HONDA-TATE THEORY FOR SHIMURA VARIETIES

MARK KISIN, KEERTHI MADAPUSI PERA, AND SUG WOO SHIN

ABSTRACT. A Shimura variety of Hodge type is a moduli space for abelian
varieties equipped with a certain collection of Hodge cycles. We show that
the Newton strata on such varieties are non-empty provided the corresponding
group G is quasi-split at p, confirming a conjecture of Fargues and Rapoport in
this case. Under the same condition, we conjecture that every mod p isogeny
class on such a variety contains the reduction of a special point. This is a
refinement of Honda-Tate theory. We prove a large part of this conjecture
for Shimura varieties of PEL type. Our results make no assumption on the
availability of a good integral model for the Shimura variety. In particular, the
group G may be ramified at p.
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A Shimura variety, Sh(G, X), of Hodge type may be thought of as a moduli

space for abelian varieties equipped with a particular family of Hodge cycles. This
interpretation gives rise to a natural integral model . = (G, X). For a mod p

point, z € #(F,), one has the attached abelian variety A, and its p-divisible group
G, = A;[p*]. In this paper, we study the two related questions of classifying the

isogeny classes of G, and A,. We are able to do this for quite general groups G, as
our methods do not require any particular information about .#; for example we
do not assume that . has good reduction.

The isogeny class of G, is determined by its rational Dieudonné module D,
which is an L = W(F,)[1/p]-vector space equipped with a Frobenius semi-linear

operator b,o, where b, € G(L) is an element which is well defined up to o-conjugacy,

by — g 'b.0o(g), and o denotes the Frobenius automorphism of L. The element b,
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is subject to a group theoretic analogue of Mazur’s inequality [RR96, Thm. 4.2],
and the set consisting of o-conjugacy classes which satisfy this condition is denoted
B(G, ), where p : G, — G is the inverse of the cocharacter px (up to conjugacy)
attached to X. (See and below for precise definitions.) Let I denote
the pro-torus whose character group is Q. Each b € G(L) gives rise to the so-called
Newton cocharacter v, : D — G, defined over L, whose conjugacy class is defined
over @, and depends only on the o-conjugacy class [b]. The slope decomposition
of D, is given by . For [b] € B(G, 1), the corresponding subset Sy C . (F,) is
called the Newton stratum corresponding to [b] so that a point z € .%(F,) belongs
to Spy if and only if [b,] = [b]. Our first result is on the non-emptiness of Newton
strata. (The converse is known, i.e. if Sp is non-empty then b € B(G,u). See

Lemma )

Theorem 1. Suppose thatb € B(G, 1) and that the G(L)-conjugacy class of vy has
a representative which is defined over Q,. Then Sy is non-empty. In particular,
S is always non-empty either when Gg, is quasi-split or when [b] is basic.

Fargues [Far04, Conj. 3.1.1] and Rapoport [Rap05, Conj. 7.1] have conjectured
that Sp) is non-empty for every b € B(G, u); see also the paper of He-Rapoport
[HR17]. Previous results on the non-emptiness of Sy have been obtained by a
number of authors - see the papers of Wedhorn [Wed99] and Wortmann [Worl3|
for the p-ordinary case (of hyperspecial level), that of Viehmann-Wedhorn [VW13]
for the PEL case of type A and C (of hyperspecial level), and the recent work of
Zhou |Zho20| for many cases of parahoric level. These all rely on an understanding
of the fine structure of a suitable integral model of Sh(G, X).

Our method involves constructing a special point whose reduction lies in Sp.
This is essentially a group theoretic problem, as the Newton stratum of a special
point can be computed in terms of the torus and cocharacter attached to that point.
When Gq, is unramified, this problem was already solved by Langlands-Rapoport
[LR87, Lem. 5.2]. This was independently observed by Lee |Leel8], who also used it
to show non-emptiness of Newton strata in this case. If Sp) contains the reduction
of a special point, then it is easy to see that the G(L)-conjugacy class of v, has a
representative which is defined over Q,. Thus the result of Theorem [1|is the best
possible using this method.

Along the way we confirm an expectation of Rapoport—Viehmann [RV14, Rem.
8.3] on cocharacters and isocrystals. (See Remark below.) We also show the
Newton stratification has some of the expected properties:

Theorem 2. For every b € B(G, ), Sy C (Fp) is locally closed for the Zariski
topology. One has the following closure relations, where =< is the partial order on
the set of conjugacy classes of Newton cocharacters (see :

Swe U S
vy 20

This theorem is proved by showing the existence of isocrystals with G-structure
on .. This may be of independent interest, but is rather technical so is left to the
appendix. (Recently Hamacher and Kim [HK19] proved similar results for the case
of Kisin-Pappas models by a different argument.) We remark that inclusion in the
Theorem is expected to be an equality for hyperspecial level, but not in general. As
a corollary, we obtain generalizations of the theorems of Wedhorn and Wortmann
on the density of the p-ordinary locus.
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Theorem 3. If the special fibre of .7 is locally integral then the u-ordinary locus
is dense in the special fibre.

We now discuss the problem of classifying A, up to isogeny. For the moduli space
of polarized abelian varieties, this is closely related to Honda-Tate theory, which
asserts that the isogeny class of an abelian variety A over I, is determined by the
characteristic polynomial of the g-Frobenius on the f-adic cohomology H'(A, Q),
with ¢ 1 ¢, and that the isogeny class of A contains the reduction of a special
point. Using this fact one can describe precisely which characteristic polynomials
can occur. For z € (G, X)(F,) one expects that the ¢-Frobenius arises from
a v € G(Q) whose G(Q)-conjugacy class is independent of ¢, although it is in
general not a complete invariant for the isogeny class of A. We make the following
conjecture:

Conjecture 1. If Gq, is quasi-split then the isogeny class of any x € S (Fp)
contains the reduction of a special point.

Here if 2,2’ € #(F,), then A,, A, are defined to be in the same isogeny class if
there is an isogeny % : A, — A, such that for each of the Hodge cycles s, , carried
by A, i takes 54 4 t0 Sq,,7. More precisely, the Hodge cycles s, , can be viewed
via either ¢-adic cohomology for ¢ # p, or crystalline cohomology. We require that
i takes sS4,z t0 Sq.. in each of these cohomology theories.

When G is unramified this conjecture was proved by one of us [Kisl7]; see also
[Zho20] for some cases of parahoric Shimura varieties. The methods of loc. cit
require rather fine information about the special fibre of ., and are rather different
from the ones employed in this paper which require almost no information about
integral models.

Even for the moduli space of polarized abelian varieties, the conjecture is a
more refined statement than Honda-Tate theory, since the definition of isogeny
class involves isogenies which respect polarizations. As we shall explain, it can
nevertheless be deduced from Honda-Tate theory with some extra arguments, but
remarkably these do not seem to be in the literature; the closest is perhaps [Kot92,
§17]. (See below.)

To state our main result in the direction of the conjecture, we recall that the
group of automorphisms of 4, in the isogeny category is naturally the Q-points of
an algebraic group I, = AutgyA, over Q. Similarly one can define the subgroup I =
I, C I consisting of isogenies which respect Hodge cycles in ¢-adic and crystalline
cohomology. The set of isogenies (respecting Hodge cycles) between A, and A,
is likewise the Q-points of a scheme P(x,2’) which is either empty or a torsor
under I,. We say that A, and A, are Q-isogenous if P(x,z’) is nonempty. This
is equivalent to asking that there is a finite extension F/Q and an isomorphism
A, @ F — Ay @ F (for example as fppf sheaves) respecting Hodge cycles. We say
that A, and A, are Q-isogenous if P(z, ') is a trivial torsor.

Theorem 4. Suppose that G is quasi-split at p, and that (G, X) is a PEL Shimura
datum of type A or C, then for any x € 7 (F,) the abelian variety A, is Q-isogenous
to Ay, with ' the reduction of a special point.

Our main result is actually more precise, as we show that one can construct
special points associated to any maximal torus 7' C I. There is also a slightly
weaker version of the theorem in the case of PEL type D; see [2.3.16] In fact we
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prove an analogous theorem for (G, X) of Hodge type, conditional on a version of
Tate’s theorem for abelian varieties equipped with Hodge cycles - see below.

When G is unramified a result closely related to the above theorem was proved
by Zink [Zin83|. Note that in loc. cit. Zink’s theorem says that A, is isogenous
(not just Q-isogenous) to the reduction of a special point, however his definition
does not require that isogenies respect polarizations, and it is not hard to see that
one can then produce a Q-isogeny from a Q-isogeny (the corresponding torsor turns
out to be trivial).

When G2 satisfies the Hasse principle one can replace Q-isogenies by Q-isogenies
in Theorem @ For example one has

Theorem 5. Suppose that G is quasi-split at p, and that (G, X) is a PEL Shimura
datum of type C or of type A, with n odd. Then for any z € & (F,), A, is Q-
isogenous to Ay, with x’ the reduction of a special point, so that Conjecture holds
in this case.

One of the key ingredients in Honda-Tate theory is Tate’s theorem on the Tate
conjecture for morphisms between abelian varieties over finite fields [Tat66]. We
prove an analogue of this result for (G, X) of Hodge type, and for automorphisms
of abelian varieties equipped with the corresponding collection of Hodge cycles.
To explain this, for each ¢ # p, let I, C Aut(H'(A,,Q;)) be the subgroup which
fixes the Hodge cycles s, , and commutes with the g-Frobenius for ¢ = p” and r
sufficiently divisible. We define a similar group I, using crystalline cohomology.

Theorem 6. For every { (including ¢ = p) the natural map
IT®qQe— Iy

is an isomorphism. In particular the (absolute) rank of I is equal to the rank of G.

The proof uses the finiteness of .7 (F,) (when level is fixed) as in [Kis17|, as well
as a result of Noot on the independence of ¢ of the conjugacy class of Frobenius as
an element of G(Qy). Note that a similar finiteness condition plays a crucial role in
[Tat66).

Using this result, one knows that any maximal torus 7" C I has the same rank as
G. We show that, when G, is quasi-split, any such T" can be viewed as (transferred
to) a subgroup of G. Our results on non-emptiness of Newton strata then imply
that there is a special point &' € Sh(G, X) with associated torus T. If 2’ is the
reduction of &/, then A, and A, should be Q-isogenous. Indeed this follows from
a version of Tate’s theorem with Hodge cycles. When x = 2’ this is Theorem |§|
above, but we do not know how to prove such a theorem when x # ', except in
the PEL case, when one can use Tate’s original result to deduce the first part of
Theorem [4] Finally the second part is proved via an analysis of the local behavior
of the torsor P(z,z’).
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NOTATIONAL CONVENTIONS

Given a connected reductive group G over a field F, we write G4 C G for its
derived subgroup and G*¢ — G9° for the simply connected cover of its derived
group.

Fix an algebraic closure F for F. For any torus 7 over F, we set

X.(T) = Hom(G,, g, Tf) ; X*(T) = Hom(T3, G, )

for the cocharacter and character groups of T', respectively. Write D for the mul-
tiplicative pro-group scheme over Q, with character group Q. A homomorphism
Dz — T gives an element of X, (T)g = X.(T) ®z Q, and vice versa. We often
refer to a homomorphism D — G (defined over an extension of F') as a cocharacter
of G by standard abuse of terminology.

For a maximal torus 7' in the reductive group G, we write W(G,T) for the
absolute Weyl group of G relative to T, and we denote by 71 (G) the algebraic
fundamental group of G [Bor98|: It is a Gal(F/F)-module, functorial in G, and
canonically isomorphic to X, (T")/X.(T5°), where T5 is the preimage of T in G*.

For v a place of Q, we fix an algebraic closure Q, for Q, (here, Qo = R and
Qo = C). We also fix an algebraic closure Q, along with embeddings ¢, : Q — Q,,
for every place v. Set I', = Gal(Q,/Q,) and I = I'g = Gal(Q/Q). We will use our
chosen embeddings to view I';, as a subgroup of T'.

When F is a number field, the ring of integers of E is denoted by 0.

1. NON-EMPTINESS OF NEWTON STRATA

1.1. Local results. Fix a rational prime p. Let G be a connected reductive group
over Q,. Fix a maximal torus 7' C G defined over Q, and a Borel subgroup
B C Gg, containing T . Positive roots and coroots of 7" in G will be determined
by B.

1.1.1. Set

N(G) = (X.(T)o/W(G,T))".
This space has a more canonical description that A'(G) is the space of G(Q,)-
conjugacy classes of homomorphisms Dg, — G@p that are defined over Q.

Let C C X.(T)g be the closed dominant Weyl chamber determined by B. Each
class 7 € N(G) has a unique representative v € X.(T)g N C. There is a natural
partial order < on X, (T)r and N(G), also denoted by < if there is no danger of
confusion, determined as follows; cf. [RR96, 2.2, 2.3]: Given i,y € N(G) with
representatives v1,v9 € X.(T)g NC, we have iy < ¥y if and only if ve — 1 is
a nonnegative linear combination of positive coroots. Similarly < is defined on
X.(T)r using dominant representatives.

There is a unique map N (G) — 71 (G)'» ®Q which is functorial in G and induces
the identity map when G is a torus [RR96, Thm. 1.15].

1.1.2. Let W = W(F,) be the ring of Witt vectors for an algebraic closure F,, of
F,, and write L for its fraction field. We fix an algebraic closure L for L along
with an embedding @p < L. Let 0 : W — W be the unique automorphism lifting
the p-power Frobenius on F,. As in [Kot85|, we will denote by B(G) the set of
o-conjugacy classes in G(L), so that two elements by,by € G(L) are in the same
class in B(G) if and only if there exists ¢ € G(L) with by = cbao(c) L.
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Recall the following maps from [RR96, Thm. 1.15], which are functorial in G:
kG - B(G) — 7T1(G)1'* Vg B(G) —>N(G)

p ?
A class [b] € B(G) is basic if pz([b]) is the class of a central cocharacter of G. We
write B(G), C B(G) for the subset of basic classes.
The maps kg, g have the following properties:

(1.1.2.1) The diagram

B(G) "¢ s 1 (G)r

P

vag

N(G) — (m(G) 2 Q'

commutes. Here, the vertical map on the right-hand side is induced by the
usual isomorphism averaging over each I'p-orbit, cf. [RR96, p.162]:

(m1(G) @ Q)r, = (m(G) @ Q)'*.

The bottom horizontal map is uniquely characterized as a functorial map
in G that is the natural identification when G is a torus. See [RR96|
Thm. 1.15] for details.

(1.1.2.2) [Kot85, 4.3, 4.4]: Given b € G(L) representing a class [b] € B(G), the
conjugacy class U ([b]) is represented by a cocharacter v, : Dy, — G|, that is
characterized uniquely by the following property: There exists ¢ € G(L) and
an integer r € Z such that rv, factors through a cocharacter G,, , — Gp,
that c(rvy)c™! is defined over the fixed field of o™ on L, and that

cba(b)a?(b) ---a"(b)o" (¢) ™1 = c(rwp) (p)e L.
This implies that v,y = (1) and that, for every g € G(L),

Vgbo(g)—t = gybgil'

(1.1.2.3) [Kot97, 4.13]: The map
(Hg, ﬂg) : B(G) — 7T1(G)Fp X ./\/(G)
is injective. Furthermore, the restriction of kg to B(G), induces a bijection:
B(G)b i> 1 (G)Fp-

(1.1.2.4) [Kot85l 2.5]: When G = T is a torus, s is an isomorphism, and can be
described explicitly: Let E/L be a finite extension over which T is split, and
let Ng,r, : T(E) — T(L) be the associated norm map. Fix a uniformizer
m € E. Then we have a commutative diagram:

X.(T) v [Ng/p(v(m))] B(T)
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1.1.3. Later we will often make the following hypothesis on G and [b]:

(1.1.3.1) The class [b] contains a representative b € G(L) such that the cocharacter
vy, is defined over Q.

Given [b] satisfying the above condition, we fix such a representative and denote the
corresponding cocharacter by v([b]). Let Mp) C G be the centralizer of vg([b]):
This is a Q,-rational Levi subgroup of G.

Note that is always satisfied if G is quasi-split over Q, as one can
see from cf. [Kot85, p.219]. If [b] is basic (but G is possibly not quasi-
split), is still satisfied as [(1.1.2.2)| shows that 1, is a o-invariant central

cocharacter of G for any representative b.

1.1.4. Suppose that b € G(L). Consider the group scheme J;, over Q, that attaches
to every Qp-algebra R the group:

Jo(R) ={g9 € G(R®q, L) : gb="bo(g)}.

By construction, there is a natural map of group schemes over L: J,  — Gp.
If b = gbo(g)~! is another representative of [b] € B(G), then conjugation by g
induces an isomorphism of Q,-groups:

int(g) : Jp = Ty

As shown in [RR96, 1.11], J, is a reductive group over Q,. A more precise
statement holds: Let M,, C G, be the centralizer of v,. By replacing b by a

o-conjugate if necessary, we can arrange to have [(1.1.2.2)
(1.1.4.1) bo(b)o?(b) - --a"(b) = (rv)(p),

with vy, defined over Q- and r € Z>;. Then M,, is also defined over Q,-, and b
belongs to G(Q,r). Moreover, the natural map Jy, ;, — G, is defined over Q,~ and
identifies J; g, with M,,.

Under hypothesis the discussion in |(1.1.2.2)] and (1.1.3) tells us that
M, is a pure inner twist of M, by the Mp,)-torsor (trivial by Steinberg’s theorem)
of elements of Gg,, conjugating v}, to vg([0]).

Combining the previous two paragraphs, we find that J, is equipped with an
inner twisting J, — M) over Q, (cf. also [Kot85, 5.2]).

1.1.5.  'We return to the general setup, disregarding|(1.1.3.1)lup to (|1.1.13]) below.
Let G* be the quasi-split inner form of G over Qp, and £ : G = G* an inner
twisting. Let B* C G* be a Borel subgroup over Q, and 7% C B* a maximal torus
over Q,. Write C* C X, (T*)g for the B*-dominant chamber.

If the G(Q,)-conjugacy class of a cocharacter v : Dg, — Gg, is defined over Q,
then so is the G*(Q,)-conjugacy class of £ ov. Thus ¢ induces a map Ne : N(G) —
N (G*), depending only on the G*(Q,)-conjugacy class of €.

Let {u} be a conjugacy class of cocharacters G,, g — Gg,, and let pu* €
X.(T*) N C* be the dominant representative for £ o {u}. Let I',«~ C I', be the
stabilizer of p*, and set

* PN
Tor 2 oW eX(y
Prrl oer, /T

We will write ji* for the image of Nu* in N (G*).
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Let 1f be the image of {u} in m1 (G)r, (Note that the image of p* in 71 (G*)r, is
equal to ©f via the canonical isomorphism 1 (G)r, = m1(G*)r,.) Given [b] € B(G),
we will say that the pair ([b],{p}) is G-admissible or simply admissible, if two
conditions hold:

(1.1.5.1) ke([b]) = ub.
(1.15.2) Ne(pa(]) = "
If G is quasi-split then we may and will take G = G* and £ to be the identity
map so that N is also the identity map.

Lemma 1.1.6. Given a conjugacy class {u} as above, let [bpas(pt)] € B(G)p de-
note the unique basic class such that kg([bpas(i)]) = pf. Then ([bpas(p)], {u}) is
admissible.

Proof. The condition [(1.1.5.1)| is tautological, and [(1.1.5.2)| follows from [RR96]
Prop. 2.4(ii) and the commutativity of |(1.1.2.1)| O

Definition 1.1.7. Let 7 C G be a maximal torus over Q,. We will call an
admissible pair ([b], {p}) T"-special if there exists a representatives b’ € T'(L) (resp.
w € X (T)) of [b] (resp. {i'}) such that the pair ([']7/, ') is an admissible pair
for T'. Here, we write [0/ for the o-conjugacy class of ¥’ in T"(L). We say that
([6], {1}) is special if it is T'-special for some maximal torus 77 C G.

Lemma 1.1.8. Suppose that ([b],{u}) is an admissible pair for G with [b] basic.
Then ([b], {u}) is T'-special for any elliptic mazimal torus T' C G. More precisely,
for any p' € X (T") in {u}, [bras(t')] € B(T") maps to [b] € B(G).

Proof. Let T" C G be an elliptic maximal torus, and let ¢/ € X,(T’) be a rep-
resentative for {u}. As T is elliptic, [bpas(t’)] € B(T”) maps to a basic class
('] € B(G) [Kot85, 5.3]. Moreover, r¢([b']) is the image in m(G)r, of p/* =
k1 ([bras(1')]), and so must be equal to uf. Hence, [b'] = [byas(pt)] = [b]. O

1.1.9. From here until we are concerned with quasi-split groups. Let Hj
be an absolutely simple quasi-split adjoint group over a finite extension F/Q,. Fix
a Borel subgroup By C Hy and a maximal torus Ty C By over F.

Set H = Resp/q,Ho, B = Respqg,Bo, T = Respq,To and X = X.(T). The
last is a free Z-module with an action of Iy, and the choice of By equips it with a
I'p-invariant positive chamber C C Xg. As above, we have a Galois averaging map
N : C — C with image in C'».

Lemma 1.1.10. Let F'/Q, be the unramified extension with [F' : Q] = [F : Q).
Then there is a quasi-split absolutely simple adjoint group H| over F' equipped with
a Borel subgroup B, and a mazimal torus T) C B{ with the following properties:
(1.1.10.1) Let (H', B',T") = Resgrq, (Hy, By, T). Then there is an isomorphism of
triples:

~

(H,B,T) ®q, @p — (H',B",T") ®q, @p.
(1.1.10.2) Let C' C Xg be the positive chamber of X' = X.(T") determined by B’,
and let N' : C' — C’ be the Galois averaging map. Then the isomorphism
in |(1.1.10.1) can be chosen such that the induced isomorphism C' = C
carries the endomorphism N’ to N.
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Proof. We begin by explicating the averaging map IN. Let D be the Dynkin diagram
of H: It is a disjoint union
|_| D07

o:F—=Q,
where Dy is the Dynkin diagram for Hy. The action of I';, permutes the connected
components of this diagram in the usual way, and for each o : F — Q,, the
stabilizer I'; C T', of o (that is, the pointwise stabilizer of o(F)) acts on Dy via a
homomorphism

po : 'y = Aut(Dy).
Fix an embedding o¢ : F — @p, and let 7 € I', be such that 7 009 = 0. Then p,
is equal to the composition

-1
r, 227 2% 1, 279 Aut(Dp).

The simple coroots in X are in canonical bijection with pairs (o,dy), where
o: F — Q,and dy € Dy is a vertex. Write aV(0,dp) for the simple coroot
associated with such a pair.

The T',-orbit of a¥ (o, dp) consists of simple coroots a¥ (o, df,) where df, € Dy is
in the I'y-orbit of &V, and ¢’ : F — @p is arbitrary. Therefore, if do 1,...,dor € Do
comprise the I',-orbit of dy, we have

1
NoY(o,dy) = ——— a¥ (o', dys).
( ) r[F : Qp) a/:Fz;@p ( 2
1<i<r
Fix an embedding of, : F/ — Q,. We now claim that we can find a quasi-split
group H over F' with a Borel subgroup Bj, C H|, and a maximal torus Ty, C Bj

with the following properties:

e There is an isomorphism
(H(/)v B()? T(l)) (X)F’,O'(J Qp E—> (H07 BOy TO) ®F,Go Qp'
e If D{ is the Dynkin diagram of H{, identified with Dy via the above iso-
morphism, then the induced action of I';; on Dy has the same orbits as
those of the action of I'y,.

The claim implies the lemma by choosing a bijection between Hom(F,Q,) and
Hom(F’,Q,) carrying oo to of. Indeed, follows from the first part of
the claim, and from the second; since N’ and N are linear, it suffices to
compare them on the set of simple coroots.

Let us prove the claim. Suppose first that the image of 'y, in Aut(Dy) is cyclic.
Consider a map I';; — Aut(Dp) which has the same image as I's, and factors
through the Galois group of an unramified extension of F’. Then we can take H)
to be the quasi-split outer form of Hy over F’ associated to this map.

The only remaining case is when Dy is of type Dy, and T, surjects onto Aut(Dy).
In this case, the subgroup of index 2 still acts transitively on each orbit of Aut(Dy)
in Dy, and we choose I'y; — Aut(Dg) with image this index two subgroup, and
factoring through the Galois group of an unramified extension of F’, and H|, the
corresponding quasi-split outer form of Hy. The proof of the claim is complete.

O
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1.1.11.  Assume that G is quasi-split over Q,. Let B be a Borel subgroup of G
over Q, and T' C B a maximal torus over Q,. Let M C G be a standard Levi
subgroup. Recall that this means that M is the centralizer of a split torus 77 C T.
Note that we may regard X*(ZM)(BP as a subset of N'(M).

Lemma 1.1.12. Let p,pup € X.(T) be cocharacters having the same image in
m1(G) and let [bas] € B(M)y be the unique basic class with kar([bar]) = pb,. Then

1.12.1) vpr([ba]) is equal to the image of u%w n
(m (M) ® Q) ~ (X, (Zy) @ Q)F».
1.12.2) ([bm],{n}) is G-admissible if and only if Upr([bm]) = fi-

Proof. The first claim follows from the commutativity of By definition
the G-admissibility of ([bas], {i}) is equivalent to asking that Uas([bas]) =¢ [, and
that u%w maps to pf in 71(G)r, . However, since y1ps and p have the same image in
71(G), the second condition is automatic. O

Proposition 1.1.13. Suppose that G is quasi-split over Q,. Let p € X, (T) be
minuscule, and [by] € B(M)y such that ([bar], {p}) is G-admissible. Then there
exists w € W (G, T) such that ([bar], {w - p}) is M-admissible.

Proof. First, suppose that G is unramified. We fix a reductive model of G over Z,,
again denote by G, such that T extends to a maximal torus 7" C G over W. Then
M extends to a Levi subgroup M C G over W.

By a theorem of Wintenberger [Win05|, the admissibility of ([bas], {u}) implies
that there exists g € G(L) such that g~'by0(g) belongs to G(W)u(p)G(W). By the
Iwasawa decomposition, after modifying g by an element of G(W), we can assume
that ¢ = nm, where m € M (L) and n € N(L), where N C G is the unipotent
radical of the (positive) parabolic subgroup of G with Levi subgroup M. Then
an argument with the Satake transform |[LR87, Lem. 5.2] shows that m™1bpr0(m)
belongs to M(W)u/(p)M (W), where p/ € X.(T) is a cocharacter of M which is
G(L)-conjugate of pu. More precisely, the Satake transform is used to show that
1/ =g p (in the notation of [1.1.1)), and the minuscule nature of y allows us to
conclude that p is conjugate to p. (See the proof of [Kot03, Thm. 1.1, 4.1] and the
proof of [Kisl7, (2.2.2)] for alternative arguments to show the conjugacy.) Write
W =w-p with w e W(G,T). By aresult of Rapoport-Richartz [RR96, Thm. 4.2,
([bar), {w - p}) is M-admissible.

Now, let G be an arbitrary quasi-split group. We can assume that G is adjoint.
Indeed, let M C G*! denote the image of M, and [b3%] € B(M); the image of [bas].
If w € W(G,T) is such that ([b34], {w - u*1}) is M-admissible, then we claim that
([bar], {w - p}) is M-admissible. To see this, note that the difference kps([bas]) —
(w - p)* is contained in the intersection of the kernels of the maps

7T1(M)pp — 7T1(M)pp and 7T1(M)rp — 7T1(G)Fp.
The kernel of the first map is the image of X.(Z¢g)r, — m1(M)r,. The composite
X.(Zg)r, = m(G)r, = X.(G*)r, has torsion kernel, so the intersection must be
a torsion group. However, by [CKV15| 2.5.12(2)], the kernel of the second map is
torsion free. Hence the intersection is trivial.
Next, by considering the simple factors of G separately, we can assume that G
is also simple. Therefore, G = Resp/g,Go, where F//Q, is a finite extension, and
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Gy is an absolutely simple, quasi-split adjoint group over F. We may also assume
that
T= RGSF/QPTO 5 B = RQSF/QPBQ,
where Ty C Gy (resp. By C Gp) is a maximal torus (resp. Borel subgroup).
By (1.1.10)), we can find an unramified group G’, a Borel subgroup B’ C G’ and

a maximal torus 7" C B’, as well as an isomorphism

¢:(G,B,T)®0Q, = (G',B,T)®Q,
such that the induced isomorphism of positive chambers 7 : C = C’ commutes with
Galois averaging maps.

Recall that M is the centralizer of T, which is a split torus in 7. Set p/ = n(u)
and 77 = &(T1). Since n commutes with Galois averaging maps, the elements in
X.(T7) are equal to their own Galois averages, and hence are I',-invariant. Hence
the subtorus 7] C G’ is defined over @, and is again split. Let M’ C G’ be the
centralizer of T]. Then ¢ carries M onto M'.

Let par € X4 (T) be a cocharacter such that ug\/[ = rkp([bar]), and such that pay

and p have the same image in m1(G), and set p); = n(par). Let [bh,] € B(M'), be
the unique basic class with ,u% = ke ([D)y]). Then using Lemma one sees
that ([bh,], {¢'}) is G’-admissible. Hence, by what we saw in the unramified case,
there exists w € W(G',T") = W(G,T) such that ([t),],{w - p'}) is M'-admissible.
By Lemma this is equivalent to u'ﬁf = (w- )" in 7 (M’)p,. This implies
that ug\/f — (w - p)f in m (M)r, is torsion, since its image under the averaging map
in is 0. Since this difference maps to 0 in 7 (G)r,, it follows, as above,
that u’, = (w - u)¥, and hence, applying Lemma again, that ([bas], {w - u}) is
M-admissible. 0

Remark 1.1.14. The previous proposition confirms that part (ii) of [RV14] Lem. 8.2]
holds generally for quasi-split groups as expected. (See their Remark 8.3. In fact
they do not assume that [by] is basic in B(M) but one can reduce to the basic
case by [Kot85, Prop. 6.2].) Further we extend the proposition to non-quasi-split
groups below.

Corollary 1.1.15. Let G be an arbitrary connected reductive group over Q, with
a Qp-rational Levi subgroup M. Let p : G, — M be a minuscule cocharacter
and [bp] € B(M)y such that ([bar], {p}) is G-admissible. Then there exists w €
W(G,M) := Ng(M)/M such that ([bar],{w - p}) is M-admissible.

The assumptions of the corollary imply hypothesis|(1.1.3.1)| for [bys] (as an ele-
ment of B(M) or B(G)) by (1.1.3). In other words, the corollary is vacuous unless

(1.1.3.1)|is satisfied.

Proof. We reduce the proof to the quasi-split case. We will freely use the notation
from . So let ¢ : G = G* denote an inner twisting. Let P be a Q,-rational
parabolic subgroup with M as a Levi factor. Then the G*(Q,)-conjugacy class of
¢(P) is defined over Q,. Since G* is quasi-split, there exists g € G*(Q,) such that
P* = g&(P)g~! is Q,-rational. We replace ¢ by g€g~! so that £(P) = P*. Put
M* = &(M) so that &|p : M =, M* is an inner twisting. We use £ to identify
W(G,M) ~ W(G*, M*) := Ng«(M*)/M*. We may assume that B* C P* and
T C M~.
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We have a chain of isomorphisms

KM % “;41* %
B(M)b ~ 7T1(M)1"p :7T1(M )1" ~ B(M )b,

P

where the second map is a canonical isomorphism; cf. [RR96, 1.13]. Write [by+] €
B(M*), for the image of [bas]. Let p* be the B* N M*-dominant representative in
X.(T*) of the M*(Q,)-conjugacy class of &|prou. We claim that ([bas-], {*}) is G*-
admissible. Once this is shown, implies that there exists w* € W(G*, M™*)
such that ([bas«], {w* - p*}) is M*-admissible. Writing w € W(G, M) for the image
of w*, the M-admissibility of ([bas], {w - u}) follows from this.

It remains to prove the claim, i.e. to verify that kg« ([bar-]) = (1*)* and that
e+ ([bar+]) = 1*. We will deduce this from the assumption that ([bas], {u}) is
G-admissible via compatibility of various maps. The former condition follows from
the construction of [bps+] and p*, using the functoriality of the Kottwitz map and
the fact that the canonical isomorphisms 7 (M) = 71 (M*) and m1(G) = 71 (G*)
are compatible with the Levi embeddings M C G and M* C G*. For the latter
condition, since we know Ne(vg([ba])) <+ %, it suffices to check that

Ne(Pa(bul)) = ve- ([bar-]).

By [Kot97, 4.4] the Newton maps N, o as : B(M), — N(M*) and opz- :
B(M*), — N(M*) factor through the natural inclusion X, (An+)g C N(M*),
where Ajs+ is the maximal split torus in the center of M*. Also the images
Nepw (Tar([bar])) and Dag- ([bas+]) in X, (An+)g are determined by rar([bas]) and
ka+([bar]) as elements of 71 (M)r, = 71 (M*)r, (via the canonical isomorphism
Xu(Ap-)g ~ m(M*)r, ® Q). Since ka([bar]) = Kar=([bar]) by construction,
we obtain that N, (Zar([bar])) = Dar+([bas+]).  This implies Ne(7a([ba])) =
v+ ([bar+]) since the maps N (M) — N(G) and N (M*) — N(G*) induced by Levi
embeddings are compatible with N, , Ne, and likewise for the maps B(M) —
B(G) and B(M*) — B(G*). The proof is complete.

(I

1.1.16. Let b € G(L). We continue to allow G to be non-quasi-split but assume
hypothesis on G and [b]. Recall that the group J, defined in is
equipped with an inner twisting J, — M, ). In particular, v ([b]) induces a central
cocharacter v, j : D — J;, defined over Q.

If 7" C Jp is a maximal torus over Q,, then a transfer of T" to Mp) is an
embedding T" My over Q, which is M, (Qp)—conjugate to the composite

T Jp i) M[b]

A transfer of 7' to Mp, always exists either if G is quasi-split (|Lan89, Lem. 2.1])
or if T" is elliptic ([Kot86l, Section 10]).

Corollary 1.1.17. Assume hypothesis |(1.1.3.1). Let ([b],{u}) be an admissible

pair for G with {u} minuscule. Let T' C Jy, be a mazimal torus. Assume that its
transfer j : T" — My, exists. Then ([b], {u}) is j(T")-special.

In particular, there exists pr € X, (T") such that jo pg lies in the G-conjugacy
class {u}, and such that we have:

Vp,g = Nur € X*(T/)(gp.
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Proof. Note that J, and My, are both subgroups of G over L. After replacing b by
a o-conjugate satisfying , we may assume that Jy y is identified with M,,,
and that the inner twisting .J, —» My is given by composing this identification
with conjugation by an element h € G(L) that carries v, to vg([b]). In particular,
then vg([b]) = int(h)(vp,7) as G-valued cocharacters.

Now, view T” as a subtorus of G, via j, let T} C T" be the maximal split subtorus,
and let M C G be the centralizer of T1, so that T” is an elliptic maximal torus of
M. Let Ty D T7 be a maximal split torus in G containing 77. After conjugating
our fixed torus 7' C (G, we may assume that T contains 75, so that M D T is a
standard Levi subgroup.

The scheme of elements of M, 1, which conjugate the inclusion jo : T — J, =
M into j is a T"-torsor over L. By Steinberg’s theorem this torsor is trivial. Hence,
there exists m € My, (L) such that mjom ! = j. Now, a simple computation, using
the definition of Jj, shows that by = mh - b- o(mh)~ commutes with j(77(Qp)).
Since T1(Q,) is Zariski dense in T, this shows that bas belongs to M (L). Moreover,
since v ([b]) is defined over Q,,, by definition, it factors through 71, so v,,, = va([b])
is central in M, and by, is in fact basic in M.

By Lemma there exists w € W(G,T), such that ([ba], {w - u}) is M-
admissible. (Here we may take u € X, (7T') the dominant representative of {u}.)
It follows by Lemma that ([bas], {w - u}) is T’-special. In particular, there
exists prr € X, (T") in {p} such that vp,, = Nugr. Hence, if we think of Ny as
a Jp-valued cocharacter via the natural inclusion 7" C J, then vy j = Npugr.

O

1.2. Global results.
Lemma 1.2.1. Let T be a torus over Q. For any prime p, the restriction map
ker(H'(Q,T) — H'(Q,,T)) — H'(R,T)
18 surjective.
Proof. For each place v of Q, there is a canonical isomorphism [Kot86) (1.1.1)]:
Jo HY(Qu, T) = X (T)E

Write j,, for the composition of this map with the natural projection X, (T){flrs —
X* (T)‘%ors.

We then have an exact sequence [Kot86, Prop. 2.6]:

HYQ,T) = &, H'(Q,,T) 222 X, (T)ters.

So, given a class s € HY(R,T), it suffices to find £ # p and a class oy €
H'(Qy, T) such that jy(ay) = —joo(eo). Indeed, once we have done this, we can
take the element (av,) € @, H'(Q,,T), with a,, = 0 for v # 0o, £: This will be the
image of an element o € H'(Q,T) mapping to as € H'(R,T) and to the trivial
element in H'(Q,,T).

The remainder of the proof now proceeds as in [Lan83, 7.16]. We choose a
finite Galois extension £ C Q over which T splits. Then complex conjugation on C
induces an automorphism o, of E. We now choose ¢ # p such that E is unramified
over £ and such that, for some place v|¢ of E, the Frobenius o, at v is conjugate
to 0oe. We can further assume that v is induced from the embedding E < Q. If
g € I conjugates o, into o, then the automorphism of X, (T) given by g, induces
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an isomorphism X, (T)r.. — X.(T)r,, which is compatible with projections onto
X.(T)r. We use this isomorphism to identify X, (7)™ with X, (7)1, Now we
may take oy = fje_l(joo(aoo)). O

Lemma 1.2.2. Let G be a connected reductive group over Q. Suppose that we are
given a finite set of places S of Q and, for each v € S, a mazimal torus T,, C G,
Then there exists a maximal torus T C G such that, for all v € S, the inclusion
Ty, C Go, is G(Qy)-conjugate to T, C G, .

Proof. This is [Har66, Lem. 5.5.3], cf. [Bor98| 5.6.3]. |

1.2.3. Let (G,X) be a Shimura datum. Given =z € X, we have the associated
homomorphism of R-groups:

hy:S= RGSC/R Gm,R — Gk.
We also have the associated (minuscule) cocharacter:

z—(z,1)

~ ha
Mgt Gm,(c Gm,(c X Gm,(c — S(C — GC~

The G(R)-conjugacy class of h,, and hence the G(C)-conjugacy class {f1x }oo of
g, is independent of the choice of . Let E C C be the reflex field for (G, X): This
is the field of definition of {1 x }~, and is a finite extension of Q.

The embedding to : Q < C allows us to view E C C as a subfield of Q, so that
we may regard {{1x }oo as a conjugacy class {ux} of cocharacters of Gg.

1.2.4. We will use the embedding ¢, to view {ux} as a conjugacy class {p1x}, of
cocharacters of G@p.

Proposition 1.2.5. Let [b] € B(Gg,) be a class such that ([b], {ux'},) is ad-
missible. Assume hypothesis holds for [b]. Then there exist a mazimal
torus T C G and an element x € X with h, factoring through Tr (in which case
pyt € X.(T)) such that [byas(pa)] € B(Ty,) maps to [b] € B(Gg,).

Proof. This proof is directly inspired by that of [LR87, 5.12].

By (1.1.17), there exist a maximal torus T, C Gg, (chosen to be elliptic if Gg, is
not quasi-split so that the transfer to My, exists) and a representative j, € X, (7})
of {px}p such that [bpas(p, )] € B(T,) maps to [b] € B(Gg,).

Choose y € X, and let T, C Gr be a maximal torus such that h, factors through
T.. By , we can find a maximal torus 7" C G such that Tp, (resp. Tgr) is
G(Qyp)-conjugate to T, (resp. G(R)-conjugate to Too).

Choose g, € G(Qp) such that g,T,g, "' = Tg,, and let up : G, g — Ty be the
unique cocharacter, which, after base-change along ¢,, is identified with int(gp)(up).
Then [buas(7)] maps to 1]

Choose goo € G(R) such that goThogs! = Tk After base-change along i, the
cocharacter pp is G(C)-conjugate to fioo = int(geo)(fty). Therefore, there exists an
element w € W(G,T)(C) such that w(pieo) = pir-

We can identify W (G, T) with Ngsc(T%¢)/T%¢. Let n € Ngs(T%¢)(C) be any
element mapping to w. Since T®° is anisotropic over R, the element w acts on
T5¢ by an R-automorphism. Hence ni~! € T%¢(C). The cocycle carrying complex
conjugation to nii~! determines a class as, € H(R,T5¢) depending only on w (not
on the choice of n). By , we can find a class a € HY(Q,T*°) mapping to
Qoo € HY(R,T%°), as well as to the trivial class in H'(Q,, T5°).
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By construction, the image of as, in HY(R,G) is trivial. Therefore, by the
Hasse principle and the Kneser vanishing theorem for simply connected groups, the
image of a in H*(Q, G*°) is trivial. This means that we can find g € G%¢(Q) such
that, for any o € Gal(Q/Q), go(g)~! € T5°(Q), and such that « is represented by
the 7°¢(Q)-valued cocycle o +— go(g) L.

In particular, if we view g as an element of G%¢(C) via ¢, there exists t € T5¢(C)
such that gg—! = tnn 1t 1.

Now, i and int(g=1)(ur) are conjugate under h = g~'tn € G(R), and the
maximal torus int(g~!)(Ty) C G is defined over Q. Replacing 7" with this torus,
and pr with int(¢g71)(ur), we see that uz is of the form pu, for x € X, and that
the pair (T, u,.) satisfies the conclusions of the proposition. |

1.3. Shimura varieties of Hodge type. One may view as showing the
non-emptiness of Newton strata in the special fiber of the Shimura variety associated
with (G, X). We will now make this assertion precise in the case where (G, X) is
of Hodge type, where the moduli spaces of abelian varieties give us a natural way
to construct integral models.

1.3.1. Recall that, given a symplectic space (V, ) over Q, we can attach to it the
Siegel Shimura datum (Gy, Hy ), where Gy = GSp(V,v) is the group of symplectic
similitudes and Hy is the union of the Siegel half-spaces associated with (V).

Let (G,X) be a Shimura datum of Hodge type. This means that there exists
a faithful symplectic representation (V,) of G over Q, such that the associated
map of Q-groups G — Gy extends to an embedding of Shimura data (G, X) —
(Gv,Hv). We denote by E = E(G, X) the reflex field of (G, X).

1.3.2. Fix a Zp-lattice V{,y C V on which 1 is Z,)-valued. Set V,, = Z, @ V),
and let K, C Gv(Qp) (resp. K, C G(Qp)) be the stabilizer of V,, C Vg, .

Given a sufficiently small compact open subgroup K? C G(Afc), we can find
a neat compact open subgroup KP C QV(A’}) such that, with K = K,K? and
K = K,KP, the map of Shimura varieties

Shy = Shx (G, X) = Shy := Shx Gy, Hy) ® E

is a closed immersion [Kis10, 2.1.2].

The variety Shx admits an integral model Sx over Z(,), which is an open and
closed subscheme of the moduli scheme parameterizing polarized abelian schemes
(A, A) up to prime-to-p isogeny, and equipped with additional level structures away
from p. Let A denote the universal abelian scheme over Sk up to prime-to-p isogeny.

The set of compact open subgroups K, C G(Q,) for which one can choose V'
and V) so that this construction applies, includes the stabilizers of points z in
the building B(G,Q)), and is closed under finite intersections. For the first point,
note that a result of Landvogt [Lan00] implies that for any faithful representation
V of G, there is an injective map of buildings ¢ : B(G,Q,) — B(GL(V),Q,). If
(V,4) is a symplectic representation of G, and Ly,...,L,, C V are the lattices
corresponding to the vertices in the facet which is the closure of i(x), then K, is
the stabilizer of L1 @ -+ @ Ly, in (V™,9™). The closure under intersections follows
in the same way, by taking direct sums of lattices.
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1.3.3. We will now use the notation from (L.1.2)). Given a point sy € Sk(F,), we
obtain the associated Dieudonné F-crystal D(A,,) over W. Set D,, = D(As,)q:
This is an F-isocrystal over L = W[p~!], so that it is equipped with a o-semi-linear
bijection ¢ : Dg, — Dsg,.

Given a finite extension L' C L of L and a point s € Sx(L’') specializing to so,
we obtain two canonical comparison isomorphisms:

(1.3.3.1) The Berthelot-Ogus isomorphism:
Hin(As/L') = L' @1, Dy,.
(1.3.3.2) The p-adic comparison isomorphism:
Beris ®q, Hélt(As,L, Qp) = Beris @1 Ds,.

The two isomorphisms are compatible with the de Rham comparison isomor-
phism:

(1.3.3.3) Bar ®qg, H (A, 1,Qy) = Bar @1 Hig(As/L').

1.3.4. Let Vyr be the (cohomological) de Rham realization of A: It is a vector
bundle over Shi with integrable connection, and its fiber at each point s € Sh (k)
(k a field of characteristic 0) is the de Rham cohomology H g (As/k).

Let VP (A) be the prime-to-p Tate module of A: This is a smooth A’-sheaf over
Shyc. Write VP for its dual; then the fiber of V' at any point s € Shi(k), with &
algebraically closed, is identified with the étale cohomology group H}, (As, A?).

Finally, write T},(A) for the p-adic Tate module of A, and set V,,(A) = Q,®T,(A).
Write V,, for the dual (V,(A))Y. We will set

V(A) = VP(A) x V,(A) and Vi =VP xV,.

Fix tensors {s,} C V® such that G is their pointwise stabilizer in GL(V). Here
and below, the superscript ® means the direct sum of V" @ V*€™ for all m,n > 0.
Then there exist global sections:

{Saar} € H(Shg, V%) ; {saa} C H'(Shg, Vi)

with the following properties:

(1.3.4.1) Given an algebraically closed field x of characteristic 0 and a point s €
Shk(k), there exists an isomorphism

VAf = Hgt(As,Af) = Vit,s)

determined up to translation by G(Ay), carrying {sq} to {sact,s}-
(1.3.4.2) For each «, let s, ;, be the projection of s, ¢ onto V,. Then, given a finite
extension L'/L and a point s € Shg (L), the isomorphism carries
{1® Sapst to{1® sa.dr,s}-
The construction of these tensors is described in [Kis10, (2.2)]: The key point is
a theorem of Deligne showing that all Hodge cycles on abelian varieties over C are

absolutely Hodge. Property [(1.3.4.1)|now holds by construction. Property [(1.3.4.2)

is a theorem of Blasius-Wintenberger |Bla94].
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1.3.5. Fix a place v|p of E, and an embedding k(v) < F,. We denote by
Ik = Ik (G, X) = O ) @z, Sk-

the normalization of the Zariski closure of Shy in O (,) ® Sk.
We shall use that .#k has the following extension property.

Lemma 1.3.6. Let S be the spectrum of a discrete valuation ring R of mized char-
acteristic (0,p), with generic point n, and a map s : 7 — k. Then the following
are equivalent
(i) s extends to S — Sx.
(it) A, has good reduction.
(iii) A, has potentially good reduction.

Proof. By construction, (i) is equivalent to s extending to a map S — Sk. Thus
(i) and (i) are equivalent and imply (iit). If A, has potentially good reduction,
then there is a finite flat R’/R such that s induces a map Spec R’ — Sy, and this
necessarily factors through S as this is true on the generic fiber. (I

Proposition 1.3.7. For every point so € Sk (o) (IF‘p), there exists a canonical
collection of @-invariant tensors {Sq,cris s} C Dg characterized by the following
property: For any lift s € k(L) of so, the isomorphism|(1.5.5.2) carries {Sa,p.,s}

to {Sa,cris,so}-

Proof. The proof of this can essentially be found in [Kis10, (2.3.5)]; however, since
it is not given there in the generality we require, we review the key steps here.
Write L' = E, Lc L; here, we are embedding E, — L via the fixed embedding
Qp < L. Let U be the formal scheme over W pro-representing the deformation
functor for the p-divisible group A, [p>°]: this is formally smooth over W. Let U
be the formal scheme obtained by completing Yk ®g,, - O along sg.

We have a finite map of normal formal schemes over 07/, U — Z/IL/ Taking
their rigid analytic fibers (in the sense of Berthelot; cf. [dJ95| 7.3]), we obtain a
map Uen Z/l of smooth, irreducible rigid analytic spaces over L’. This map is
a closed i 1mmer510n since the map ShK — Shy is.

Since Uy, is formally smooth, U is a rigid analytic open ball over L', and,
for any two points s, s’ € Man( L), p-adic parallel transport using the Gauss-Manin
connection on Vgg gives us a canonical isomorphism:

(1.3.7.1) Hiz(As/L) = Hiz(As/L).

Suppose now that s, s’ lie in U an([). Since the sections s, ar over Shy are hori-
zontal for the connection, and since U is smooth and irreducible over L/ , for each
o this isomorphism carries sq4.dR,s t0 S4,dR,s’ -

Any s € U?™(L) is defined over a finite extension L” /L’. Since the tensors {Sap.s}
are Gal(L/L")-invariant, by construction, the isomorphism [(1.3.3.2)| carries {sa,p,s }
to p-invariant tensors {sq cris,s } C D . To prove the proposition, it is now enough
to show: If s’ is a different lift, glvmg rise to @-invariant tensors {Sq,cris,s' } C DSO7
then, for each o, we have s cris,s = Sa,cris,s-

By the compatibility of |(1.3.3.2)| with [(1.3.3.1)} and by the pre-image
of 1® So.cris,s (TeSP. 1 ® S eris,s’) i Hig(As/L)® (resp. in Hig(Ay/L)®) un-
der is exactly sq.dmr,s (resp. Sa.dm,s’). Therefore, we only need to show
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that the composition:
Hig(As/L) = L® Dy, = Hig(AL/L)
is the parallel transport isomorphism (1.3.7.1). This follows from [BOS83| 2.9]. O

1.3.8. It follows from (1.3.7]) and|(1.3.4.1)| that there exists an isomorphism L ®q
7GRN Dy, carrying {1® 54} t0 {Sa,cris.s - Indeed the scheme of such isomorphisms
is a G-torsor by and a G-torsor over L is trivial by Steinberg’s theorem.
Under this isomorphism, the map ¢ : Dy, — D, pulls back to an automorphism
of L®V of the form o ® bs,, with bs, € G(L) well-determined up to o-conjugacy.
Therefore, sy determines a canonical class [by,] € B(Gg,)-

Assume that ¢, : Q— @p has been chosen such that the associated embedding
E < Q, induces the place v.

Lemma 1.3.9. The pair ([bs,], {15"}p) is admissible.

Proof. This is a consequence of a result of Wintenberger; cf. corollary to [Win97,
4.5.3]. O

Proposition 1.3.10. Assume hypothesis|(1.1.5.1) for Gq, and [b]. Then the pair
(1], {x"}p) is admissible if and only if there exists sg € Sk (F,) such that [b] =

Sol-

Proof. The ‘if’ part is

Suppose that [b] € B(Gg,) with ([b], {u%'},) admissible. Then gives us
a maximal torus 7' C G and an x € X such that h, factors through Tk, and such
that [bhas(uy')] € B(Tp,) maps to [b] € B(Gg, ).

Now, consider the 0-dimensional Shimura variety Shg = Shxn7(a f)(T7 hz): This
is a finite étale scheme over the reflex field Ex = E(T, h,). Fix a place v'|p of Er
lying above v. The normalization of Spec O, (/) in Shg gives us a canonical normal
integral model .y for Shg over O, (,+). Since all CM abelian varieties over number
fields have everywhere potentially good reduction, the map Shy — Er ®p Shgk
extends to a map of Op,. (,)-schemes S — Op, (v) Rey. () LK, DY Lemma

Therefore, to prove the theorem, we may replace (G, [b], {ux'}) with the triple
(T, [bhas (17 1], 3 1), and reduce to the case where G = T is a torus. Choose any
point sy € .7o(F,). By (L.3.9), the pair ([bs,], u5 ") is admissible for T, . But then
we must have [bs,] = [b]. O

1.3.11. Given a scheme S in characteristic p, let F-Isoc(S) be the category of
F-isocrystals over S (cf. [RR96|, §3]): This is the isogeny category obtained by
localizing the category of F-crystals over S. It is a Qp-linear (non-neutral) Tan-
nakian category, whose identity object 1 corresponds to the structure sheaf on the
crystalline site of S over Z,,.

Recall that for G a reductive group over Qp, an F-isocrystal with G-structure
over S [RR96, 3.3] is an exact faithful tensor functor

Repg, G — F-Isoc(S).

Here Repg, G denotes the category of finite dimensional QQ,-representations of G.

The crystalline realization of the universal abelian scheme A over .Yk gives us
a canonical object D in F-Isoc(Sx ®e,, F,). For each point s € Sk (F,), the
restriction of D over s is realized by the F-isocrystal Ds,.
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The proof of the following proposition is rather technical. Since it is used only
in (|1.3.14)) and (1.3.16)) below, and the rest of the paper does not depend on it, we
relegate it to an appendix, where we prove a stronger statement; see Corollary
below.

Proposition 1.3.12. For each «, there exists a morphism
So:1—D®
whose restriction to any point sg € Si (Fp) iS Sev,cris, so -

Corollary 1.3.13. The association V +— D extends to an F-isocrystal with G-
structure over S @ IFp.

Proof. Let S be a connected component of #). We shall again write D for D|g.
Let Cp be the smallest full Tannakian subcategory of F-Isoc(S) containing D. It
suffices to construct, for each S, an exact faithful tensor functor w : Repr G—Cp
which sends V' to D.

First consider the associated L-linear category Cp ;, = Cp® L, which is obtained
from Cp by tensoring the Hom sets by L, and adjoining the direct summands
corresponding to idempotents in the endomorphism algebra of each object [Del79a,
2.1]. Choose sg € S(F,). Pulling isocrystals back to so induces an L-fibre functor
ws, © Cp, . — F-Isoc(sp) which takes D to Dy, and Cp 1 is equivalent to the
category Rep; G5, where G5, = AUt{sa,ms,so} D, , the group of automorphisms of
Dy, respecting the tensors sq, cris,sq -

Let P(so) = Isom, (VL,Ds,), the scheme of L-linear maps from Vi to D,
taking s, t0 Sq,cris,0- Then P(sg) is a G-torsor. (It is necessarily a trivial G-torsor
by Steinberg’s theorem.) If W is in Repg, G, then WP = G\(W x P(sg)) is an
L-representation of G,,. We consider the composite functor

D
wr, : RepQP a2y Rep; G5, ~ Cp ..

It remains to show that the above functor factors through Cp. For this, note that
any object of Repg, G is the kernel of a map e : W — W where W is a direct sum of
objects of the form V,,, ,, := V" @V*®™ Now wr, (Vi) = D" @D*®" lies in Cp.
Since e can be considered as a morphism 1 — W* ® W, we see that by Proposition
wr,(e) lies in Cp, and so does its kernel. Similarly if e : W7 — W5 is any
map in Repg G, then e may be regarded as a map 1 — Wy @ Wa so wr(e) is in
Cp by Proposition [I.3.12] O

Theorem 1.3.14.
(1.8.14.1) If so € Sk (F,), then
{s0 € Zx(Fp) : va([bsy]) = Pa([bs,))} € Fx(Fy)

is a Zariski closed subset.
(1.8.14.2) Let B(Gg,.{nx"}p) C B(Gq,) be the subset consisting of those classes [b]
such that ([b], {ux'}p) is admissible. Then, for every [b] € B(Gg,.{1x" }p)

satisfying hypothesis|(1.1.3.1), the subset:
Sy = {s0 € Sk (Fp) : [bs] = [b]}

[bs
is non-empty and locally closed in YK(FP) for the Zariski topology.
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3.14.3) Let g[b} be the closure of Sy in Sk (Fp); then we have an inclusion of
Zariski closed subsets:

g[b] - |_| S[b’]'
v ([b']) 2va (b))
Proof. Assertions|(1.3.14.1)| and |(1.3.14.3)| follow from Corollary |1.3.13|and the ar-
gument of [RR96, Thm. 3.6]: One reduces to the case G = GL,, using [RR96,
Lem. 2.2(iv)], and applies Grothendieck’s semicontinuity theorem for Newton poly-

gons of F-isocrystals [Kat79, Thm. 2.3.1]. Assertion|(1.3.14.2)|follows from|(1.3.14.1)|
and (T.3.10). O

As we noted in ([1.1.3]), the second part of the theorem implies that the stratum
Sy is non-empty if either [b] is basic or G, is quasi-split.

1.3.15. Asin we fix an inner twisting & : Gg, — G* over Q,, a Borel B* C
G*, and a maximal torus T C B* over Q. Let i be the B*-dominant representa-
tive of o {ux}p. There is a unique [b,] € B(Gg,, {n~'}) with Ne(Da([bu])) = 1!
(which, of course, does not depend on the choice of B* or T*). The corresponding
subset Spp,) C Sk (Fp) is the p-ordinary stratum. By (L.3.10) and (L1.3.14), this
stratum is a non-empty Zariski open subspace.

Corollary 1.3.16. Suppose that the special fiber S 1) is locally integral. Then
Spp,,) s dense in Sk p(v)-

Proof. If the special fiber is locally integral, it follows from [MP19} Cor. 4.1.11] that
every connected component of .#, has irreducible special fiber. This implies that
S(p,,] is dense in any connected component of Sk i(,) it intersects, and since Sy
is non-empty, it is dense in some connected component.

To see that it is dense in all connected components, suppose s, s’ € i (@) with
reductions sg, sj € Sk (F,). If there is an isogeny Ay — Ay taking sq et,s 10 Saét.s's
then there is an induced isogeny Ay, — Ay taking sa cris,so t0 Sacris,s;s SO that
if s9 € Spp,,] then s5 € Spp,j- Since the group G(Ay) acts transitively on the set of
connected components of .#x x(»), this implies that S}, ; is dense in S p(v)- O

Remark 1.3.17. In the situation where p > 2 and K, is hyperspecial, so that it is
of the form G ) (Z,) for a reductive model G ) of G over Z,), the main theorem
of [Kis10] shows that .7k (,) is smooth. So the corollary applies to give the density
of the p-ordinary locus in this situation. This special case is already known due to
D. Wortmann [Worl3].

Using the results of one of us and Pappas, we can prove the following:

Corollary 1.3.18. Suppose that p > 2, and that G splits over a tamely ramified
extension, and K, is a special parahoric. Then the embedding G — Gy can be
chosen such that Sy ) is dense in S j(v)-

Proof. This follows from Corollary [1.3.16| and [KP18, Cor. 0.3]. O

2. CM LIFTS AND INDEPENDENCE OF /

2.1. Tate’s theorem with additional structures.
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2.1.1.  We keep the notation introduced in so that (G, X) is a Shimura da-
tum of Hodge type, equipped with an embedding of Shimura data ¢ : (G, X) —
(Gv,Hv ), and we have a finite map .“x — Op,(,) ® Sk, which is an embedding on
generic fibres.
We set
SIC,, = 1&1 S}ijcp 3 pr = 1&1 yKPK,,-
KPCGy (AR) K?CG(AD)

The transition maps in the inverse systems are finite étale, and so the limits are
schemes over Z, (resp. O (). By construction, we have a map

lp : pr — ﬁE,(v) ®S’Cp’
Since G(A?) acts naturally on the right on Sk, and the generic fiber Shy, =
E®e6y. (., Lk, compatibly with the map ¢, this action extends to “k,.

The scheme Sk, is open and closed in the moduli space of triples (4, A, €), where
(A, ) is a polarized abelian scheme up to prime-to-p isogeny and

e ALV S VP(A)
is an isomorphism of smooth Afc—sheaves carrying the symplectic form 1 to an

A?’X—multiple of the Weil pairing T P(A) on the prime-to-p Tate module
V?(4) = (lim A[n]) ® Q.

pin

2.1.2. For each a, let s, 47 be the projection of Sq.¢¢ onto HY(Shg,, (‘A/p(.A))@).
Since Sk, is normal, Sa,A7 extends to a section over S .
Over Yk, the map ¢, induces an isomorphism

(2.1.2.1) n: ALV = VP(A)

carrying s, to Sa, AT for each a. In particular, for any s € Sk, (Fp), the stabilizer
of the collection {%,A?,su} in GL (?p(ASO)) is canonically identified with G(A%).

2.1.3.  Let Autg(As,) be the algebraic group over Q attached to the group of units
in the endomorphism algebra Endg(As,) := Q ® End(A,,). We have the subgroup
Gy C Autg(As,) which acts on A, by scalar multiplication. Let Autg ,(As,) C
Autgy(As,) denote the subgroup which preserves the polarization on Ag,, up to a
scalar. There is a map ¢ : Autg ,,(As,) — Gy, which takes an automorphism to its
action on the polarization. The kernel of ¢ and Autg ,(As,)/Gy are compact over
R. In particular, any closed subgroup of MQ7¢,(A80) is a reductive group over Q.

Now, Autg(As,) acts naturally on VP(A,,) and D,,. Let I? C Autg(As,) be
the closed subgroup that fixes the tensors {Sa,A?,so} C ‘A/p(.ASO)@, and let I, C I?,
be the largest closed subgroup that also fixes the tensors {sq,cris,so } C D;‘%. Since
I, CIh C G(AY), we have I, C IZ C Autg ,(As,). In particular Iy, and I% are
reductive groups, and their quotients by the subgroup of scalars G,, are compact
over R.

Recall that Ay, is an abelian variety up to prime-to-p isogeny (so the notion of
automorphism is understood accordingly). Set

ISO (Z(;D)) = ISo (Qp) N Aut(Aso)'
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We can view this as a subgroup of G(A?) via the embeddings:
Iy (Zyy) © Loy (AT) C IZ, (AR) € G(AD).
Lemma 2.1.4. Suppose that g1, g2 € G(A?) are such that

S0°91 =80 g2 € pr(Fp).
Then g1 and g2 have the same image in Is,(Z,))\G(A%).

Proof. The proof is essentially contained in [Kis17, 2.1.3]. B

The image of s¢ in Sk, () corresponds to the triple (As,, As,, €5,) over [, under
the moduli interpretation of S,. For g € G(A%), the image of so - g in Sk, (Fp)
corresponds to the triple (As,, As,, s, © g). Therefore, if so - g1 = s - g2, then in
particular, we have an isomorphism of triples:

(ASO7 )\Soa ESo o gl) i> (A807 )\507 880 o 92)

This corresponds to an automorphism ¢ € Aut(As,) (necessarily unique) such

that

DP(6) 0 €0y 0 91 = £09 0 92
and ¢ carries {Sa,cris,so-1 ) C Doy 10 {Sacris,sog.) € Do .g,- Note that here we
are using (|1.3.7]).

The first condition implies that V?(¢) fixes {s,, A?)SO}. Since under the natural
identifications Dy, = Dy,.4, induced by the identifications Ay, = Asq.q,, fori = 1,2,
the tensors {sq,cris,s, } are carried to {sq cris,so-g; }» @ preserves the {sq cris,s, - Hence
¢ must belong to

I, (Zpy) = I, (Q) N Aut(As, ).
O

2.1.5. Choose a neat compact open KP C G(A’f’). Set K = K,KP?, and suppose

that the image of sy in .7k (F,) is defined over F,.
Then, for any m € Z>1, let v, 5, denote the geometric, ¢"-power Frobenius
of As,. Then 7, s, fixes the absolute Hodge cycle components {Sa,A;’.,so}a and it

fixes the crystalline components {s4 cris s, } as these are p-invariant. Hence 7y, 5, €
I4,(Q). In particular, v, s, induces a semi-simple automorphism ~5, . - of VP(A,)
which preserves {SQ,A?SO}, and thus lies in G(A%). Set

IA?,m,so = CentGA;} (’ygﬁ.,so)'
If m | m', then v, . = (771;1,80)”1'/7", and so we have a natural inclusion:

IA?,m,so - IA?,m’,so'
Set

Tt g = 0 T

m

Then, for m sufficiently divisible, the Zariski closure of the subgroup of I, generated
by Ym,s, is a torus, and we have IA?SO = IA?m’sO, which is independent of choice

of q.

For each £ # p, write I, s, for the projection of I, AP onto Gg,: For m sufficiently

>80
divisible, this is the centralizer in G, of the projection 7y, ¢,s, of 75, -
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For m sufficiently divisible, the Zariski closure in G AP of the subgroup generated

by 7%, s, is a torus. Therefore, Iy, is a Levi subgroup of Gg, (over Q) and in
particular connected, reductive.
The action of I, on VP(A,,) gives us a canonical map of A’;—groups:

580"

A? ® -[50 — IAI;
For each ¢ # p, this gives us a map iy : Qy ® Iy, = Iss,, which is injective.

Proposition 2.1.6. Let { # p be a prime such that G, is split and such that the
characteristic polynomial of Y .5, i split over Qp. Then iy is an isomorphism.

Proof. By (2.1.4), we have surjective maps
G(A’}’c) — 80 - G(A’J’c) — ISU(Z(p))\G(A’;),

where the first map is the orbit map g — sg - g, and the composite is the natural
projection.

For any neat compact open K? C G(A’}) with ¢-primary factor K, C G(Qy),
this implies that the image in .#x (F,) of sq - Iy s,(Qe) surjects onto the quotient
I, (Qo)\ 1,50 (Qe) /(K¢ N L5, (Qp)). Since Ip 4, (Qe) commutes with 7y, 04, for m
sufficiently divisible, this image is in fact contained in .#x(Fgm). In particular

Iy (Qo)\ 11,50 (Qr) /(K¢ N Iy 5, (Qp)) is finite.
The proposition is now deduced just as in [Kisl7, 2.1.7]. O

2.1.7. We will prove that i, is an isomorphism for every ¢, including £ = p. This
will be done using a result of Noot. We first explain the definition of the I, ,, and
iy when £ = p.

For any m € Zsq, the crystalline realization of A,, is defined over Qgm =
W (F,m)[p~1]; therefore, the isocrystal Dy, has a natural descent to an F-isocrystal
D,y 5o over Qgm, and the p-invariant tensors {Sq,cris,s, } belong to D%SO. Write
g = p" and let Y, cris,so = @ 1 Dimsy — Dm,s, be the crystalline realization of
Ym,so- 1t 18 & p-equivariant isomorphism fixing the tensors {sq cris,sp }-

As in for m sufficiently divisible (which we now assume) we can find an

isomorphism:
(2.1.7.1) Qum ®V =5 Dy,

carrying, for each o, 1® 54 t0 Sacris,so- L€t 05, € G(Qgm ) be such that ¢ : Dy, 0 —
D, s, pulls back to the automorphism 5, (c®1) of Qum @V under this isomorphism.
Then, by construction, the class [bs,] € B(Gg,) associated with sq is exactly the
o-conjugacy class of ds,.
Similarly, the automorphism 7, cris,sq Of Dim,s, Pulls back to an element v, » s, €
G(Qgm ), whose conjugacy class under 11_n>1m G(Qgm ) is independent of all choices.
We have the relation:

(2.1.7.2) Ym,p,s0 = 5300(530) T UTm72(580)UTm71(530) € G(qu)-

Define an algebraic group I, s, over Q, as follows: For any Qp-algebra R, we
have:
Im,650 (R) = {g € G(@qm ®Qp R) : 9550 = 5500(9)}'
Then Qgm ®q, Im,s,, 1s naturally identified with the centralizer in Gg,, of
Vm,p,so- SINCE Y p s, 1S semisimple (which follows from semisimplicity of 7y, s, ),
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Iy, is a reductive group over Qp, and is connected for m sufficiently divisible.
Set:

IP»SO = hﬂ Im,tsso ,
m
which is equal to I, s, for m sufficiently divisible. We have a canonical inclusion

ip I, ®q @p — Ip,Soa

and an inclusion I, 5, < G defined over Q= for m sufficiently divisible.
Let Js,, be the Qp-group defined in (1.1.4). For any m, we have the obvious
inclusion Im’(;so C J5SO, and in particular I, 5, C J530~

2.1.8.  Given a connected reductive group H over a field F of characteristic 0, write
Conj(H) for the scheme over F' parameterizing semi-simple conjugacy classes in H.
More precisely, the conjugation action of H on itself induces an action on the Hopf
algebra Op, and Conj(H) = Spec(0g)H.

Following Noot [Noo09, 1.5], we will also define a certain quotient Conj’(H) of
Conj(H) as follows: Let F' be an algebraic closure of F; then H§™ is an almost
direct product of simple reductive factors H; with ¢ in some indexing set I.

Write Ip C I for the subset of indices ¢ such that H; ~ SO(2n;) for some n; > 4.
For each i € Ip, set H! = O(2n;). Since Ip C I is Gal(F'/F)-stable, the finite
F-group scheme

out'(H)s = [ Hi/H;
i€lp
descends to a finite group scheme Out’'(H) over F, which acts canonically on
Conj(H). We will write Conj'(H) for the quotient of Conj(H) for this action.

We call an element v € H(F') neat if v is semi-simple and the Zariski closure of

(x), the group of points generated by x, is connected (that is a torus).

Corollary 2.1.9. For every £, the map
i0: Qe ® Iy = Iy s
is an isomorphism.

Proof. Choose ¢y # p a prime satisfying the conditions of Proposition so that
ig, is an isomorphism. Let m be sufficiently divisible that v, s, € Autg(As,) is
neat, and that Iy, is the centralizer of v ¢ s, in Go, if £ # p, (resp. in Gg,,. if
¢ =p), and Iy, s, is the centralizer of v 4,5, in Go, -

By |[Noo09, Thm 1.8, 4.2], the images of the elements i, ¢s, and Ym.¢.so it
Conj'(G) lie in Conj’(G)(Q), and are equal. In particular, Iy s, and Iy, s, have the
same dimension. Thus Q; ® I, and I, 5, have the same dimension by Proposition
2.1.6] and since Iy, is connected i, is an isomorphism. O

2.2. Independence of ¢ and conjugacy classes.

2.2.1. Let [ be a prime (possibly equal to p). An element o € Q is called an I-Weil
number of weight w € Z if « is an [-unit and all its complex embeddings have
absolute value [*/2.

Let H be an algebraic group over Q. We call an element v € H(Q) an I-Weil point
if for some faithful representation W of H (defined over any field of characteristic 0),
the eigenvalues of v on W are I-Weil numbers. If W’ is any other representation of
H, then W’ is isomorphic to a representation in the Tannakian category generated
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by W. Hence the eigenvalues of v acting on W' are also I-Weil numbers, and the
definition does not depend on W.

We call v € H(Q) a Weil point if it is an [-Weil point for some .

Keeping the notation introduced in §2.1, our first goal in this subsection is to
prove the following analogue of the result of Noot on independence of Frobenius
elements, used above.

Proposition 2.2.2. Let v € I;,(Q) be a neat Weil point. For each ¢, the image of
ie(7y) in Conj'(G) lies in Conj'(G)(Q) and does not depend on (.

2.2.3. To prepare for the proof of Proposition we first show two lemmas.
Recall that a Q-torus T satisfies the Serre condition if its maximal R-split subtorus
Ty C T is Q-split. For an algebraic Q-group H, and F' a number field, an element
v € H(F) is called an l-unit, if for every place v t [ of F, the group 7 generates is
bounded in H(F,).

Lemma 2.2.4. Let T be a Q-torus which satisfies the Serre condition. An element
v € T(Q) is an l-Weil point, if and only if it is an l-unit. In particular, an element
v € I, (Q) is an I-Weil point if and only if it is an l-unit.

Proof. An element v € T(Q) is an I-Weil point, if and only if x(v) is an I-Weil
number for any x € X*(T), as the direct sum of a basis of X*(T') is a faithful
representation of T In particular, if v is an [-Weil point, then, for every xy € X*(T),
the subgroup of Q(x(v))* generated by x(7) is v-adically bounded for every place
v 1l of Q(x(v)). Hence the subgroup generated by 7 is bounded in T'(Q,) for every
place v 11 of Q, and + is an [-unit in T(Q).

Conversely, if v is an l-unit, let 75 C T be the maximal subtorus such that T5(R)
is compact. Then T5 is defined over Q. If we think of x as defined over C, then
XX is trivial on T, and factors through T/T5. Hence xx(v) € Q* is an l-unit and
equal to [ for some integer w. This shows that y(7) has absolute value 1*’/? under
all complex embeddings.

The final statement follows from the fact that every v € I, (Q) is semi-simple,
so is contained in some maximal torus T' C I,,. Any such maximal torus satisfies
the Serre condition. In fact the maximal R-split torus of T is either trivial, or the
subtorus G,, C I, consisting of scalars, as in O

Lemma 2.2.5. Let v € I,,(Q) be an I-Weil point. Then for { # p the set of
eigenvalues of i¢(7y) acting on Vg, does not depend on £, and for some w € Z, these
etgenvalues are all 1- Weil numbers of weight w.

Proof. The independence of /¢, is standard and follows from the Lefschetz trace
formula. Now recall, that we have the homomorphism ¢ : I, = G,,, whose
kernel 1 810 is compact over R. For the second claim, it suffices to replace v by some
power, when we can write v = [* - v, where ! € Islo (Q) is an I-Weil point, and [*
denotes scalar multiplication by [* on As,. It suffices to show that for any i/, the
eigenvalues of iy(y!) acting on Vg, have all their complex absolute values equal to
1.

Let T C 1 Slo be a maximal torus containing v'. Fix an isomorphism, C ~ Q,. For
each eigenspace of T acting on Vg, the corresponding y € X*(T), satisfies xx = 1,
as T is compact over R. Thus x(v")x(7!) =1, as v' € T(Q). O
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2.2.6. The proof of the proposition [2.2:2 will follow Noot’s arguments with a modi-
fication at one point where we will need to use Corollary[2.1.9] We begin by recalling
some definitions from [Noo09) 2.3].

Let H be an absolutely almost simple group of classical type over a field of
characteristic 0, and W a finite-dimensional H-representation. We say that W is
admissible if it is a multiple of one of the following:

e The direct sum of the standard representation and its dual if H is of type
A.

The spin representation if H is of type B.

The standard representation if H is of type C.

The standard representation if H is of type D.

e The direct sum of the two half-spin representations if H is of type D.

In the case of type D, in the fourth (resp. fifth) case we say that (H,W) is of
type DY (resp. DR).
Now recall our embedding of Shimura data ¢ : (G, X) < (Gyv,Hy ). We say ¢ is
strictly accommodating if
e For some totally really field K, G = Resy g G* with G* absolutely al-
most simple, and the G¢"-representation V has the form Resy o V* for an
admissible G®-representation V*.
o If (G*,V?) is of type D¥, then every for any character x : Zg — G,,, over
Q, the y-part of V is an admissible representation of a factor of G%er.
e For any proper, non-zero, G-stable subspace V' C V| if G’ denote the image
of G in Aut V', we require that (G', V'), not satisfy the first two conditions
above.

Finally we say ¢ is accommodating if there is a finite collection of accommodat-
ing embeddings of Shimura data, ¢; : (G}, X;) — (Gv;,Hv;), j = 1,...,s, and
an isomorphism of symplectic spaces szl V; ~ V which induces a commutative
diagram

(va) —_— (gV’HV)

]

H(Gj’Xj) - (H Gv;, Hij)
7=1 =1 j=1

such that the map on the left induces an isomorphism G9e* ~ H;Zl G?er.

Note that Noot’s definitions are formulated for the Mumford-Tate group of an
abelian variety, rather than for Shimura data. The embedding ¢ is accommodat-
ing in our sense, if and only if for some (or equivalently any) y € Shi (G, X)(C)
such that the corresponding abelian variety A, has Mumford-Tate group G, A, is
accommodating in the sense of Noot.

2.2.7. Proof of Proposition [2.2.9 Suppose first that « : (G,X) < (Gv,Hy) is
accommodating. In this case, the proof is the same as [Noo09, Thm. 2.4]. For the
convenience of the reader, we indicate the argument.

Let V® Q = @™, W, be a decomposition of the G-representation V into its
isotypic components over Q. The subalgebra Q" C Endg Vg which acts by scalars
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on each factor W;, descends to a product of fields L = Hle L; C Endg V, which

corresponds to a decomposition V = Hf;l Vi.

Let P; . ¢ denote the characteristic polynomial of ~ acting on V; g,. One first
shows that P; - ¢ does not depend on ¢; see the proof of [Noo06, 6.13]. Note that,
since v is an [-Weil point, the eigenvalues of P; ., , are I-Weil numbers. Since 7 is
neat, no two of these roots differ by a non-trivial root of 1; this is the condition
Noot calls faiblement net. Then applying [Noo09), Lem. 2.5, 2.6], one finds that since
P, 4, does not depend on ¢, the element i,(7) € Conj'(G)(Qy) is also independent
of £, and lies in Conj'(G)(Q).

To reduce, to the accommodating case, we again follow Noot’s argument [Noo09,
§3], though we formulate them in terms of Shimura data rather than Mumford-Tate
groups. Lift so to a point s € Shx (G, X)(Q,). The statement of the proposition
depends only on the abelian variety A, equipped with the Hodge cycles correspond-
ing to {s,}, and not on level structures. Thus, fixing an isomorphism Q, ~ C, we
may assume s is the image of a point of the form (hg,1) € X x G(Ay).

The results of Deligne [Del79b), 2.3.10], see also [Noo06|, 2.12], imply that there ex-
ists an accommodating embedding ¢’ : (G, X') < (Gy+, Hy), together with a map
G'der 5 G9er which induces an isomorphism of adjoint Shimura data (G’24, X'8d) ~
(G*4, XY Here V' denotes a Q-vector space, equipped with a symplectic form .
By the real approximation theorem, applied to G?d, after conjugating the map
G'dr — G9eT by an element of G*4(Q), we may assume that the image of X’ in
X2d contains hg. Identifying G'*d and G®4, let G” be the connected component of
the identity of G’ X gaa G, and X" a G”'(R)-orbit of (hg, ho) € X X xaa X’. Finally,
we set V' =V @& V' where V" is equipped with the symplectic form " = ¢ & v/,
and consider the embedding

[/” : (GN,X”) — (gV”aHV”)

induced by ¢ and ¢/.
Applying, our previous constructions to each of ./ and ", we obtain, a map of
integral models

yK(G,X) < yK//(GH,X”) — YK/(G’,X’),

where K" and K’ are suitable level structures. Since ho € X", s lifts to a point s” €
(G, X")(Qp). As in [Noo09, p68], using the Néron-Ogg-Shafarevich criterion
one sees that Ag» has good reduction so, by Lemma s specializes to s €

S (G, X" (F,) lifting so. Let sj € Sk (G', X")(F,) be the image of sjj. By the
construction of ¢/ and ¢”, there are maps of abelian varieties

Aso — Agr = Ay,

corresponding to the projections of V" onto V and V”.

Note that the action of G” on V" respects the decomposition V @ V’. Thus, the
projections V"' — V' V" — V' are G” invariant elements of End(V"), and we
may include them in the set of Hodge cycles used to define Igy. This shows that
the surjections of G” onto G and G’ induce maps

ISO — IS()/ — IS(/].
By Corollary these maps are surjective and induce isomorphisms
ISQ/ZG ~ 156//ZG// ~ Isé/ZG“
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Let T C Is,, be a maximal torus containing v, and 7" C Iy the preimage of
T. For some positive integer n, there exists a map T — T"” whose composite with
the projection T — T is multiplication by n. Let 4" = v viewed in T"(Q) via the
above map. This is an [-unit in 7'(Q), and hence a neat Weil point in I, (Q) by
Lemma It suffices to show the Proposition for 7"/, as the result then follows
from ~™, and v by [Noo09, Prop. 3.2].

By Lemma below, there is a map over Q-groups, I,y — G"' 2" which agrees
with the map induced by i, for any ¢. Replacing 7" by a power, as above, we
may assume that /2P € G”2P(Q), the image of v, lifts to z € Zg»(Q) and write
7" = ~/z. Note that v"/2> is a Weil, point as is z, for example using Lemma
Since z and  commute, ~{ is again a Weil point. It suffices to show that the image
of ig(+4) in Conj’ (G"4e) C Conj’'(G") is a Q-point which is independent of £. Since
G"der ~ G'der this is a consequence of the corresponding statement for the image
of 71 in Iy, which is the accommodating case considered above.

Lemma 2.2.8. There is a map of Q-groups Iy, — G* which agrees with the map
induced by ig for any £.

Proof. Recall that for £ # p, we have the composite
Is, ® Q> 1y 50 = Gg, — G&E.

Similarly, we have a map Is, g,m — G&im defined for m sufficiently divisible, and

we have to show that all these maps are induced by a map of Q-groups I,, — G2P.

Consider a special point on Shg (G, X), corresponding to a pair (T, hr), where
T C G, is a maximal torus, and hr : Resc/r Gy, — T is a cocharacter. Let G' =
G x T, equipped with the symplectic representation V! = V@V. Let X' = X x{hr}.
Then we have (G', X') — (Gy+, Hy+). Applying, our constructions, we obtain a map
of integral models .7k (G', X') — Sk (G, X). As in the proof of Proposition
after possibly conjugating the map 7' — G, by a point of G*4(Q), we may assume
that so lifts to s{, € Sk (G', X')(F,).

By construction, Ay, is isogenous to A, x Az, where Az is the reduction of a
CM abelian variety with T-action. The action of I on As, x At preserves this
decomposition. This follows, for example, from the fact that the action of G(Qy)
preserves the corresponding decomposition on ¢-adic Tate modules for any ¢ # p.
Restricting the action of Iy to Ar induces a map of Q-groups Iy — T, and we
consider the composite [y — T — G, By Corollary Iy — Iy, is surjective,
so the map I, — G factors through I, as this is true over Q, for any ¢ # p.
This gives us the map I,, — G?". One checks easily, using the construction, that
it has the required property. (I

2.2.9. In the remainder of this subsection we will apply Proposition to show
a kind of prerequisite for the existence of special points which reduce into a given
isogeny class. This asserts that maximal tori in I, transfer to G, when G is quasi-
split at p. We begin with two lemmas.

Lemma 2.2.10. Let T be a torus over Q, satisfying the Serre condition. Ifl is a
prime such that Ty, is a split torus, then the set of I-Weil points in T(Q) forms
a Zariski dense subgroup of T. Moreover, the set of neat l-Weil points contains a
Zariski dense subgroup of T.
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Proof. Tt is clear that the I-Weil points form a subgroup, and we denote by 7" C T
its Zariski closure. Then T/T” is again a torus which is split at I. Suppose that
T/T' is non-trivial. Then there is a non-trivial x € X*(T/T") C X*(T).

Let y; € T(Q;) be a point such that x(y;) € Q) has positive valuation, and let
y € T(Ay) be the point with component y; at [ and trivial components away from
[. For any compact open subgroup Kt C T'(Ay) the quotient T(Q)\T'(Ay)/Kr is
finite. Hence there exists z € T(Q) and a positive integer m with z = y™ mod Kr.
Then z is an [-Weil point by Lemma and x(z) € Q; has positive valuation,
so xz ¢ T'(Q), a contradiction. It follows that 77 = T, and the subgroup of [-Weil
points is dense in T

For the second claim, let £ be a number field which splits 7', and let n denote
the number of roots of unity in k. Suppose that z € T(Q) is an [-Weil point, and
let S C T be the Zariski closure of (z) and S C S the connected component of 1.
Then n - S/S = {0}, so 2" is a neat I-Weil point. As multiplication by n induces
an isogeny on T, this implies that the set of neat [-Weil points contains a Zariski
dense subgroup of T. O

Lemma 2.2.11. Let S be an irreducible scheme of finite type over a field k, and
I ¢ S(k) a Zariski dense subset. Let W C Autg S be a finite subgroup, and o €
Auty S. Suppose that for every v € T, there exists w € W such that w(y) = o(7).
Then o = w for some w € W.

Proof. We are grateful to the referee for supplying the following proof, which is
simpler and more general than our original one. For w € W let I', = {y € T :
w(y) = o(y)}. Then I' = Uyewlw, and Uyew Ty =T = S, where I'y, and T’ denote
the closures of I', and I' in S, respectively. Since S is irreducible, this implies I,
is dense in S for some wy € W, and it follows that o = wy. O

2.2.12. Suppose that C' and H are reductive algebraic groups over a field F' of
characteristic 0. We denote by Aut'(H), the preimage of Out’(H) in the group
scheme of automorphisms Aut H. (Recall Out’(H) from (2.1.8).) Consider two
maps 41,12 : C — H defined over some extensions F, F5 respectively, of F. We
say that i; and iy are conjugate (resp. conjugate by an element of Aut'(H)) if
there exists an extension F3/F containing F; and Fy as well as g € H(F3) (resp.
g € Aut’(H)(F3)) such that iy = gijg~* (resp. ia = g(i1) := g oi1).

Proposition 2.2.13. The maps i, : I,, — G, defined over Qg if £ # p and over
Qg for m sufficiently divisible if ¢ = p, are all conjugate by elements of Aut'(G).
In particular, if G*d has no factors of type D then the iy are all conjugate.

Proof. We consider all maps of groups over an algebraically closed field k containing
all Qg for ¢ # p and Qgm for all m. Let us write I = I, for simplicity.

Suppose that T1,T> C G are maximal tori over k, and v € Ty (k) N Tz(k). Then
there exists g € G(k) conjugating T into T and fixing ~. Indeed, let M be the
connected component of the identity in the centralizer of v in G. Then M is a
Levi subgroup of G, and 11,7, C M are maximal tori, so conjugate in M. Now
if v1 € Ty(k), y2 € Ta(k), and if o(y1) = 2 for some o € Aut’'(G)(k), then there
exists o/ € Aut’(G)(k) taking v; to 7o and Ty to T. To see this, apply the previous
remark to o(y1) = 72 € o(T1) NTy. We will use this observation below.

Choose m sufficiently divisible that 7, s, is neat. By the Weil conjecture for
abelian varieties, v s, € I(Q) is a Weil point. Hence, by Proposition m (or
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Noot’s original result), there is a 9 € G(k) such that for each £, i¢(vypm,s,) differs
from vy by an element of Aut’(G)(k). Let Iy C G denote the centralizer of vo. After
modifying i, by an element of Aut’(G), we obtain maps j, : I — Iy taking v,.s,
to vp. Choose T' C I and Ty C Iy maximal tori. By the observation above, applied
with I in place of G, after conjugating each j, by an element of Ip(k) we may also
assume that j, maps T to Tp.

Now fix primes £,¢' and set 0 = ji 0 j; ' Let v € T(Q) be a Weil point. By
Proposition there exists an element g € Aut’'(G)(k) which conjugates ji ()
to je (7). By the observation above (applied with T} = Ty = Tp), we may assume
that g induces an automorphism of 7. Note that the group of automorphisms of Tj
induced by an element of Aut’(G) is finite. By Lemma [2.2.10} the set of neat Weil
points in T'(Q) is Zariski dense. It follows by Lemma that o|7 is induced by
a point g € Aut’(G) (k).

By construction o fixes 7y, so g does also, and so g induces an automorphism of
Iy. As 0 and g are automorphisms of Iy which agree on T', they differ by conjugation
by an element of ¢t € T'(k). Replacing g by gt, we may assume ¢ induces o on Ij.
This implies that i, and i, are conjugate by an element of Aut’(G)(k). O

Corollary 2.2.14. Let T C I, be a mazimal torus, and suppose that G is quasi-
split at p and has no factors of type D. Then there is an embedding of Q-groups
il : T — G which is conjugate to each of the embeddings i¢|r. In particular, for
each m > 0, there is an element Ym 0.5, € G(Q) conjugate to Ypm..s, in G(Qp) for
each £.

Proof. Let G* be the quasi-split inner form of G, and choose an inner twisting
G = G* over Q. Let i{* : T — G* be the embedding over Q; induced by iolT
and the chosen inner twisting. By Proposition there exists an embedding
il : T < G* defined over Q and conjugate to each of the il*. For £ # p, i, is
defined over Q, so the conjugacy class of il * is invariant by Gal(Q,/Q). Hence,
by Cebotarev density, the stabilizer of the conjugacy class of i’ in Gal(Q/Q) is an
open subgroup which meets every conjugacy class in Gal(Q/Q). This implies that
the conjugacy class of i1 is invariant by Gal(Q/Q). It follows by [Kot82, Cor. 2.2]
that i’ is conjugate to an embedding i7* : T <+ G* defined over Q. We view T as
a subgroup of G* via i*.

Now T transfers to G at every prime £ # p, 00 as iy is defined over Q. It transfers
to G at p, since G is quasi-split at p, and it transfers to G at infinity as the image
of T in G* is anisotropic at infinity. Hence T transfers to G by [LR87, Lem. 5.6].

For the final statement, writing i7 : T < G for the transfer, we take Vm.,0,50 =

iT(rym,So)' O

2.3. CM lifts and the conjugacy class of Frobenius.

2.3.1. We again return to the notation and assumptions of Let so,s; €
Zk,(Fp). Then sq, s, are defined over F, for some ¢, and we use the notation of

Write Homg (As,, As; ) for the scheme over Q that assigns to any Q-algebra R,
the group R @ Hom(As,, Ay ). (Here the Hom-spaces are taken in the prime-to-p
isogeny categories.) For any Q-algebra R, an R-isogeny from As, to A, is an
element

[ € Homg(As,, Agy ) (R)
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such that there exists
f" € Homg (A, As,)(R)
with f' o f € Auty( Ay, )(R).
Let Isog(As,,As;) be the functor on Q-algebras that assigns to any Q-algebra
R the set of R-isogenies from A, to AS&' Note that this functor is either empty or
representable by a torsor over Q under Autg(As,).

2.3.2. For any prime ¢ # p, denote by V;(A,,) be the f-adic Tate module of As,,
and let Isoge(AsO,.Asé) be the Qy-scheme that assigns to any Qg-algebra R the set
of R-linear isomorphisms

R ®q, W(ASO) =R oy V@(As(’))

that carry 1 ® Ym,e,so t0 1 @ Y 0,6, for all m sufficiently divisible.
For any ¢ # p, cohomological realization gives us a natural map of Qg-schemes:

ie(50,50) + Q¢ @ Isog(Asy, Agy) — Isog, (Asy, Asy)-
Similarly, let Isog(Ds,, Dsg) be the Q,-scheme that assigns to every Qp-algebra
R the set of 1® p-equivariant, R® L-linear isomorphisms R ®gq, Dy, = R®q, Ds,

which carries Dy, s to Dy, s, for m sufficiently large. We have a natural map of
Qp-schemes:

ip(s0,50) : Qp ® Isog(As,, Agy ) — Isog(Ds,, Dy ).

By Tate’s theorem on endomorphisms of abelian varieties and its crystalline ana-
logue, i¢(s0, () is an isomorphism for all .

2.3.3. For € # plet Py(so,sq) C Isog,(As,, As; ) (resp. Py(so, so) C Isog(Ds,, Dsy))
be the closed subscheme parameterizing isomorphisms that carry, for each o, 1 ®
Sat,s0 10 1®5q 0,5 (TSP 1@ 54 cris, s 10 1®5q cris s ). Let P(so0,55) C Isog(As,, Ag; )
be the largest closed subscheme (defined over Q) that maps into Py(so, s(,) for every
¢, including ¢ = p. Note that P(sg, sj) is either empty or an I, -torsor.

We make the following

Conjecture 2.3.4. For every {, the map
P(s0,50) ® Q¢ — Py(s0, ()
induced by ip is an isomorphism.
When s{, = s¢ this is simply Corollary

Lemma 2.3.5. The schemes P(so, s) and Pi(so, s) depend only on sg and s;, and
not on the choice of the collection of Hodge cycles {ss}. In particular, the truth of
Conjecture [2.3.4] depends only on so, s{, and not on {sy}.

If (G, X) is PEL of type A or C then Conjecture holds.

Proof. From the definitions it suffices to prove the first statement for Py (s, s()
for each £. If {tg} is another collection of Hodge cycles defining G, it suffices to
consider the case {so} C {tg}. If Pr1(so,s() is the analogue of P(so, s(,) defined
using {tg} then Py 1(so,si) C Pe(so, i) and it suffices to show that if one scheme is
non-empty then so is the other, as then each is an I,-torsor. However each scheme
is non-empty if and only if v, s, and 7y, 4 ¢ are conjugate in G(Qy) (even for
¢ =p).
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Now suppose that (G, X) is PEL of type A or C. In this case G is the group
preserving a collection of endomorphisms {t3} together with the polarization ¢ up
to a scalar. (Note that 1 does not have weight 0, so does not quite fit into our
formalism involving {s,}.) Then ¢ induces a pairing

Vi(Ase) x Ve(Asy) = Qe(1),

well defined up to a non-zero scalar, and similarly for D,, ;,. We refer to these
pairings as polarizations.

Define P (s, s) to be the subscheme of Isog(As,, As; ) which preserves the {tz}
and polarizations up to a scalar. For £ # p let Pyi(so,sp) C Isog,(Asg, Asy)
(resp. Pp1(so0,50) C Isog(Ds,, Dy )) be the closed subscheme parameterizing iso-
morphisms that carry, for each 8, 1 ® tg,0,5, t0 1 ® 54 (resp. 1 ® £ cris,s;, tO
1 ® £ cris,s,) and which preserve polarizations up to a scalar.

By Tate’s theorem, for each ¢ the map

Py (s0,80) ® Q¢ = Pya(so, 8()

is an isomorphism. An argument as in the proof of the first part of the lemma
shows that this map can be identified with the map of Conjecture O

2.3.6. In the PEL case, when G is unramified at p, the above result is due to
Kottwitz - see [Kot92, Lem. 17.1, 17.2] and their proofs.

The restriction that (G, X) be of type A or C in the lemma above is in some
sense a question of definitions. When (G, X)) is PEL of type D, one cannot actually
define G C GSp(V) using endomorphisms and polarizations. Instead, there is a
collection {tg} C V® of a polarization and endomorphisms which define a group
G’ C GSp(V) whose connected component is G [Kot92, p393]. An analogue of the
last statement of the lemma then holds for G'.

We will say that so and s)), are Q-isogenous if the space P(sg, s}) of is
non-empty. We will say that they are isogenous if P(so, s()(Q) is non-empty. If
50,8y € Sk, (F,) we will say that s, and sy are Q-isogenous (resp. isogenous) if
this condition holds when s, s{, are viewed as I, points for some ¢ = p".

2.3.7. Let so € Sk, (I_Fp). Suppose that 7" C I, is a maximal torus. Let h :
Resc/r G — Gr be an R-morphism. Let Shg,. (k) be the pro-Shimura variety
associated with (T, {h}) and Kr, = K, N T(Q,). An isogeny CM lift (vesp. a
Q-isogeny CM lift) of sy with respect to T will consist of a triple (j, z, sh), where:
e j: T — (G is an embedding defined over Q, such that for each ¢, j is
conjugate over Qp to the embedding

i : T@e — If,so — GQZ;
e z € X is a point with h, factoring through j(7k); and
e 55 € Yk, (Fp) is a point admitting a lift to Shg,. , (hs);

such that s is isogenous (resp. Q-isogenous) to so.
Of course isogeny CM lifts can exist only when the iy are conjugate for all £. We
make the following conjecture:

Conjecture 2.3.8. If G is quasi-split at p, then for any sy € YKP(F,,) and any
mazimal torus T C I, so admits an isogeny CM lift with respect to T.
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When K, is hyperspecial this conjecture is proved in [Kis10]. The main point of
this section is to show that Conjecture [2.3.4] implies a version of Conjecture [2.3.8
with Q-isogenies, when G®? has no factors of type D. In particular, we will show a
Q-version of this conjecture holds for (G, X) of PEL type A or C.

2.3.9. Let T C G be a maximal torus and = € X with h, factoring through T Let
s0 € Ik, (F,) be defined over F, for some ¢ = p". Suppose that sq is a reduction
of a Q,-valued point s of Shg,. , (ha)-

For any m € Zs, the ¢"-Frobenius acts on A,,, and the corresponding auto-
morphism v, 5, € Autg(As,) lies in I5,(Q). Since T' contains the Mumford-Tate
group of A, (defined via some embedding Q, <+ C), there are natural embeddings:

T — M@(As) — MQ(ASO)'

It follows from the definitions that this embedding exhibits 7' as a subtorus of
I,.
Recall, that an element v € T(Q) is called a p-unit if the subgroup it
generates is contained in a compact subset of T(Qy) for all £ # p.

Lemma 2.3.10. The element v, s, lies in T(Q) C Is,(Q). It has the following
properties:

(2.8.10.1) Y s, 05 @ p-unit.

(2.8.10.2) Set u = p;* € X.(T). Under the composition

T(Q) - T(Qy) > B(T) 5 X.(T)r

p?

Ym,so 1S mapped to mlog, q - ub.
Given any other element v € T(Q) satisfying the two conditions above, there exists
r € Zso such that vy, o ="

Proof. It was already remarked in the proof of Proposition [2.2.13] that ~,, s, €
I,,(Q) is a Weil point, hence a p-unit by Lemma [2.2.4]

Let us show |(2.3.10.2)| First, we note that, for m sufficiently large, the embed-
ding:

TQp — Qp ® IS() — M(Dm,so)

arises from an isomorphism Qgm ® V' = Dy, s,- We can choose this isomorphism so
that the semi-linear map ¢ : Dy, s, — Dim s, is identified with the automorphism
0sy(0 @ 1) of Qum ® V, for some element d5, € T'( Qq By - the image of
85y in Xo(T)r, is p*. The assertion now follows from

For the final assertion, note that, since (T/G,,)r is compact, T(Q) is a discrete
subgroup of T'(Ay). Given v satisfying[(2.3.10.1) and |(2.3.10.2)| set 8 =71y, 5,-
We have to show that 8" = 1 for some r € Z~.

For ¢ # p, the eigenvalues of § acting on Vy(As,) all belong to Z;; therefore, 8
lies in a compact subgroup of T'(A%). Moreover, f is in the kernel of T'(Q,) — B(T),
and so it lies in the compact subgroup in T(Q,) consisting of elements o-conjugate
to 1 over L. In sum, we find that S lies in both the discrete subgroup T(Q) and a
compact subgroup of T'(Ay), and must therefore be of finite order. |

Proposition 2.3.11. Suppose that G is quasi-split at p, that G* has no factors
of type D, and that Conjecture holds for (G, X). Then for any maximal torus
T C Is,, so admits a Q-isogeny CM lift with respect to T.
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Proof. We can view T, as a maximal torus in [, 5,. By (1.1.17)), there exists a
cocharacter pr € X,(T) defined over Q whose image in Gg lies in the conjugacy
class {x }p, and such that vs, = Nur € X*(T)g”.

By Corollary there is an embedding i : T < G such that for all ¢, i is
G(Qy)-conjugate to the embeddings

i : T, = Ipsy = Gaq,-
The cocharacter
HT,00 * Gm,C —1c

obtained from pr via the embedding i : Q = C is G(C)-conjugate to ty, for
y € X. By modifying ¢ within its G(Q)-conjugacy class, as in ((1.2.5)), we can
assume that pr o is G(R)-conjugate to p,, and so arises from a homomorphism
hy @S — Tk, for z € X.

Let sy € Sk, (IFp) be the reduction of a point of Shg,. ,(h;). Recall from the
preceding lemma that the ¢™-Frobenius v, s, € Is,(Q) is contained in T(Q). We
claim that for m sufficiently divisible,

Ym,so = ’Y'm,sé] S T(Q)

Here we view so, sy € Sk, (Fgm). Assuming this, we see that, since i and i, are
conjugate for any £, Ym,e,s, and Yy, ¢, are conjugate in G(Qy). This implies that
Py(s0, ;) is non-empty, and hence P(sg,s)) is non-empty by Conjecture [2.3.4
which implies that sf) is a Q-isogeny CM lift of sy with respect to 7.

To see the claim, note that the eigenvalues of 7, 5, acting on V;(As,) for £ # p
are ¢"™-Weil numbers. So Ym,s, € T(Q) is a p-unit as in Lemma [2.3.10f We have

Yrmpys0 = 0500 (0s0) * *+ Urm_Q(éso)Urm_l((sso)
so using|(1.1.2.4)[ we see that the image of vy, s, under the composite
T(Qp) & X (T)r, = X(T)r, ®Q % X*(T)(gp.

is equal to the image of rmvs, (p) = rmNur(p), which is just the image of rmur =
mlog, q - pr in Xu(T)r, ® Q by|(1.1.2.4)} Hence for m divisible enough the image

of Yim,s, in Xu(T)r, is mlog, q- p*. It follows by Lemma [2.3.10| that v, 5o = Yim,s/
for m sufficiently divisible. O

2.3.12. We will show that in some cases, the result of Proposition [2.3.11| can be
improved to produce Q-isogeny lifts of sg. To do that we need the following.

Lemma 2.3.13. Suppose that sg € Sk, (Fp), T C I, a maximal torus, and that
so admits a Q-isogeny CM lift (j,, sy) with respect to T. Let PT = PT(s¢,sh) be
the subscheme of P(so, s() consisting of isomorphisms which respect the action of
T. Then PT is a T-torsor, whose class in H'(Q,,G) is trivial for every place v of

G.

Proof. By construction A,, and .AS/U are equipped with an action of T, so the
subscheme PT is well defined. For each ¢, we denote by P/ (so,s(,) the subscheme
of Py(so,s;) consisting of isomorphisms which respect the action of T Since j is
conjugate to i, by an element of G(Q¢), P! (so,s)) is non-empty. Hence by Tate’s
theorem PT := P7(sq, s{) is non-empty, and thus is a T-torsor, which is a reduction
of the I, -torsor P(so, s().
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Let I{  denote the group of automorphisms of A, respecting polarizations up to
a Q*-scalar. Consider the subscheme P C Isog(As,,.As ) parametrizing isogenies
respecting polarizations up to a Q*-scalar. Then P is an I -torsor. By [Kot92,
Lem. 17.1], the class of P in H'(R, I ) is trivial, so the class of PT in H'(R,T) is
trivial by [Kis17, Lem. 4.4.5]. In particular, the class of PT in H'(R,G) is trivial.

Next for £ # p a finite prime, consider Isomy, 1(Vi(As,), Ve(Ag;)), the scheme
of isomorphisms which take sq,¢,5, 10 Sa,s - (Note that we do not require that the
isomorphisms respect Frobenius.) This scheme is a G-torsor over Qg, obtained from
PT via the natural map T — G over Q. If 3¢, 5} € Sk, are lifts of 3¢, 5 then this
G-torsor may also be identified with Isomg, ,(Vi(As, ), Ve(As,)). However, from the
definition of the universal abelian scheme over .k, one sees that this last torsor
is trivial.

It remains to check that the image of PT in H'(Q,,G) is trivial. Fix ¢ such
that sg, s, are defined over F,. As above, by Steinberg’s theorem, for m sufficiently
large, we may fix isomorphisms

Disy = Qqn @V = Dy gt

which take so to Sq,cris,s, and Sa,cris, s) respectively and respect the action of 7.
Then ¢ on Dy, 5, and D,, o are given by ds,(0 ® 1), 4 (0 @ 1) respectively for ds,,
(556 6 T(qun).

Recall that for any reductive group H over Q, we have isomorphisms [Kot85]

H'(Qp, H) ~ H'(Gal(QY'/Qy), H) ~ (w1 (H)r, tors-

Here the first isomorphism is given by Steinberg’s theorem, and the second isomor-
phism takes a cocycle ¢ to £p(cy), o the Frobenius.

The class of PT in H'(Q,,T) corresponds to the cocycle sending o to dsr 68_01.
By Lemma ds, and &, have the same image in m; (G)r,, so that the class of
this torsor in H'(Q,, G) is trivial, as required. O

Corollary 2.3.14. With the assumptions of Proposition|2.3.11|, suppose that G4"
is simply connected and that G*" satisfies the Hasse principle:

ker' (Q, G*) := ker(H'(Q,G™) = [[ H'(Q.,G™)) = 0.

Then for any mazimal torus T C I,,, so admits a Q-isogeny CM lift with respect
toT.

Proof. By Corollary so admits a Q-isogeny CM lift with respect to T, say
(4,7,55). Let PT be as in Lemma For every place v of Q, the class of PT
is trivial in H'(Q,,G) and hence in H'(Q,,G?"). Since G® satisfies the Hasse
principle the class of PT in H'(Q, G?") is trivial.

As PT has trivial image in H*(R,G) and H'(Q, G?"), and G is simply con-
nected, PT has trivial image in H!(Q, G) by |[Bor98, Thm. 5.12], so PT arises from
a point w € (G/T)(Q). Now let j' = w™ljw. Then j' : T — G is defined over Q.
Since the image of w in H*(R,T) is trivial, w~'h,w corresponds to a point z’ € X
and factors through j'(Tk) (cf. [Kis17, 4.2.2]). If s{ € Sk, (F,) is a point admitting
a lift to Shg,, , (hs), then P(sq, sy) is a trivial I, -torsor by [Kis17, Prop. 4.2.6], so
(4,2, s() is an isogeny CM lift with respect to T. O
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Corollary 2.3.15. Suppose that G is quasi-split at p, and that EG,X) is of PEL
type A or C. Then for any mazimal torus T C I,,, so admits a Q-isogeny CM lift
with respect to T. Moreover, sg admits a Q-isogeny CM lift with respect to T unless

G is of type A, with n even.

Proof. The first statement follows from Proposition and Lemma [2.3.5] For
the second statement note that if (G, X) is of PEL type A or C' then G is simply
connected, and G?P satisfies the Hasse principle unless G is of type A,, with n even
[Kot92| §7]. Hence the second statement follows from Corollary O

Remarks 2.3.16. (1) In fact the corollary can be shown for certain groups G of type
A, with n even. Namely if it is a unitary similitude group (in n + 1 variables)
arising from a CM quadratic extension F of a totally real field F'* with [F* : Q]
odd, then the Hasse principle holds for G by the proof of Lemma 3.1.1 of [Shill],
so the above proof goes through.

(2) As in one can extend the proof of the first statement of the last corollary
to the case of type D if one works with the disconnected group G’. For an alge-
braically closed field k, two points of G(k) give rise to the same point of Conj'(G)
if and only if they are conjugate in G'(k). Using this one can deduce a version of
Corollary 2.2.14] from Proposition [2.2.13] and use it to deduce an analog of the first
part of Corollary but where Q-isogeny is defined using the tensors {ts}. We
leave this as an exercise for the reader.

(3) In |Zin83|, Zink proves that for PEL Shimura varieties, and primes of good
reduction, every point has an isogeny CM lift with respect to 7. However, his defi-
nition of isogeny is required to respect only endomorphisms and not polarizations.
In that case the analogue of P(sg,s(,) is a torsor under the group of units in a
product of (possibly skew) fields. Any such torsor is trivial, for example because a
Q-vector space has a Zariski dense set of rational points, or alternatively because
in this case the group is a product of inner forms of GL,, .

Thus, the first part of Corollary recovers Zink’s result in this case. How-
ever, the second part is really stronger. Even for the moduli space of principally
polarized abelian varieties the deduction of this statement using Honda-Tate theory
does not quite seem to be in the literature. Although it is a special case of a result
of [Kisl7|, the techniques used there are quite different.

4) The condition on G?" in Corollary and the second part of Corollary
is used to show that the class of PT in H'(Q,G?P) is trivial. In fact this
should follow from the fact that sg, s; lie on the same Shimura variety, since the
motive obtained from A, and any representation of G which factors through G*P
should be constant; for example this holds in characteristic 0 at the level of vari-
ations of Hodge structure. Even when G9°* is not simply connected, there is a
corresponding cohomology group H'(Q,G/G), in which the image of PT should
be trivial (here G is the simply connected cover of G9°7), which would be enough
for the argument of Corollary 2:3.14] Unfortunately we do not know how to make
these motivic heuristics rigorous.

(5) We have not thought seriously about which of these results can be generalized
to the case of abelian type Shimura varieties. Integral models for these are usually
defined using those for an auxiliary Shimura variety of Hodge type. Thus, it is quite
plausible that one can directly deduce analogues of our results on non-emptiness of
Newton strata and special point liftings. Of course in this case the construction of
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the Newton strata would usually also involve the auxiliary Shimura variety. A more
interesting problem is the definition and non-emptiness of the torsors P(sg, sp),
given the lack of a good general definition of an isogeny of motives - see the recent
paper of Yang [Yan| for the case of K 3-surfaces.

APPENDIX A. CONSTRUCTION OF ISOCRYSTALS WITH G-STRUCTURE

The purpose of this appendix is to prove Proposition [1.3.12] The main tool
is Faltings’ comparison theorem [Fal02] p. 62, as well as de Jong’s theorem on
alterations |dJ96] and a result of Ogus on proper descent for convergent isocrystals
[Ogu8d].

A.1. Let k be a perfect field of characteristic p, and W = W (k). We equip k and
W with the trivial log structure.

Let X be a scheme over W, equipped with a fine saturated log structure. A
p-adic formal log scheme T over W, is a p-adic formal scheme T/W together with
the data of a compatible system of log structures on T,, = T ®z Z/p"Z for n > 1,
such that the inclusions 7, < T,,+1 are exact.

An enlargement of X is a triple (T, I, i) consisting of a p-adic formal log scheme
T over W, an ideal of definition I of T, and a map of log schemes ip : Ty — X,
where T} is the subscheme of T defined by I. We say that (T, I,ir) is reduced if Ty
is reduced. We say that (T, I,ir) is a PD-enlargement if I is equipped with divided
powers extending the divided powers on pW.

As in [Ogu84, 2.7], using the definition of an enlargement we can define the
category of convergent log isocrystals (cf. [Ogu95, §3]). This category does not
change if we allow I to be any p-adically closed ideal as in [Fal02, p. 258]. Indeed,
the value of a convergent log isocrystal on such an enlargement can be defined as the
inverse limit of its values on (T, (I, p™),ir,,) for n > 1, where I, is the composite
T, — To % X and T}, is defined by (I,p").

The category of convergent log isocrystals also does not change if we define it
using only reduced enlargements. In particular it depends only on X ®7 Z/pZ, and
not on X, and is equipped with a Frobenius pullback functor F*. Thus, we have
the notion of a convergent log F-isocrystal (again cf. [Ogu95, §3]). When the log
structure on X is trivial, this agrees with the definition of convergent isocrystal and
F-isocrystal in [Ogu84].

The log crystalline site of X is the site whose objects consist of PD-enlargements.
As in [MP19, 1.3.3] a log Dieudonné crystal over X is a crystal M in the log crys-
talline site of X together with maps F*M — M and M — F*M whose composite
in either order is multiplication by p. As in |Ogu84} 2.18] or [Ogu95, Rem. 16], a
log Dieudonné crystal over X gives rise to a convergent F-isocrystal on X.

A.2. Let S be a flat, normal, finite type W-scheme, D C S a relative Cartier
divisor, and j : U = D — S < S, the inclusion. We consider S as a log scheme
equipped with the log structure j. 0y, and for n > 1, we give S ®z Z/p"Z the
induced log structure.

Let 7 : A — U be an abelian scheme, which extends to a semi-abelian scheme
over S. We denote by L the étale local system R'7,.Q, on Uk &. We denote by €
the convergent F-isocrystal on U attached to the p-divisible group A[p*].
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By [MP19, 1.3.5] there is a log Dieudonné crystal on S attached to A, and hence
a convergent log F-isocrystal £°¢ on S, whose restriction to U is &€, and whose
formation is compatible with Cartier duality.

A3. Let Ky = W[1/p], and K/K, a finite extension. Fix an algebraic closure
K D K, and let G = Gal(K/K). We keep the above notation, but we now assume
that S is semi-stable over O, and that So U D C S is a normal crossing divisor.
Here Sp = S ®¢, k.

Above we considered S with the log structure given by D. We denote by SVI°#
the scheme S considered with the log structure given by Sy U D. There is a map

of log schemes i : SV1°8 — S. We set £V1°8 = §*(£1°8), a convergent F-isocrystal on
Svlog'

Lemma A.4. With the above notation, L. and EV'°% are associated in the sense of
[Fal02l p. 258].

Proof. As already remarked in [Fal02], £V1°% gives rise to a convergent isocrystal in
the sense of loc. cit. p. 258. The proof of the lemma is entirely analogous to the
argument given in [Fal99, §6], cf. also [MP19, A2.2] for the case of log schemes. O

A.5. We now return to the assumptions of so we no longer assume that S is
semi-stable.

Let s : 1 — L® be a map of étale local systems over U. That is, s is a global
section of L®. For any finite K'/K in K, with residue field &/, and any & € U(Ok),
&*(s) corresponds to a section

50,6 = Dcris<f*(8)) 11— g*(5)®

Proposition A.6. If S is proper and semi-stable over Ok, and Sy UD C S is a
normal crossing divisor, then there is a morphism of convergent log F'-isocrystals
s0 11— E°8% over S such that £ (so)(W(K')) = so¢ for all K'/K, k', and ¢ as
above

Proof. Let m € Ok be a uniformizer and F(T) an Eisenstein polynomial for 7. Let
R = W]TY], and for n > 1 let R,, be the p-adic completion of W[T, E(T)™ /i!]. We
view Ok as an R,-algebra, and so an R-algebra via T +— . It suffices to construct
so étale locally on S.

Let Spec A be an étale neighborhood of S, which admits an étale map

w:Spec A — Oklt1,...,tq)/(t1--te — )

for some e < d, and such that the log structure on Spec A is given by the preimage
of the Cartier divisor defined by t;---t,. for some e < r < d. Let A be the p-
adic completion of A. Thus Spf A is a p-adic formal log scheme over @, which is
formally smooth when @k is equipped with the log structure &k — {0}. Lift Spf A,
to a formally smooth (p,T)-adic formal log scheme Ygr = Spf Ap over R (defined
as in the p-adic case). Thus, Ap is formally étale over the (p, T)-adic completion
of R[t1,--- ,ta]l/(t1--te — T), with the log structure given by the preimage of the
Cartier divisor defined by ¢y - - - t,.

We consider the Frobenius lift F on Ap induced by t; —» t? and T +— TP. Let
Y,, be the base change of Yy to R,. Then F' induces a lift of Frobenius on Y,,. Note
that Y,, is an enlargement of SV'°8, and so we may evaluate £'°% on it.
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By and [Fal02, §5, Cor. 4, Rem. 1)], s gives rise to a Frobenius invariant,
parallel section sy of £V1°8(Y7)®. Note that the result of loc. cit applies, because
EVI8 arises from a log Dieudonné crystal on SVI°8. Hence for any m,n we can
apply that result to the log F-crystal obtained by multiplying the Frobenius on
EVlos®n i gvlogx®m Ly g high enough power of p, and replacing L&" ® L*®™ by
a suitable Tate twist. Since sg is Frobenius invariant, it gives rise to a section of
Evlee(Y,,)® for any n > 1.

Now let Y* be the p-adic formal log scheme with the same underlying formal
scheme as Y, but with the log structure defined by tey1---t,.. Then Yél is an
enlargement of S, and from the definitions we have £1°8(Y;?) = £V1°8(Y,,). Since Yr
is formally smooth over W, as in [Ogu84, Thm 2.11], the sections so € £1°8(Y,?)®
give rise to a morphism of convergent F-isocrystals so : 1 — £1°8® over Spec A. The
relation £*(so)(W (k') = so,¢ follows from the functoriality of the map constructed
in [Fal02)]. O

Corollary A.7. For any S (not assumed proper or semi-stable), and s : 1 — L%
as above, there exists a unique morphism of convergent F-isocrystals over U

So:1— g®
such that for every K'/K finite, and & as above £*(so)(W (k') = so.e.

Proof. By [dJ96, Thm 6.5], after replacing K by a finite extension, there exists a
proper truncated hypercovering

Uy=Uy—=U

such that for ¢ = 0,1 there is a dense open immersion U; < S;, with S; proper
and semi-stable, and (S;\U;) U S; ®¢, k is a normal crossings divisor in S;. By
proper descent for convergent isocrystals [Ogu84, Thm 4.6], it suffices to prove the
proposition with U; in place of U. Thus we may replace U by U;, and S by S;,
and assume that S is proper and semi-stable, and Sy U D C S is a normal crossing
divisor. Then the required map is obtained by restricting the map sg : 1 — £1°8
of Proposition to U. The uniqueness is easily deduced from |Ogu84, Thm 4.1].

O
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