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Abstract. A Shimura variety of Hodge type is a moduli space for abelian

varieties equipped with a certain collection of Hodge cycles. We show that

the Newton strata on such varieties are non-empty provided the corresponding
group G is quasi-split at p, confirming a conjecture of Fargues and Rapoport in

this case. Under the same condition, we conjecture that every mod p isogeny

class on such a variety contains the reduction of a special point. This is a
refinement of Honda-Tate theory. We prove a large part of this conjecture

for Shimura varieties of PEL type. Our results make no assumption on the

availability of a good integral model for the Shimura variety. In particular, the
group G may be ramified at p.
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Introduction

A Shimura variety, Sh(G,X), of Hodge type may be thought of as a moduli
space for abelian varieties equipped with a particular family of Hodge cycles. This
interpretation gives rise to a natural integral model S = S (G,X). For a mod p
point, x ∈ S (F̄p), one has the attached abelian variety Ax and its p-divisible group
Gx = Ax[p∞]. In this paper, we study the two related questions of classifying the
isogeny classes of Gx and Ax. We are able to do this for quite general groups G, as
our methods do not require any particular information about S ; for example we
do not assume that S has good reduction.

The isogeny class of Gx is determined by its rational Dieudonné module Dx,
which is an L = W (F̄p)[1/p]-vector space equipped with a Frobenius semi-linear
operator bxσ, where bx ∈ G(L) is an element which is well defined up to σ-conjugacy,
bx 7→ g−1bxσ(g), and σ denotes the Frobenius automorphism of L. The element bx
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is subject to a group theoretic analogue of Mazur’s inequality [RR96, Thm. 4.2],
and the set consisting of σ-conjugacy classes which satisfy this condition is denoted
B(G,µ), where µ : Gm → G is the inverse of the cocharacter µX (up to conjugacy)
attached to X. (See 1.1.5 and 1.2.3 below for precise definitions.) Let D denote
the pro-torus whose character group is Q. Each b ∈ G(L) gives rise to the so-called
Newton cocharacter νb : D → G, defined over L, whose conjugacy class is defined
over Qp and depends only on the σ-conjugacy class [b]. The slope decomposition
of Dx is given by νbx . For [b] ∈ B(G,µ), the corresponding subset S[b] ⊂ S (F̄p) is

called the Newton stratum corresponding to [b] so that a point x ∈ S (F̄p) belongs
to S[b] if and only if [bx] = [b]. Our first result is on the non-emptiness of Newton
strata. (The converse is known, i.e. if S[b] is non-empty then b ∈ B(G,µ). See
Lemma 1.3.9.)

Theorem 1. Suppose that b ∈ B(G,µ) and that the G(L)-conjugacy class of νb has
a representative which is defined over Qp. Then S[b] is non-empty. In particular,
S[b] is always non-empty either when GQp is quasi-split or when [b] is basic.

Fargues [Far04, Conj. 3.1.1] and Rapoport [Rap05, Conj. 7.1] have conjectured
that S[b] is non-empty for every b ∈ B(G,µ); see also the paper of He-Rapoport
[HR17]. Previous results on the non-emptiness of S[b] have been obtained by a
number of authors - see the papers of Wedhorn [Wed99] and Wortmann [Wor13]
for the µ-ordinary case (of hyperspecial level), that of Viehmann-Wedhorn [VW13]
for the PEL case of type A and C (of hyperspecial level), and the recent work of
Zhou [Zho20] for many cases of parahoric level. These all rely on an understanding
of the fine structure of a suitable integral model of Sh(G,X).

Our method involves constructing a special point whose reduction lies in S[b].
This is essentially a group theoretic problem, as the Newton stratum of a special
point can be computed in terms of the torus and cocharacter attached to that point.
When GQp is unramified, this problem was already solved by Langlands-Rapoport
[LR87, Lem. 5.2]. This was independently observed by Lee [Lee18], who also used it
to show non-emptiness of Newton strata in this case. If S[b] contains the reduction
of a special point, then it is easy to see that the G(L)-conjugacy class of νb has a
representative which is defined over Qp. Thus the result of Theorem 1 is the best
possible using this method.

Along the way we confirm an expectation of Rapoport–Viehmann [RV14, Rem.
8.3] on cocharacters and isocrystals. (See Remark 1.1.14 below.) We also show the
Newton stratification has some of the expected properties:

Theorem 2. For every b ∈ B(G,µ), S[b] ⊂ S (F̄p) is locally closed for the Zariski
topology. One has the following closure relations, where � is the partial order on
the set of conjugacy classes of Newton cocharacters (see 1.1.1):

S[b] ⊂
⋃

νb′�νb

S[b′].

This theorem is proved by showing the existence of isocrystals with G-structure
on S . This may be of independent interest, but is rather technical so is left to the
appendix. (Recently Hamacher and Kim [HK19] proved similar results for the case
of Kisin-Pappas models by a different argument.) We remark that inclusion in the
Theorem is expected to be an equality for hyperspecial level, but not in general. As
a corollary, we obtain generalizations of the theorems of Wedhorn and Wortmann
on the density of the µ-ordinary locus.
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Theorem 3. If the special fibre of S is locally integral then the µ-ordinary locus
is dense in the special fibre.

We now discuss the problem of classifying Ax up to isogeny. For the moduli space
of polarized abelian varieties, this is closely related to Honda-Tate theory, which
asserts that the isogeny class of an abelian variety A over Fq is determined by the
characteristic polynomial of the q-Frobenius on the `-adic cohomology H1(A,Q`),
with ` - q, and that the isogeny class of A contains the reduction of a special
point. Using this fact one can describe precisely which characteristic polynomials
can occur. For x ∈ S (G,X)(Fq) one expects that the q-Frobenius arises from
a γ ∈ G(Q) whose G(Q̄)-conjugacy class is independent of `, although it is in
general not a complete invariant for the isogeny class of A. We make the following
conjecture:

Conjecture 1. If GQp is quasi-split then the isogeny class of any x ∈ S (F̄p)
contains the reduction of a special point.

Here if x, x′ ∈ S (F̄p), then Ax,Ax′ are defined to be in the same isogeny class if
there is an isogeny i : Ax → Ax′ such that for each of the Hodge cycles sα,x carried
by Ax, i takes sα,x to sα,x′ . More precisely, the Hodge cycles sα,x can be viewed
via either `-adic cohomology for ` 6= p, or crystalline cohomology. We require that
i takes sα,x to sα,x′ in each of these cohomology theories.

When G is unramified this conjecture was proved by one of us [Kis17]; see also
[Zho20] for some cases of parahoric Shimura varieties. The methods of loc. cit
require rather fine information about the special fibre of S , and are rather different
from the ones employed in this paper which require almost no information about
integral models.

Even for the moduli space of polarized abelian varieties, the conjecture is a
more refined statement than Honda-Tate theory, since the definition of isogeny
class involves isogenies which respect polarizations. As we shall explain, it can
nevertheless be deduced from Honda-Tate theory with some extra arguments, but
remarkably these do not seem to be in the literature; the closest is perhaps [Kot92,
§17]. (See 2.3.6 below.)

To state our main result in the direction of the conjecture, we recall that the
group of automorphisms of Ax in the isogeny category is naturally the Q-points of
an algebraic group I ′x = AutQAx over Q. Similarly one can define the subgroup I =
Ix ⊂ I ′x consisting of isogenies which respect Hodge cycles in `-adic and crystalline
cohomology. The set of isogenies (respecting Hodge cycles) between Ax and Ax′
is likewise the Q-points of a scheme P(x, x′) which is either empty or a torsor
under Ix. We say that Ax and Ax′ are Q̄-isogenous if P(x, x′) is nonempty. This
is equivalent to asking that there is a finite extension F/Q and an isomorphism
Ax ⊗ F → Ax′ ⊗ F (for example as fppf sheaves) respecting Hodge cycles. We say
that Ax and Ax′ are Q-isogenous if P(x, x′) is a trivial torsor.

Theorem 4. Suppose that G is quasi-split at p, and that (G,X) is a PEL Shimura
datum of type A or C, then for any x ∈ S (F̄p) the abelian variety Ax is Q̄-isogenous
to Ax′ , with x′ the reduction of a special point.

Our main result is actually more precise, as we show that one can construct
special points associated to any maximal torus T ⊂ I. There is also a slightly
weaker version of the theorem in the case of PEL type D; see 2.3.16. In fact we
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prove an analogous theorem for (G,X) of Hodge type, conditional on a version of
Tate’s theorem for abelian varieties equipped with Hodge cycles - see below.

When G is unramified a result closely related to the above theorem was proved
by Zink [Zin83]. Note that in loc. cit. Zink’s theorem says that Ax is isogenous
(not just Q̄-isogenous) to the reduction of a special point, however his definition
does not require that isogenies respect polarizations, and it is not hard to see that
one can then produce a Q-isogeny from a Q̄-isogeny (the corresponding torsor turns
out to be trivial).

When Gab satisfies the Hasse principle one can replace Q̄-isogenies by Q-isogenies
in Theorem 4. For example one has

Theorem 5. Suppose that G is quasi-split at p, and that (G,X) is a PEL Shimura
datum of type C or of type An with n odd. Then for any x ∈ S (F̄p), Ax is Q-
isogenous to Ax′ , with x′ the reduction of a special point, so that Conjecture 1 holds
in this case.

One of the key ingredients in Honda-Tate theory is Tate’s theorem on the Tate
conjecture for morphisms between abelian varieties over finite fields [Tat66]. We
prove an analogue of this result for (G,X) of Hodge type, and for automorphisms
of abelian varieties equipped with the corresponding collection of Hodge cycles.
To explain this, for each ` 6= p, let I` ⊂ Aut(H1(Ax,Q`)) be the subgroup which
fixes the Hodge cycles sα,x and commutes with the q-Frobenius for q = pr and r
sufficiently divisible. We define a similar group Ip using crystalline cohomology.

Theorem 6. For every ` (including ` = p) the natural map

I ⊗Q Q` → I`

is an isomorphism. In particular the (absolute) rank of I is equal to the rank of G.

The proof uses the finiteness of S (Fq) (when level is fixed) as in [Kis17], as well
as a result of Noot on the independence of ` of the conjugacy class of Frobenius as
an element of G(Q`). Note that a similar finiteness condition plays a crucial role in
[Tat66].

Using this result, one knows that any maximal torus T ⊂ I has the same rank as
G. We show that, when GQp is quasi-split, any such T can be viewed as (transferred
to) a subgroup of G. Our results on non-emptiness of Newton strata then imply
that there is a special point x̃′ ∈ Sh(G,X) with associated torus T. If x′ is the
reduction of x̃′, then Ax and Ax′ should be Q̄-isogenous. Indeed this follows from
a version of Tate’s theorem with Hodge cycles. When x = x′ this is Theorem 6
above, but we do not know how to prove such a theorem when x 6= x′, except in
the PEL case, when one can use Tate’s original result to deduce the first part of
Theorem 4. Finally the second part is proved via an analysis of the local behavior
of the torsor P(x, x′).
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Notational conventions

Given a connected reductive group G over a field F , we write Gder ⊂ G for its
derived subgroup and Gsc → Gder for the simply connected cover of its derived
group.

Fix an algebraic closure F̄ for F . For any torus T over F , we set

X∗(T ) = Hom(Gm,F̄ , TF̄ ) ; X∗(T ) = Hom(TF̄ ,Gm,F̄ )

for the cocharacter and character groups of T , respectively. Write D for the mul-
tiplicative pro-group scheme over Qp with character group Q. A homomorphism
DF̄ → TF̄ gives an element of X∗(T )Q = X∗(T ) ⊗Z Q, and vice versa. We often
refer to a homomorphism D→ G (defined over an extension of F ) as a cocharacter
of G by standard abuse of terminology.

For a maximal torus T in the reductive group G, we write W (G,T ) for the
absolute Weyl group of G relative to T, and we denote by π1(G) the algebraic
fundamental group of G [Bor98]: It is a Gal(F̄ /F )-module, functorial in G, and
canonically isomorphic to X∗(T )/X∗(T

sc), where T sc is the preimage of T in Gsc.
For v a place of Q, we fix an algebraic closure Q̄v for Qv (here, Q∞ = R and

Q̄∞ = C). We also fix an algebraic closure Q̄, along with embeddings ιv : Q̄ ↪→ Q̄v,
for every place v. Set Γv = Gal(Q̄v/Qv) and Γ = ΓQ = Gal(Q̄/Q). We will use our
chosen embeddings to view Γv as a subgroup of Γ.

When E is a number field, the ring of integers of E is denoted by OE .

1. Non-emptiness of Newton strata

1.1. Local results. Fix a rational prime p. Let G be a connected reductive group
over Qp. Fix a maximal torus T ⊂ G defined over Qp and a Borel subgroup
B ⊂ GQ̄p containing TQ̄p . Positive roots and coroots of T in G will be determined
by B.

1.1.1. Set

N (G) = (X∗(T )Q/W (G,T ))Γp .

This space has a more canonical description that N (G) is the space of G(Q̄p)-
conjugacy classes of homomorphisms DQ̄p → GQ̄p that are defined over Qp.

Let C ⊂ X∗(T )R be the closed dominant Weyl chamber determined by B. Each
class ν̄ ∈ N (G) has a unique representative ν ∈ X∗(T )Q ∩ C. There is a natural
partial order �G on X∗(T )R and N (G), also denoted by � if there is no danger of
confusion, determined as follows; cf. [RR96, 2.2, 2.3]: Given ν̄1, ν̄2 ∈ N (G) with
representatives ν1, ν2 ∈ X∗(T )Q ∩ C, we have ν̄1 � ν̄2 if and only if ν2 − ν1 is
a nonnegative linear combination of positive coroots. Similarly � is defined on
X∗(T )R using dominant representatives.

There is a unique map N (G)→ π1(G)Γp⊗Q which is functorial in G and induces
the identity map when G is a torus [RR96, Thm. 1.15].

1.1.2. Let W = W (F̄p) be the ring of Witt vectors for an algebraic closure F̄p of
Fp, and write L for its fraction field. We fix an algebraic closure L̄ for L along
with an embedding Q̄p ↪→ L̄. Let σ : W → W be the unique automorphism lifting
the p-power Frobenius on F̄p. As in [Kot85], we will denote by B(G) the set of
σ-conjugacy classes in G(L), so that two elements b1, b2 ∈ G(L) are in the same
class in B(G) if and only if there exists c ∈ G(L) with b1 = cb2σ(c)−1.
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Recall the following maps from [RR96, Thm. 1.15], which are functorial in G:

κG : B(G)→ π1(G)Γp ; ν̄G : B(G)→ N (G).

A class [b] ∈ B(G) is basic if ν̄G([b]) is the class of a central cocharacter of G. We
write B(G)b ⊂ B(G) for the subset of basic classes.

The maps κG, ν̄G have the following properties:

(1.1.2.1) The diagram

B(G)
κG

> π1(G)Γp

N (G)

ν̄G

∨
> (π1(G)⊗Q)Γp

∨

commutes. Here, the vertical map on the right-hand side is induced by the
usual isomorphism averaging over each Γp-orbit, cf. [RR96, p.162]:

(π1(G)⊗Q)Γp
'−→ (π1(G)⊗Q)Γp .

The bottom horizontal map is uniquely characterized as a functorial map
in G that is the natural identification when G is a torus. See [RR96,
Thm. 1.15] for details.

(1.1.2.2) [Kot85, 4.3, 4.4]: Given b ∈ G(L) representing a class [b] ∈ B(G), the
conjugacy class ν̄G([b]) is represented by a cocharacter νb : DL → GL that is
characterized uniquely by the following property: There exists c ∈ G(L) and
an integer r ∈ Z>0 such that rνb factors through a cocharacter Gm,L → GL,
that c(rνb)c

−1 is defined over the fixed field of σr on L, and that

cbσ(b)σ2(b) · · ·σr(b)σr(c)−1 = c(rνb)(p)c
−1.

This implies that νσ(b) = σ(νb) and that, for every g ∈ G(L),

νgbσ(g)−1 = gνbg
−1.

(1.1.2.3) [Kot97, 4.13]: The map

(κG, ν̄G) : B(G)→ π1(G)Γp ×N (G)

is injective. Furthermore, the restriction of κG to B(G)b induces a bijection:

B(G)b
'−→ π1(G)Γp .

(1.1.2.4) [Kot85, 2.5]: When G = T is a torus, κT is an isomorphism, and can be
described explicitly: Let E/L be a finite extension over which T is split, and
let NE/L : T (E) → T (L) be the associated norm map. Fix a uniformizer
π ∈ E. Then we have a commutative diagram:

X∗(T )
ν 7→ [NE/L(ν(π))]

> B(T )

X∗(T )Γp .

κT
'

<
>
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1.1.3. Later we will often make the following hypothesis on G and [b]:

(1.1.3.1) The class [b] contains a representative b ∈ G(L) such that the cocharacter
νb is defined over Qp.

Given [b] satisfying the above condition, we fix such a representative and denote the
corresponding cocharacter by νG([b]). Let M[b] ⊂ G be the centralizer of νG([b]):
This is a Qp-rational Levi subgroup of G.

Note that (1.1.3.1) is always satisfied if G is quasi-split over Qp as one can
see from (1.1.2.2); cf. [Kot85, p.219]. If [b] is basic (but G is possibly not quasi-
split), (1.1.3.1) is still satisfied as (1.1.2.2) shows that νb is a σ-invariant central
cocharacter of G for any representative b.

1.1.4. Suppose that b ∈ G(L). Consider the group scheme Jb over Qp that attaches
to every Qp-algebra R the group:

Jb(R) = {g ∈ G(R⊗Qp L) : gb = bσ(g)}.

By construction, there is a natural map of group schemes over L: Jb,L → GL.
If b′ = gbσ(g)−1 is another representative of [b] ∈ B(G), then conjugation by g

induces an isomorphism of Qp-groups:

int(g) : Jb
'−→ Jb′ .

As shown in [RR96, 1.11], Jb is a reductive group over Qp. A more precise
statement holds: Let Mνb ⊂ GL be the centralizer of νb. By replacing b by a
σ-conjugate if necessary, we can arrange to have (1.1.2.2):

(1.1.4.1) bσ(b)σ2(b) · · ·σr−1(b) = (rνb)(p),

with νb defined over Qpr and r ∈ Z≥1. Then Mνb is also defined over Qpr , and b
belongs to G(Qpr ). Moreover, the natural map Jb,L → GL is defined over Qpr and
identifies Jb,Qpr with Mνb .

Under hypothesis (1.1.3.1), the discussion in (1.1.2.2) and (1.1.3) tells us that
Mνb is a pure inner twist of M[b] by the M[b]-torsor (trivial by Steinberg’s theorem)
of elements of GQpr conjugating νb to νG([b]).

Combining the previous two paragraphs, we find that Jb is equipped with an

inner twisting Jb
'−→M[b] over Qp (cf. also [Kot85, 5.2]).

1.1.5. We return to the general setup, disregarding (1.1.3.1) up to (1.1.13) below.

Let G∗ be the quasi-split inner form of G over Qp, and ξ : G
'−→ G∗ an inner

twisting. Let B∗ ⊂ G∗ be a Borel subgroup over Qp and T ∗ ⊂ B∗ a maximal torus

over Qp. Write C∗ ⊂ X∗(T ∗)R for the B∗-dominant chamber.
If the G(Q̄p)-conjugacy class of a cocharacter ν : DQ̄p → GQ̄p is defined over Qp

then so is the G∗(Q̄p)-conjugacy class of ξ ◦ ν. Thus ξ induces a map Nξ : N (G)→
N (G∗), depending only on the G∗(Q̄p)-conjugacy class of ξ.

Let {µ} be a conjugacy class of cocharacters Gm,Q̄p → GQ̄p , and let µ∗ ∈
X∗(T

∗) ∩ C∗ be the dominant representative for ξ ◦ {µ}. Let Γµ∗ ⊂ Γp be the
stabilizer of µ∗, and set

Nµ∗ =
1

[Γp : Γµ∗ ]

∑
σ∈Γp/Γµ∗

σµ∗ ∈ X∗(T ∗)
Γp
Q .

We will write µ̄∗ for the image of Nµ∗ in N (G∗).
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Let µ] be the image of {µ} in π1(G)Γp (Note that the image of µ∗ in π1(G∗)Γp is

equal to µ] via the canonical isomorphism π1(G)Γp = π1(G∗)Γp .) Given [b] ∈ B(G),
we will say that the pair ([b], {µ}) is G-admissible or simply admissible, if two
conditions hold:

(1.1.5.1) κG([b]) = µ].
(1.1.5.2) Nξ(ν̄G([b])) � µ̄∗.

If G is quasi-split then we may and will take G = G∗ and ξ to be the identity
map so that Nξ is also the identity map.

Lemma 1.1.6. Given a conjugacy class {µ} as above, let [bbas(µ)] ∈ B(G)b de-
note the unique basic class such that κG([bbas(µ)]) = µ]. Then ([bbas(µ)], {µ}) is
admissible.

Proof. The condition (1.1.5.1) is tautological, and (1.1.5.2) follows from [RR96]
Prop. 2.4(ii) and the commutativity of (1.1.2.1). �

Definition 1.1.7. Let T ′ ⊂ G be a maximal torus over Qp. We will call an
admissible pair ([b], {µ}) T ′-special if there exists a representatives b′ ∈ T ′(L) (resp.
µ′ ∈ X∗(T ′)) of [b] (resp. {µ′}) such that the pair ([b′]T ′ , µ

′) is an admissible pair
for T ′. Here, we write [b′]T ′ for the σ-conjugacy class of b′ in T ′(L). We say that
([b], {µ}) is special if it is T ′-special for some maximal torus T ′ ⊂ G.

Lemma 1.1.8. Suppose that ([b], {µ}) is an admissible pair for G with [b] basic.
Then ([b], {µ}) is T ′-special for any elliptic maximal torus T ′ ⊂ G. More precisely,
for any µ′ ∈ X∗(T ′) in {µ}, [bbas(µ

′)] ∈ B(T ′) maps to [b] ∈ B(G).

Proof. Let T ′ ⊂ G be an elliptic maximal torus, and let µ′ ∈ X∗(T
′) be a rep-

resentative for {µ}. As T ′ is elliptic, [bbas(µ
′)] ∈ B(T ′) maps to a basic class

[b′] ∈ B(G) [Kot85, 5.3]. Moreover, κG([b′]) is the image in π1(G)Γp of µ′,] =

κT ′([bbas(µ
′)]), and so must be equal to µ]. Hence, [b′] = [bbas(µ)] = [b]. �

1.1.9. From here until (1.1.13) we are concerned with quasi-split groups. Let H0

be an absolutely simple quasi-split adjoint group over a finite extension F/Qp. Fix
a Borel subgroup B0 ⊂ H0 and a maximal torus T0 ⊂ B0 over F .

Set H = ResF/QpH0, B = ResF/QpB0, T = ResF/QpT0 and X = X∗(T ). The
last is a free Z-module with an action of Γp, and the choice of B0 equips it with a
Γp-invariant positive chamber C ⊂ XQ. As above, we have a Galois averaging map
N : C → C with image in CΓp .

Lemma 1.1.10. Let F ′/Qp be the unramified extension with [F ′ : Qp] = [F : Qp].
Then there is a quasi-split absolutely simple adjoint group H ′0 over F ′ equipped with
a Borel subgroup B′0 and a maximal torus T ′0 ⊂ B′0 with the following properties:

(1.1.10.1) Let (H ′, B′, T ′) = ResF ′/Qp(H ′0, B
′
0, T

′
0). Then there is an isomorphism of

triples:

(H,B, T )⊗Qp Q̄p
'−→ (H ′, B′, T ′)⊗Qp Q̄p.

(1.1.10.2) Let C′ ⊂ X ′Q be the positive chamber of X ′ = X∗(T
′) determined by B′,

and let N ′ : C′ → C′ be the Galois averaging map. Then the isomorphism

in (1.1.10.1) can be chosen such that the induced isomorphism C′ '−→ C
carries the endomorphism N ′ to N .
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Proof. We begin by explicating the averaging map N . Let D be the Dynkin diagram
of H: It is a disjoint union ⊔

σ:F→Q̄p

D0,

where D0 is the Dynkin diagram for H0. The action of Γp permutes the connected
components of this diagram in the usual way, and for each σ : F → Q̄p, the
stabilizer Γσ ⊂ Γp of σ (that is, the pointwise stabilizer of σ(F )) acts on D0 via a
homomorphism

ρσ : Γσ → Aut(D0).

Fix an embedding σ0 : F → Q̄p, and let τ ∈ Γp be such that τ ◦ σ0 = σ. Then ρσ
is equal to the composition

Γσ
γ 7→τ−1γτ−−−−−−→ Γσ0

ρσ0−−→ Aut(D0).

The simple coroots in X are in canonical bijection with pairs (σ, d0), where
σ : F → Q̄p and d0 ∈ D0 is a vertex. Write α∨(σ, d0) for the simple coroot
associated with such a pair.

The Γp-orbit of α∨(σ, d0) consists of simple coroots α∨(σ′, d′0) where d′0 ∈ D0 is
in the Γσ-orbit of α∨, and σ′ : F → Q̄p is arbitrary. Therefore, if d0,1, . . . , d0,r ∈ D0

comprise the Γσ-orbit of d0, we have

Nα∨(σ, d0) =
1

r[F : Qp]
∑

σ′:F→Q̄p
1≤i≤r

α∨(σ′, d0,i).

Fix an embedding σ′0 : F ′ → Q̄p. We now claim that we can find a quasi-split
group H ′0 over F ′ with a Borel subgroup B′0 ⊂ H ′0 and a maximal torus T ′0 ⊂ B′0
with the following properties:

• There is an isomorphism

(H ′0, B
′
0, T

′
0)⊗F ′,σ′0 Q̄p

'−→ (H0, B0, T0)⊗F,σ0 Q̄p.

• If D′0 is the Dynkin diagram of H ′0, identified with D0 via the above iso-
morphism, then the induced action of Γσ′0 on D0 has the same orbits as
those of the action of Γσ0 .

The claim implies the lemma by choosing a bijection between Hom(F, Q̄p) and
Hom(F ′, Q̄p) carrying σ0 to σ′0. Indeed, (1.1.10.1) follows from the first part of
the claim, and (1.1.10.2) from the second; since N ′ and N are linear, it suffices to
compare them on the set of simple coroots.

Let us prove the claim. Suppose first that the image of Γσ0
in Aut(D0) is cyclic.

Consider a map Γσ′0 → Aut(D0) which has the same image as Γσ0
and factors

through the Galois group of an unramified extension of F ′. Then we can take H ′0
to be the quasi-split outer form of H0 over F ′ associated to this map.

The only remaining case is when D0 is of type D4, and Γσ0 surjects onto Aut(D0).
In this case, the subgroup of index 2 still acts transitively on each orbit of Aut(D0)
in D0, and we choose Γσ′0 → Aut(D0) with image this index two subgroup, and
factoring through the Galois group of an unramified extension of F ′, and H ′0 the
corresponding quasi-split outer form of H0. The proof of the claim is complete.

�
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1.1.11. Assume that G is quasi-split over Qp. Let B be a Borel subgroup of G
over Qp and T ⊂ B a maximal torus over Qp. Let M ⊂ G be a standard Levi
subgroup. Recall that this means that M is the centralizer of a split torus T1 ⊂ T.
Note that we may regard X∗(ZM )

Γp
Q as a subset of N (M).

Lemma 1.1.12. Let µ, µM ∈ X∗(T ) be cocharacters having the same image in

π1(G) and let [bM ] ∈ B(M)b be the unique basic class with κM ([bM ]) = µ]M . Then

(1.1.12.1) ν̄M ([bM ]) is equal to the image of µ]M in

(π1(M)⊗Q)Γp ' (X∗(ZM )⊗Q)Γp .

(1.1.12.2) ([bM ], {µ}) is G-admissible if and only if ν̄M ([bM ]) �G µ̄.

Proof. The first claim follows from the commutativity of (1.1.2.1). By definition
the G-admissibility of ([bM ], {µ}) is equivalent to asking that ν̄M ([bM ]) �G µ̄, and

that µ]M maps to µ] in π1(G)Γp . However, since µM and µ have the same image in
π1(G), the second condition is automatic. �

Proposition 1.1.13. Suppose that G is quasi-split over Qp. Let µ ∈ X∗(T ) be
minuscule, and [bM ] ∈ B(M)b such that ([bM ], {µ}) is G-admissible. Then there
exists w ∈W (G,T ) such that ([bM ], {w · µ}) is M -admissible.

Proof. First, suppose that G is unramified. We fix a reductive model of G over Zp,
again denote by G, such that T extends to a maximal torus T ⊂ G over W. Then
M extends to a Levi subgroup M ⊂ G over W.

By a theorem of Wintenberger [Win05], the admissibility of ([bM ], {µ}) implies
that there exists g ∈ G(L) such that g−1bMσ(g) belongs to G(W )µ(p)G(W ). By the
Iwasawa decomposition, after modifying g by an element of G(W ), we can assume
that g = nm, where m ∈ M(L) and n ∈ N(L), where N ⊂ G is the unipotent
radical of the (positive) parabolic subgroup of G with Levi subgroup M . Then
an argument with the Satake transform [LR87, Lem. 5.2] shows that m−1bMσ(m)
belongs to M(W )µ′(p)M(W ), where µ′ ∈ X∗(T ) is a cocharacter of M which is
G(L)-conjugate of µ. More precisely, the Satake transform is used to show that
µ′ �G µ (in the notation of 1.1.1), and the minuscule nature of µ allows us to
conclude that µ′ is conjugate to µ. (See the proof of [Kot03, Thm. 1.1, 4.1] and the
proof of [Kis17, (2.2.2)] for alternative arguments to show the conjugacy.) Write
µ′ = w · µ with w ∈W (G,T ). By a result of Rapoport-Richartz [RR96, Thm. 4.2],
([bM ], {w · µ}) is M -admissible.

Now, let G be an arbitrary quasi-split group. We can assume that G is adjoint.
Indeed, let M̃ ⊂ Gad denote the image of M, and [bad

M ] ∈ B(M̃)b the image of [bM ].

If w ∈ W (G,T ) is such that ([bad
M ], {w · µad}) is M̃ -admissible, then we claim that

([bM ], {w · µ}) is M -admissible. To see this, note that the difference κM ([bM ]) −
(w · µ)] is contained in the intersection of the kernels of the maps

π1(M)Γp → π1(M̃)Γp and π1(M)Γp → π1(G)Γp .

The kernel of the first map is the image of X∗(ZG)Γp → π1(M)Γp . The composite

X∗(ZG)Γp → π1(G)Γp → X∗(G
ab)Γp has torsion kernel, so the intersection must be

a torsion group. However, by [CKV15, 2.5.12(2)], the kernel of the second map is
torsion free. Hence the intersection is trivial.

Next, by considering the simple factors of G separately, we can assume that G
is also simple. Therefore, G = ResF/QpG0, where F/Qp is a finite extension, and
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G0 is an absolutely simple, quasi-split adjoint group over F . We may also assume
that

T = ResF/QpT0 ; B = ResF/QpB0,

where T0 ⊂ G0 (resp. B0 ⊂ G0) is a maximal torus (resp. Borel subgroup).
By (1.1.10), we can find an unramified group G′, a Borel subgroup B′ ⊂ G′ and

a maximal torus T ′ ⊂ B′, as well as an isomorphism

ξ : (G,B, T )⊗ Q̄p
'−→ (G′, B′, T ′)⊗ Q̄p

such that the induced isomorphism of positive chambers η : C '−→ C′ commutes with
Galois averaging maps.

Recall that M is the centralizer of T1, which is a split torus in T . Set µ′ = η(µ)
and T ′1 = ξ(T1). Since η commutes with Galois averaging maps, the elements in
X∗(T

′
1) are equal to their own Galois averages, and hence are Γp-invariant. Hence

the subtorus T ′1 ⊂ G′ is defined over Qp and is again split. Let M ′ ⊂ G′ be the
centralizer of T ′1. Then ξ carries M onto M ′.

Let µM ∈ X∗(T ) be a cocharacter such that µ]M = κM ([bM ]), and such that µM
and µ have the same image in π1(G), and set µ′M = η(µM ). Let [b′M ] ∈ B(M ′)b be

the unique basic class with µ′]M = κM ′([b
′
M ]). Then using Lemma 1.1.12 one sees

that ([b′M ], {µ′}) is G′-admissible. Hence, by what we saw in the unramified case,
there exists w ∈ W (G′, T ′) = W (G,T ) such that ([b′M ], {w · µ′}) is M ′-admissible.

By Lemma 1.1.6 this is equivalent to µ′]M = (w · µ′)] in π1(M ′)Γp . This implies

that µ]M − (w · µ)] in π1(M)Γp is torsion, since its image under the averaging map
in (1.1.2.1) is 0. Since this difference maps to 0 in π1(G)Γp , it follows, as above,

that µ]M = (w · µ)], and hence, applying Lemma 1.1.6 again, that ([bM ], {w · µ}) is
M -admissible. �

Remark 1.1.14. The previous proposition confirms that part (ii) of [RV14, Lem. 8.2]
holds generally for quasi-split groups as expected. (See their Remark 8.3. In fact
they do not assume that [bM ] is basic in B(M) but one can reduce to the basic
case by [Kot85, Prop. 6.2].) Further we extend the proposition to non-quasi-split
groups below.

Corollary 1.1.15. Let G be an arbitrary connected reductive group over Qp with
a Qp-rational Levi subgroup M . Let µ : Gm → M be a minuscule cocharacter
and [bM ] ∈ B(M)b such that ([bM ], {µ}) is G-admissible. Then there exists w ∈
W (G,M) := NG(M)/M such that ([bM ], {w · µ}) is M -admissible.

The assumptions of the corollary imply hypothesis (1.1.3.1) for [bM ] (as an ele-
ment of B(M) or B(G)) by (1.1.3). In other words, the corollary is vacuous unless
(1.1.3.1) is satisfied.

Proof. We reduce the proof to the quasi-split case. We will freely use the notation

from (1.1.5). So let ξ : G
'−→ G∗ denote an inner twisting. Let P be a Qp-rational

parabolic subgroup with M as a Levi factor. Then the G∗(Q̄p)-conjugacy class of
ξ(P ) is defined over Qp. Since G∗ is quasi-split, there exists g ∈ G∗(Q̄p) such that
P ∗ := gξ(P )g−1 is Qp-rational. We replace ξ by gξg−1 so that ξ(P ) = P ∗. Put

M∗ := ξ(M) so that ξ|M : M
'−→ M∗ is an inner twisting. We use ξ to identify

W (G,M) ' W (G∗,M∗) := NG∗(M
∗)/M∗. We may assume that B∗ ⊂ P ∗ and

T ∗ ⊂M∗.
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We have a chain of isomorphisms

B(M)b
κM' π1(M)Γp = π1(M∗)Γp

κ−1
M∗' B(M∗)b,

where the second map is a canonical isomorphism; cf. [RR96, 1.13]. Write [bM∗ ] ∈
B(M∗)b for the image of [bM ]. Let µ∗ be the B∗ ∩M∗-dominant representative in
X∗(T

∗) of the M∗(Q̄p)-conjugacy class of ξ|M ◦µ. We claim that ([bM∗ ], {µ∗}) is G∗-
admissible. Once this is shown, (1.1.13) implies that there exists w∗ ∈W (G∗,M∗)
such that ([bM∗ ], {w∗ ·µ∗}) is M∗-admissible. Writing w ∈W (G,M) for the image
of w∗, the M -admissibility of ([bM ], {w · µ}) follows from this.

It remains to prove the claim, i.e. to verify that κG∗([bM∗ ]) = (µ∗)# and that
ν̄G∗([bM∗ ]) �G∗ µ̄∗. We will deduce this from the assumption that ([bM ], {µ}) is
G-admissible via compatibility of various maps. The former condition follows from
the construction of [bM∗ ] and µ∗, using the functoriality of the Kottwitz map and
the fact that the canonical isomorphisms π1(M) = π1(M∗) and π1(G) = π1(G∗)
are compatible with the Levi embeddings M ⊂ G and M∗ ⊂ G∗. For the latter
condition, since we know Nξ(ν̄G([bM ])) �G∗ µ̄∗, it suffices to check that

Nξ(ν̄G([bM ])) = ν̄G∗([bM∗ ]).

By [Kot97, 4.4] the Newton maps Nξ|M ◦ ν̄M : B(M)b → N (M∗) and ν̄M∗ :
B(M∗)b → N (M∗) factor through the natural inclusion X∗(AM∗)Q ⊂ N (M∗),
where AM∗ is the maximal split torus in the center of M∗. Also the images
Nξ|M (ν̄M ([bM ])) and ν̄M∗([bM∗ ]) in X∗(AM∗)Q are determined by κM ([bM ]) and
κM∗([bM∗ ]) as elements of π1(M)Γp = π1(M∗)Γp (via the canonical isomorphism
X∗(AM∗)Q ' π1(M∗)Γp ⊗ Q). Since κM ([bM ]) = κM∗([bM∗ ]) by construction,
we obtain that Nξ|M (ν̄M ([bM ])) = ν̄M∗([bM∗ ]). This implies Nξ(ν̄G([bM ])) =
ν̄G∗([bM∗ ]) since the maps N (M)→ N (G) and N (M∗)→ N (G∗) induced by Levi
embeddings are compatible with Nξ|M , Nξ, and likewise for the maps B(M) →
B(G) and B(M∗)→ B(G∗). The proof is complete.

�

1.1.16. Let b ∈ G(L). We continue to allow G to be non-quasi-split but assume
hypothesis (1.1.3.1) on G and [b]. Recall that the group Jb defined in (1.1.4) is

equipped with an inner twisting Jb
'−→M[b]. In particular, νG([b]) induces a central

cocharacter νb,J : D→ Jb defined over Qp.
If T ′ ⊂ Jb is a maximal torus over Qp, then a transfer of T ′ to M[b] is an

embedding T ′ ↪→M[b] over Qp which is M[b](Q̄p)-conjugate to the composite

T ′ ↪→ Jb
'−→M[b].

A transfer of T ′ to M[b] always exists either if G is quasi-split ([Lan89, Lem. 2.1])
or if T ′ is elliptic ([Kot86, Section 10]).

Corollary 1.1.17. Assume hypothesis (1.1.3.1). Let ([b], {µ}) be an admissible
pair for G with {µ} minuscule. Let T ′ ⊂ Jb be a maximal torus. Assume that its
transfer j : T ′ ↪→M[b] exists. Then ([b], {µ}) is j(T ′)-special.

In particular, there exists µT ′ ∈ X∗(T ′) such that j ◦µT ′ lies in the G-conjugacy
class {µ}, and such that we have:

νb,J = NµT ′ ∈ X∗(T ′)
Γp
Q .
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Proof. Note that Jb and M[b] are both subgroups of G over L. After replacing b by
a σ-conjugate satisfying (1.1.4.1), we may assume that Jb,L is identified with Mνb ,

and that the inner twisting Jb
'−→ M[b] is given by composing this identification

with conjugation by an element h ∈ G(L) that carries νb to νG([b]). In particular,
then νG([b]) = int(h)(νb,J) as G-valued cocharacters.

Now, view T ′ as a subtorus of G, via j, let T1 ⊂ T ′ be the maximal split subtorus,
and let M ⊂ G be the centralizer of T1, so that T ′ is an elliptic maximal torus of
M . Let T2 ⊃ T1 be a maximal split torus in G containing T1. After conjugating
our fixed torus T ⊂ G, we may assume that T contains T2, so that M ⊃ T is a
standard Levi subgroup.

The scheme of elements of M[b],L which conjugate the inclusion j0 : T ′ ↪→ Jb
'−→

M[b] into j is a T ′-torsor over L. By Steinberg’s theorem this torsor is trivial. Hence,

there exists m ∈M[b](L) such that mj0m
−1 = j. Now, a simple computation, using

the definition of Jb, shows that bM = mh · b · σ(mh)−1 commutes with j(T ′(Qp)).
Since T1(Qp) is Zariski dense in T1, this shows that bM belongs to M(L). Moreover,
since νG([b]) is defined over Qp, by definition, it factors through T1, so νbM = νG([b])
is central in M , and bM is in fact basic in M .

By Lemma 1.1.13, there exists w ∈ W (G,T ), such that ([bM ], {w · µ}) is M -
admissible. (Here we may take µ ∈ X∗(T ) the dominant representative of {µ}.)
It follows by Lemma 1.1.8 that ([bM ], {w · µ}) is T ′-special. In particular, there
exists µT ′ ∈ X∗(T ′) in {µ} such that νbM = NµT ′ . Hence, if we think of NµT ′ as
a Jb-valued cocharacter via the natural inclusion T ′ ⊂ Jb, then νb,J = NµT ′ .

�

1.2. Global results.

Lemma 1.2.1. Let T be a torus over Q. For any prime p, the restriction map

ker
(
H1(Q, T )→ H1(Qp, T )

)
→ H1(R, T )

is surjective.

Proof. For each place v of Q, there is a canonical isomorphism [Kot86, (1.1.1)]:

jv : H1(Qv, T )
'−→ X∗(T )tors

Γv .

Write j̄v for the composition of this map with the natural projection X∗(T )tors
Γv
→

X∗(T )tors
Γ .

We then have an exact sequence [Kot86, Prop. 2.6]:

H1(Q, T )→ ⊕vH1(Qv, T )
⊕j̄v−−→ X∗(T )tors

Γ .

So, given a class α∞ ∈ H1(R, T ), it suffices to find ` 6= p and a class α` ∈
H1(Q`, T ) such that j̄`(α`) = −j̄∞(α∞). Indeed, once we have done this, we can
take the element (αv) ∈ ⊕vH1(Qv, T ), with αv = 0 for v 6= ∞, `: This will be the
image of an element α ∈ H1(Q, T ) mapping to α∞ ∈ H1(R, T ) and to the trivial
element in H1(Qp, T ).

The remainder of the proof now proceeds as in [Lan83, 7.16]. We choose a
finite Galois extension E ⊂ Q̄ over which T splits. Then complex conjugation on C
induces an automorphism σ∞ of E. We now choose ` 6= p such that E is unramified
over ` and such that, for some place v|` of E, the Frobenius σv at v is conjugate
to σ∞. We can further assume that v is induced from the embedding E ↪→ Q̄`. If
g ∈ Γ conjugates σv into σ∞, then the automorphism of X∗(T ) given by g, induces
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an isomorphism X∗(T )Γ∞
'−→ X∗(T )Γ` , which is compatible with projections onto

X∗(T )Γ. We use this isomorphism to identify X∗(T )tors
Γ∞

with X∗(T )tors
Γ`

. Now we

may take α` = −j−1
` (j∞(α∞)). �

Lemma 1.2.2. Let G be a connected reductive group over Q. Suppose that we are
given a finite set of places S of Q and, for each v ∈ S, a maximal torus Tv ⊂ GQv .
Then there exists a maximal torus T ⊂ G such that, for all v ∈ S, the inclusion
TQv ⊂ GQv is G(Qv)-conjugate to Tv ⊂ GQv .

Proof. This is [Har66, Lem. 5.5.3], cf. [Bor98, 5.6.3]. �

1.2.3. Let (G,X) be a Shimura datum. Given x ∈ X, we have the associated
homomorphism of R-groups:

hx : S = ResC/R Gm,R → GR.

We also have the associated (minuscule) cocharacter:

µx : Gm,C
z 7→(z,1)−−−−−→ Gm,C ×Gm,C

'−→ SC
hx−→ GC.

The G(R)-conjugacy class of hx, and hence the G(C)-conjugacy class {µX}∞ of
µx, is independent of the choice of x. Let E ⊂ C be the reflex field for (G,X): This
is the field of definition of {µX}∞, and is a finite extension of Q.

The embedding ι∞ : Q̄ ↪→ C allows us to view E ⊂ C as a subfield of Q̄, so that
we may regard {µX}∞ as a conjugacy class {µX} of cocharacters of GQ̄.

1.2.4. We will use the embedding ιp to view {µX} as a conjugacy class {µX}p of
cocharacters of GQ̄p .

Proposition 1.2.5. Let [b] ∈ B(GQp) be a class such that ([b], {µ−1
X }p) is ad-

missible. Assume hypothesis (1.1.3.1) holds for [b]. Then there exist a maximal
torus T ⊂ G and an element x ∈ X with hx factoring through TR (in which case
µ−1
x ∈ X∗(T )) such that [bbas(µx)] ∈ B(TQp) maps to [b] ∈ B(GQp).

Proof. This proof is directly inspired by that of [LR87, 5.12].
By (1.1.17), there exist a maximal torus Tp ⊂ GQp (chosen to be elliptic if GQp is

not quasi-split so that the transfer to M[b] exists) and a representative µp ∈ X∗(Tp)
of {µX}p such that [bbas(µ

−1
p )] ∈ B(Tp) maps to [b] ∈ B(GQp).

Choose y ∈ X, and let T∞ ⊂ GR be a maximal torus such that hy factors through
T∞. By (1.2.2), we can find a maximal torus T ⊂ G such that TQp (resp. TR) is
G(Qp)-conjugate to Tp (resp. G(R)-conjugate to T∞).

Choose gp ∈ G(Qp) such that gpTpg
−1
p = TQp , and let µT : Gm,Q̄ → TQ̄ be the

unique cocharacter, which, after base-change along ιp, is identified with int(gp)(µp).

Then [bbas(µ
−1
T )] maps to [b].

Choose g∞ ∈ G(R) such that g∞T∞g
−1
∞ = TR. After base-change along ι∞, the

cocharacter µT is G(C)-conjugate to µ∞ = int(g∞)(µy). Therefore, there exists an
element ω ∈W (G,T )(C) such that ω(µ∞) = µT .

We can identify W (G,T ) with NGsc(T sc)/T sc. Let n ∈ NGsc(T sc)(C) be any
element mapping to ω. Since T sc is anisotropic over R, the element ω acts on
T sc by an R-automorphism. Hence nn̄−1 ∈ T sc(C). The cocycle carrying complex
conjugation to nn̄−1 determines a class α∞ ∈ H1(R, T sc) depending only on ω (not
on the choice of n). By (1.2.1), we can find a class α ∈ H1(Q, T sc) mapping to
α∞ ∈ H1(R, T sc), as well as to the trivial class in H1(Qp, T sc).
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By construction, the image of α∞ in H1(R, Gsc) is trivial. Therefore, by the
Hasse principle and the Kneser vanishing theorem for simply connected groups, the
image of α in H1(Q, Gsc) is trivial. This means that we can find g ∈ Gsc(Q̄) such
that, for any σ ∈ Gal(Q̄/Q), gσ(g)−1 ∈ T sc(Q̄), and such that α is represented by
the T sc(Q̄)-valued cocycle σ 7→ gσ(g)−1.

In particular, if we view g as an element of Gsc(C) via ι∞, there exists t ∈ T sc(C)
such that gḡ−1 = tnn̄−1t̄−1.

Now, µ∞ and int(g−1)(µT ) are conjugate under h = g−1tn ∈ G(R), and the
maximal torus int(g−1)(TQ̄) ⊂ GQ̄ is defined over Q. Replacing T with this torus,

and µT with int(g−1)(µT ), we see that µT is of the form µx for x ∈ X, and that
the pair (T, µx) satisfies the conclusions of the proposition. �

1.3. Shimura varieties of Hodge type. One may view (1.2.5) as showing the
non-emptiness of Newton strata in the special fiber of the Shimura variety associated
with (G,X). We will now make this assertion precise in the case where (G,X) is
of Hodge type, where the moduli spaces of abelian varieties give us a natural way
to construct integral models.

1.3.1. Recall that, given a symplectic space (V, ψ) over Q, we can attach to it the
Siegel Shimura datum (GV ,HV ), where GV = GSp(V, ψ) is the group of symplectic
similitudes and HV is the union of the Siegel half-spaces associated with (V, ψ).

Let (G,X) be a Shimura datum of Hodge type. This means that there exists
a faithful symplectic representation (V, ψ) of G over Q, such that the associated
map of Q-groups G ↪→ GV extends to an embedding of Shimura data (G,X) ↪→
(GV ,HV ). We denote by E = E(G,X) the reflex field of (G,X).

1.3.2. Fix a Z(p)-lattice V(p) ⊂ V on which ψ is Z(p)-valued. Set Vp = Zp ⊗ V(p),
and let Kp ⊂ GV (Qp) (resp. Kp ⊂ G(Qp)) be the stabilizer of Vp ⊂ VQp .

Given a sufficiently small compact open subgroup Kp ⊂ G(Apf ), we can find

a neat compact open subgroup Kp ⊂ GV (Apf ) such that, with K = KpK
p and

K = KpKp, the map of Shimura varieties

ShK := ShK(G,X)→ ShK := ShK(GV ,HV )⊗ E

is a closed immersion [Kis10, 2.1.2].
The variety ShK admits an integral model SK over Z(p), which is an open and

closed subscheme of the moduli scheme parameterizing polarized abelian schemes
(A, λ) up to prime-to-p isogeny, and equipped with additional level structures away
from p. Let A denote the universal abelian scheme over SK up to prime-to-p isogeny.

The set of compact open subgroups Kp ⊂ G(Qp) for which one can choose V
and V(p) so that this construction applies, includes the stabilizers of points x in
the building B(G,Qp), and is closed under finite intersections. For the first point,
note that a result of Landvogt [Lan00] implies that for any faithful representation
V of G, there is an injective map of buildings i : B(G,Qp) → B(GL(V ),Qp). If
(V, ψ) is a symplectic representation of G, and L1, . . . , Lm ⊂ V are the lattices
corresponding to the vertices in the facet which is the closure of i(x), then Kp is
the stabilizer of L1⊕· · ·⊕Lm in (V m, ψm). The closure under intersections follows
in the same way, by taking direct sums of lattices.
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1.3.3. We will now use the notation from (1.1.2). Given a point s0 ∈ SK(F̄p), we
obtain the associated Dieudonné F -crystal D(As0) over W . Set Ds0 = D(As0)Q:
This is an F -isocrystal over L = W [p−1], so that it is equipped with a σ-semi-linear
bijection ϕ : Ds0 → Ds0 .

Given a finite extension L′ ⊂ L̄ of L and a point s ∈ SK(L′) specializing to s0,
we obtain two canonical comparison isomorphisms:

(1.3.3.1) The Berthelot-Ogus isomorphism:

H1
dR(As/L′)

'−→ L′ ⊗L Ds0 .

(1.3.3.2) The p-adic comparison isomorphism:

Bcris ⊗Qp H
1
ét(As,L̄,Qp)

'−→ Bcris ⊗L Ds0 .

The two isomorphisms are compatible with the de Rham comparison isomor-
phism:

BdR ⊗Qp H
1
ét(As,L̄,Qp)

'−→ BdR ⊗L′ H1
dR(As/L′).(1.3.3.3)

1.3.4. Let VdR be the (cohomological) de Rham realization of A: It is a vector
bundle over ShK with integrable connection, and its fiber at each point s ∈ ShK(κ)
(κ a field of characteristic 0) is the de Rham cohomology H1

dR(As/κ).

Let V̂ p(A) be the prime-to-p Tate module of A: This is a smooth Apf -sheaf over

ShK. Write V p for its dual; then the fiber of V p at any point s ∈ ShK(κ), with κ
algebraically closed, is identified with the étale cohomology group H1

ét(As,A
p
f ).

Finally, write Tp(A) for the p-adic Tate module ofA, and set Vp(A) = Qp⊗Tp(A).
Write Vp for the dual (Vp(A))∨. We will set

V̂ (A) = V̂ p(A)× Vp(A) and Vét = V p × Vp.

Fix tensors {sα} ⊂ V ⊗ such that G is their pointwise stabilizer in GL(V ). Here
and below, the superscript ⊗ means the direct sum of V ⊗n⊗V ∗⊗m for all m,n ≥ 0.
Then there exist global sections:

{sα,dR} ⊂ H0(ShK ,V
⊗

dR) ; {sα,ét} ⊂ H0(ShK ,V
⊗

ét )

with the following properties:

(1.3.4.1) Given an algebraically closed field κ of characteristic 0 and a point s ∈
ShK(κ), there exists an isomorphism

VAf
'−→ H1

ét(As,Af ) = Vét,s,

determined up to translation by G(Af ), carrying {sα} to {sα,ét,s}.
(1.3.4.2) For each α, let sα,p be the projection of sα,ét onto Vp. Then, given a finite

extension L′/L and a point s ∈ ShK(L′), the isomorphism (1.3.3.3) carries
{1⊗ sα,p,s} to {1⊗ sα,dR,s}.

The construction of these tensors is described in [Kis10, (2.2)]: The key point is
a theorem of Deligne showing that all Hodge cycles on abelian varieties over C are
absolutely Hodge. Property (1.3.4.1) now holds by construction. Property (1.3.4.2)
is a theorem of Blasius-Wintenberger [Bla94].
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1.3.5. Fix a place v|p of E, and an embedding k(v) ↪→ F̄p. We denote by

SK = SK(G,X) ↪→ OE,(v) ⊗Z(p)
SK.

the normalization of the Zariski closure of ShK in OE,(v) ⊗ SK.
We shall use that SK has the following extension property.

Lemma 1.3.6. Let S be the spectrum of a discrete valuation ring R of mixed char-
acteristic (0, p), with generic point η, and a map s : η → SK . Then the following
are equivalent

(i) s extends to S → SK .
(ii) Aη has good reduction.

(iii) Aη has potentially good reduction.

Proof. By construction, (i) is equivalent to s extending to a map S → SK. Thus
(i) and (ii) are equivalent and imply (iii). If Aη has potentially good reduction,
then there is a finite flat R′/R such that s induces a map SpecR′ → SK, and this
necessarily factors through S as this is true on the generic fiber. �

Proposition 1.3.7. For every point s0 ∈ SK,k(v)(F̄p), there exists a canonical

collection of ϕ-invariant tensors {sα,cris,s0} ⊂ D⊗s0 characterized by the following

property: For any lift s ∈ SK(L̄) of s0, the isomorphism (1.3.3.2) carries {sα,p,s}
to {sα,cris,s0}.

Proof. The proof of this can essentially be found in [Kis10, (2.3.5)]; however, since
it is not given there in the generality we require, we review the key steps here.
Write L′ = EvL ⊂ L̄; here, we are embedding Ev ↪→ L̄ via the fixed embedding

Q̄p ↪→ L̄. Let Û be the formal scheme over W pro-representing the deformation

functor for the p-divisible group As0 [p∞]: this is formally smooth over W . Let Û
be the formal scheme obtained by completing SK ⊗OE,(v)

OL′ along s0.

We have a finite map of normal formal schemes over OL′ , Û → ÛL′ . Taking
their rigid analytic fibers (in the sense of Berthelot; cf. [dJ95, 7.3]), we obtain a

map Ûan → Ûan
L′ of smooth, irreducible rigid analytic spaces over L′. This map is

a closed immersion, since the map ShK → ShK is.

Since ÛL′ is formally smooth, Ûan
L′ is a rigid analytic open ball over L′, and,

for any two points s, s′ ∈ Ûan(L̄), p-adic parallel transport using the Gauss-Manin
connection on VdR gives us a canonical isomorphism:

H1
dR(As/L̄)

'−→ H1
dR(As′/L̄).(1.3.7.1)

Suppose now that s, s′ lie in Ûan(L̄). Since the sections sα,dR over ShK are hori-

zontal for the connection, and since Ûan is smooth and irreducible over L′, for each
α this isomorphism carries sα,dR,s to sα,dR,s′ .

Any s ∈ Ûan(L̄) is defined over a finite extension L′′/L′. Since the tensors {sα,p,s}
are Gal(L̄/L′′)-invariant, by construction, the isomorphism (1.3.3.2) carries {sα,p,s}
to ϕ-invariant tensors {sα,cris,s} ⊂ D⊗s0 . To prove the proposition, it is now enough
to show: If s′ is a different lift, giving rise to ϕ-invariant tensors {sα,cris,s′} ⊂ D⊗s0 ,
then, for each α, we have sα,cris,s′ = sα,cris,s.

By the compatibility of (1.3.3.2) with (1.3.3.1), and by (1.3.4.2), the pre-image
of 1 ⊗ sα,cris,s (resp. 1 ⊗ sα,cris,s′) in H1

dR(As/L̄)⊗ (resp. in H1
dR(As′/L̄)⊗) un-

der (1.3.3.1) is exactly sα,dR,s (resp. sα,dR,s′). Therefore, we only need to show
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that the composition:

H1
dR(As/L̄)

'−→ L̄⊗Ds0
'−→ H1

dR(A′s/L̄)

is the parallel transport isomorphism (1.3.7.1). This follows from [BO83, 2.9]. �

1.3.8. It follows from (1.3.7) and (1.3.4.1) that there exists an isomorphism L⊗Q

V
'−→ Ds0 carrying {1⊗sα} to {sα,cris,s0}. Indeed the scheme of such isomorphisms

is a G-torsor by (1.3.4.1), and a G-torsor over L is trivial by Steinberg’s theorem.
Under this isomorphism, the map ϕ : Ds0 → Ds0 pulls back to an automorphism
of L⊗ V of the form σ ⊗ bs0 , with bs0 ∈ G(L) well-determined up to σ-conjugacy.
Therefore, s0 determines a canonical class [bs0 ] ∈ B(GQp).

Assume that ιp : Q̄ ↪→ Q̄p has been chosen such that the associated embedding
E ↪→ Q̄p induces the place v.

Lemma 1.3.9. The pair ([bs0 ], {µ−1
X }p) is admissible.

Proof. This is a consequence of a result of Wintenberger; cf. corollary to [Win97,
4.5.3]. �

Proposition 1.3.10. Assume hypothesis (1.1.3.1) for GQp and [b]. Then the pair

([b], {µ−1
X }p) is admissible if and only if there exists s0 ∈ SK(F̄p) such that [b] =

[bs0 ].

Proof. The ‘if’ part is (1.3.9)
Suppose that [b] ∈ B(GQp) with ([b], {µ−1

X }p) admissible. Then (1.2.5) gives us
a maximal torus T ⊂ G and an x ∈ X such that hx factors through TR, and such
that [bbas(µ

−1
x )] ∈ B(TQp) maps to [b] ∈ B(GQp).

Now, consider the 0-dimensional Shimura variety Sh0 = ShK∩T (Af )(T, hx): This
is a finite étale scheme over the reflex field ET = E(T, hx). Fix a place v′|p of ET
lying above v. The normalization of Spec OET ,(v′) in Sh0 gives us a canonical normal
integral model S0 for Sh0 over OET ,(v′). Since all CM abelian varieties over number
fields have everywhere potentially good reduction, the map Sh0 → ET ⊗E ShK
extends to a map of OET ,(v′)-schemes S0 → OET ,(v′) ⊗OE,(v)

SK , by Lemma 1.3.6.

Therefore, to prove the theorem, we may replace (G, [b], {µ−1
X }) with the triple

(T, [bbas(µ
−1
x )], µ−1

x ), and reduce to the case where G = T is a torus. Choose any
point s0 ∈ S0(F̄p). By (1.3.9), the pair ([bs0 ], µ−1

x ) is admissible for TQp . But then
we must have [bs0 ] = [b]. �

1.3.11. Given a scheme S in characteristic p, let F-Isoc(S) be the category of
F -isocrystals over S (cf. [RR96, §3]): This is the isogeny category obtained by
localizing the category of F -crystals over S. It is a Qp-linear (non-neutral) Tan-
nakian category, whose identity object 1 corresponds to the structure sheaf on the
crystalline site of S over Zp.

Recall that for G a reductive group over Qp, an F -isocrystal with G-structure
over S [RR96, 3.3] is an exact faithful tensor functor

RepQp G→ F-Isoc(S).

Here RepQp G denotes the category of finite dimensional Qp-representations of G.
The crystalline realization of the universal abelian scheme A over SK gives us

a canonical object D in F-Isoc(SK ⊗OE,(v)
F̄p). For each point s0 ∈ SK(F̄p), the

restriction of D over s0 is realized by the F -isocrystal Ds0 .
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The proof of the following proposition is rather technical. Since it is used only
in (1.3.14) and (1.3.16) below, and the rest of the paper does not depend on it, we
relegate it to an appendix, where we prove a stronger statement; see Corollary A.7
below.

Proposition 1.3.12. For each α, there exists a morphism

sα : 1→ D⊗

whose restriction to any point s0 ∈ SK(F̄p) is sα,cris,s0 .

Corollary 1.3.13. The association V 7→ D extends to an F -isocrystal with G-
structure over SK ⊗ F̄p.

Proof. Let S be a connected component of SK . We shall again write D for D|S .
Let CD be the smallest full Tannakian subcategory of F-Isoc(S) containing D. It
suffices to construct, for each S, an exact faithful tensor functor ω : RepQp G→ CD
which sends V to D.

First consider the associated L-linear category CD,L = CD⊗L, which is obtained
from CD by tensoring the Hom sets by L, and adjoining the direct summands
corresponding to idempotents in the endomorphism algebra of each object [Del79a,
2.1]. Choose s0 ∈ S(F̄p). Pulling isocrystals back to s0 induces an L-fibre functor
ωs0 : CD,L → F-Isoc(s0) which takes D to Ds0 , and CD,L is equivalent to the
category RepLGs0 where Gs0 = Aut{sα,cris,s0

}Ds0 , the group of automorphisms of
Ds0 respecting the tensors sα,cris,s0 .

Let P (s0) = Isomsα(VL, Ds0), the scheme of L-linear maps from VL to Ds0

taking sα to sα,cris,0. Then P (s0) is a G-torsor. (It is necessarily a trivial G-torsor
by Steinberg’s theorem.) If W is in RepQp G, then WD = G\(W × P (s0)) is an
L-representation of Gs0 . We consider the composite functor

ωL : RepQp G
W 7→WD→ RepLGs0 ' CD,L.

It remains to show that the above functor factors through CD. For this, note that
any object of RepQp G is the kernel of a map e : W →W where W is a direct sum of

objects of the form Vm,n := V ⊗n⊗V ∗⊗m. Now ωL(Vm,n) = D⊗m⊗D∗⊗n lies in CD.
Since e can be considered as a morphism 1→W ∗ ⊗W, we see that by Proposition
1.3.12, ωL(e) lies in CD, and so does its kernel. Similarly if e : W1 → W2 is any
map in RepQp G, then e may be regarded as a map 1 → W ∗1 ⊗W2 so ωL(e) is in
CD by Proposition 1.3.12. �

Theorem 1.3.14.

(1.3.14.1) If s0 ∈ SK(F̄p), then

{s′0 ∈ SK(F̄p) : ν̄G([bs′0 ]) � ν̄G([bs0 ])} ⊂ SK(F̄p)

is a Zariski closed subset.
(1.3.14.2) Let B(GQp , {µ−1

X }p) ⊂ B(GQp) be the subset consisting of those classes [b]

such that ([b], {µ−1
X }p) is admissible. Then, for every [b] ∈ B(GQp , {µ−1

X }p)
satisfying hypothesis (1.1.3.1), the subset:

S[b] = {s0 ∈ SK(F̄p) : [bs0 ] = [b]}

is non-empty and locally closed in SK(F̄p) for the Zariski topology.
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(1.3.14.3) Let S[b] be the closure of S[b] in SK(F̄p); then we have an inclusion of
Zariski closed subsets:

S[b] ⊂
⊔

ν̄G([b′])�ν̄G([b])

S[b′].

Proof. Assertions (1.3.14.1) and (1.3.14.3) follow from Corollary 1.3.13 and the ar-
gument of [RR96, Thm. 3.6]: One reduces to the case G = GLn using [RR96,
Lem. 2.2(iv)], and applies Grothendieck’s semicontinuity theorem for Newton poly-
gons of F -isocrystals [Kat79, Thm. 2.3.1]. Assertion (1.3.14.2) follows from (1.3.14.1)
and (1.3.10). �

As we noted in (1.1.3), the second part of the theorem implies that the stratum
S[b] is non-empty if either [b] is basic or GQp is quasi-split.

1.3.15. As in (1.1.5) we fix an inner twisting ξ : GQp → G∗ over Q̄p, a Borel B∗ ⊂
G∗, and a maximal torus T ∗ ⊂ B∗ over Qp. Let µ be the B∗-dominant representa-
tive of ξ ◦ {µX}p. There is a unique [bµ] ∈ B(GQp , {µ−1}) with Nξ(ν̄G([bµ])) = µ̄−1

(which, of course, does not depend on the choice of B∗ or T ∗). The corresponding
subset S[bµ] ⊂ SK(F̄p) is the µ-ordinary stratum. By (1.3.10) and (1.3.14), this
stratum is a non-empty Zariski open subspace.

Corollary 1.3.16. Suppose that the special fiber SK,k(v) is locally integral. Then
S[bµ] is dense in SK,k(v).

Proof. If the special fiber is locally integral, it follows from [MP19, Cor. 4.1.11] that
every connected component of SK has irreducible special fiber. This implies that
S[bµ] is dense in any connected component of SK,k(v) it intersects, and since S[bµ]

is non-empty, it is dense in some connected component.
To see that it is dense in all connected components, suppose s, s′ ∈ SK(Q̄) with

reductions s0, s
′
0 ∈ SK(F̄p). If there is an isogeny As → As′ taking sα,ét,s to sα,ét,s′ ,

then there is an induced isogeny As0 → As′0 taking sα,cris,s0 to sα,cris,s′0
, so that

if s0 ∈ S[bµ] then s′0 ∈ S[bµ]. Since the group G(Af ) acts transitively on the set of
connected components of SK,k(v), this implies that S[bµ] is dense in SK,k(v). �

Remark 1.3.17. In the situation where p > 2 and Kp is hyperspecial, so that it is
of the form G(p)(Zp) for a reductive model G(p) of G over Z(p), the main theorem
of [Kis10] shows that SK,k(v) is smooth. So the corollary applies to give the density
of the µ-ordinary locus in this situation. This special case is already known due to
D. Wortmann [Wor13].

Using the results of one of us and Pappas, we can prove the following:

Corollary 1.3.18. Suppose that p > 2, and that G splits over a tamely ramified
extension, and Kp is a special parahoric. Then the embedding G ↪→ GV can be
chosen such that S[bµ] is dense in SK,k(v).

Proof. This follows from Corollary 1.3.16 and [KP18, Cor. 0.3]. �

2. CM lifts and independence of `

2.1. Tate’s theorem with additional structures.
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2.1.1. We keep the notation introduced in §1.3, so that (G,X) is a Shimura da-
tum of Hodge type, equipped with an embedding of Shimura data ι : (G,X) ↪→
(GV ,HV ), and we have a finite map SK → OE,(v)⊗SK, which is an embedding on
generic fibres.

We set

SKp = lim←−
Kp⊂GV (Apf )

SKpKp ; SKp = lim←−
Kp⊂G(Apf )

SKpKp .

The transition maps in the inverse systems are finite étale, and so the limits are
schemes over Z(p) (resp. OE,(v)). By construction, we have a map

ιp : SKp → OE,(v) ⊗ SKp .

Since G(Apf ) acts naturally on the right on SKp and the generic fiber ShKp =
E ⊗OE,(v)

SKp , compatibly with the map ιp, this action extends to SKp .

The scheme SKp is open and closed in the moduli space of triples (A, λ, ε), where
(A, λ) is a polarized abelian scheme up to prime-to-p isogeny and

ε : Apf ⊗ V
'−→ V̂ p(A)

is an isomorphism of smooth Apf -sheaves carrying the symplectic form ψ to an

Ap,×f -multiple of the Weil pairing T̂ p(λ) on the prime-to-p Tate module

V̂ p(A) = (lim←−
p-n

A[n])⊗Q.

2.1.2. For each α, let sα,Apf be the projection of sα,ét onto H0
(
ShKp , (V̂

p(A))⊗
)
.

Since SKp is normal, sα,Apf extends to a section over SKp .

Over SKp , the map ιp induces an isomorphism

(2.1.2.1) η : Apf ⊗ V
'−→ V̂ p(A)

carrying sα to sα,Apf for each α. In particular, for any s0 ∈ SKp(F̄p), the stabilizer

of the collection {sα,Apf ,s0} in GL
(
V̂ p(As0)

)
is canonically identified with G(Apf ).

2.1.3. Let AutQ(As0) be the algebraic group over Q attached to the group of units
in the endomorphism algebra EndQ(As0) := Q⊗ End(As0). We have the subgroup
Gm ⊂ AutQ(As0) which acts on As0 by scalar multiplication. Let AutQ,ψ(As0) ⊂
AutQ(As0) denote the subgroup which preserves the polarization on As0 , up to a
scalar. There is a map c : AutQ,ψ(As0)→ Gm which takes an automorphism to its
action on the polarization. The kernel of c and AutQ,ψ(As0)/Gm are compact over
R. In particular, any closed subgroup of AutQ,ψ(As0) is a reductive group over Q.

Now, AutQ(As0) acts naturally on V̂ p(As0) and Ds0 . Let Ips0 ⊂ AutQ(As0) be

the closed subgroup that fixes the tensors {sα,Apf ,s0} ⊂ V̂
p(As0)⊗, and let Is0 ⊂ Ips0

be the largest closed subgroup that also fixes the tensors {sα,cris,s0} ⊂ D⊗s0 . Since
Is0 ⊂ Ips0 ⊂ G(Apf ), we have Is0 ⊂ Ips0 ⊂ AutQ,ψ(As0). In particular Is0 and Ips0 are
reductive groups, and their quotients by the subgroup of scalars Gm are compact
over R.

Recall that As0 is an abelian variety up to prime-to-p isogeny (so the notion of
automorphism is understood accordingly). Set

Is0(Z(p)) = Is0(Qp) ∩Aut(As0).
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We can view this as a subgroup of G(Apf ) via the embeddings:

Is0(Z(p)) ⊂ Is0(Apf ) ⊂ Ips0(Apf ) ⊂ G(Apf ).

Lemma 2.1.4. Suppose that g1, g2 ∈ G(Apf ) are such that

s0 · g1 = s0 · g2 ∈ SKp(F̄p).

Then g1 and g2 have the same image in Is0(Z(p))\G(Apf ).

Proof. The proof is essentially contained in [Kis17, 2.1.3].
The image of s0 in SKp(F̄p) corresponds to the triple (As0 , λs0 , εs0) over F̄p under

the moduli interpretation of SKp . For g ∈ G(Apf ), the image of s0 · g in SKp(F̄p)
corresponds to the triple (As0 , λs0 , εs0 ◦ g). Therefore, if s0 · g1 = s0 · g2, then in
particular, we have an isomorphism of triples:

(As0 , λs0 , εs0 ◦ g1)
'−→ (As0 , λs0 , εs0 ◦ g2).

This corresponds to an automorphism φ ∈ Aut(As0) (necessarily unique) such
that

V̂ p(φ) ◦ εs0 ◦ g1 = εs0 ◦ g2

and φ carries {sα,cris,s0·g1
} ⊂ D⊗s0·g1

to {sα,cris,s0·g2
} ⊂ D⊗s0·g2

. Note that here we
are using (1.3.7).

The first condition implies that V̂ p(φ) fixes {sα,Apf ,s0}. Since under the natural

identifications Ds0 = Ds0·gi induced by the identifications As0 = As0·gi , for i = 1, 2,
the tensors {sα,cris,s0} are carried to {sα,cris,s0·gi}, φ preserves the {sα,cris,s0}. Hence
φ must belong to

Is0(Z(p)) = Is0(Q) ∩Aut(As0).

�

2.1.5. Choose a neat compact open Kp ⊂ G(Apf ). Set K = KpK
p, and suppose

that the image of s0 in SK(F̄p) is defined over Fq.
Then, for any m ∈ Z≥1, let γm,s0 denote the geometric, qm-power Frobenius

of As0 . Then γm,s0 fixes the absolute Hodge cycle components {sα,Apf ,s0}, and it

fixes the crystalline components {sα,cris,s0} as these are ϕ-invariant. Hence γm,s0 ∈
Is0(Q). In particular, γm,s0 induces a semi-simple automorphism γpm,s0 of V̂ p(As0)

which preserves {sα,Apf ,s0}, and thus lies in G(Apf ). Set

IApf ,m,s0 = CentGAp
f

(γpm,s0).

If m | m′, then γpm′,s0 = (γpm,s0)m
′/m, and so we have a natural inclusion:

IApf ,m,s0 ⊂ IApf ,m′,s0 .

Set

IApf ,s0 = lim−→
m

IApf ,m,s0 .

Then, form sufficiently divisible, the Zariski closure of the subgroup of Is0 generated
by γm,s0 is a torus, and we have IApf ,s0 = IApf ,m,s0 , which is independent of choice

of q.
For each ` 6= p, write I`,s0 for the projection of IApf ,s0 onto GQ` : For m sufficiently

divisible, this is the centralizer in GQ` of the projection γm,`,s0 of γpm,s0 .
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For m sufficiently divisible, the Zariski closure in GApf of the subgroup generated

by γpm,s0 is a torus. Therefore, I`,s0 is a Levi subgroup of GQ` (over Q̄`) and in
particular connected, reductive.

The action of Is0 on V̂ p(As0) gives us a canonical map of Apf -groups:

Apf ⊗ Is0 → IApf ,s0 .

For each ` 6= p, this gives us a map i` : Q` ⊗ Is0 → I`,s0 , which is injective.

Proposition 2.1.6. Let ` 6= p be a prime such that GQ` is split and such that the
characteristic polynomial of γm,`,s0 is split over Q`. Then i` is an isomorphism.

Proof. By (2.1.4), we have surjective maps

G(Apf )→ s0 ·G(Apf )→ Is0(Z(p))\G(Apf ),

where the first map is the orbit map g 7→ s0 · g, and the composite is the natural
projection.

For any neat compact open Kp ⊂ G(Apf ) with `-primary factor K` ⊂ G(Q`),
this implies that the image in SK(F̄p) of s0 · I`,s0(Q`) surjects onto the quotient
Is0(Q`)\I`,s0(Q`)/(K` ∩ I`,s0(Q`)). Since I`,s0(Q`) commutes with γm,`,s0 for m
sufficiently divisible, this image is in fact contained in SK(Fqm). In particular
Is0(Q`)\I`,s0(Q`)/(K` ∩ I`,s0(Q`)) is finite.

The proposition is now deduced just as in [Kis17, 2.1.7]. �

2.1.7. We will prove that i` is an isomorphism for every `, including ` = p. This
will be done using a result of Noot. We first explain the definition of the I`,s0 and
i` when ` = p.

For any m ∈ Z>0, the crystalline realization of As0 is defined over Qqm =
W (Fqm)[p−1]; therefore, the isocrystal Ds0 has a natural descent to an F -isocrystal
Dm,s0 over Qqm , and the ϕ-invariant tensors {sα,cris,s0} belong to D⊗m,s0 . Write
q = pr and let γm,cris,s0 = ϕrm : Dm,s0 → Dm,s0 be the crystalline realization of
γm,s0 . It is a ϕ-equivariant isomorphism fixing the tensors {sα,cris,s0}.

As in 1.3.8, for m sufficiently divisible (which we now assume) we can find an
isomorphism:

Qqm ⊗ V
'−→ Dm,s0(2.1.7.1)

carrying, for each α, 1⊗sα to sα,cris,s0 . Let δs0 ∈ G(Qqm) be such that ϕ : Dm,s0 →
Dm,s0 pulls back to the automorphism δs0(σ⊗1) of Qqm⊗V under this isomorphism.
Then, by construction, the class [bs0 ] ∈ B(GQp) associated with s0 is exactly the
σ-conjugacy class of δs0 .

Similarly, the automorphism γm,cris,s0 of Dm,s0 pulls back to an element γm,p,s0 ∈
G(Qqm), whose conjugacy class under lim−→m

G(Qqm) is independent of all choices.

We have the relation:

γm,p,s0 = δs0σ(δs0) · · ·σrm−2(δs0)σrm−1(δs0) ∈ G(Qqm).(2.1.7.2)

Define an algebraic group Im,δs0 over Qp as follows: For any Qp-algebra R, we
have:

Im,δs0 (R) = {g ∈ G(Qqm ⊗Qp R) : gδs0 = δs0σ(g)}.
Then Qqm ⊗Qp Im,δs0 is naturally identified with the centralizer in GQqm of

γm,p,s0 . Since γm,p,s0 is semisimple (which follows from semisimplicity of γm,s0),



24 MARK KISIN, KEERTHI MADAPUSI PERA, AND SUG WOO SHIN

Im,δs0 is a reductive group over Qp, and is connected for m sufficiently divisible.
Set:

Ip,s0 = lim−→
m

Im,δs0 ,

which is equal to Im,δs0 for m sufficiently divisible. We have a canonical inclusion

ip : Is0 ⊗Q Qp ↪→ Ip,s0 ,

and an inclusion Ip,s0 ↪→ G defined over Qqm for m sufficiently divisible.
Let Jδs0 be the Qp-group defined in (1.1.4). For any m, we have the obvious

inclusion Im,δs0 ⊂ Jδs0 , and in particular Ip,s0 ⊂ Jδs0 .

2.1.8. Given a connected reductive group H over a field F of characteristic 0, write
Conj(H) for the scheme over F parameterizing semi-simple conjugacy classes in H.
More precisely, the conjugation action of H on itself induces an action on the Hopf
algebra OH , and Conj(H) = Spec(OH)H .

Following Noot [Noo09, 1.5], we will also define a certain quotient Conj′(H) of
Conj(H) as follows: Let F̄ be an algebraic closure of F ; then Hder

F̄
is an almost

direct product of simple reductive factors Hi with i in some indexing set I.
Write ID ⊂ I for the subset of indices i such that Hi ' SO(2ni) for some ni ≥ 4.

For each i ∈ ID, set H ′i = O(2ni). Since ID ⊂ I is Gal(F̄ /F )-stable, the finite
F̄ -group scheme

Out′(H)F̄ =
∏
i∈ID

H ′i/Hi

descends to a finite group scheme Out′(H) over F , which acts canonically on
Conj(H). We will write Conj′(H) for the quotient of Conj(H) for this action.

We call an element γ ∈ H(F ) neat if γ is semi-simple and the Zariski closure of
〈x〉, the group of points generated by x, is connected (that is a torus).

Corollary 2.1.9. For every `, the map

i` : Q` ⊗ Is0 → I`,s0

is an isomorphism.

Proof. Choose `0 6= p a prime satisfying the conditions of Proposition 2.1.6, so that
i`0 is an isomorphism. Let m be sufficiently divisible that γm,s0 ∈ AutQ(As0) is
neat, and that I`,s0 is the centralizer of γm,`,s0 in GQ` if ` 6= p, (resp. in GQqm if
` = p), and I`0,s0 is the centralizer of γm,`0,s0 in GQ`0 .

By [Noo09, Thm 1.8, 4.2], the images of the elements γm,`,s0 and γm,`0,s0 in
Conj′(G) lie in Conj′(G)(Q), and are equal. In particular, I`,s0 and I`0,s0 have the
same dimension. Thus Q` ⊗ Is0 and I`,s0 have the same dimension by Proposition
2.1.6, and since I`,s0 is connected i` is an isomorphism. �

2.2. Independence of ` and conjugacy classes.

2.2.1. Let l be a prime (possibly equal to p). An element α ∈ Q̄ is called an l-Weil
number of weight w ∈ Z if α is an l-unit and all its complex embeddings have
absolute value lw/2.

Let H be an algebraic group over Q. We call an element γ ∈ H(Q) an l-Weil point
if for some faithful representation W of H (defined over any field of characteristic 0),
the eigenvalues of γ on W are l-Weil numbers. If W ′ is any other representation of
H, then W ′ is isomorphic to a representation in the Tannakian category generated
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by W. Hence the eigenvalues of γ acting on W ′ are also l-Weil numbers, and the
definition does not depend on W.

We call γ ∈ H(Q) a Weil point if it is an l-Weil point for some l.
Keeping the notation introduced in §2.1, our first goal in this subsection is to

prove the following analogue of the result of Noot on independence of Frobenius
elements, used above.

Proposition 2.2.2. Let γ ∈ Is0(Q) be a neat Weil point. For each `, the image of
i`(γ) in Conj′(G) lies in Conj′(G)(Q) and does not depend on `.

2.2.3. To prepare for the proof of Proposition 2.2.2, we first show two lemmas.
Recall that a Q-torus T satisfies the Serre condition if its maximal R-split subtorus
T1 ⊂ T is Q-split. For an algebraic Q-group H, and F a number field, an element
γ ∈ H(F ) is called an l-unit, if for every place v - l of F, the group γ generates is
bounded in H(Fv).

Lemma 2.2.4. Let T be a Q-torus which satisfies the Serre condition. An element
γ ∈ T (Q) is an l-Weil point, if and only if it is an l-unit. In particular, an element
γ ∈ Is0(Q) is an l-Weil point if and only if it is an l-unit.

Proof. An element γ ∈ T (Q) is an l-Weil point, if and only if χ(γ) is an l-Weil
number for any χ ∈ X∗(T ), as the direct sum of a basis of X∗(T ) is a faithful
representation of T. In particular, if γ is an l-Weil point, then, for every χ ∈ X∗(T ),
the subgroup of Q(χ(γ))× generated by χ(γ) is v-adically bounded for every place
v - l of Q(χ(γ)). Hence the subgroup generated by γ is bounded in T (Qv) for every
place v - l of Q, and γ is an l-unit in T (Q).

Conversely, if γ is an l-unit, let T2 ⊂ T be the maximal subtorus such that T2(R)
is compact. Then T2 is defined over Q. If we think of χ as defined over C, then
χχ̄ is trivial on T2, and factors through T/T2. Hence χχ̄(γ) ∈ Q× is an l-unit and
equal to lw for some integer w. This shows that χ(γ) has absolute value lw/2 under
all complex embeddings.

The final statement follows from the fact that every γ ∈ Is0(Q) is semi-simple,
so is contained in some maximal torus T ⊂ Is0 . Any such maximal torus satisfies
the Serre condition. In fact the maximal R-split torus of T is either trivial, or the
subtorus Gm ⊂ Is0 , consisting of scalars, as in 2.1.3. �

Lemma 2.2.5. Let γ ∈ Is0(Q) be an l-Weil point. Then for ` 6= p the set of
eigenvalues of i`(γ) acting on VQ̄` does not depend on `, and for some w ∈ Z, these
eigenvalues are all l-Weil numbers of weight w.

Proof. The independence of `, is standard and follows from the Lefschetz trace
formula. Now recall, 2.1.3, that we have the homomorphism c : Is0 → Gm, whose
kernel I1

s0 is compact over R. For the second claim, it suffices to replace γ by some

power, when we can write γ = li · γ1, where γ1 ∈ I1
s0(Q) is an l-Weil point, and li

denotes scalar multiplication by li on As0 . It suffices to show that for any i`, the
eigenvalues of i`(γ

1) acting on VQ̄` have all their complex absolute values equal to
1.

Let T ⊂ I1
s0 be a maximal torus containing γ1. Fix an isomorphism, C ' Q̄`. For

each eigenspace of T acting on VC, the corresponding χ ∈ X∗(T ), satisfies χχ̄ = 1,
as T is compact over R. Thus χ(γ1)χ̄(γ1) = 1, as γ1 ∈ T (Q). �
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2.2.6. The proof of the proposition 2.2.2 will follow Noot’s arguments with a modi-
fication at one point where we will need to use Corollary 2.1.9. We begin by recalling
some definitions from [Noo09, 2.3].

Let H be an absolutely almost simple group of classical type over a field of
characteristic 0, and W a finite-dimensional H-representation. We say that W is
admissible if it is a multiple of one of the following:

• The direct sum of the standard representation and its dual if H is of type
A.
• The spin representation if H is of type B.
• The standard representation if H is of type C.
• The standard representation if H is of type D.
• The direct sum of the two half-spin representations if H is of type D.

In the case of type D, in the fourth (resp. fifth) case we say that (H,W ) is of
type DH (resp. DR).

Now recall our embedding of Shimura data ι : (G,X) ↪→ (GV ,HV ). We say ι is
strictly accommodating if

• For some totally really field K, Gder = ResK/QG
s with Gs absolutely al-

most simple, and the Gder-representation V has the form ResK/Q V
s for an

admissible Gs-representation V s.
• If (Gs, V s) is of type DR, then every for any character χ : ZG → Gm, over
Q̄, the χ-part of V is an admissible representation of a factor of Gder

Q̄ .

• For any proper, non-zero, G-stable subspace V ′ ⊂ V, if G′ denote the image
of G in AutV ′, we require that (G′, V ′), not satisfy the first two conditions
above.

Finally we say ι is accommodating if there is a finite collection of accommodat-
ing embeddings of Shimura data, ιj : (Gj , Xj) ↪→ (GVj ,HVj ), j = 1, . . . , s, and

an isomorphism of symplectic spaces
∏s
j=1 Vj ' V which induces a commutative

diagram

(G,X) > (GV ,HV )

s∏
j=1

(Gj , Xj)

∨

> (

s∏
j=1

GVj ,
s∏
j=1

HVj )

∨

such that the map on the left induces an isomorphism Gder '
∏s
j=1G

der
j .

Note that Noot’s definitions are formulated for the Mumford-Tate group of an
abelian variety, rather than for Shimura data. The embedding ι is accommodat-
ing in our sense, if and only if for some (or equivalently any) y ∈ ShK(G,X)(C)
such that the corresponding abelian variety Ay has Mumford-Tate group G, Ay is
accommodating in the sense of Noot.

2.2.7. Proof of Proposition 2.2.2. Suppose first that ι : (G,X) ↪→ (GV ,HV ) is
accommodating. In this case, the proof is the same as [Noo09, Thm. 2.4]. For the
convenience of the reader, we indicate the argument.

Let V ⊗ Q̄ = ⊕ni=1Wi be a decomposition of the G-representation V into its
isotypic components over Q̄. The subalgebra Qn ⊂ EndQ̄ VQ̄ which acts by scalars
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on each factor Wi, descends to a product of fields L =
∏k
i=1 Li ⊂ EndQ V, which

corresponds to a decomposition V =
∏k
i=1 Vi.

Let Pi,γ,` denote the characteristic polynomial of γ acting on Vi,Q̄` . One first
shows that Pi,γ,` does not depend on `; see the proof of [Noo06, 6.13]. Note that,
since γ is an l-Weil point, the eigenvalues of Pi,γ,` are l-Weil numbers. Since γ is
neat, no two of these roots differ by a non-trivial root of 1; this is the condition
Noot calls faiblement net. Then applying [Noo09, Lem. 2.5, 2.6], one finds that since
Pi,γ,`, does not depend on `, the element i`(γ) ∈ Conj′(G)(Q̄`) is also independent
of `, and lies in Conj′(G)(Q̄).

To reduce, to the accommodating case, we again follow Noot’s argument [Noo09,
§3], though we formulate them in terms of Shimura data rather than Mumford-Tate
groups. Lift s0 to a point s ∈ ShK(G,X)(Q̄p). The statement of the proposition
depends only on the abelian variety As equipped with the Hodge cycles correspond-
ing to {sα}, and not on level structures. Thus, fixing an isomorphism Q̄p ' C, we
may assume s is the image of a point of the form (h0, 1) ∈ X ×G(Af ).

The results of Deligne [Del79b, 2.3.10], see also [Noo06, 2.12], imply that there ex-
ists an accommodating embedding ι′ : (G′, X ′) ↪→ (GV ′ ,HV ′), together with a map
G′der → Gder which induces an isomorphism of adjoint Shimura data (G′ ad, X ′ ad) '
(Gad, Xad). Here V ′ denotes a Q-vector space, equipped with a symplectic form ψ′.
By the real approximation theorem, applied to Gad, after conjugating the map
G′der → Gder by an element of Gad(Q), we may assume that the image of X ′ in
Xad contains h0. Identifying G′ ad and Gad, let G′′ be the connected component of
the identity of G′ ×Gad G, and X ′′ a G′′(R)-orbit of (h0, h0) ∈ X ×Xad X ′. Finally,
we set V ′′ = V ⊕ V ′, where V ′′ is equipped with the symplectic form ψ′′ = ψ ⊕ ψ′,
and consider the embedding

ι′′ : (G′′, X ′′)→ (GV ′′ ,HV ′′)

induced by ι and ι′.
Applying, our previous constructions to each of ι′ and ι′′, we obtain, a map of

integral models

SK(G,X)← SK′′(G
′′, X ′′)→ SK′(G

′, X ′),

where K ′′ and K ′ are suitable level structures. Since h0 ∈ X ′′, s lifts to a point s′′ ∈
SK′′(G

′′, X ′′)(Q̄p). As in [Noo09, p68], using the Néron-Ogg-Shafarevich criterion
one sees that As′′ has good reduction so, by Lemma 1.3.6, s′′ specializes to s′′0 ∈
SK′′(G

′′, X ′′)(F̄p) lifting s0. Let s′0 ∈ SK′(G
′, X ′)(F̄p) be the image of s′′0 . By the

construction of ι′ and ι′′, there are maps of abelian varieties

As0 ← As′′0 → As′0 ,

corresponding to the projections of V ′′ onto V and V ′.
Note that the action of G′′ on V ′′ respects the decomposition V ⊕ V ′. Thus, the

projections V ′′ → V ′, V ′′ → V ′, are G′′ invariant elements of End(V ′′), and we
may include them in the set of Hodge cycles used to define Is′′0 . This shows that
the surjections of G′′ onto G and G′ induce maps

Is0 ← Is′′0 → Is′0 .

By Corollary 2.1.9, these maps are surjective and induce isomorphisms

Is0/ZG ' Is′′0 /ZG′′ ' Is′0/ZG′ .
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Let T ⊂ Is0 , be a maximal torus containing γ, and T ′′ ⊂ Is′′0 the preimage of
T. For some positive integer n, there exists a map T → T ′′ whose composite with
the projection T ′′ → T is multiplication by n. Let γ′′ = γ viewed in T ′′(Q) via the
above map. This is an l-unit in T (Q), and hence a neat Weil point in Is′′0 (Q) by
Lemma 2.2.4. It suffices to show the Proposition for γ′′, as the result then follows
from γn, and γ by [Noo09, Prop. 3.2].

By Lemma 2.2.8, below, there is a map over Q-groups, Is′′0 → G′′ ab which agrees
with the map induced by i` for any `. Replacing γ′′ by a power, as above, we
may assume that γ′′ ab ∈ G′′ ab(Q), the image of γ, lifts to z ∈ ZG′′(Q) and write
γ′′ = γ′′1 z. Note that γ′′ ab is a Weil, point as is z, for example using Lemma 2.2.4.
Since z and γ commute, γ′′1 is again a Weil point. It suffices to show that the image
of i`(γ

′′
1 ) in Conj′(G′′der) ⊂ Conj′(G′′) is a Q-point which is independent of `. Since

G′′der ' G′der, this is a consequence of the corresponding statement for the image
of γ′′1 in Is′0 , which is the accommodating case considered above.

Lemma 2.2.8. There is a map of Q-groups Is0 → Gab which agrees with the map
induced by i` for any `.

Proof. Recall that for ` 6= p, we have the composite

Is0 ⊗Q` ' I`,s0 → GQ` → Gab
Q` .

Similarly, we have a map Is0,Qqm → Gab
Qqm defined for m sufficiently divisible, and

we have to show that all these maps are induced by a map of Q-groups Is0 → Gab.
Consider a special point on ShK(G,X), corresponding to a pair (T, hT ), where

T ⊂ G, is a maximal torus, and hT : ResC/R Gm → T is a cocharacter. Let G′ =
G×T, equipped with the symplectic representation V ′ = V ⊕V. Let X ′ = X×{hT }.
Then we have (G′, X ′) ↪→ (GV ′ , HV ′). Applying, our constructions, we obtain a map
of integral models SK′(G

′, X ′)→ SK(G,X). As in the proof of Proposition 2.2.2,
after possibly conjugating the map T → G, by a point of Gad(Q), we may assume
that s0 lifts to s′0 ∈ SK′(G

′, X ′)(F̄p).
By construction, As′0 is isogenous to As0 ×AT , where AT is the reduction of a

CM abelian variety with T -action. The action of Is′0 on As0 × AT preserves this
decomposition. This follows, for example, from the fact that the action of G(Q`)
preserves the corresponding decomposition on `-adic Tate modules for any ` 6= p.
Restricting the action of Is′0 to AT induces a map of Q-groups Is′0 → T, and we

consider the composite Is′0 → T → Gab. By Corollary 2.1.9, Is′0 → Is0 , is surjective,

so the map Is′0 → Gab factors through Is0 , as this is true over Q` for any ` 6= p.

This gives us the map Is0 → Gab. One checks easily, using the construction, that
it has the required property. �

2.2.9. In the remainder of this subsection we will apply Proposition 2.2.2 to show
a kind of prerequisite for the existence of special points which reduce into a given
isogeny class. This asserts that maximal tori in Is0 transfer to G, when G is quasi-
split at p. We begin with two lemmas.

Lemma 2.2.10. Let T be a torus over Q, satisfying the Serre condition. If l is a
prime such that TQl is a split torus, then the set of l-Weil points in T (Q) forms
a Zariski dense subgroup of T. Moreover, the set of neat l-Weil points contains a
Zariski dense subgroup of T.
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Proof. It is clear that the l-Weil points form a subgroup, and we denote by T ′ ⊂ T
its Zariski closure. Then T/T ′ is again a torus which is split at l. Suppose that
T/T ′ is non-trivial. Then there is a non-trivial χ ∈ X∗(T/T ′) ⊂ X∗(T ).

Let yl ∈ T (Ql) be a point such that χ(yl) ∈ Q×l has positive valuation, and let
y ∈ T (Af ) be the point with component yl at l and trivial components away from
l. For any compact open subgroup KT ⊂ T (Af ) the quotient T (Q)\T (Af )/KT is
finite. Hence there exists x ∈ T (Q) and a positive integer m with x = ym mod KT .
Then x is an l-Weil point by Lemma 2.2.4, and χ(x) ∈ Q×l has positive valuation,
so x /∈ T ′(Q), a contradiction. It follows that T ′ = T, and the subgroup of l-Weil
points is dense in T.

For the second claim, let k be a number field which splits T, and let n denote
the number of roots of unity in k. Suppose that x ∈ T (Q) is an l-Weil point, and

let S̃ ⊂ T be the Zariski closure of 〈x〉 and S ⊂ S̃ the connected component of 1.

Then n · S̃/S = {0}, so xn is a neat l-Weil point. As multiplication by n induces
an isogeny on T, this implies that the set of neat l-Weil points contains a Zariski
dense subgroup of T. �

Lemma 2.2.11. Let S be an irreducible scheme of finite type over a field k, and
Γ ⊂ S(k) a Zariski dense subset. Let W ⊂ Autk S be a finite subgroup, and σ ∈
Autk S. Suppose that for every γ ∈ Γ, there exists w ∈ W such that w(γ) = σ(γ).
Then σ = w for some w ∈W.

Proof. We are grateful to the referee for supplying the following proof, which is
simpler and more general than our original one. For w ∈ W let Γw = {γ ∈ Γ :
w(γ) = σ(γ)}. Then Γ = ∪w∈WΓw, and ∪w∈WΓw = Γ = S, where Γw and Γ denote
the closures of Γw and Γ in S, respectively. Since S is irreducible, this implies Γw0

is dense in S for some w0 ∈W, and it follows that σ = w0. �

2.2.12. Suppose that C and H are reductive algebraic groups over a field F of
characteristic 0. We denote by Aut′(H), the preimage of Out′(H) in the group
scheme of automorphisms AutH. (Recall Out′(H) from (2.1.8).) Consider two
maps i1, i2 : C → H defined over some extensions F1, F2 respectively, of F. We
say that i1 and i2 are conjugate (resp. conjugate by an element of Aut′(H)) if
there exists an extension F3/F containing F1 and F2 as well as g ∈ H(F3) (resp.
g ∈ Aut′(H)(F3)) such that i2 = gi1g

−1 (resp. i2 = g(i1) := g ◦ i1).

Proposition 2.2.13. The maps i` : Is0 → G, defined over Q` if ` 6= p and over
Qqm for m sufficiently divisible if ` = p, are all conjugate by elements of Aut′(G).
In particular, if Gad has no factors of type D then the i` are all conjugate.

Proof. We consider all maps of groups over an algebraically closed field k containing
all Q` for ` 6= p and Qqm for all m. Let us write I = Is0 for simplicity.

Suppose that T1, T2 ⊂ G are maximal tori over k, and γ ∈ T1(k) ∩ T2(k). Then
there exists g ∈ G(k) conjugating T1 into T2 and fixing γ. Indeed, let M be the
connected component of the identity in the centralizer of γ in G. Then M is a
Levi subgroup of G, and T1, T2 ⊂ M are maximal tori, so conjugate in M. Now
if γ1 ∈ T1(k), γ2 ∈ T2(k), and if σ(γ1) = γ2 for some σ ∈ Aut′(G)(k), then there
exists σ′ ∈ Aut′(G)(k) taking γ1 to γ2 and T1 to T2. To see this, apply the previous
remark to σ(γ1) = γ2 ∈ σ(T1) ∩ T2. We will use this observation below.

Choose m sufficiently divisible that γm,s0 is neat. By the Weil conjecture for
abelian varieties, γm,s0 ∈ I(Q) is a Weil point. Hence, by Proposition 2.2.2 (or
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Noot’s original result), there is a γ0 ∈ G(k) such that for each `, i`(γm,s0) differs
from γ0 by an element of Aut′(G)(k). Let I0 ⊂ G denote the centralizer of γ0. After
modifying i` by an element of Aut′(G), we obtain maps j` : I → I0 taking γm,s0
to γ0. Choose T ⊂ I and T0 ⊂ I0 maximal tori. By the observation above, applied
with I in place of G, after conjugating each j` by an element of I0(k) we may also
assume that j` maps T to T0.

Now fix primes `, `′ and set σ = j`′ ◦ j−1
` . Let γ ∈ T (Q) be a Weil point. By

Proposition 2.2.2, there exists an element g ∈ Aut′(G)(k) which conjugates j`(γ)
to j`′(γ). By the observation above (applied with T1 = T2 = T0), we may assume
that g induces an automorphism of T0. Note that the group of automorphisms of T0

induced by an element of Aut′(G) is finite. By Lemma 2.2.10, the set of neat Weil
points in T (Q) is Zariski dense. It follows by Lemma 2.2.11 that σ|T is induced by
a point g ∈ Aut′(G)(k).

By construction σ fixes γ0, so g does also, and so g induces an automorphism of
I0. As σ and g are automorphisms of I0 which agree on T, they differ by conjugation
by an element of t ∈ T (k). Replacing g by gt, we may assume g induces σ on I0.
This implies that i` and i`′ are conjugate by an element of Aut′(G)(k). �

Corollary 2.2.14. Let T ⊂ Is0 be a maximal torus, and suppose that G is quasi-
split at p and has no factors of type D. Then there is an embedding of Q-groups
iT : T ↪→ G which is conjugate to each of the embeddings i`|T . In particular, for
each m > 0, there is an element γm,0,s0 ∈ G(Q) conjugate to γm,`,s0 in G(Q̄`) for
each `.

Proof. Let G∗ be the quasi-split inner form of G, and choose an inner twisting

G
'−→ G∗ over Q̄. Let iT∗` : T ↪→ G∗ be the embedding over Q̄` induced by i`|T

and the chosen inner twisting. By Proposition 2.2.13, there exists an embedding
īT : T ↪→ G∗ defined over Q̄ and conjugate to each of the iT∗` . For ` 6= p, i` is
defined over Q` so the conjugacy class of iT∗` is invariant by Gal(Q̄`/Q`). Hence,
by Cebotarev density, the stabilizer of the conjugacy class of īT in Gal(Q̄/Q) is an
open subgroup which meets every conjugacy class in Gal(Q̄/Q). This implies that
the conjugacy class of īT is invariant by Gal(Q̄/Q). It follows by [Kot82, Cor. 2.2]
that īT is conjugate to an embedding iT∗ : T ↪→ G∗ defined over Q. We view T as
a subgroup of G∗ via iT∗.

Now T transfers to G at every prime ` 6= p,∞ as i` is defined over Q`. It transfers
to G at p, since G is quasi-split at p, and it transfers to G at infinity as the image
of T in Gad is anisotropic at infinity. Hence T transfers to G by [LR87, Lem. 5.6].

For the final statement, writing iT : T ↪→ G for the transfer, we take γm,0,s0 =
iT (γm,s0). �

2.3. CM lifts and the conjugacy class of Frobenius.

2.3.1. We again return to the notation and assumptions of §2.1. Let s0, s
′
0 ∈

SKp(F̄p). Then s0, s
′
0 are defined over Fq for some q, and we use the notation of

2.1.7.
Write HomQ(As0 ,As′0) for the scheme over Q that assigns to any Q-algebra R,

the group R ⊗ Hom(As0 ,As′0). (Here the Hom-spaces are taken in the prime-to-p
isogeny categories.) For any Q-algebra R, an R-isogeny from As0 to As′0 is an
element

f ∈ HomQ(As0 ,As′0)(R)
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such that there exists

f ′ ∈ HomQ(As′0 ,As0)(R)

with f ′ ◦ f ∈ AutQ(As0)(R).
Let Isog(As0 ,As′0) be the functor on Q-algebras that assigns to any Q-algebra

R the set of R-isogenies from As0 to As′0 . Note that this functor is either empty or
representable by a torsor over Q under AutQ(As0).

2.3.2. For any prime ` 6= p, denote by V`(As0) be the `-adic Tate module of As0 ,
and let Isog

`
(As0 ,As′0) be the Q`-scheme that assigns to any Q`-algebra R the set

of R-linear isomorphisms

R⊗Q` V`(As0)
'−→ R⊗Q` V`(As′0)

that carry 1⊗ γm,`,s0 to 1⊗ γm,`,s′0 for all m sufficiently divisible.
For any ` 6= p, cohomological realization gives us a natural map of Q`-schemes:

i`(s0, s
′
0) : Q` ⊗ Isog(As0 ,As′0)→ Isog

`
(As0 ,As′0).

Similarly, let Isog(Ds0 , Ds′0
) be the Qp-scheme that assigns to every Qp-algebra

R the set of 1⊗ϕ-equivariant, R⊗L-linear isomorphisms R⊗QpDs′0

'−→ R⊗QpDs0

which carries Dm,s′0
to Dm,s0 for m sufficiently large. We have a natural map of

Qp-schemes:

ip(s0, s
′
0) : Qp ⊗ Isog(As0 ,As′0)→ Isog(Ds0 , Ds′0

).

By Tate’s theorem on endomorphisms of abelian varieties and its crystalline ana-
logue, i`(s0, s

′
0) is an isomorphism for all `.

2.3.3. For ` 6= p let P`(s0, s
′
0) ⊂ Isog

`
(As0 ,As′0) (resp. Pp(s0, s

′
0) ⊂ Isog(Ds0 , Ds′0

))
be the closed subscheme parameterizing isomorphisms that carry, for each α, 1 ⊗
sα,`,s0 to 1⊗sα,`,s′0 (resp. 1⊗sα,cris,s′0

to 1⊗sα,cris,s0). Let P (s0, s
′
0) ⊂ Isog(As0 ,As′0)

be the largest closed subscheme (defined over Q) that maps into P`(s0, s
′
0) for every

`, including ` = p. Note that P (s0, s
′
0) is either empty or an Is0 -torsor.

We make the following

Conjecture 2.3.4. For every `, the map

P (s0, s
′
0)⊗Q` → P`(s0, s

′
0)

induced by i` is an isomorphism.

When s′0 = s0 this is simply Corollary 2.1.9.

Lemma 2.3.5. The schemes P (s0, s
′
0) and P`(s0, s

′
0) depend only on s0 and s′0 and

not on the choice of the collection of Hodge cycles {sα}. In particular, the truth of
Conjecture 2.3.4 depends only on s0, s

′
0 and not on {sα}.

If (G,X) is PEL of type A or C then Conjecture 2.3.4 holds.

Proof. From the definitions it suffices to prove the first statement for P`(s0, s
′
0)

for each `. If {tβ} is another collection of Hodge cycles defining G, it suffices to
consider the case {sα} ⊂ {tβ}. If P`,1(s0, s

′
0) is the analogue of P`(s0, s

′
0) defined

using {tβ} then P`,1(s0, s
′
0) ⊂ P`(s0, s

′
0) and it suffices to show that if one scheme is

non-empty then so is the other, as then each is an I`-torsor. However each scheme
is non-empty if and only if γm,s0,` and γm,s′0,` are conjugate in G(Q̄`) (even for
` = p).
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Now suppose that (G,X) is PEL of type A or C. In this case G is the group
preserving a collection of endomorphisms {tβ} together with the polarization ψ up
to a scalar. (Note that ψ does not have weight 0, so does not quite fit into our
formalism involving {sα}.) Then ψ induces a pairing

V`(As0)× V`(As0)→ Q`(1),

well defined up to a non-zero scalar, and similarly for Dm,s0 . We refer to these
pairings as polarizations.

Define P1(s0, s
′
0) to be the subscheme of Isog(As0 ,As′0) which preserves the {tβ}

and polarizations up to a scalar. For ` 6= p let P`,1(s0, s
′
0) ⊂ Isog

`
(As0 ,As′0)

(resp. Pp,1(s0, s
′
0) ⊂ Isog(Ds0 , Ds′0

)) be the closed subscheme parameterizing iso-
morphisms that carry, for each β, 1 ⊗ tβ,`,s0 to 1 ⊗ tβ,`,s′0 (resp. 1 ⊗ tβ,cris,s′0

to
1⊗ tβ,cris,s0) and which preserve polarizations up to a scalar.

By Tate’s theorem, for each ` the map

P1(s0, s
′
0)⊗Q`

∼−→ P`,1(s0, s
′
0)

is an isomorphism. An argument as in the proof of the first part of the lemma
shows that this map can be identified with the map of Conjecture 2.3.4. �

2.3.6. In the PEL case, when G is unramified at p, the above result is due to
Kottwitz - see [Kot92, Lem. 17.1, 17.2] and their proofs.

The restriction that (G,X) be of type A or C in the lemma above is in some
sense a question of definitions. When (G,X) is PEL of type D, one cannot actually
define G ⊂ GSp(V ) using endomorphisms and polarizations. Instead, there is a
collection {tβ} ⊂ V ⊗ of a polarization and endomorphisms which define a group
G′ ⊂ GSp(V ) whose connected component is G [Kot92, p393]. An analogue of the
last statement of the lemma then holds for G′.

We will say that s0 and s′0 are Q̄-isogenous if the space P (s0, s
′
0) of (2.3.3) is

non-empty. We will say that they are isogenous if P (s0, s
′
0)(Q) is non-empty. If

s0, s
′
0 ∈ SKp(F̄p) we will say that s′0 and s0 are Q̄-isogenous (resp. isogenous) if

this condition holds when s0, s
′
0 are viewed as Fq points for some q = pr.

2.3.7. Let s0 ∈ SKp(F̄p). Suppose that T ⊂ Is0 is a maximal torus. Let h :
ResC/R Gm → GR be an R-morphism. Let ShKT,p(h) be the pro-Shimura variety
associated with (T, {h}) and KT,p = Kp ∩ T (Qp). An isogeny CM lift (resp. a
Q̄-isogeny CM lift) of s0 with respect to T will consist of a triple (j, x, s′0), where:

• j : T ↪→ G is an embedding defined over Q, such that for each `, j is
conjugate over Q̄` to the embedding

i` : TQ` ↪→ I`,s0 ↪→ GQ` ;

• x ∈ X is a point with hx factoring through j(TR); and
• s′0 ∈ SKp(F̄p) is a point admitting a lift to ShKT,p(hx);

such that s′0 is isogenous (resp. Q̄-isogenous) to s0.
Of course isogeny CM lifts can exist only when the i` are conjugate for all `. We

make the following conjecture:

Conjecture 2.3.8. If G is quasi-split at p, then for any s0 ∈ SKp(F̄p) and any
maximal torus T ⊂ Is0 , s0 admits an isogeny CM lift with respect to T.
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When Kp is hyperspecial this conjecture is proved in [Kis10]. The main point of
this section is to show that Conjecture 2.3.4 implies a version of Conjecture 2.3.8
with Q̄-isogenies, when Gad has no factors of type D. In particular, we will show a
Q̄-version of this conjecture holds for (G,X) of PEL type A or C.

2.3.9. Let T ⊂ G be a maximal torus and x ∈ X with hx factoring through T. Let
s0 ∈ SKp(F̄p) be defined over Fq for some q = pr. Suppose that s0 is a reduction

of a Q̄p-valued point s of ShKT,p(hx).
For any m ∈ Z>0, the qm-Frobenius acts on As0 , and the corresponding auto-

morphism γm,s0 ∈ AutQ(As0) lies in Is0(Q). Since T contains the Mumford-Tate

group of As (defined via some embedding Q̄p ↪→ C), there are natural embeddings:

T ↪→ AutQ(As) ↪→ AutQ(As0).

It follows from the definitions that this embedding exhibits T as a subtorus of
Is0 .

Recall, 2.2.3 that an element γ ∈ T (Q) is called a p-unit if the subgroup it
generates is contained in a compact subset of T (Q`) for all ` 6= p.

Lemma 2.3.10. The element γm,s0 lies in T (Q) ⊂ Is0(Q). It has the following
properties:

(2.3.10.1) γm,s0 is a p-unit.
(2.3.10.2) Set µ = µ−1

x ∈ X∗(T ). Under the composition

T (Q)→ T (Qp)→ B(T )
κT−−→
'

X∗(T )Γp ,

γm,s0 is mapped to m logp q · µ].
Given any other element γ ∈ T (Q) satisfying the two conditions above, there exists
r ∈ Z>0 such that γrm,s0 = γr.

Proof. It was already remarked in the proof of Proposition 2.2.13, that γm,s0 ∈
Is0(Q) is a Weil point, hence a p-unit by Lemma 2.2.4.

Let us show (2.3.10.2). First, we note that, for m sufficiently large, the embed-
ding:

TQp ↪→ Qp ⊗ Is0 ↪→ Aut(Dm,s0)

arises from an isomorphism Qqm⊗V
'−→ Dm,s0 . We can choose this isomorphism so

that the semi-linear map ϕ : Dm,s0 → Dm,s0 is identified with the automorphism
δs0(σ ⊗ 1) of Qqm ⊗ V , for some element δs0 ∈ T (Qqm). By (1.3.9), the image of
δs0 in X∗(T )Γp is µ]. The assertion now follows from (2.1.7.2).

For the final assertion, note that, since (T/Gm)R is compact, T (Q) is a discrete
subgroup of T (Af ). Given γ satisfying (2.3.10.1) and (2.3.10.2), set β = γ−1γm,s0 .
We have to show that βr = 1 for some r ∈ Z>0.

For ` 6= p, the eigenvalues of β acting on V`(As0) all belong to Z×` ; therefore, β
lies in a compact subgroup of T (Apf ). Moreover, β is in the kernel of T (Qp)→ B(T ),

and so it lies in the compact subgroup in T (Qp) consisting of elements σ-conjugate
to 1 over L. In sum, we find that β lies in both the discrete subgroup T (Q) and a
compact subgroup of T (Af ), and must therefore be of finite order. �

Proposition 2.3.11. Suppose that G is quasi-split at p, that Gad has no factors
of type D, and that Conjecture 2.3.4 holds for (G,X). Then for any maximal torus
T ⊂ Is0 , s0 admits a Q̄-isogeny CM lift with respect to T.
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Proof. We can view TQp as a maximal torus in Ip,s0 . By (1.1.17), there exists a

cocharacter µT ∈ X∗(T ) defined over Q̄ whose image in GQ̄ lies in the conjugacy

class {µX}p, and such that νδs0 = NµT ∈ X∗(T )
Γp
Q .

By Corollary 2.2.14 there is an embedding i : T ↪→ G such that for all `, i is
G(Q̄l)-conjugate to the embeddings

i` : TQ` ↪→ I`,s0 ↪→ GQ` .

The cocharacter

µT,∞ : Gm,C → TC

obtained from µT via the embedding ι∞ : Q̄ ↪→ C is G(C)-conjugate to µy, for
y ∈ X. By modifying i within its G(Q̄)-conjugacy class, as in (1.2.5), we can
assume that µT,∞ is G(R)-conjugate to µy, and so arises from a homomorphism
hx : S→ TR, for x ∈ X.

Let s′0 ∈ SKp(F̄p) be the reduction of a point of ShKT,p(hx). Recall from the
preceding lemma that the qm-Frobenius γm,s0 ∈ Is0(Q) is contained in T (Q). We
claim that for m sufficiently divisible,

γm,s0 = γm,s′0 ∈ T (Q).

Here we view s0, s
′
0 ∈ SKp(Fqm). Assuming this, we see that, since i and i` are

conjugate for any `, γm,`,s0 and γm,`,s′0 are conjugate in G(Q̄`). This implies that
P`(s0, s

′
0) is non-empty, and hence P (s0, s

′
0) is non-empty by Conjecture 2.3.4,

which implies that s′0 is a Q̄-isogeny CM lift of s0 with respect to T.
To see the claim, note that the eigenvalues of γm,s0 acting on V`(As0) for ` 6= p

are qm-Weil numbers. So γm,s0 ∈ T (Q) is a p-unit as in Lemma 2.3.10. We have

γm,p,s0 = δs0σ(δs0) · · ·σrm−2(δs0)σrm−1(δs0)

so using (1.1.2.4) we see that the image of γm,p,s0 under the composite

T (Qp)
κ−→ X∗(T )Γp → X∗(T )Γp ⊗Q '−→

N
X∗(T )

Γp
Q .

is equal to the image of rmνδs0 (p) = rmNµT (p), which is just the image of rmµT =

m logp q · µT in X∗(T )Γp ⊗Q by (1.1.2.4). Hence for m divisible enough the image

of γm,s0 in X∗(T )Γp is m logp q · µ]. It follows by Lemma 2.3.10 that γm,s0 = γm,s′0
for m sufficiently divisible. �

2.3.12. We will show that in some cases, the result of Proposition 2.3.11 can be
improved to produce Q-isogeny lifts of s0. To do that we need the following.

Lemma 2.3.13. Suppose that s0 ∈ SKp(F̄p), T ⊂ Is0 a maximal torus, and that

s0 admits a Q̄-isogeny CM lift (j, x, s′0) with respect to T. Let PT = PT (s0, s
′
0) be

the subscheme of P (s0, s
′
0) consisting of isomorphisms which respect the action of

T. Then PT is a T -torsor, whose class in H1(Qv, G) is trivial for every place v of
G.

Proof. By construction As0 and As′0 are equipped with an action of T, so the

subscheme PT is well defined. For each `, we denote by PT` (s0, s
′
0) the subscheme

of P`(s0, s
′
0) consisting of isomorphisms which respect the action of T. Since j is

conjugate to i` by an element of G(Q̄`), PT` (s0, s
′
0) is non-empty. Hence by Tate’s

theorem PT := PT (s0, s
′
0) is non-empty, and thus is a T -torsor, which is a reduction

of the Is0-torsor P (s0, s
′
0).
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Let I ′s0 denote the group of automorphisms of As0 respecting polarizations up to
a Q×-scalar. Consider the subscheme P ⊂ Isog(As0 ,As′0) parametrizing isogenies

respecting polarizations up to a Q×-scalar. Then P is an I ′s0 -torsor. By [Kot92,

Lem. 17.1], the class of P in H1(R, I ′s0) is trivial, so the class of PT in H1(R, T ) is

trivial by [Kis17, Lem. 4.4.5]. In particular, the class of PT in H1(R, G) is trivial.
Next for ` 6= p a finite prime, consider Isom{sα}(V`(As0), V`(As′0)), the scheme

of isomorphisms which take sα,`,s0 to sα,`,s′0 . (Note that we do not require that the
isomorphisms respect Frobenius.) This scheme is a G-torsor over Q`, obtained from
PT via the natural map T → G over Q`. If s̃0, s̃

′
0 ∈ SKp are lifts of s̃0, s̃

′
0 then this

G-torsor may also be identified with Isom{sα}(V`(As̃0), V`(As̃′0)). However, from the
definition of the universal abelian scheme over SKp , one sees that this last torsor
is trivial.

It remains to check that the image of PT in H1(Qp, G) is trivial. Fix q such
that s0, s

′
0 are defined over Fq. As above, by Steinberg’s theorem, for m sufficiently

large, we may fix isomorphisms

Dm,s0 ' Qqm ⊗ V ' Dm,s′0

which take sα to sα,cris,s0 and sα,cris,s′0
respectively and respect the action of T.

Then ϕ on Dm,s0 and Dm,s′0
are given by δs0(σ⊗ 1), δs′0(σ⊗ 1) respectively for δs0 ,

δs′0 ∈ T (Qqm).
Recall that for any reductive group H over Qp we have isomorphisms [Kot85]

H1(Qp, H) ' H1(Gal(Qur
p /Qp), H) ' (π1(H)Γp)tors.

Here the first isomorphism is given by Steinberg’s theorem, and the second isomor-
phism takes a cocycle c to κH(cσ), σ the Frobenius.

The class of PT in H1(Qp, T ) corresponds to the cocycle sending σ to δs′0δ
−1
s0 .

By Lemma 1.3.9, δs0 and δs′0 have the same image in π1(G)Γp , so that the class of

this torsor in H1(Qp, G) is trivial, as required. �

Corollary 2.3.14. With the assumptions of Proposition 2.3.11, suppose that Gder

is simply connected and that Gab satisfies the Hasse principle:

ker1(Q, Gab) := ker(H1(Q, Gab)→
∏
v

H1(Qv, Gab)) = 0.

Then for any maximal torus T ⊂ Is0 , s0 admits a Q-isogeny CM lift with respect
to T.

Proof. By Corollary 2.3.11 s0 admits a Q̄-isogeny CM lift with respect to T, say
(j, x, s′0). Let PT be as in Lemma 2.3.13. For every place v of Q, the class of PT

is trivial in H1(Qv, G) and hence in H1(Qv, Gab). Since Gab satisfies the Hasse
principle the class of PT in H1(Q, Gab) is trivial.

As PT has trivial image in H1(R, G) and H1(Q, Gab), and Gder is simply con-
nected, PT has trivial image in H1(Q, G) by [Bor98, Thm. 5.12], so PT arises from
a point ω ∈ (G/T )(Q). Now let j′ = ω−1jω. Then j′ : T → G is defined over Q.
Since the image of ω in H1(R, T ) is trivial, ω−1hxω corresponds to a point x′ ∈ X
and factors through j′(TR) (cf. [Kis17, 4.2.2]). If s′′0 ∈ SKp(F̄p) is a point admitting
a lift to ShKT,p(hx), then P (s0, s

′′
0) is a trivial Is0-torsor by [Kis17, Prop. 4.2.6], so

(j′, x′, s′′0) is an isogeny CM lift with respect to T. �
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Corollary 2.3.15. Suppose that G is quasi-split at p, and that (G,X) is of PEL
type A or C. Then for any maximal torus T ⊂ Is0 , s0 admits a Q̄-isogeny CM lift
with respect to T. Moreover, s0 admits a Q-isogeny CM lift with respect to T unless
G is of type An with n even.

Proof. The first statement follows from Proposition 2.3.11, and Lemma 2.3.5. For
the second statement note that if (G,X) is of PEL type A or C then Gder is simply
connected, and Gab satisfies the Hasse principle unless G is of type An with n even
[Kot92, §7]. Hence the second statement follows from Corollary 2.3.14. �

Remarks 2.3.16. (1) In fact the corollary can be shown for certain groups G of type
An with n even. Namely if it is a unitary similitude group (in n + 1 variables)
arising from a CM quadratic extension F of a totally real field F+ with [F+ : Q]
odd, then the Hasse principle holds for G by the proof of Lemma 3.1.1 of [Shi11],
so the above proof goes through.

(2) As in 2.3.6, one can extend the proof of the first statement of the last corollary
to the case of type D if one works with the disconnected group G′. For an alge-
braically closed field k, two points of G(k) give rise to the same point of Conj′(G)
if and only if they are conjugate in G′(k). Using this one can deduce a version of
Corollary 2.2.14 from Proposition 2.2.13, and use it to deduce an analog of the first
part of Corollary 2.3.15, but where Q̄-isogeny is defined using the tensors {tβ}. We
leave this as an exercise for the reader.

(3) In [Zin83], Zink proves that for PEL Shimura varieties, and primes of good
reduction, every point has an isogeny CM lift with respect to T. However, his defi-
nition of isogeny is required to respect only endomorphisms and not polarizations.
In that case the analogue of P (s0, s

′
0) is a torsor under the group of units in a

product of (possibly skew) fields. Any such torsor is trivial, for example because a
Q-vector space has a Zariski dense set of rational points, or alternatively because
in this case the group is a product of inner forms of GLn .

Thus, the first part of Corollary 2.3.15 recovers Zink’s result in this case. How-
ever, the second part is really stronger. Even for the moduli space of principally
polarized abelian varieties the deduction of this statement using Honda-Tate theory
does not quite seem to be in the literature. Although it is a special case of a result
of [Kis17], the techniques used there are quite different.

(4) The condition on Gab in Corollary 2.3.14 and the second part of Corollary
2.3.15 is used to show that the class of PT in H1(Q, Gab) is trivial. In fact this
should follow from the fact that s0, s

′
0 lie on the same Shimura variety, since the

motive obtained from As0 and any representation of G which factors through Gab

should be constant; for example this holds in characteristic 0 at the level of vari-
ations of Hodge structure. Even when Gder is not simply connected, there is a
corresponding cohomology group H1(Q, G/G̃), in which the image of PT should

be trivial (here G̃ is the simply connected cover of Gder), which would be enough
for the argument of Corollary 2.3.14. Unfortunately we do not know how to make
these motivic heuristics rigorous.

(5) We have not thought seriously about which of these results can be generalized
to the case of abelian type Shimura varieties. Integral models for these are usually
defined using those for an auxiliary Shimura variety of Hodge type. Thus, it is quite
plausible that one can directly deduce analogues of our results on non-emptiness of
Newton strata and special point liftings. Of course in this case the construction of
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the Newton strata would usually also involve the auxiliary Shimura variety. A more
interesting problem is the definition and non-emptiness of the torsors P (s0, s

′
0),

given the lack of a good general definition of an isogeny of motives - see the recent
paper of Yang [Yan] for the case of K3-surfaces.

Appendix A. Construction of isocrystals with G-structure

The purpose of this appendix is to prove Proposition 1.3.12. The main tool
is Faltings’ comparison theorem [Fal02] p. 62, as well as de Jong’s theorem on
alterations [dJ96] and a result of Ogus on proper descent for convergent isocrystals
[Ogu84].

A.1. Let k be a perfect field of characteristic p, and W = W (k). We equip k and
W with the trivial log structure.

Let X be a scheme over W, equipped with a fine saturated log structure. A
p-adic formal log scheme T over W, is a p-adic formal scheme T/W together with
the data of a compatible system of log structures on Tn = T ⊗Z Z/pnZ for n ≥ 1,
such that the inclusions Tn ↪→ Tn+1 are exact.

An enlargement of X is a triple (T, I, iT ) consisting of a p-adic formal log scheme
T over W, an ideal of definition I of T, and a map of log schemes iT : T0 → X,
where T0 is the subscheme of T defined by I. We say that (T, I, iT ) is reduced if T0

is reduced. We say that (T, I, iT ) is a PD-enlargement if I is equipped with divided
powers extending the divided powers on pW.

As in [Ogu84, 2.7], using the definition of an enlargement we can define the
category of convergent log isocrystals (cf. [Ogu95, §3]). This category does not
change if we allow I to be any p-adically closed ideal as in [Fal02, p. 258]. Indeed,
the value of a convergent log isocrystal on such an enlargement can be defined as the
inverse limit of its values on (T, (I, pn), iT,n) for n ≥ 1, where IT,n is the composite

Tn ↪→ T0
iT→ X and Tn is defined by (I, pn).

The category of convergent log isocrystals also does not change if we define it
using only reduced enlargements. In particular it depends only on X ⊗Z Z/pZ, and
not on X, and is equipped with a Frobenius pullback functor F ∗. Thus, we have
the notion of a convergent log F -isocrystal (again cf. [Ogu95, §3]). When the log
structure on X is trivial, this agrees with the definition of convergent isocrystal and
F -isocrystal in [Ogu84].

The log crystalline site of X is the site whose objects consist of PD-enlargements.
As in [MP19, 1.3.3] a log Dieudonné crystal over X is a crystal M in the log crys-
talline site of X together with maps F ∗M →M and M → F ∗M whose composite
in either order is multiplication by p. As in [Ogu84, 2.18] or [Ogu95, Rem. 16], a
log Dieudonné crystal over X gives rise to a convergent F -isocrystal on X.

A.2. Let S be a flat, normal, finite type W -scheme, D ⊂ S a relative Cartier
divisor, and j : U = D − S ↪→ S, the inclusion. We consider S as a log scheme
equipped with the log structure j∗OU , and for n ≥ 1, we give S ⊗Z Z/pnZ the
induced log structure.

Let π : A → U be an abelian scheme, which extends to a semi-abelian scheme
over S. We denote by L the étale local system R1π∗Qp on UK,ét. We denote by E
the convergent F -isocrystal on U attached to the p-divisible group A[p∞].
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By [MP19, 1.3.5] there is a log Dieudonné crystal on S attached to A, and hence
a convergent log F -isocrystal E log on S, whose restriction to U is E , and whose
formation is compatible with Cartier duality.

A.3. Let K0 = W [1/p], and K/K0 a finite extension. Fix an algebraic closure
K̄ ⊃ K, and let GK = Gal(K̄/K). We keep the above notation, but we now assume
that S is semi-stable over OK , and that S0 ∪D ⊂ S is a normal crossing divisor.
Here S0 = S ⊗OK k.

Above we considered S with the log structure given by D. We denote by Svlog

the scheme S considered with the log structure given by S0 ∪ D. There is a map
of log schemes i : Svlog → S. We set Evlog = i∗(E log), a convergent F -isocrystal on
Svlog.

Lemma A.4. With the above notation, L and Evlog are associated in the sense of
[Fal02, p. 258].

Proof. As already remarked in [Fal02], Evlog gives rise to a convergent isocrystal in
the sense of loc. cit. p. 258. The proof of the lemma is entirely analogous to the
argument given in [Fal99, §6], cf. also [MP19, A2.2] for the case of log schemes. �

A.5. We now return to the assumptions of A.2, so we no longer assume that S is
semi-stable.

Let s : 1 → L⊗ be a map of étale local systems over U. That is, s is a global
section of L⊗. For any finite K ′/K in K̄, with residue field k′, and any ξ ∈ U(OK′),
ξ∗(s) corresponds to a section

s0,ξ = Dcris(ξ
∗(s)) : 1→ ξ∗(E)⊗.

Proposition A.6. If S is proper and semi-stable over OK , and S0 ∪D ⊂ S is a
normal crossing divisor, then there is a morphism of convergent log F -isocrystals
s0 : 1 → E log⊗ over S such that ξ∗(s0)(W (k′)) = s0,ξ for all K ′/K, k′, and ξ as
above

Proof. Let π ∈ OK be a uniformizer and E(T ) an Eisenstein polynomial for π. Let
R = W [[T ]], and for n ≥ 1 let Rn be the p-adic completion of W [T,E(T )ni/i!]. We
view OK as an Rn-algebra, and so an R-algebra via T 7→ π. It suffices to construct
s0 étale locally on S.

Let SpecA be an étale neighborhood of S, which admits an étale map

$ : SpecA→ OK [t1, . . . , td]/(t1 · · · te − π)

for some e ≤ d, and such that the log structure on SpecA is given by the preimage
of the Cartier divisor defined by t1 · · · tr for some e ≤ r ≤ d. Let Â be the p-
adic completion of A. Thus Spf Â is a p-adic formal log scheme over OK , which is
formally smooth when OK is equipped with the log structure OK −{0}. Lift Spf Â,

to a formally smooth (p, T )-adic formal log scheme YR = Spf ÂR over R (defined

as in the p-adic case). Thus, ÂR is formally étale over the (p, T )-adic completion
of R[t1, · · · , td]/(t1 · · · te − T ), with the log structure given by the preimage of the
Cartier divisor defined by t1 · · · tr.

We consider the Frobenius lift F on ÂR induced by ti 7→ tpi , and T 7→ T p. Let
Yn be the base change of YR to Rn. Then F induces a lift of Frobenius on Yn. Note
that Yn is an enlargement of Svlog, and so we may evaluate Evlog on it.
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By (A.4) and [Fal02, §5, Cor. 4, Rem. 1)], s gives rise to a Frobenius invariant,
parallel section s0 of Evlog(Y1)⊗. Note that the result of loc. cit applies, because
Evlog arises from a log Dieudonné crystal on Svlog. Hence for any m,n we can
apply that result to the log F -crystal obtained by multiplying the Frobenius on
Evlog⊗n ⊗ Evlog∗⊗m by a high enough power of p, and replacing L⊗n ⊗ L∗⊗m by
a suitable Tate twist. Since s0 is Frobenius invariant, it gives rise to a section of
Evlog(Yn)⊗ for any n ≥ 1.

Now let Y hn be the p-adic formal log scheme with the same underlying formal
scheme as Yn, but with the log structure defined by te+1 · · · tr. Then Y hn is an
enlargement of S, and from the definitions we have E log(Y hn ) = Evlog(Yn). Since YR
is formally smooth over W, as in [Ogu84, Thm 2.11], the sections s0 ∈ E log(Y hn )⊗

give rise to a morphism of convergent F -isocrystals s0 : 1→ E log⊗ over SpecA. The
relation ξ∗(s0)(W (k′)) = s0,ξ follows from the functoriality of the map constructed
in [Fal02]. �

Corollary A.7. For any S (not assumed proper or semi-stable), and s : 1 → L⊗
as above, there exists a unique morphism of convergent F -isocrystals over U

s0 : 1→ E⊗

such that for every K ′/K finite, and ξ as above ξ∗(s0)(W (k′)) = s0,ξ.

Proof. By [dJ96, Thm 6.5], after replacing K by a finite extension, there exists a
proper truncated hypercovering

U1 ⇒ U0 → U

such that for i = 0, 1 there is a dense open immersion Ui ↪→ Si, with Si proper
and semi-stable, and (Si\Ui) ∪ Si ⊗OK k is a normal crossings divisor in Si. By
proper descent for convergent isocrystals [Ogu84, Thm 4.6], it suffices to prove the
proposition with Ui in place of U. Thus we may replace U by Ui, and S by Si,
and assume that S is proper and semi-stable, and S0 ∪D ⊂ S is a normal crossing
divisor. Then the required map is obtained by restricting the map s0 : 1 → E log⊗

of Proposition A.6 to U. The uniqueness is easily deduced from [Ogu84, Thm 4.1].
�
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