is also concentrated in degree d. The same result can then also be deduced
for H∗(SK ,F`)m by analyzing the Hochschild–Serre spectral sequence.

Remark 4.12. The intuition that (RπHT∗F`)m behaves like a perverse sheaf
(up to shift) can be made precise if we instead work with the morphism of small
v-stacks

πHT/Kp : SKpKp → F `G/Kp.

One can define an ad hoc perverse t-structure on F `G/Kp with respect to its
Newton stratification and show that (RπHT/Kp∗F`)m[d] is in the heart of this t-
structure. The perverse t-structure on F `G/Kp is defined by glueing the shifted

standard t-structures (D≤−δb , D≥−δb) on each Newton stratum F `bG/Kp, with δb
equal to the dimension of the stratum. In fact, this perverse t-structure is pulled
back from a perverse t-structure on BunG under the `-cohomologically smooth
morphism F `G/Kp → BunG (see [67] for the definition of the t-structure on BunG
and [69, Prop. 2.10] for `-cohomological smoothness). One then obtains semi-
perversity of (RπHT/Kp∗F`)m[d] in one direction from the affineness of Igusa varieties
and Artin vanishing and in the other direction from Verdier duality, which uses
properness of the Shimura varieties. We thank Matteo Tamiozzo for explaining the
details of this argument to us.

We now explain the more recent approach due to [85]. In this case, one first
proves a vanishing result for the generic part of the cohomology of local Shimura
varieties. Let L/Qp be a finite extension. Let (G, b, µ) be a local Shimura datum,
with G/L a group of the form

∏
i∈I GLni for some finite index set I. We set

KL :=
∏
i∈I GLni(OL) ⊂ G(L) and we consider the associated Rapoport–Zink

spaceMKL at level KL. We consider the spherical F`-Hecke algebra HL acting on
H∗c (MKL ,F`) with ` 6= p. To a maximal ideal mL ⊂ HL we have an associated
unramified Galois representation ρ̄mL →

∏
i∈I GLni(F`). We also let Gb denote the

twisted Levi subgroup of G determined by the element b.

Theorem 4.13 ([85]). Let mL ⊂ HL be a maximal ideal with associated Galois
representation ρ̄mL . Assume that ρ̄mL is generic as in Definition 4.6 and that Gb
is not quasi-split. Then H∗c (MKL ,F`)mL = 0

The proof of Theorem 4.13 relies on two steps. Firstly, Koshikawa proves that,
if Gb is not quasi-split and if π is an irreducible smooth F`-representation of Gb(L),
then the semi-simple L-parameter ϕπ associated to it by Fargues–Scholze cannot
be generic. This uses the compatibility between the L-parameters constructed
by Fargues–Scholze and the ones constructed via classical Jacquet–Langlands and
local Langlands; this compatibility holds up to semi-simplification in the case of
GLn by [70]. Secondly, Koshikawa uses the action of the spectral Bernstein center
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to show that, for any irreducible subquotient π of H∗c (MKL ,F`)mL , the Fargues–
Scholze parameter satisfies ϕπ = ρ̄mL .

Let us return to the global perspective of a Shimura variety of PEL type A and
assume that p is an unramified prime for the Shimura datum that splits completely
in the underlying CM field F . Then the only Newton stratum for which the group
Gb is quasi-split is the ordinary one. Assume that m ⊂ T is a maximal ideal
in the support of H∗(ShK(C),F`) such that ρ̄m is decomposed generic. By the
cohomological version of the Mantovan product formula, cf. [85, Thm. 7.1], and
by Theorem 4.13, the only contribution to H∗(SKp ,F`)m comes from the ordinary
locus. At this point, Theorem 4.9 follows from the perversity of (RπHT∗F`)m[d] (in
the sense used originally in [36], or in the sense of Remark 4.12).

For the non-compact case of Theorem 4.9, the key conceptual difference is that
one must weaken perversity to semi-perversity. For example, if one considers the
restriction of the Hodge–Tate period morphism to the good reduction locus

π◦HT : S◦Kp → F `G,

it is shown in [35, §4.6] that (Rπ◦HT∗F`)m[d] is, in some sense, semi-perverse. This
uses the computation of the fibers of the Hodge–Tate period morphism for a toroidal
compactification of the Shimura variety. Such a result can again be made pre-
cise as in Remark 4.12 by showing that (Rπ◦HT/Kp∗F`)m[d] is in pD≥0 for the

perverse t-structure on F `G/Kp. (There is also a dual result, which applies to

(Rπ◦HT/Kp!F`)m[d] and shows that this is in pD≤0. This dual result can be obtained

from the computation of the fibers of the Hodge–Tate period morphism for the
minimal compactification of the Shimura variety. These fibers are related to partial
minimal compactifications of Igusa varieties, which are affine and therefore satisfy
Artin vanishing.)

In the original strategy of [35], once one has semi-perversity, one still needs to
control the boundary of Shimura variety. This is done via an intricate induction
argument; along the way, one constructs Galois representations attached to torsion
classes occurring in the cohomology of Igusa varieties. In the more recent strat-
egy of [85], semi-perversity together with Theorem 4.13 are essentially all that is
needed. The proof of Theorem 4.9 in the non-compact case is completed in [115]
by extending semi-perversity to more general PEL cases.

Several different generalizations of Theorem 4.9 are now emerging. Let us
mention the upcoming work of Hamann–Lee [68], who work with a prime that does
not necessarily split completely in F and who adapt their method to more general
reductive groups under an axiomatic set-up. The key assumption in their axiomatic
set-up is the compatibility between the work of Fargues–Scholze and more classical
approaches to the local Langlands correspondence. This is known, for example,
for GSp4 and for odd unitary groups. The key new ingredient in their work is the
theory of geometric Eisenstein series over the Fargues–Fontaine curve developed
in [67] in the case of the Borel subgroup. In the cases considered by Hamann–
Lee, only the so-called unramified elements in B(GQp)un ⊂ B(GQp) contribute to
the cohomology of the Shimura variety and, moreover, the contribution of each
b ∈ B(GQp)un can be controlled with the theory of geometric Eisenstein series.

Remark 4.14. Recall the Igusa stack πHT : Igs◦Kp → BunG constructed in [144]
and discussed in Remark 4.5. One advantage of the original approach to Theo-
rem 4.9 via Igusa varieties is that it describes the sheaves (Rπ̄HT!F`)m on BunG,
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at least under the assumption that p splits completely in F . These sheaves are ex-
pected to satisfy a form of local-global compatibility for the conjectural equivalence
of categories of Fargues–Scholze. In fact, with the methods introduced in [67], one
can investigate this question in a slightly more general setting, cf. [144, §8.3]. The
cohomology of Igusa varieties is admissible, therefore the sheaves Rπ̄HT∗F` are ULA
objects in D(BunG,F`), cf. [55, Thm. 1.5.1]. Given a semi-simple L-parameter φ
which satisfies an appropriate genericity condition, one can use the spectral action
of Fargues–Scholze to define the “localisation” (Rπ̄HT∗F`)φ. Assume the compat-
ibility between Fargues–Scholze and more classical approaches to local Langlands.
The techniques of Hamann and Hamann–Lee (specifically [68, Prop. 4.15]) show
that

(4.8) (Rπ̄HT∗F`)φ '
⊕

b∈B(GQp )un

RΓ(Igb,F`)φ,

where the terms on the RHS of the decomposition are supported on [∗/G̃b] for b ∈
B(GQp)un. Furthermore, in the case when the Igusa stack agrees with its minimal
compactification, these terms are all supported in one degree by the perversity
result discussed in Remark 4.12.

4.3. Applications to locally symmetric spaces. In this subsection, we
return to the case when F is an imaginary CM field and G = GLn/F . For K ⊂
G(A∞F ) a sufficiently small compact open subgroup, recall that YK is the associated
locally symmetric space. In this subsection, we explain how Theorem 4.9 can be
used to approach Conjecture 3.5 for the cohomology groups of YK . We then explain
how to implement the Calegari–Geraghty method unconditionally over CM fields.

As we have seen in § 2.4, G can be realized as a Levi subgroup of a maximal

parabolic subgroup of a quasi-split unitary group G̃ = U2n/F
+ and ResF+/QG̃

admits a Shimura datum. For a neat compact open subgroup K̃ ⊂ G̃(A∞F+), we
let ShK̃ denote the corresponding Shimura variety for (the restriction of scalars of)

G̃, considered in this subsection as a complex manifold. We let ShBS
K̃

denote its

Borel–Serre compactification, a real manifold with corners, and ∂ ShBS
K̃

denote the
boundary of the Borel–Serre compactification.

We let S be a finite set of finite places of F that is stable under complex
conjugation. This determines a finite set of finite places S̄ of F+. We have the

usual abstract Hecke algebra TS for G. We consider an analogous Hecke algebra T̃S̄
for G̃ (although we only need to take the product of local spherical Hecke algebras
at places in F+ that split in F ). There is an unnormalized Satake transform map

S : T̃S̄ → TS ; see [105, §2] for its definition.
Recall from § 2.4 that the excision sequence for the boundary of the Borel–Serre

compactification induces the T̃S̄-equivariant long exact sequence

(4.9) · · · → Hi
c(ShK̃ ,Z/`

mZ)→ Hi(ShK̃ ,Z/`
mZ)→

Hi(∂ ShBS
K̃
,Z/`mZ)→ Hi+1

c (ShK̃ ,Z/`
mZ)→ · · · .
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Assume that a maximal ideal m̃ ⊂ T̃S̄ satisfies an appropriate genericity condition
at an auxiliary prime p 6= `. Theorem 4.9 applies to the Shimura varieties ShK̃

13

and can be used to simplify the long exact sequence (4.9) after localisation at m̃.
In degree d = dimC ShK̃ , we obtain the following diagram:

(4.10) Hd(ShK̃ ,Z`)m̃ ⊗Z` Q` ←↩ Hd(ShK̃ ,Z`)m̃ � Hd(∂ ShBS
K̃
,Z`)m̃,

which is used to approach Conjecture 3.5. Very roughly, the cohomology groups
on the LHS can be described in terms of (essentially) conjugate self-dual, regular
C-algebraic cuspidal automorphic representations of GLr/F with various r ≤ 2n14.
Their Galois representations are known to satisfy local-global compatibility up to
Frobenius semi-simplification at all places, including at the places v | ` of F . This
ultimately gives control over the cohomology group on the RHS of (4.10).

On the other hand, if m̃ = S∗(m), the cohomology groups Hi(YK ,Z/`mZ)m for
i = 0, . . . d − 1 can be shown to contribute to the cohomology group on the RHS
of (4.10). This is the basic strategy employed in [2] and later refined via P -ordinary
parts in [34]. The strategy requires there to be enough primes of F+ dividing `: we
fix one such prime v̄ | ` where we want to prove local-global compatibility, and we
use the primes v̄′ | ` with v̄′ 6= v̄ to create congruences and shift to cohomological
degree d on the boundary of the Borel–Serre compactification. (This is the reason
why Conjecture 3.5 seems to be most subtle when F is an imaginary quadratic field
– there are not enough auxiliary primes!)

Remark 4.15. There can be genuine torsion classes in the cohomology group
Hd(∂ ShBS

K̃
,Z`)m̃. The diagram (4.10) implies that these lift to characteristic 0

classes in Hd(ShK̃ ,Z`)m̃ ⊗Z` Q`. By design, the proofs of Conjecture 3.5 using the
method outlined above go through these torsion classes.

At this point, we have access to Conjectures 3.4 and 3.5, at least under some
technical assumptions. In order to implement the Calegari–Geraghty method un-
conditionally as sketched in § 3.2, we also need to access Conjecture 3.8. This seems
extremely hard in this generality. However, a modification of the Calegari–Geraghty
method due to Khare–Thorne [78] works in certain settings by assuming only Con-
jecture 3.10. This predicts the vanishing of cohomology with Q`-coefficients, a
result that can be proved when F is a CM field. One of the main challenges in [2]
was to make this insight of Khare–Thorne compatible with other techniques in au-
tomorphy lifting, which rely on reduction modulo `. This challenge was resolved by
considering reduction modulo ` from a derived perspective, leading to an uncondi-
tional implementation of the Calegari–Geraghty method in arbitrary dimensions.

We end by briefly mentioning some applications of this circle of ideas: a proof
of the Sato–Tate conjecture for elliptic curves over CM fields, cf. [2], a proof that
all elliptic curves over many imaginary fields are modular, cf. [3, 34], and proofs of
many new cases of the Ramanujan conjecture for GL2 over CM fields, cf. [2, 19].

13More precisely, one considers a variant of G̃ that is a unitary similitude group, giving rise
to Shimura varieties of PEL type A. The difference is only on the level of geometric connected

components.
14In order to make this work in reality, one needs to introduce a non-trivial local system Vλ̃

on Sh
K̃

, which can eliminate contributions from non-conjugate self-dual automorphic forms by

imposing a central character constraint.
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