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Abstract. Our main theorem describes the degree 0 cohomology of non-basic
Igusa varieties in terms of one-dimensional automorphic representations in the

geometry of mod p Hodge-type Shimura varieties with hyperspecial level at p. As

an application we obtain a completely new approach to two geometric questions.
Firstly, we deduce irreducibility of Igusa towers and its generalization to non-

basic Igusa varieties in the same generality, extending previous results by Igusa,

Ribet, Faltings–Chai, Hida, and others. Secondly, we verify the discrete part of
the Hecke orbit conjecture, which amounts to the assertion that the irreducible

components of a non-basic central leaf belong to a single prime-to-p Hecke orbit,
generalizing preceding works by Chai, Oort, Yu, et al. We also show purely local

criteria for irreducibility of central leaves. Our proof is based on a Langlands–

Kottwitz type formula for Igusa varieties due to Mack-Crane, an asymptotic
study of the trace formula, and an estimate for unitary representations and their

Jacquet modules in representation theory of p-adic groups due to Howe–Moore

and Casselman.
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1. Introduction

Igusa varieties were studied by Igusa [Igu68] and Katz–Mazur [KM85] in the case
of modular curves. Harris–Taylor and Mantovan [HT01, Man05] have generalized
the construction to PEL-type Shimura varieties. Recently Caraiani–Scholze [CS17]
gave a slightly different definition in the PEL case which gives the same cohomol-
ogy. Hamacher, Zhang, and Hamacher–Kim went further to define Igusa varieties
for Hodge-type Shimura varieties [Ham17, Zha, HK19]. In the (µ-)ordinary setting,
Igusa varieties are also referred to as Igusa towers. (Often the definitions differ in a
minor way.) There are versions of Igusa varieties as p-adic formal schemes or adic
spaces over p-adic fields, but we concentrate on the characteristic p varieties in this
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paper. We mention that function-field analogues of Igusa varieties are studied in a
forthcoming paper by Sempliner; see also [Zhu, Ex. 4.7.15].

The `-adic cohomology of Igusa varieties (with ` 6= p) has several arithmetic ap-
plications. In [HT01, Man05, HK19], the authors prove a formula computing the
cohomology of Shimura varieties in terms of that of Igusa varieties and Rapoport–
Zink spaces. This means that, if we understand the cohomology of Igusa varieties
well enough, then our knowledge of cohomology can be propagated from Rapoport–
Zink spaces to Shimura varieties or the other way around. This is the basic principle
underlying [Shi11, Shi12] on the global Langlands correspondence and the Kottwitz
conjecture. For another application, a description of `-adic cohomology of Igusa vari-
eties was one of the main ingredients in [CS17,CS] to prove vanishing of cohomology
of certain Shimura varieties with `-torsion coefficients, which in turn supplied a criti-
cal input for a recent breakthrough on the Ramanujan and Sato–Tate conjecture for
cuspidal automorphic representations of GL2 of “weight 2” over CM fields [ACC+].

Thus an important long-term goal is to compute the `-adic cohomology of Igusa
varieties with a natural group action. A major first step is a Langlands–Kottwitz
style trace formula for Igusa varieties, which has been obtained for Shimura varieties
of Hodge type at hyperspecial level in [Shi09,Shi10,MC21] building upon [HT01, Ch. 5]
in analogy with [LR87,Kot92b,KSZ]. One wishes to turn that into an expression of the
cohomology via automorphic forms, but this requires a solution of various complicated
problems; some are tractable but others are out of reach in general, most notably an
endoscopic classification and Arthur’s multiplicity formula for the relevant groups.

The main objective of this paper is twofold. Firstly, we describe H0 of Igusa vari-
eties via one-dimensional automorphic representations over non-basic Newton strata
of Hodge-type Shimura varieties at hyperspecial level.1 This mirrors the well-known
fact thatH0 of complex Shimura varieties is governed by one-dimensional automorphic
representations. Secondly, to achieve this, we develop a method and obtain various
technical results with a view towards the entire cohomology of Igusa varieties (as an al-
ternating sum over all degrees). Our method, partly inspired by Laumon [Lau05] and
also by Flicker–Kazhdan [FK88], should prove useful for studying `-adic cohomology
of Shimura varieties as well.

Our result on H0 not only sets a milestone in its own right, but also reveals deep
geometric information. Namely, our theorem readily implies the discrete Hecke or-
bit conjecture for Shimura varieties and the irreducibility of Igusa varieties in the
same generality as above. (The irreducibility means that Igusa varieties are no more
reducible than the underlying Shimura varieties in some precise sense.) Our work
provides a completely new approach and perspective to these two problems by means
of automorphic forms and representation theory.

One of our main novelties consists in a careful asymptotic argument via the trace
formula to single out H0 (or compactly supported cohomology in the top degree)
without reliance on any classification. This is essential for obtaining an unconditional
result. Since the “variable” for asymptotics is encoded in the test function at p, a
good amount of local harmonic analysis naturally enters the picture. Another feature
of our approach is to allow induction on the semisimple rank of the group; this would

1In the basic case, Igusa varieties are 0-dimensional, and it can be deduced from [MC21] that
their H0 is expressed as the space of algebraic automorphic forms on an inner form of G. Such a

description goes back to Serre [Ser96] for modular curves, and Fargues [Far04, Ch. 5] in the PEL
case.
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make little sense in a purely geometric argument as endoscopy is hard to realize in
the geometry of Shimura varieties.

Roughly speaking, cohomology of Igusa varieties is closely related to that of Shimu-
ra varieties via the Jacquet module operation at p, relative to a proper parabolic
subgroup in the non-basic case. To show that only one-dimensional automorphic
representations contribute to H0 of Igusa varieties, the key representation-theoretic
input is an estimate for the central action on Jacquet modules due to Casselman and
Howe–Moore. Though there is no direct link, it would be interesting to note that
a similar situation occurs in the context of beyond endoscopy (e.g., [FLN10, §5]),
where the leading term in asymptotics is accounted for by the “most non-tempered”
(namely one-dimensional) representations. This is also analogous to the spectral gap,
which plays a crucial role in the Hecke equidistribution theorems in characteristic zero
(cf. §1.3 below).

1.1. The main theorem. Let (G,X) be a Shimura datum of Hodge type with reflex
field E ⊂ C. Assume that the reductive group G over Q admits a reductive model over
Zp, and take Kp := G(Zp). (Namely G is unramified at p, and Kp is a hyperspecial
subgroup.) Write Gad for the adjoint group of G. We do not assume p > 2 as the
case p = 2 is covered in [KSZ,MC21].

Fix field maps Q ↪→ Qp, Qp ' C, and Q` ' C (which will be mostly implicit).

The resulting embedding E ↪→ Qp induces a place p of E above p. Let k(p) denote

the residue field of E at p, which embeds into the residue field Fp of Qp. Thereby

we identify k(p) ' Fp. Let SKp denote the integral canonical model over OEp
with

a G(A∞,p)-action. In the main text, it is sometimes important to pass to finite level
away from p in order to apply a fixed-point formula. However, we will ignore this point
and pretend that we are always at infinite level away from p to simplify exposition.

An embedding of (G,X) into a Siegel Shimura datum determines a G(A∞,p)-
equivariant map from SKp to a suitable Siegel moduli scheme over OEp

. Via pullback,
we obtain a universal abelian scheme A over SKp , which can be equipped with a fam-
ily of étale and crystalline tensors over geometric points x→ SKp,k(p). This assigns to
x the p-divisible group Ax[p∞] (with G-structure, encoded by the family of crystalline
tensors).

Let µp : Gm → GQp denote the “Hodge” cocharacter arising from (G,X) (via

Qp ' C). This cuts out a finite subset B(GQp , µ
−1
p ) in the Kottwitz set B(GQp) of

G-isocrystals. Fix an element [b] ∈ B(GQp , µ
−1
p ). (The containment ensures that

the Newton stratum Nb below is nonempty.) Then [b] determines a p-divisible group
with G-structure over Fp up to isogeny via Dieudonné theory and the embedding
of Shimura data above. Choose (the isomorphism class of) a p-divisible group with

G-structure Σb in the isogeny class, which amounts to specifying b ∈ G(Q̆p) (up to

σ-conjugation under G(Z̆p)) whose image in B(GQp) is [b].
We obtain a Newton cocharacter νb from b, which may be conjugated to be dom-

inant with respect to a suitable Borel subgroup B of GQp defined over Qp. Write
ρ for the half sum of all B-positive roots. For simplicity, assume that Σb is defined
over k(p) and that [k(p) : Fp]νb is a cocharacter, not just a fractional cocharacter.
(In practice, these assumptions are unnecessary since it is sufficient to have a finite
extension of k(p) in the last sentence.)

Write Jb for the Qp-group of self-quasi-isogenies of Σb (preserving G-structure)

over Fp, and J int
b for the subgroup of Jb(Qp) consisting of automorphisms. Then J int

b

is an open compact subgroup of Jb(Qp). As a general fact, Jb is an inner form of a
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Qp-rational Levi subgroup Mb of GQp . We say that b is basic if νb is a central in GQp ,
or equivalently if Mb = GQp (namely if Jb is an inner form of GQp). The element b is

Q-non-basic if the image of b in B(Gad
Qp) is non-basic in every Q-simple factor of Gad,

cf. Definition 5.3.2. If Gad is Q-simple then this is equivalent to the condition that b
is non-basic.

The central leaf Cb (resp. Newton stratum Nb) is the locus of x ∈ SKp on which the
geometric fibers of Ax[p∞] are isomorphic (resp. isogenous) to Σb. Thus Nb depends
only on [b]. By construction, Cb and Nb are stable under the G(A∞,p)-action on
SKp . We also define the Igusa variety Igb over SKp,k(p) to be the parameter space of

isomorphisms between Σb and Ax[p∞]. The obvious action of J int
b on Igb naturally

extends to a Jb(Qp)-action. Below are some basic facts (§5.3, §6.1, and §6.2). Put
q := #k(p).

Fact 1. Cb is (formally) smooth over k(p) and closed in Nb,
Fact 2. Cb is equidimensional of dimension 〈2ρ, νb〉,
Fact 3. Igb is a pro-étale J int

b -torsor over the perfection of Cb,
Fact 4. In the completely slope divisible case, the qr-th power Frobenius on Igb co-

incides with the action of νb(q
r) ∈ ZJb(Qp) for sufficiently divisible r.

Fact 5. As an Fp-scheme with a G(A∞,p) × Jb(Qp)-action, Igb (up to isomorphism)
depends on b only through [b].

In particular dim Igb = 〈2ρ, νb〉, and every connected component of Igb,Fp (resp. Cb,Fp)

is irreducible.
Our main theorem describes the connected components (= irreducible components)

of Igusa varieties over Fp together with the G(A∞,p)×Jb(Qp)-action. Let us introduce
some notation. Write G(Qp)ab for the abelianization of G(Qp) as a topological group.
There is a canonical map ζb : Jb(Qp) � G(Qp)ab coming from the fact that Jb is an
inner form of a Levi subgroup of GQp , cf. §6.1 below. Each one-dimensional smooth

representation πp of G(Qp) factors through G(Qp)ab, giving rise to a one-dimensional
representation πp ◦ ζb of Jb(Qp).
Theorem A (Theorem 6.1.4). Assume that b is Q-non-basic with [b] ∈ B(GQp , µ

−1
p ).

Then there is a G(A∞,p)× Jb(Qp)-module isomorphism

H0(Igb,Q`) '
⊕
π

π∞,p ⊗ (πp ◦ ζb),

where the sum runs over one-dimensional automorphic representations π = π∞,p ⊗
πp ⊗ π∞ of G(A) such that π∞ is trivial on the preimage of the neutral component
Gad(R)0 in G(R).

Before we sketch the idea of proof, let us discuss two geometric applications.

1.2. Application to irreducibility of Igusa towers and a generalization. In Hida theory
of p-adic automorphic forms, an important role is played by Igusa varieties over the
ordinary Newton stratum, namely when the underlying p-divisible group is ordinary.
In this case, Igusa varieties (and their natural extension to p-adic formal schemes)
are usually referred to as Igusa towers. Recently Eischen and Mantovan [EM21]
developed Hida theory in the more general µ-ordinary PEL-type situation, where
Howe [How20] (and its sequel) also shed new light on the role of Igusa varieties (à
la Caraiani–Scholze). Igusa towers are also featured in Andreatta–Iovita–Pilloni’s
work [AIP16,AIP18] on overconvergent automorphic forms.

A key property of Igusa towers is irreducibility. This property has an application
to the q-expansion principle for p-adic automorphic forms, which is a basic ingredient
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for the construction of p-adic L-functions. See p.96 in [Hid04] for the relevant remark,
and also refer to Thm. 3.3 (Igusa), 4.21 (Ribet), 6.4.3 (Faltings–Chai), and Cor. 8.17
(Hida) therein for the known cases (elliptic modular, Hilbert, Siegel, and PEL type
A/C cases, respectively, all over the ordinary stratum) and further references. Irre-
ducibility in the µ-ordinary case of PEL type A was proven in [EM21]. Such a result
was obtained for Igusa varieties of a specific PEL type A by Boyer [Boy] without
assuming µ-ordinariness.

There are various methods to show the irreducibility as explained in [Cha08] and
the introduction of [Hid11], e.g., by using the automorphism group of the function
fields of Shimura varieties in characteristic 0 or by showing that the family of abelian
varieties has large monodromy. As an application of Theorem A, we obtain an entirely
different representation-theoretic proof and also a natural generalization from the µ-
ordinary case to the general Q-non-basic case (and from the PEL case to the case of
Hodge type). In the non-µ-ordinary case, Igusa varieties lie over a central leaf rather
than an entire Newton stratum, but our method is insensitive to such a distinction.

Write Jb(Qp)′ := ker(ζb : Jb(Qp)→ G(Qp)ab). Our result is as follows.

Theorem B. Assume that b is Q-non-basic. The stabilizer subgroup in Jb(Qp) of each
connected component of Igb is equal to Jb(Qp)′.

Roughly speaking, the stabilizer subgroup cannot be larger than Jb(Qp)′, and this
should be thought of as saying that Igusa varieties are at least as reducible as Shimura
varieties. The point of the theorem is that, conversely, the stabilizer is as large as
possible under the given constraint; so Igusa varieties are “irreducible” in the sense
that they are no more reducible than Shimura varieties. (This is made precise by
Corollary 8.1.2 below.) The proof is almost immediate from the Jb(Qp)-action on H0

described in Theorem A. See §8.1 below for further details.

1.3. Application to the discrete Hecke orbit conjecture. In 1995 [Oor19, §15] (also
see [EMO01, Problem 18]), Oort proposed the Hecke Orbit (HO) conjecture that
the prime-to-p Hecke orbit of a point should be Zariski dense in the central leaf
containing it, if the point lies outside the basic stratum (if Gad is simple). The reader
is referred to [CO19] for an excellent survey of the HO conjecture with updates. Oort
drew analogy with the André–Oort conjecture for a Shimura variety in characteristic
zero, which asserts that the irreducible components of the Zariski closure of a set
of special points are special subvarieties. (See [Tsi18, PST] and references therein
for recent results on the André–Oort conjecture.) A common feature is that a set
of points with an extraordinary structure (being a prime-to-p Hecke orbit or special
points) is Zariski dense in a distinguished class of subvarieties. We can also compare
the HO conjecture with the Hecke equidistribution theorems for locally symmetric
spaces in characteristic zero [COU01, EO06], stating roughly that the Hecke orbit
of an arbitrary point is equidistributed in the locally symmetric space in a suitable
sense. (In particular the Hecke orbit is dense in the entire space even for the analytic
topology, to be contrasted with the phenomenon in characteristic p.) It is also worth
noting works to investigate Hecke orbits for the p-adic topology [GK21,HMRL20].

Chai and Oort verified the HO conjecture for Siegel modular varieties [Cha06,
Thm. 3.4] (details to appear in a monograph), in particular the irreducibility of leaves
[Cha05, CO11]. The conjecture is also known for Hilbert modular varieties [Cha06,
Thm. 3.5] due to Chai and Yu. (Also see [YCO20].) The HO conjecture has seen sev-
eral new results in recent years. Shankar proved the conjecture for Deligne’s “strange
models” (in the sense of [Del71, §6]) in an unpublished preprint. Zhou [Zho] settled
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the HO conjecture in the ordinary locus of some quaternionic Shimura varieties along
the way to realize a geometric level raising between Hilbert modular forms. Maulik–
Shankar–Tang [MST22] proved the HO conjecture in the ordinary locus of GSpin
Shimura varieties. Xiao [Xia] proved partial results on the HO conjecture in the case
of PEL type A and C.

Chai [Cha05, Cha06] proposed the strategy to divide the HO conjecture into two
parts, that is, the discrete part (HOdisc) and the continuous part (HOcont), corre-
sponding to global and local geometry, respectively. In a nutshell, (HOdisc) asserts
that the prime-to-p Hecke action is transitive on the set of irreducible components
of each central leaf. Then (HOcont) is designed to tell us that the closure of each
prime-to-p Hecke orbit has the same dimension as the ambient central leaf, so that
(HOdisc) and (HOcont) together imply the HO conjecture.

We deduce the following result on (HOdisc) from Theorem A. (See §8.2 for details.)

Theorem C. For Hodge-type Shimura varieties with hyperspecial level at p, (HOdisc)
is true for every central leaf contained in a Q-non-basic Newton stratum.

To our knowledge, this is the first general theorem on (HOdisc). Let us remark
on the proof. Since (HOdisc) means transitivity of the G(A∞,p)-action on π0(Cb), it
is equivalent to the multiplicity one property of the trivial G(A∞,p)-representation

in H0(Cb,Q`) = H0(Ig,Q`)J
int
b . To prove Theorem C, it is thus enough to observe

that if π∞,p is trivial then πp and π∞ must be trivial as well in the formula of
Theorem A. This is an easy consequence of the weak approximation that G(Q) is
dense in G(Qp)×G(R). (The same approximation holds more generally, at least if G
splits over an unramified extension.)

We also consider the following strengthening of (HOdisc):

(HO+
disc) The map π0(Cb) → π0(ShKp) induced by the immersion Cb → ShKp is a

bijection.

This is known as “irreducibility of central leaves”, as it means that Cb is irreducible in
every component of ShKp . Since G(A∞,p) is known to act transitively on π0(ShKp),
e.g., by weak approximation, and since π0(Cb) → π0(ShKp) is G(A∞,p)-equivariant,

it is clear that (HO+
disc) implies (HOdisc).

We prove purely local criteria for (HO+
disc), either in terms of groups at p or in terms

of the stabilizers of points on some affine Deligne–Lusztig varieties (Theorem 8.2.9).
Using these criteria, we deduce (HO+

disc) in the µ-ordinary case, but obtain a coun-
terexample in general with the help of Rong Zhou. See §8.2 below for further details.
(In the earlier version of this paper arXiv:2102.10690v1, we incorrectly asserted that
(HO+

disc) was true in general. The mistake occurred during the initial reduction in the
proof of Lemma 8.1.1, where changing b to a σ-conjugate element cannot be justified;
we thank van Hoften for pointing it out to us.)

1.4. Some details on the proof of Theorem A. Changing Σb by a quasi-isogeny, as this
does not affect Igb up to isomorphism, we may assume that Σb is completely slope
divisible and defined over a finite field. Then Igb can be written, up to perfection, as
the projective limit of smooth varieties of finite type defined over Fpr for a sufficiently
divisible r ∈ Z>0. (In the main text, we use Igb to denote the version without
perfection.) This allows us to apply a Lefschetz trace formula technique to compute
the cohomology of Igb at a finite level. Via Poincaré duality, Theorem A may be

rephrased in terms of the top degree compact-support cohomology H
〈4ρ,νb〉
c (Igb,Q`),

which we may access by the Lang–Weil estimate.
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Adapting the Langlands–Kottwitz method to Igusa varieties, as worked out in
[Shi09] and Mack-Crane’s thesis [MC21], one obtains a formula of the form

Tr (φ∞,pφp × Frobjpr |Hc(Igb,Q`)) = (geometric expansion), j ∈ Z�1,

where φ∞,pφp ∈ H(G(A∞,p) × Jb(Qp)) and j ∈ Z�1. In fact, one can show that
the Frobpr -action on Igb is represented by the action of a central element of Jb(Qp).
Thereby φp × Frobjpr in (1.4.1) may be replaced with a translate φ

(j)
p ∈ H(Jb(Qp)) of

φp by a central element. The geometric expansion is a linear combination of orbital

integrals of φ∞,pφ
(j)
p on G(A∞,p)×Jb(Qp) over a certain set of conjugacy classes. The

stabilized formula takes the form

Tr (φ∞,pφ(j)
p |Hc(Igb,Q`)) =

∑
e

(constant) · ST e
ell(f

e,pf e,(j)p ), j ∈ Z�1, (1.4.1)

where the sum runs over endoscopic data e for G (§2.6), and f e,pf
e,(j)
p is a suitable

function on the corresponding endoscopic group Ge. By ST e
ell we mean the elliptic

part of the stable trace formula for Ge. The most nontrivial point in the stabilization
is the “transfer” at p. Indeed, as Ge is not an endoscopic group of Jb, this requires a
special construction as detailed in §3.

Ideally we would turn the right hand side of (1.4.1) into a spectral expansion and

determine not only H
〈4ρ,νb〉
c (Igb,Q`) but Hc(Igb,Q`) in the Grothendieck group of

G(A∞,p)× Jb(Qp)-representations. This is the long-term goal stated earlier. On the
analogous problem for Shimura varieties, a road map has been laid out in [Kot90],
which can be mimicked for Igusa varieties to some extent. However there are serious
obstacles: (1) An endoscopic classification for most reductive groups is out of reach;
exactly the same issue occurs for Shimura varieties as well. (2) The geometric side
(stable elliptic terms) is very difficult to compare with the spectral side. One could
imagine making the comparison more tractable by passing from Hc to intersection
cohomology, following the strategy for Shimura varieties to “fill in” the stable non-
elliptic terms, but no theory of compactification is available for Igusa varieties to
allow it. (Franke’s formula for Hc of locally symmetric spaces [Fra98] suggests that
one should expect a similarly complicated answer for Hc of Igusa varieties.)

Our goal is to extract spectral information on H
〈4ρ,νb〉
c (Igb,Q`) from the leading

terms in (1.4.1) in the variable j via the Lang–Weil estimate. Thus we can get away
with less by proving equalities up to error terms of lower order. To bypass (1) and (2),
a key is to show that (stable) non-elliptic terms as well as endoscopic (a.k.a. unstable)
terms have slower growth in j than the (stable) elliptic terms. This is the technical
heart of our paper taking up §4. Let us provide more details.

The basic strategy is an induction on the semisimple rank, based on our observation

that some key property of the function f
e,(j)
p is replicated after taking an endoscopic

transfer or a constant term. (For instance, we need to pass along the Newton cochar-
acter through the inductive steps.) So we want to prove a bound on the trace formula

for a quasi-split group over Q, with a test function fpf
(j)
p satisfying such a prop-

erty. The desired bound partly comes from a root-theoretic computation, involving
a curious interaction between p and ∞ such as “evaluating” the Newton cocharacter
(coming from p) at the infinite place (Lemma 4.1.1). The most interesting component
in this part of the argument is

(*) a spectral expansion of Tell, the elliptic part of the trace formula.

The problem is actually about ST e
ell in (1.4.1), but we can replace ST e

ell with Tell for
Ge once the difference is shown to have lower order of growth. The archimedean test
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function is stable cuspidal in our setting, so we have Arthur’s simple trace formula
[Art89] of the following shape:

Tdisc(f e,pf e,(j)p ) = Tell(f
e,pf e,(j)p ) + (geometric terms on proper Levi subgroups).

(1.4.2)
The proper Levi terms at finite places look similar to the elliptic part of the trace
formula for proper Levi subgroups, but a complicated behavior is seen at the infinite
place due to stable discrete series characters along non-elliptic maximal tori of the
ambient group. On different open Weyl chambers, we have different character formulas
in terms of finite dimensional characters of the Levi subgroup, so this quickly spirals
out of control in the induction. Adapting an idea of Laumon [Lau97] from the non-
invariant trace formula, we overcome the difficulty by imposing a regularity condition
on the test function at an auxiliary prime q (6= p) and show that the Q-conjugacy
classes with nonzero contributions land in a single Weyl chamber. Then a finite
dimensional character of a Levi subgroup is itself a stable discrete series character of
the same Levi subgroup along elliptic maximal tori of the Levi, so that the inductive
argument can continue. (No information is lost by the auxiliary hypothesis at q,
cf. §7.6 below.) This technique should prove useful for investigation of compactly
supported cohomology of Igusa varieties and Shimura varieties alike.

Returning to our problem, the above argument turns (1.4.1) into

Tr (φ∞,pφ(j)
p |Hc(Igb,Q`)) =

∑
π∗

m(π∗)Tr (f∗,pf∗,(j)p ) + (error terms),

where f∗,pf
∗,(j)
p is the test function on the quasi-split inner form G∗ of G (i.e., when

Ge = G∗), and the sum runs over discrete automorphic representations of G∗(A). At

this point, we apply a trace identity. Let φ
∗,(j)
p denote a transfer of φ

(j)
p from Jb to its

quasi-split inner form Mb. For each irreducible smooth representation π∗ of G∗(Qp),
we have (Lemma 3.1.2)

Trπ∗p(f∗,(j)p ) = TrJ(π∗p)(φ∗,(j)p ),

where J is the normalized Jacquet module relative to the parabolic subgroup deter-
mined by νb whose Levi component is Mb. Since b is non-basic, Mb is a proper Levi
subgroup. Moreover the translation (j) is given by a central element satisfying a
positivity condition with respect to νb. In these circumstances, we make a crucial use

of an estimate due to Casselman and Howe–Moore (§2.1), showing that J(π∗p)(φ
∗,(j)
p )

has the highest growth if and only if dimπ∗p = 1. A strong approximation argument
(§2.5) promotes this to the condition that dimπ∗ = 1, under a group-theoretic condi-
tion guaranteed in our setting. Moreover, it is not hard to transfer one-dimensional
representations from Mb(Qp) to Jb(Qp) compatibly with the transfer of functions
(§2.3). We complete the proof of Theorem A by putting this final piece of the puzzle.

1.5. A remark on the non-hyperspecial case. This paper focuses on the case of hy-
perspecial level at p mainly because the trace formula for Igusa varieties [MC21] is
available only in that case. Once the trace formula becomes available for Shimura va-
rieties with parahoric level at p (cf. §1.7 below), the methods and results of this paper
should extend to that case. To avoid group-theoretic subtleties (e.g., Remark 2.3.4
below), assume that G is quasi-split over Qp. Then Theorems A and B are expected
to remain true (with a modified definition of J int

b ). As for Theorem C, a crucial
group-theoretic ingredient is that the diagonal embedding G(Q)→ G(Qp)×G(R) has
dense image (weak approximation). If G does not split over an unramified extension
of Qp, then the weak approximation can be false, in which case our argument does
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not apply. In fact, Oki’s example [Oki23] suggests that the analogue of Theorem C is
false in general, since the prime-to-p Hecke action is not even transitive on the set of
connected components of the underlying Shimura variety.

1.6. The basic case. We comment on the description of H0 in the complementary
case when b is basic, in the setting of §1.1. Since it is not the focus of this paper,
we will be brief. In the basic case, Igusa varieties are 0-dimensional by Fact 2 above.
It follows from [HZZ, Prop. 5.2.2] and the argument of [MC21, §3.2] that there is a
G(A∞,p)× Jb(Qp)-equivariant bijection

Igb(Fp) ' I(Q)\G(A∞,p)× Jb(Qp), (1.6.1)

where I is an inner form of G over Q such that I(A∞,p) ' G(A∞,p), I(Qp) ' Jb(Qp),
and I(R) is compact modulo center. (This I is the same as in [HZZ].) Here I(Q)
acts by left multiplication on G(A∞,p) × Jb(Qp) via I(Q) ↪→ I(A∞) ' G(A∞,p) ×
Jb(Qp). (The embedding is canonical up to G(A∞,p)× Jb(Qp)-conjugacy.) Hence the

analogue of Theorem A in the basic case is that H0(Igb,Q`) is the space of algebraic
automorphic forms on the inner form I. In particular, H0 is “much larger” in the
basic case.

Since Cb(Fp) is the quotient of Igb(Fp) by an open compact subgroup of Jb(Qp)
(Lemma 6.1.1.(1) is still valid when b is basic), we can deduce from (1.6.1) and the
weak approximation for I (applied as in the proof of Lemma 5.2.2) that the full Hecke
orbit conjecture is true; this is equivalent to (HOdisc) in the case at hand. On the
other hand, we see that (HO+

disc) is generally false if b is basic.

1.7. Work of van Hoften and Xiao. Pol van Hoften and Luciena Xiao Xiao [vH,vHX]
prove the irreducibility of Igusa varieties (but not Theorems A and C of our paper)
and give a counterexample to (HO+

disc).2 Their method is more geometric and totally
different from ours in that no use is made of automorphic forms. Further goals in their
work and ours are disparate. For instance, [vH] proves new results on the stratification
of Shimura varieties and the Langlands–Rapoport conjecture in the parahoric case,
whereas our work is a stepping stone for understanding the cohomology of Igusa
varieties in all degrees. The two threads could have a future intersection though, as
the Langlands–Rapoport conjecture in the parahoric case ought to be an important
ingredient for deriving the analogue for Igusa varieties in that case, extending [MC21]
from the hyperspecial case.

1.8. A guide for the reader. The bare-bones structure of our argument is as follows.

Jacquet module
estimate (§2.1,§2.5)

+

trace formula estimate (§4)
+

stable trace formula

for Hc(Igb,Q`) (§7.5)

Lem. 6.2.2

Thm. 7.1.1
//

Thm. 6.1.4

on H0(Igb,Q`)
via auto. forms

(main theorem)
§8.2
//

§8.1 //

irreducibility
of Igb

+

discrete

HO conjecture

On a first reading, we suggest that all complexities arising from central characters
and z-extensions should be skipped, e.g., by assuming that all central character data

2The counterexample in [vHX, §6.3] is about (HO+
disc), but not (HOdisc), cf. §8.2 of this paper.

Note that the maps in Thm. 6.2.1 and Cor. 6.2.2 therein are not asserted to be equivariant for the

prime-to-p Hecke actions. In fact, our Theorem C suggests that those maps should not be equivariant
in general.
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are trivial. In fact this should be the case in many examples. The central character
datum is always trivial on the level of G appearing in the Hodge-type datum, but we
allow it to be nontrivial mainly because we do not know whether H in the endoscopic
datum (§2.6) can always be chosen to be an L-group. Another good idea is to start
reading in §5, especially if one’s main interests lie in geometry, referring to the earlier
sections only as needed and taking the results there for granted.

Sections 2 and 3 consist of mostly background materials in local harmonic analysis
and representation theory. Though we claim little originality, there may be some
novelty in the way we organize and present them. Some statements would be of
independent interest. Section 4 is perhaps the most technical as this is where the
main trace formula estimates are obtained. As such, most readers may want to take
the results in §4.2 on faith and proceed, returning to them as needed.

Sections 5 and 6 introduce the main geometric players, namely Shimura varieties,
central leaves, and Igusa varieties. Except for §5.1, we are always in the Hodge-type
case with hyperspecial level at p. Our main theorem on Igusa varieties is stated
in §6.1. After reduction steps in §6.2–§7.1 and some recollection of the trace formula
setup up to §7.5, the proof of the theorem is completed in §7.6. Lastly Section 8 is
devoted to the main geometric applications on irreducibility of Igusa varieties and a
local criterion for the discrete Hecke orbit conjecture.

1.9. Notation.

• The trivial character (of the group that is clear from the context) is denoted
by 1.

• If T is a torus over a field k with algebraic closure k, X∗(T ) := Homk(T,Gm)
and X∗(T ) := Homk(Gm, T ). When R is a Z-algebra, we write X∗(T )R :=
X∗(T )⊗Z R and X∗(T )R := X∗(T )⊗Z R.

• D := lim←−Gm is the protorus (over an arbitrary base), where the transition
maps are the n-th power maps.

• Z̆p := W (Fp), Q̆p := Frac Z̆p, and σ ∈ Aut(Q̆p) is the arithmetic Frobenius.

By Zur
p (resp. Qur

p ) we mean the subring of elements in Z̆p (resp. Q̆p) which
are algebraic over Qp.

• P(S) is the power set of a set S.
• If H is an algebraic group over a field k, we write H0 ⊂ H for its neutral

component.

Let G be a connected reductive group over a field k of characteristic 0.

• If k is a finite extension of k0, then Resk/k0
G denotes the restriction of scalars

group.
• If k′ is an extension field of k then Gk′ := G×Spec k Spec k′.
• Gder is the derived subgroup, % : Gsc → Gder ⊂ G the simply connected

cover, ZG the center (we also write Z(G)), Gad := G/ZG the adjoint group,
and Gab := G/Gder the maximal commutative quotient. Write AG ⊂ ZG for
the maximal split subtorus over k.
• G(k)? is the set of semisimple (resp. regular semisimple, resp. strongly reg-

ular) elements in G(k) for ? = ss (resp. reg, resp. sr). We put T (k)? :=
T (k) ∩G(k)? for ? ∈ {reg, sr}.

• If k is a local field and G a reductive group over k, write I(G(k)) and S(G(k))
for the spaces of invariant and stable distributions on G(k). (For more details,
see § 2.2). By Irr(G(k)) we mean the set of isomorphism classes of irreducible
admissible representations of G(k).
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• When k = Qp, two elements δ, δ′ ∈ G(Q̆p) are (G(Q̆p), σ)-conjugate (resp.

(G(Z̆p), σ)-conjugate) if there exists a g ∈ G(Q̆p) (resp. g ∈ G(Z̆p)) such that
δ′ = σ(g)δg−1.

Let T (resp. S) be a maximal torus (resp. maximal split torus) of G over k with
T ⊃ S. Let M0 be a minimal k-rational Levi subgroup containing T .

• Φ(T,G) is the set of absolute roots, Φ(S,G) = Φk(S,G) the set of k-rational
roots.

• Ω
G

= Ω(T,G) for the Weyl group over k, and ΩGk = Ω(S,G) for the k-rational
Weyl group. We often omit k from Φk(S,G) and ΩGk when it is clear from
the context.

• L(G) or Lk(G) is the set of all k-rational Levi subgroups of G containing M0.
Write L<(G) := L(G)\{G}.

Lemma 1.9.1. If Gder is simply connected then every k-rational Levi subgroup of G
has simply connected derived subgroup.

Proof. This can be checked after base change to k, so assume k = k. For every
maximal torus T ⊂ G, the cocharacter lattice X∗(T ) modulo the coroot lattice is
torsion free by hypothesis. Thus X∗(T ) modulo the lattice generated by an arbitrary
subset of simple coroots is torsion free, implying that every Levi subgroup of G has
simply connected derived subgroup. �

Acknowledgments. AK is partially supported by a NWO VENI grant and a VIDI
grant. SWS is partially supported by NSF grant DMS-1802039, NSF RTG grant DMS-
1646385, and a Miller Professorship. AK and SWS are grateful to Erez Lapid, Gordan
Savin, and Maarten Solleveld for pointing them in the right direction regarding §2.1.
We thank Xuhua He, Pol van Hoften, and Rong Zhou for discussions about §8.2, and
especially Zhou for providing us with Example 8.2.12 below.

2. Preliminaries in representation theory and endoscopy

2.1. Estimates for Jacquet modules of unitary representations. Here we recall some
facts from work of Howe–Moore [HM79] and Casselman [Cas95] in order to bound the
absolute value of central characters in the Jacquet modules of unitary representations
of p-adic reductive groups.

We consider the following setup and notation.

• Let F be a non-archimedean local field of characteristic 0. We write valF ,
OF , k, q, $ = $F respectively for the normalized valuation of F , the ring of
integers of F , the residue field of F , the cardinality of k, and an uniformizer
of F so that valF ($F ) = 1,

• G is a connected reductive group over F with center Z = ZG,
• Rep(G) is the category of smooth representations of G(F ),
• P = MN is a Levi decomposition of an F -rational proper parabolic subgroup

of G,
• AM is the maximal F -split torus in the center of M ,
• ∆ is the set of roots of AM in N ,
• A−P := {x ∈ AM (F ) : |α(x)| ≤ 1, ∀α ∈ ∆},
• A−−P := {x ∈ AM (F ) : |α(x)| < 1, ∀α ∈ ∆},
• δP : M(F ) → R×>0 is the modulus character given by δP (m) := |det(Ad(m),

LieN(F ))|.
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• JP : Rep(G)→ Rep(M) is the normalized Jacquet module functor, so JP (π)

equals πN ⊗ δ−1/2
P with πN denoting the N(F )-coinvariants of π,

• IGP : Rep(M) → Rep(G) is the normalized parabolic induction functor, send-

ing πM to the smooth induction of πM ⊗ δ1/2
P from P (F ) to G(F ).

• When R ∈ Rep(M) has finite length, write Exp(R) for the set of AM (F )-
characters appearing as central characters of irreducible subquotients of R.

Lemma 2.1.1. If G is simply connected, F -simple, and F -isotropic, then every normal
subgroup of G(F ) is either G(F ) itself or contained in Z(F ).

Proof. A normal subgroup N of G(F ) not contained in Z(F ) is open of finite index in
G(F ) by [PR94, Prop. 3.17] since G is F -simple. Since G(F ) is F -isotropic and simply
connected, G(F ) is generated by the F -points of the unipotent radicals of F -rational
parabolic subgroups [PR94, Thm. 7.6]. Thus, by Tits’ theorem proven in [Pra82],
every open proper subgroup of G(F ) is compact. On the other hand, N is easily seen
to be non-compact by considering the adjoint action of a maximal F -split torus on a
root subgroup.3 Therefore N = G(F ). �

Proposition 2.1.2 (Howe–Moore). Assume that Gsc is F -simple. Let π be an infinite
dimensional irreducible unitary representation of G(F ). Then there exists an integer
2 ≤ k <∞ such that every matrix coefficient of π belongs to Lk(G(F )/Z(F )).

Proof. This follows from the explanation on pp.74–75 of [HM79] below Theorem 6.1,
once we verify the following claim: if π(g) is a scalar operator for g ∈ G(F ) then
g ∈ Z(F ). Taking a z-extension of G, we reduce to the case when Gder is simply
connected. Pulling back π via the multiplication map Z(F ) × Gder(F ) → G(F ) and
passing to one of the finitely many constituents (cf. [Xu16, Lem. 6.2]) which is infinite-
dimensional, we may assume that G is itself F -simple and simply connected. Now Z ′

be the group of g ∈ G(F ) such that π(g) is a scalar. Then Z ′ is a normal subgroup
of G(F ), and Z ′ 6= G(F ) since dimπ = ∞. Therefore Z ′ ⊂ Z(F ) by Lemma 2.1.1,
proving the claim. �

Proposition 2.1.3 (Casselman). Let π be an irreducible unitary representation of G(F ).
For every ω ∈ Exp(πN ) and every a ∈ A−P , we have the inequality

|ω(a)| ≤ 1. (2.1.1)

If Gsc is F -simple and a ∈ A−−P , then the equality holds if and only if dimπ <∞.

Proof. The inequality (2.1.1) follows from the obvious extension of [Cas95, §4.4]
(where p <∞ is assumed) to cover the case p =∞. (For instance, [Cas95, Lem. 4.4.3,
Prop. 4.4.4] have the analogues for p = ∞, with “bounded” in place of “summable”
and “|χ(x)| ≤ 1” in place of “|χ(x)| < 1”.)

As for the last assertion, suppose that dimπ =∞. In the notation of [Cas95, §2.5],
Proposition 2.1.2 tells us that the matrix coefficient is Lk, i.e., |cv,ṽ|k is integrable
modulo center for some 2 ≤ k <∞. Applying [Cas95, Cor. 4.4.5] to p = k, F = cv,ṽ

and a ∈ A−−P , we obtain that |ω(a)δ
−1/k
P (a)| < 1. Therefore |ω(a)| < 1. For the

converse, suppose that dimπ < ∞. Then kerπ is an open subgroup of G(F ). As
the open subgroup N(F ) ∩ kerπ of the unipotent subgroup N(F ) acts trivially on π,
we see that N(F ) itself acts trivially on π. (Use conjugation by AM (F ).) Therefore
Exp(πN ) consists of the central character ω of π (restricted to M(F )) only, which is
unitary. In particular |ω(a)| = 1 for all a ∈ A−−P �

3For instance, see the proof of Proposition 3.9 in http://virtualmath1.stanford.edu/~conrad/

JLseminar/Notes/L2.pdf for details.

http://virtualmath1.stanford.edu/~conrad/JLseminar/Notes/L2.pdf
http://virtualmath1.stanford.edu/~conrad/JLseminar/Notes/L2.pdf
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Remark 2.1.4. Proposition 2.1.3 is sharp in general.
For example, consider G = GL2(F ) with P (resp. N) consisting of upper triangular

(resp. upper triangular unipotent) matrices. The complementary series representa-
tions πε = IGP (| · |ε, | · |−ε) with ε ∈ R with 0 < ε < 1/2 are irreducible and unitary.
We have

(πε)N = JN (πε)⊗ δ1/2
P = δ

1/2
P ⊗

(
(| · |ε, | · |−ε)⊕ (| · |−ε, | · |ε)

)
= (| · |ε+ 1

2 , | · |−ε− 1
2 )⊕ (| · |−ε+ 1

2 , | · |ε− 1
2 ).

So in this case, Exp((πε)N ) contains the character ω = (| · |−ε+ 1
2 , | · |ε− 1

2 ) of Q×p ×Q×p .

Then a =
(
p 0
0 1

)
∈ A−−P . We get ω(a) = pε−

1
2 which gets arbitrarily close to 1 as ε

tends to 1/2.

Lemma 2.1.5. Assume that Gad has no F -anisotropic factor. Then every irreducible
smooth representation of G(F ) is either one-dimensional or infinite-dimensional.

Proof. We may assume that Gder is simply connected via z-extensions. Suppose
that π is a finite-dimensional irreducible smooth representation of G(F ). Then the
normal subgroup kerπ ∩ Gder(F ) of Gder(F ) is open. Lemma 2.1.1 implies that
kerπ∩Gder(F ) = Gder(F ), thus π factors through the abelian quotient G(F )/Gder(F ).
Therefore dimπ = 1, completing the proof. �

2.2. Local Hecke algebras and their variants. We retain the notation from the preced-
ing section but allow the local field F to be either non-archimedean or archimedean.
A basic setup of local Hecke algebras will be introduced, partly following [Art96, §1].

Fix a Haar measure on G(F ) and a maximal compact subgroup K ⊂ G(F ). Let
G(F )sr denote the subset of strongly regular elements g ∈ G(F ), namely the semisim-
ple elements whose centralizers in G are (maximal) tori. By [Ste65, 2.15], G(F )sr

is open and dense in G(F ) (for both the Zariski and non-archimedean topologies).
Write R(G) for the space of finite C-linear combinations of irreducible characters of
G(F ), which is a subspace in the space of functions on G(F )sr. We also identify R(G)
with the Grothendieck group of smooth finite-length representations of G(F ) with C-
coefficients. Let H(G) = H(G(F )) denote the space of smooth compactly supported
bi-K-finite functions on G(F ). Let I(G) denote the invariant space of functions on
G(F ), namely the quotient of H(G) by the ideal generated by functions of the form
g 7→ f(g) − f(hgh−1) with h ∈ G(F ) and f ∈ H(G). From [Kaz86, Thm. 0], we see
that f ∈ H(G) has trivial image in I(G) if and only if its orbital integral vanishes
on G(F )sr if and only if Trπ(f) = 0 for all irreducible tempered representations of
G(F ); moreover, the same is true if G(F )sr is replaced with G(F ) and if the tem-
peredness condition is dropped. By abuse of notation, we frequently write f ∈ I(G)
to mean a representative f ∈ H(G) of an element in I(G). The trace Paley–Wiener
theorem [BDK86] describes I(G) as a subspace of C-linear functionals on R(G) via

f 7→
(

Θ 7→
∫
G(F )sr

f(g)Θ(g)dg

)
. (2.2.1)

If R(G) is thought of as a Grothendieck group, the above map is simply f 7→ (π 7→
Trπ(f)).

Denote by S(G) the quotient of H(G) by the ideal generated by functions each
of which has vanishing stable orbital integrals on G(F )sr. Thus we have natural
surjections H(G) � I(G) � S(G). By R(G)st we mean the subspace of R(G)
consisting of stable linear combinations (i.e., constant on each stable conjugacy class
in G(F )sr). Then S(G) is identified with a subspace of functions on R(G)st via (2.2.1)
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(since Θ ∈ R(G)st now, the image depends only on the image of f in S(G)); the
subspace is characterized by [Art96, Thm. 6.1, 6.2] in the p-adic case, cf. last paragraph
on p.491 of [Xu17]. Via the obvious quotient map I(G) → S(G) and the restriction
map from R(G) to R(G)st, we have a commutative diagram

I(G) //

Tr

��

S(G)

Tr

��
HomC-linear(R(G),C) // HomC-linear(R(G)st,C).

Let us extend the setup so far to allow a fixed central character. By a local central
character datum for G, we mean a pair (X, χ), where

• X is a closed subgroup of Z(F ) equipped with a Haar measure µX on X,
• χ : X→ C× is a smooth character.

Let H(G,χ−1) = H(G(F ), χ−1) denote the space of smooth bi-K-finite functions f
on G(F ) which have compact support modulo X and satisfy f(xg) = χ−1(x)f(g) for
x ∈ X and g ∈ G(F ). The χ-averaging map

H(G)→ H(G,χ−1), f 7→
(
g 7→

∫
X

f(gz)χ(z)dµX

)
,

is a surjection. We have the obvious definitions of I(G,χ−1) and S(G,χ−1), the χ-
averaging maps I(G) → I(G,χ−1) and S(G) → S(G,χ−1), as well as the quotient
maps

H(G,χ−1) � I(G,χ−1) � S(G,χ−1).

We can think of I(G,χ−1) as a subspace of functions on R(G,χ), the subspace of R(G)
generated by irreducible characters with central character χ. Analogously S(G,χ−1)
is the subspace of functions on R(G,χ)st defined similarly.

2.3. Transfer of one-dimensional representations. Let G and G∗ be connected re-
ductive groups over a non-archimedean local field F of characteristic zero, with G∗

quasi-split over F . Let ξ : GF
∼→ G∗

F
be an inner twisting, namely an F -isomorphism

such that ξ−1σ(ξ) is an inner automorphism of GF for every σ ∈ Gal(F/F ). As
in §1.9, we have canonical F -morphisms % : Gsc → G and %∗ : G∗sc → G∗. Define an
F -torus and two topological groups

Gab := G/Gder, G(F )[ := cok(Gsc(F )
%→ G(F )), G(F )ab := G(F )/G(F )der,

where G(F )der is the commutator subgroup of G(F ) as an abstract group, which
is closed in G(F ). (This is clear if G is a torus. If not, G(F )der is not contained
in ZGder

(F ) so an open subgroup in Gder(F ) by [PR94, Thm. 3.3], after reducing
to the simply connected and F -simple case via z-extensions.) Moreover, G(F )der is
contained in im(G(F )sc → G(F )) [Del79, 2.0.2], so there are natural morphisms

G(F ) � G(F )ab � G(F )[ � G(F )/Gder(F ) ↪→ Gab(F ). (2.3.1)

In particular, G(F )[ is an abelian group. The last two maps in (2.3.1) are isomor-
phisms if Gder = Gsc by Kneser’s vanishing theorem for H1 of simply connected
groups (applicable since F is non-archimedean). The definition and discussion above
applies to G∗ in the same way.

Let 1 → Z1 → G1
α→ G → 1 be a z-extension of G over F . Since G1 → G

induces Gad
1
∼→ Gad, the classifying data for inner twists of G1 and those of G are

identified (up to isomorphism). Thus we may assume that there is a z-extension
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1 → Z1 → G∗1
α∗→ G∗ → 1 with an inner twisting ξ1 : G1,F

∼→ G∗
1,F

such that

ξ1 and ξ form a commutative square together with the maps α and α∗. The map
G1,der → Gder induced by α is a simply connected cover, allowing an identification
G1,der = Gsc. Likewise we have G∗1,der = G∗sc.

Lemma 2.3.1. There is a row-exact commutative diagram where the vertical maps are
isomorphisms:

1 // Z1(F )/Z1(F ) ∩G1,der(F ) //

∼

��

G1(F )[ = Gab
1 (F )

∼
��

// G(F )[ //

∼
��

1

1 // Z1(F )/Z1(F ) ∩G∗1,der(F ) // G′1(F )[ = G∗,ab
1 (F ) // G∗(F )[ // 1.

Here the second vertical map is given by the isomorphism Gab
1
∼→ G∗,ab

1 induced by
ξ, and the first and third vertical maps are induced by the second. Moreover the
isomorphism G(F )[

∼→ G∗(F )[ is canonical, i.e., independent of the choice of z-
extensions.

We will write ξ[ : G(F )[
∼→ G∗(F )[ for the canonical isomorphism.

Proof. The row-exactness in the diagram is straightforward from the definition. The

map ξ1 induces an F -isomorphism Gab
1
∼→ G∗,ab

1 and restricts to an F -isomorphism
from Z1 onto Z1. Thus the first two vertical maps are isomorphisms, which implies

that the last vertical map is also. To check the last assertion, if G1
α1→ G and G2

α2→ G
are two z-extensions, then the fiber product of G1 and G2 over G is also a z-extension.
So we may assume that there is a surjection between the two z-extensions, in which
case the last assertion is clear.

�

Lemma 2.3.2. If Gsc has no F -anisotropic factor, then G(F )[ = G(F )ab.

Proof. We may assume that G is not a torus. Via a z-extension, we reduce to the
case when Gsc = Gder. Then G(F )der is a noncentral normal subgroup of Gder(F ).
Applying Lemma 2.1.1 to each F -simple factor of Gder, we deduce that G(F )der =
Gder(F ), hence G(F )[ = G(F )ab. �

Corollary 2.3.3. If Gsc has no F -anisotropic factor, then the following four groups
(under multiplication) are in canonical isomorphisms with each other:

(1) the group of smooth characters G(F )→ C×,
(2) the group of smooth characters G(F )[ → C×,
(3) the group of smooth characters G∗(F )[ → C×,
(4) the group of smooth characters G∗(F )→ C×,

where the maps from (2) to (1) and from (3) to (4) are given by pullbacks, and the map
between (2) and (3) is via the isomorphism of Lemma 2.3.1. With no assumption on
Gsc, we still have canonical isomorphisms between (2), (3), and (4), and a canonical
embedding from (2) to (1).

Proof. Since G(F )ab is the maximal abelian topological quotient of G(F ), we can
replace G(F ) with G(F )ab in (1), and likewise for (4). From (2.3.1) and Lemma 2.3.1,
we have

G(F )ab � G(F )[ ' G∗(F )[ � G∗(F )ab.
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Lemma 2.3.2 tells us that the last map is always an isomorphism (since G∗ has no F -
anisotropic factor); so is the first map if G has no F -anisotropic factor. The corollary
follows. �

Remark 2.3.4. The only nontrivial F -anisotropic simply connected simple group over
F is of the form ResF ′/FSL1(D) for a central division algebra D over a finite extension

F ′ of F with [D : F ] = n2 and n ≥ 2. So the condition in the corollary is that Gsc

has no such factor. Two exemplary cases are (i) G = GL1(D), G∗ = GLn(F ) and
(ii) G = SL1(D), G∗ = SLn(F ). In (i), it is standard (e.g., [Rie70, Intro.]) that
G(F )der = Gder(F ), and the four sets are still isomorphic. However, in (ii), G(F )der

is the group of 1-units in the maximal order of D by [Rie70, §5, Cor.]. In particular
(1) is a nontrivial group, whereas (2) and (3) are evidently trivial, thus (4) is trivial
by the corollary.

Remark 2.3.5. One can also construct a natural map from (4) to (1) through the

continuous cohomology H1(WF , Z(Ĝ)) = H1(WF , Z(Ĝ∗)) following Langlands. (This
works for archimedean local fields F as well.) Indeed, [Xu16, App. A] explains the

isomorphism between H1(WF , Z(Ĝ∗)) and (4), and a map from H1(WF , Z(Ĝ∗)) to
(1).4

Let g ∈ G(F )ss and g∗ ∈ G∗(F )ss. When Gder = Gsc, we say g and g∗ are matching
if their F -conjugacy classes correspond via ξ. In general, matching is defined by lifting
ξ to an inner twisting between z-extensions of G and G∗ as in [Kot82, pp.799–800]
(specialized to the case E = F ). From loc. cit. we see that the notion of matching is
independent of the choice of z-extensions, and depends only on the G(F )-conjugacy
class of ξ.

Since G∗ is quasi-split, every g admits a matching element in G∗(F ) (again by
[loc. cit.]). When g and g∗ are matching, we have an inner twisting between the
connected centralizers Ig, Ig∗ in G,G∗ by [Kot82, Lem. 5.8]. Fix Haar measures
on the pairs of inner forms (G(F ), G∗(F )) and (Ig(F ), Ig∗(F )) compatibly in the
sense of [Kot88, p.631] to define (stable) orbital integrals at g and g∗, cf. [Kot88,
pp.637–638]. Write e(G) ∈ {±1} for the Kottwitz sign. Now f ∈ H(G(F )) and
f∗ ∈ H(G∗(F )) are said to be matching if for every g∗ ∈ G∗(F )sr, we have the
identity of stable orbital integrals

SOg∗(f
∗) =

{
SOg(f), if there exists a matching g ∈ G(F )ss,

0, if there is no such g ∈ G(F )ss.
(2.3.2)

Remark 2.3.6. The sign convention in (2.3.2) is chosen in favor of simplicity. (See also
Remark 7.4.1 below.) One could require SOg∗(f

∗) = e(G)SOg(f) instead, so that the
Kottwitz sign e(G) plays the role of transfer factor, but that would introduce e(G) in
the trace identity of Lemma 2.3.7.

A standard fact (cf. §2.6 below) from [Wal97] is every f admits a matching f∗

as above, called a (stable) transfer of f . If the Harish-Chandra character Θπ∗ of
π∗ ∈ Irr(G∗(F )) is stable, i.e., Θπ∗(g

∗
1) = Θπ∗(g

∗
2) whenever g∗1 , g

∗
2 ∈ G∗(F )sr are

stably conjugate, then the value Trπ∗(f∗) =
∫
G∗(F )sr

f∗(g∗)Θπ∗(g
∗)dg∗ is determined

4The latter map is asserted to be also an isomorphism in [Xu16, App. A], but this is false for

G = SL1(D) (in which case Z(Ĝ) = {1}) as explained in Remark 2.3.4. In loc. cit., for a simply

connected group G′ over F , it is said that all continuous characters G′(F )→ C× are trivial, but this

is not guaranteed unless Gsc has no F -anisotropic factor (e.g., this is okay for G∗). This mistake is
surprisingly prevalent in the literature.
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by the stable orbital integrals of f∗ on G∗(F )sr. This follows from the stable version
of the Weyl integration formula, cf. (2.3.3) below. The analogue holds true with G
and f in place of G∗ and f∗. Note that Θπ∗ is stable if dimπ∗ = 1. (This can be
checked after reducing via z-extensions to the case when G∗sc = G∗der.)

Lemma 2.3.7. Let f ∈ H(G(F )) and f∗ ∈ H(G∗(F )) be matching functions. Let
π∗ : G∗(F ) → C× be a smooth character. If π : G(F ) → C× is given by π∗ via
Corollary 2.3.3 then

Trπ(f) = Trπ∗(f∗).

Proof. As dimπ = dimπ∗ = 1, we have Θπ(g) = π(g) and Θπ∗(g
∗) = π∗(g∗) for

g ∈ G(F ), g∗ ∈ G∗(F ). Above the lemma, we observed that Θπ∗ is stable. This
implies that Θπ is stable. For a maximal torus T of G over F , write W (T ) for the
associated Weyl group. By the stable Weyl integration formula,

Trπ(f) =

∫
G(F )sr

f(g)Θπ(g)dg =
∑
T

1

|W (T )|

∫
T (F )sr

SOt(f)Θπ(t)dt, (2.3.3)

where the sum runs over a set of representatives for stable conjugacy classes of max-
imal tori of G over F . The analogous formula holds for G∗(F ). From here, the proof
is an easy exercise using (2.3.2) and the following fact coming from quasi-splitness
of G∗(F ): every maximal torus of G(F ) is a transfer of that of G∗(F ) in the sense
of [Kot84b, 9.5]. �

Remark 2.3.8. The correspondence of Lemma 2.3.7 need not be the Jacquet–Lang-
lands correspondence when G∗ = GLn. E.g., if G = GL1(D) for a central division
algebra D over a p-adic field F with n > 1, then the trivial representation of D×

corresponds to the Steinberg representation of GLn(F ) under Jacquet–Langlands,
but to the trivial representation of GLn(F ) in the lemma.

2.4. Lefschetz functions on real reductive groups. Let G be a connected reductive
group over R containing an elliptic maximal torus. Fix a maximal compact subgroup
K∞ ⊂ G(R). Denote by G(R)+ the preimage of the neutral component Gad(R)0 (for
the real topology) under the natural map G(R)→ Gad(R).

Lemma 2.4.1. We have G(R)+ = Z(R) · %(Gsc(R)).

Proof. Since Gsc(R) is connected, clearly %(Gsc(R)) maps into Gad(R)0. Therefore
G(R)+ ⊃ Z(R)·%(Gsc(R)). We have surjectionsGsc(R)0×Z(R)0 � G(R)0 � Gad(R)0

by [Mil05, Prop. 5.1]. This implies that G(R)+ ⊂ Z(R)G(R)0 = Z(R) ·%(Gsc(R)). �

Let ξ be an irreducible algebraic representation of GC, and ζ : G(R) → C× be
a continuous character. By restriction ξ yields a continuous representation of G(R)
on a complex vector space, which we still denote by ξ. Write ωξ : Z(R) → C× for
the central character of ξ. By Π∞(ξ, ζ) we mean the set of isomorphism classes of
irreducible discrete series representations whose central and infinitesimal characters
are equal to those of the contragredient of ξ⊗ ζ. This is a discrete series L-packet by
the construction of [Lan89], which assigns to Π∞(ξ, ζ) an L-parameter

ϕξ,ζ : WR → LG.

Thus we also write Π∞(ϕξ,ζ) for Π∞(ξ, ζ). We have ξ⊗ ζ ' ξ′⊗ ζ ′ as representations
of G(R) if and only if there exists an algebraic character χ of GC such that ξ′ = ξ⊗χ
and ζ ′ = ζ ⊗ χ−1. In this case Π∞(ξ, ζ) = Π∞(ξ′, ζ ′), and ϕξ,ζ ' ϕξ′,ζ′ . In fact
|Π∞(ξ, ζ)| is a constant d(G) ∈ Z≥1 depending only on G. When ξ = 1, we also write
Π∞(ζ) and fζ for Π∞(ξ, ζ) and fξ,ζ .
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Write AG for the maximal split torus in the center of G. Let χ : AG(R)0 → C×
be a continuous character. Let Irrtemp(G(R), χ) be the set of (isomorphism classes
of) irreducible tempered representations of G(R) whose central character equals χ on
AG(R)0. Write H(G(R), χ−1) for the space of smooth K∞-finite functions on G(R)
with central character χ−1. Following [Art89, §4], f ∈ H(G(R), χ−1) is said to be
stable cuspidal if Trπ(f) is constant as π varies over each discrete series L-packet and
if Trπ(f) = 0 for every π ∈ Irrtemp(G(R), χ) outside of discrete series.

Fix a Haar measure on G(R) and the Lebesgue measure on AG(R)0, so as to
determine a Haar measure on G(R)/AG(R)0. Choose a pseudo-coefficient fπ ∈
H(G(R), ωξζ) for each π ∈ Π∞(ξ, ζ) à la [CD85]. Although it is not unique, the
orbital integrals of fπ are uniquely determined by the property that Trπ(fπ) = 1 and
that Trπ′(fπ) = 0 for π′ ∈ Irrtemp(G(R), (ωξζ)−1) and π′ 6' π. An averaged Lefschetz
function associated with (ξ, ζ) is defined as

fξ,ζ := |Π∞(ξ, ζ)|−1
∑

π∈Π∞(ξ,ζ)

fπ ∈ H(G(R), ωξζ). (2.4.1)

By construction, fξ,ζ is stable cuspidal in the above sense.
For elliptic γ ∈ G(R), let Iγ denote its connected centralizer in G(R), and e(Iγ) ∈

{±1} its Kottwitz sign. Let Icpt
γ denote an inner form of Iγ over R that is anisotropic

modulo ZG. From [Kot92a, p.659], as our Oγ(fξ,ζ) equals d(G)−1SOγ∞(f∞) there,
we see that

Oγ(fξ,ζ) =

{
d(G)−1vol(AG(R)0\Icpt

γ (R))−1ζ(γ)e(Iγ)Tr ξ(γ), γ : elliptic,

0, γ : non-elliptic.

(2.4.2)
In (2.4.2), the Haar measure on Icpt

γ (R) is chosen to be compatible (in the sense
of [Kot88, p.631]) with the measure on Iγ(R) used in the orbital integral, to compute
vol(AG(R)0\Icpt

γ (R)) with respect to the Lebesgue measure on AG(R)0. Again by
[Kot92a, p.659],

SOγ(fξ,ζ) =

{
vol(AG(R)0\Icpt

γ (R))−1ζ(γ)Tr ξ(γ), γ : elliptic,

0, γ : non-elliptic.
(2.4.3)

Let G∗ be a quasi-split group over R with inner twisting GC
∼→ G∗C, through which

ξ, ζ above are transported to G∗. Thereby we obtain an averaged Lefschetz function
f∗ξ,ζ on G∗(R).

Lemma 2.4.2. The function f∗ξ,ζ is a transfer of fξ,ζ (in the sense of (2.3.2)).

Proof. This is immediate from (2.4.3). �

Lemma 2.4.3. Assume that ξ = 1. Let π : G(R) → C× be a continuous charac-
ter whose central character equals ζ−1 when restricted to AG(R)0. Then π|G(R)+

=

ζ−1|G(R)+
if and only if π|Z(R) = ζ−1|Z(R). If the equivalent conditions hold then

Tr (fζ |π) = 1 if π = ζ−1; otherwise Tr (fζ |π) = 0.

Proof. The first assertion is clear from Lemma 2.4.1. For the second assertion, it fol-
lows from (2.4.2) via the Weyl integration formula that Tr (fζ |π) = vol(K)−1

∫
K
ζ(k)

π(k)dk, where K is a maximal compact-modulo-AG(R)0 subgroup of G(R). The in-
tegral vanishes unless π = ζ−1 on K, in which case π = ζ−1 on the entire G(R) (since
K meets every component of G(R)) and Tr (fζ |π) = 1. �
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2.5. One-dimensional automorphic representations. Now let G be a connected reduc-
tive group over a number field F . Let v be a place of F and set Gv := GFv . We have
a finite decomposition of Gsc into F -simple factors

Gsc =
∏
i∈I

Gi, with Gi = ResFi/FHi, (2.5.1)

for a finite extension Fi/F and an absolutely Fi-simple simply connected group Hi

over each Fi. Accordingly Gad =
∏
i∈I G

ad
i . Note that we have a natural composite

map G→ Gad → Gad
i for each i ∈ I, where the last arrow is the projection onto the

i-component. Let Pv = MvNv be a Levi decomposition of a parabolic subgroup of
Gv. We consider the following assumption, where “nb” stands for non-basic (cf. Defi-
nition 5.3.2 and Lemma 5.3.7 below).

(Q-nb(Pv)) The image of Pv in (Gad
i )v is a proper parabolic subgroup for every i ∈ I.

The assumption implies that Gad has no nontrivial F -simple factor that is aniso-
tropic over Fv, thus so the embedding Gsc(F ) ↪→ Gsc(AvF ) has dense image by strong
approximation. When Gad is itself F -simple, (Q-nb(Pv)) is simply saying that Pv is
a proper parabolic subgroup of Gv.

Lemma 2.5.1. Assume that Gder = Gsc and that Gi is isotropic over Fv for every
i ∈ I. Let π be a discrete automorphic representation of G(AF ), and π′ an irreducible
Gder(AF )-subrepresentation of π. Decompose π′ = ⊗iπ′i according to Gder(AF ) =∏
i∈I Gi(AF ). Write

Gi(Fv) = Hi(Fi ⊗F Fv) =
∏
w|v

Hi(Fi,w),

where w runs over the set of places of Fi above v, and decompose π′i,v = ⊗w|vπ′i,w
accordingly. If for every i ∈ I, there exists w|v such that π′i,w is trivial, then dimπ = 1.

Proof. By strong approximation, the embedding Hi(Fi) ↪→ Hi(AwFi) has dense image
for each i ∈ I. Since the underlying space of π′i consists of automorphic forms which
are left-invariant under Hi(Fi), and since π′i,w is trivial, the argument for [KST20,
Lem. 6.2] shows that π′i is trivial on the entire Hi(AFi). Hence π′ is trivial. Since
G(AF )/Gder(AF ) is abelian, we deduce that dimπ = 1 as π is generated by π′ as a
G(AF )-module. �

Write AG for the maximal Q-split torus in the center of ResF/QG.

Corollary 2.5.2. Let π be an irreducible G(AF )-subrepresentation of L2
disc(G(F )\G

(AF )/AG(R)0) and let ωv ∈ Exp(JPv (πv)). Then

|ωv(a)| ≤ δ−1/2
Pv

(a), a ∈ A−−Pv . (2.5.2)

Now assume (Q-nb(Pv)). Then the equality holds for some a ∈ A−−Pv if and only if

the equality holds for all a ∈ A−−Pv if and only if dimπ = 1.

Proof. The inequality in (2.5.2) is immediate from Proposition 2.1.3 and the normal-

ization JPv (πv) = (πv)Nv ⊗ δ
−1/2
Pv

. It remains to check the three conditions for the
equality are equivalent. The only nontriviality is to show that dimπ = 1, assuming

that |ωv(a)| = δ
−1/2
Pv

(a) for some a ∈ A−−Pv .
We may assume Gder = Gsc via z-extensions. We decompose

P ′v := Pv ∩Gder =
∏
i∈I

∏
w|v

Pv,i,w according as (Gder)v =
∏
i∈I

∏
w|v

(Hi)w,
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where w runs over places of Fi above v. Similarly AP ′v =
∏
i,w APv,i,w . Assumption

(Q-nb(Pv)) tells us that for every i, there exists w|v such that Pv,i,w is a proper
parabolic subgroup of (Hi)w. In particular, Gi,v is isotropic for every i. So we can
apply Lemma 2.5.1. Adopting the setup and notation from there, it suffices to show
that for every i, there exists a place w|v such that π′i,w = 1. In fact, we only need to
find w|v such that dimπ′i,w <∞ by Lemma 2.1.5 and Corollary 2.3.3.

The central isogeny Z×Gder → G induces a map AGv×AP ′v → APv , which has finite
kernel and cokernel on the level of Fv-points. Replacing a with a finite power, we may
assume that a is the image of (a0, a

′) ∈ AGv (Fv)×AP ′v (Fv), so that |ω(a)| = |ω(a′)|.
(The central character of π′v is unitary on AGv (Fv), so |ω(a0)| = 1.) Write a′ =
(ai,w)i,w and ωv|AP ′v (Fv) = (ωv,i,w)i,w according to the decomposition of P ′v above.

We have |ωv,i,w(ai,w)| ≤ δ
−1/2
Pv,i,w

(ai) by Proposition 2.1.3, while
∏
i,w |ωv,i,w(ai,w)| =∏

i,w δ
−1/2
Pv,i,w

(ai,w) from our running assumption. Therefore

|ωv,i,w(ai,w)| = δ
−1/2
Pv,i,w

(ai,w), ∀i ∈ I.

Since JP ′v (π′v) ⊂ JPv (πv), we see that ωv|AP ′v (Fv) ∈ Exp(JP ′v (π′v)). Thus we have

ωv,i,w ∈ Exp(JPv,i,w(π′v,i,w)).

Finally for each i, we apply the equality criterion of Proposition 2.1.3 at a place w
where Pv,i,w is proper in (Hi)w. Thereby we deduce that dimπ′i,w <∞ as desired. �

Let ξ : GF
∼→ G∗

F
be an inner twisting, with G∗ a connected reductive group over

F .

Lemma 2.5.3. One-dimensional automorphic representations of G(AF ) are in a canon-
ical bijection with those of G∗(AF ), compatibly with the bijection of Corollary 2.3.3
at every place of F .

Proof. Define G(AF )[ := cok(Gsc(AF )
%→ G(AF )). Similarly we have G∗(AF )[,

G(F )[, and G∗(F )[. Adapting the arguments of §2.3 via z-extensions, we see that
G(AF )[ is an abelian group and that there exists a canonical isomorphism G(AF )[ '
G∗(AF )[ compatible with the isomorphism of Lemma 2.3.1 at every place of v and
that the above isomorphism carries G(F )[ onto G∗(F )[.

Again by taking a z-extension, we can assume that Gsc = Gder. It suffices to
show that the inclusion Gder(F )G(AF )der ⊂ Gder(AF ) has dense image so that every
one-dimensional automorphic representations of G(AF ) factors through G(AF )[ (and
likewise for G∗). Since G(AF )der contains G(Fv)der = Gder(Fv) whenever G is quasi-
split over Fv (Lemma 2.3.2), the desired density follows from the strong approximation
for Gder.

�

To state the next lemma, define a (global) central character datum to be a pair
(X, χ) as follows, where

∏′
v means the restricted product over all places of F .

• X =
∏′
v Xv is a closed subgroup of Z(AF ) such that Z(F )X is closed in Z(AF ),

and
• χ =

∏
v χv : X ∩ Z(F )\X→ C×, with χv : Xv → C× a continuous character.

(Implicitly for each x = (xv) ∈ X, we have χv(xv) = 1 for almost all v, so
that χ is well defined on X.)
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Lemma 2.5.4. Let (X, χ) be a central character datum for G. Let v be a finite place
of F , and gv ∈ G(Fv) such that the image of gv in G(Fv)

ab is not contained in the
image of Xv. Then there exists a one-dimensional automorphic representation π of
G(AF ) with π|X = χ such that πv(gv) 6= 1.

Proof. Replacing G with a z-extension and (X, χ) with its pullback to the z-extension,
we may assume that Gder = Gsc. Then we may replace G with Gab as (X, χ) factors
through a central character datum for Gab. Thus we assume that G = T is a torus.
By assumption gv ∈ T (Fv) lies outside Xv, and viewing gv as an element of T (AF )
via the obvious embedding T (Fv) ↪→ T (AF ), we see that gv does not belong to the
subgroup T (F )X of T (AF ). Thus the proof is complete by the fact (from Pontryagin
duality) that, for every non-identity element x in a locally compact Hausdorff abelian
group X, there exists a unitary character of X whose value is nontrivial at x. (Take
X = T (AF )/T (F )X and x = gv.) �

2.6. Endoscopy with fixed central character. Let F be a local or global field of char-
acteristic 0. Let G be a connected reductive group over F with an inner twisting
GF

∼→ G∗
F

with G∗ quasi-split over F . Let E(G) (resp. Eell(G)) denote a set of

representatives for isomorphism classes of endoscopic (resp. elliptic endoscopic) data
for G as defined in [LS87, KS99]. A member of E(G) is represented by a quadru-
ple e = (Ge,Ge, se, ηe) consisting of a quasi-split group Ge, a split extension Ge
of WF by Ĝe, se ∈ ZGe , and ηe : Ge ↪→ LG satisfying the conditions detailed in
loc. cit. Write Out(e) for the outer automorphism group [KS99, p.19]. In particular
e∗ := (G∗, LG∗, 1, id) ∈ Eell(G). Write E<ell(G) := Eell(G)\{e∗}.

From now on, let e ∈ E(G). Set

ι(G,Ge) := τ(G)τ(Ge)−1|Out(e)|−1 ∈ Q.

Throughout §2.6, we make the following assumption, which will be removed via z-
extensions in the next subsection. (The assumption is known to be true if e = e∗,
when it is evident, or if Gder is simply connected, by [Lan79, Prop. 1].)

• (assumption) Ge = LGe.

For now we restrict to the case when F is local. Let e be as above. Consider a local
central character datum (X, χ) for G as in §2.2. Let Xe ⊂ ZGe(F ) denote the image of
X under the canonical embedding ZG ↪→ ZGe . Thus we can identify X = Xe. We say a
semisimple element γe ∈ Ge(F ) is strongly G-regular if γe corresponds to (the G(F )-
conjugacy class of) an element of G(F )sr via the correspondence between semisimple
conjugacy classes in Ge(F ) and those in G(F ) [LS87, 1.3]. Write Ge(F )G-sr ⊂ Ge(F )
for the subset of strongly G-regular elements.

Thanks to the proof of the transfer conjecture and the fundamental lemma [Wal06,
CL10, Ngô10], we know that each f ∈ H(G(F )) admits a transfer f e ∈ H(Ge(F ))
whose stable orbital integrals on strongly G-regular semisimple elements are deter-
mined by the following formula, where the sum runs over strongly regular G(F )-
conjugacy classes, and ∆(·, ·) denotes the transfer factor as in [LS87] (see the remark
below on normalization).

SOγe(f e) =
∑

γ∈G(F )sr/∼

∆(γe, γ)Oγ(f), γe ∈ Ge(F )G-sr. (2.6.1)

The assignment of f e to f is not unique on the level of Hecke algebras, but (2.6.1)
determines a well-defined map LSe : I(G)→ S(Ge).
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The transfer satisfies an equivariance property. For each z ∈ ZG(F ) ⊂ ZGe(F ),
define the translates fz, f

e
z of f, f e by fz(g) = f(zg) and f ez (h) = f e(zh). The equivari-

ance of transfer factors under translation by central elements (see [LS87, Lem. 4.4.A])
implies that f ez is a transfer of λe(z)fz for a smooth character λe : ZG(F )→ C×. The
character λe is independent of f e and f , and its restriction λe|Z0

G(F ) can be described
as follows. Consider the composite map

WF → LGe ηe→ LG→ LZ0
G, (2.6.2)

where the last map is dual to the embedding Z0
G ↪→ G. Then λe|Z0

G(F ) is the character

of Z0
G(F ) corresponding to the composite map above by [KSZ, Lem. 7.4.6]. Define a

smooth character χe : Xe → C× by the relation

χe(z) = λe(z)−1χ(z), z ∈ X = Xe. (2.6.3)

In light of the equivariance property above, the transfer map LSe : I(G) → S(Ge)
descends to

LSe : I(G,χ−1)→ S(Ge, χe,−1) (2.6.4)

via averaging, still denoted by LSe for simplicity. The identity (2.6.1) still holds if
f e = LSe(f) under (2.6.4). In the special case of e = e∗ (so that χe = χ), we write
f∗ ∈ H(G∗(F ), χ−1) for a transfer of f ∈ H(G(F ), χ−1). If X = {1} then f∗ here
coincides with the one in §2.3, noting that e(G) in (2.3.2) plays the role of transfer
factor.

The fundamental lemma tells us the following. Assume thatG and e are unramified;
the latter means that Ge is an unramified group and that the L-morphism ηe is
inflated from a morphism of L-groups with respect to an unramified extension of F .
We fix pinnings for G and Ge defined over F , which determine hyperspecial subgroups
K ⊂ G(F ) and Ke ⊂ Ge(F ) as in [Wal08, §4.1]. The Haar measures on G(F ) and
Ge(F ) are normalized to assign volume 1 to K and Ke. We also assume that χ is
unramified, i.e., χ is trivial on X ∩K. We normalize the transfer factors canonically
as in [LS87] (which is possible as G is quasi-split). Then LSe can be realized by a
linear map of the unramified Hecke algebras (defined relative to K and Ke)

ξe,∗ : Hur(G(F ), χ−1)→ Hur(Ge(F ), χe,−1).

We turn to the case of global field F . Recall that Z is the center of G. Let (X, χ)
be a global central character datum (§2.5). As in the local case, we define Xe =

∏
v X

e
v

to be the image of X under the canonical embedding ZG(AF ) ↪→ ZGe(AF ). We have
χe :=

∏
v χ

e
v : Xe → C×, where χe

v was given by the local consideration above, so
that functions in H(G(AF ), χ−1) transfer to those in H(Ge(AF ), (χe)−1). Denote by
λe =

∏
v λ

e
v : ZG(F )\ZG(AF ) → C× the character with λev as in the local context

above. (The ZG(F )-invariance of λe follows from the equivariance of transfer factors
[LS87, Lem. 4.4.A] and the product formula [LS87, Cor. 6.4.B].) The restriction of
λ to Z0

G(AF ) corresponds to the composite map (2.6.2) (with F now global). There
is an equality χe = λe,−1χ as characters on X = Xe as in (2.6.3) since this holds at
every place of F . In particular χe is trivial on ZG(F ) ∩ Xe, and (Xe, χe) is a central
character datum for Ge.

Remark 2.6.1. The local transfer factors are well defined only up to a nonzero scalar
(unless G is quasi-split or Ge = G∗, if no further choices are made), so we always
choose a normalization implicitly, for instance throughout §3. Scaling the transfer
factor results in scaling the transfer map (2.6.4). However, according to [LS87, §6.4],
we may and will choose a normalization at each place such that the product of local



H0 OF IGUSA VARIETIES 23

transfer factors over all places is the canonical global transfer factor. This will not
introduce ambiguity in our main argument as it takes place in the global context.

It simplifies some later arguments if e is chosen to enjoy a boundedness property.

We say that a subgroup of LG = ĜoWF is bounded if its projection to ĜoGal(E/F )
is contained in a compact subgroup for some (thus every) finite Galois extension E/F
containing the splitting field of G.

Lemma 2.6.2. In either local or global case, we can choose the representative e =
(Ge,Ge, se, ηe) in its isomorphism class to satisfy the following condition: ηe(WF ) is
a bounded subgroup of LG. (We restrict ηe to WF via the splitting WF → Ge built
into the data.)

Remark 2.6.3. Bergeron–Clozel [BC17, Lem. 3.7] proved a similar lemma when F = R.

Proof. Since ηe|Ĝe will be fixed throughout, we use it to identify Ĝe with a subgroup

of Ĝ. We take the convention that all cocycles/cohomology below are continuous
cocycles/cohomology.

It suffices to show that there exists an L-morphism ηe0 : Ge → LG extending
ηe|Ĝe such that ηe0(WF ) is bounded. Indeed, e0 = (Ge,Ge, se, ηe0) is then the desired
representative.

To prove the existence of ηe0 as above, we reduce to the case that Gder = Gsc

and that Ge = LGe via a z-extension. (In the notation of §2.7 below, the idea is to

multiply ηe1 by a suitable 1-cocycle c : WF → Z(Ĝ1) to make the image of (c · ηe1)WF

contained in LG and still bounded.) In the case that Gder = Gsc and Ge = LGe,
our approach is to refine the proof of [Lan79, Prop. 1], where Langlands shows that
ηe|Ĝe extends to an L-morphism ηe0 : LGe → LG under the hypothesis but without
guaranteeing boundedness of image. To construct ηe0 (denoted ξ therein), Langlands
reduces to the elliptic endoscopic case, chooses a sufficiently large finite extension
K/F , and then constructs ξ′ : WK/F → LG such that ηe0(g o w) := ηe(g)ξ′(w) gives
the desired L-morphism. (In the current proof, we follow Langlands to use the Weil

group WK/F to form the L-group, i.e., LG = Ĝ oWK/F .) It is enough to arrange
that ξ′ has bounded image in Langlands’s construction.

Write N̂ for the normalizer of T̂ (which is LT 0 in loc. cit.) in Ĝ. Let N̂c (resp.

Z(Ĝe)c) denote the maximal compact subgroup of N̂ (resp. Z(Ĝe)). The starting
point is a set-theoretic map ξ′ : WK/F → LG satisfying the second displayed formula
on p.709 therein. Such a ξ′ is chosen using the Langlands–Shelstad representative of

each Weyl group element ω, denoted by n(ω) ∈ N̂ in [LS87, §2.1]. (The point is that
the σ-action ωT/G(σ) on LT 0 and the action ω1(σ) differ by the Weyl action ω2(σ) in

his notation. See the seventh displayed formula on p.703.) In fact n(ω) ∈ N̂c since it

is a product of finite-order elements in N̂ . Thereby ξ′ has image in N̂coWK/F (thus
bounded). It follows that the 2-cocycle of WK/F given by

aw1,w2
= ξ′(w1)ξ′(w2)ξ′(w1w2)−1

has values in Z(Ĝe)c (not just Z(Ĝe) as in [Lan79, p.709]). We need to verify the

claim that the 2-cocycle is trivial in H2(WK/F , Z(Ĝe)c); then ξ′ can be made a homo-

morphism after multiplying a Z(Ĝe)c-valued 1-cocycle, keeping its image bounded, so

we will be done. In fact, thanks to Lemma 2 therein (stated for Z(Ĝe) but also ap-

plicable to Z(Ĝe)c since both groups have the same group of connected components),

we may assume that aw1,w2
∈ (Z(Ĝe)c)

0. Then the claim follows from a variant of
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Lemma 4 therein, with S replaced by the maximal compact subtorus in the statement
and proof. (In particular, the map (1) on p.719 is still surjective if S1 and S2 are
replaced with their maximal compact subtori, by considering unitary characters.) �

2.7. Endoscopy and z-extensions. Here we explain a general endoscopic transfer with
fixed central character by removing the assumption that Ge = LGe in §2.8 via z-
extensions. For the time being, let the base field F of G be either local or global. Fix
a z-extension over F

1→ Z1 → G1 → G→ 1.

Let e = (Ge,Ge, se, ηe) ∈ E<ell(G). As explained in [LS87, §4.4] (see also [KSZ, §7.2.6]),
we have a central extension

1→ Z1 → Ge
1 → Ge → 1,

and e can be promoted to an endoscopic datum e1 = (Ge
1,
LGe

1, s
e
1, η

e
1) for G1 such

that ηe1 : LGe
1 ↪→ LG extends ηe : Ge ↪→ LG. Moreover, changing e1 and e in their

isomorphism classes if necessary, we may ensure that ηe1(WF ) and ηe(WF ) are bounded
subgroups in LG1 and LG, respectively. Indeed, this is done in the course of proof
of Lemma 2.6.2 in the general case. Write X1 (resp. Xe

1) for the preimage of X in G1

(resp. Ge
1), and χ1 : X1 → C× for the character pulled back from χ.

To describe endoscopic transfers, it is enough to work locally, so let F be a local
field. Applying §2.8 to G1 and e1 in place of G and e, we obtain an identification
Xe

1 = X1 under the canonical embedding ZG1
↪→ ZGe

1
as well as characters λe1 :

ZG1
(F ) → C× and χe

1 : Xe
1 = X1 → C× such that χe

1 = λe,−1
1 χ1 as characters

on Xe
1 = X1. Again λe1|Z0

G1
(F ) corresponds to the parameter (2.6.2) (with Ge

1, G1

replacing Ge, G). We also have a transfer

LSe : I(G,χ−1) = I(G1, χ
−1
1 )

(2.6.4)→ S(Ge
1, χ

e,−1),

where the equality is induced by G1(F ) � G(F ).

2.8. The trace formula with fixed central character. In this subsection, G is a con-
nected reductive group over Q. Let AG denote the maximal Q-split torus in ZG, and
AGR denote the maximal R-split torus in ZGR . Put

AG,∞ := AG(R)0, AGR,∞ := AGR(R)0.

Let χ0 : AG,∞ → C× denote a continuous character. By L2
disc,χ0

(G(Q)\G(A)) we

mean the discrete spectrum in the space of square-integrable functions (modulo AG,∞)
on G(Q)\G(A) which transforms under AG,∞ by χ0. Let (X =

∏
v Xv, χ =

∏
v χv) be

a central character datum as in §2.5. Henceforth we always assume that

AG,∞ ⊂ X∞.

We can define L2
disc,χ(G(Q)\G(A)) in the same way as L2

disc,χ0
(G(Q)\G(A)). Let

Adisc,χ(G) stand for the set of isomorphism classes of irreducible G(A)-subrepresen-
tations in L2

disc,χ(G(Q)\G(A)). The multiplicity of π ∈ Adisc,χ(G) in L2
disc,χ(G(Q)\

G(A)) is denoted m(π).
Define H(G(A), χ−1) := ⊗′vH(G(Qv), χ−1

v ) as a restricted tensor product. Each
f ∈ H(G(A), χ−1) defines a trace class operator, yielding the discrete part of the
trace formula:

TGdisc,χ(f) := Tr
(
f |L2

disc,χ(G(Q)\G(A))
)

=
∑

π∈Adisc,χ(G)

m(π)Tr (f |π). (2.8.1)



H0 OF IGUSA VARIETIES 25

Fix a minimal Q-rational Levi subgroup M0 ⊂ G. Write L for the set of Q-
rational Levi subgroups of G containing M0. Define the subset Lcusp ⊂ L of relatively
cuspidal Levi subgroups; by definition, M ∈ L belongs to Lcusp exactly when the
natural map AM,∞/AG,∞ → AMR,∞/AGR,∞ is an isomorphism. Let M ∈ L and
γ ∈ M(Q) be a semisimple element. Write Mγ for the centralizer of γ in M , and
IMγ := (Mγ)0 for the identity component. Write ιM (γ) ∈ Z≥1 for the number of

connected components of Mγ containing Q-points. Write |ΩM | for the order of the

Weyl group of M . For γ ∈ M(Q), let StabMX (γ) denote the set of x ∈ X such that

γ and xγ are M(Q)-conjugate. Note that StabMX (γ) is necessarily finite (by reducing
to the case of general linear groups via a faithful representation). When M = G, we
often omit M , e.g., Iγ = IGγ and ι(γ) = ιG(γ).

Fix Tamagawa measures on M(A) and IMγ (A) for M ∈ Lcusp and fix their decom-

position into Haar measures on M(A∞) and M(R) (resp. IMγ (A∞) and IMγ (R)). This

determines a measure on the quotient IMγ (A)\M(A), which is used to define the adèlic
orbital integral at γ in M , and similarly over finite-adèlic groups. We also fix Haar
measures on X and X∞. We equip IMγ (Q) and XQ := X ∩ Z(Q) with the counting

measures and AG(R)0 with the multiplicative Lebesgue measure. Thereby we have
quotient measures on IMγ (Q)\IMγ (A)/X, XQ\X/AG(R)0, and X∞/AG(R)0.

We define the elliptic part of the trace formula as

TGell,χ(f) :=
∑

γ∈Γell,X(G)

|StabGX(γ)|−1ι(γ)−1vol(Iγ(Q)\Iγ(A)/X)Oγ(f), (2.8.2)

for f ∈ H(G(A), χ−1) and where Γell,X(G) is the set of X-orbits of elliptic conjugacy
classes of G.

Now we assume that GR contains an elliptic maximal torus. Let ξ be an irreducible
algebraic representation of GC, and ζ : G(R) → C× a continuous character. Let
M ∈ Lcusp and T∞ an R-elliptic torus in M . Arthur introduced the function ΦM (γ, ξ)
in γ ∈ T∞(R) in [Art89, (4.4), Lem. 4.2]. (See Lemma 4.4.1 below for a concrete
description.)

Let γ ∈M(Q) and suppose that γ is elliptic in M(R). Denote by IM,cpt
γ a compact-

mod-center inner form of (IMγ )R. We choose a Haar measure on IM,cpt
γ (R) compatibly

with that on IMγ (R). Write q(Iγ) ∈ Z≥0 for the real dimension of the symmetric space

associated with the adjoint group of (IMγ )R. Following [Art89, (6.3)], define

χ(IMγ ) := (−1)q(Iγ)τ(IMγ )vol(AIMγ ,∞\IM,cpt
γ (R))−1d(IMγ ). (2.8.3)

For f∞ ∈ H(G(A∞), (χ∞)−1), let f∞M ∈ H(M(A∞), (χ∞)−1) denote the constant
term, cf. §3.2 and §3.5 below. Dalal extended Arthur’s Lefschetz number formula
[Art89, Thm. 6.1] to the setting with fixed central characters. It is a harmless condi-
tion that is satisfied in our main setup, but we expect it to be superfluous.

Proposition 2.8.1. Let (X, χ), ξ, ζ be as above. Then for each f∞ ∈ H(G(A∞),
(χ∞)−1),

TGdisc,χ(fξ,ζf
∞) =

1

d(G)

∑
M∈Lcusp

(−1)dim(AM/AG)

vol(XQ\X/AG,∞)

|ΩM |
|ΩG|

∑
γ

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f∞M )

ιM (γ) · |StabMX (γ)|
,

where the second sum runs over the X-orbits on the set of R-elliptic conjugacy classes
of M(Q).
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Proof. This is [Dal22, Cor. 6.5.1]. We just note the difference of notation: his
AG,rat, AG,∞ are our AG,∞, AGR,∞, respectively. �

2.9. The stable trace formula. Let H be a quasi-split group over Q. Let (XH , χH) be a
central character datum for H. Write Σell,χH (H) for the set of stable elliptic conjugacy
classes in H(Q) modulo XH , namely two stable conjugacy classes are equivalent if one
is mapped to the other by multiplying an element x ∈ XH . Following [KSZ, §8.3.7],
define

STHell,χH (h) := τXH (H)
∑

γH∈Σell,χH
(H)

|StabXH (γH)|−1SOH(A)
γH (h),

for h ∈ H(H(A), χ−1
H ).

Consider a central character datum (X, χ) for G as well as f = ⊗′vfv ∈ H(G(A),
χ−1). For each e ∈ E<ell(G), we have e1 and a central character datum (Xe

1, χ
e
1) (whose

v-components are given as in the preceding subsection). Write f e1,v ∈ H(Ge
1(A),

(χe
1)−1) for a transfer of fv at each v. Put f e1 := ⊗′vf e1,v. For e = e∗, we transfer f to

f∗ ∈ H(G∗(A), χ−1) as in §2.6.

Proposition 2.9.1. Let f = ⊗′vfv ∈ H(G(A), χ−1). Assume that there exists a finite
place q such that Og(fq) = 0 for every g ∈ G(Qq)ss that is not regular. With f∗ and
f e1 as above, we have

TGell,χ(f) = STG
∗

ell,χ(f∗) +
∑

e∈E<ell(G)

ι(G,Ge)ST
Ge

1(A)
ell,χe

1
(f e1).

Proof. By hypothesis, the stable orbital integral of f e1,q vanishes outside G-regular
semisimple conjugacy classes. When the central character datum is trivial, the stabi-
lization of regular elliptic terms is due to Langlands [Lan83], cf. [Kot86, Thm. 9.6],
[KS99, §7.4], [Lab99]. For general central character data, the argument is essentially
the same if one uses the Langlands–Shelstad transfer with fixed central character as
in §2.6. �

The following finiteness result is going to tell us that the sum in Theorem 7.5.1
(and a similar sum in Theorem 7.1.1 below) is finite for each choice of φ∞,p.

Lemma 2.9.2. (1) Let v be a rational prime such that GQv and χv are unramified.
Let fv ∈ Hur(G(Qv), χ−1

v ). Then fv transfers to the zero function on Ge
1(Qv)

for each e = (Ge,Ge, se, ηe) ∈ E<ell(G) if Ge is ramified over Qv.
(2) Let S be a finite set of rational primes. The set of e ∈ E<ell(G) such that Ge

Qv
is unramified at every rational prime v /∈ S is finite.

Proof. Part (1) follows from [Kot86, Prop. 7.5]. Part (2) is well known; see [Lan83,
Lem. 8.12]. �

3. Jacquet modules, regular functions, and endoscopy

Throughout this section, let F be a finite extension of Qp with a uniformizer $ and
residue field cardinality q. The valuation on F is normalized such that |$| = q−1. Let
G be a connected reductive group over F . We study how certain maps of invariant or
stable distributions between G and its Levi subgroups interact with Jacquet modules
and endoscopy, based on [Shi10,Xu17].
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3.1. ν-ascent and Jacquet modules. Let ν : Gm → G be a cocharacter defined over
F . Let Mν denote the centralizer of ν in G, which is an F -rational Levi subgroup.
The maximal F -split torus in the center of Mν is denoted by AMν .

Write Pν (resp. P op
ν ) for the F -rational parabolic subgroup of G which contains Mν

as a Levi component and such that 〈α, ν〉 < 0 (resp. 〈α, ν〉 > 0) for every root α of
AMν

in Pν (resp. P op
ν ). The set of α as such is denoted by Φ+(Pν) (resp. Φ+(P op

ν )).
Let Nν , N

op
ν denote the unipotent radical of Pν , P

op
ν . For every α ∈ Φ+(P op

ν ), we
have |α(ν($))| = q−〈α,ν〉 < 1. Therefore ν($) ∈ A−−

P op
ν

. The following definition is a

rephrase of [Shi10, Def. 3.1].

Definition 3.1.1. We say that γ ∈ Mν(F ) is acceptable (with respect to ν) if the
action of Ad(γ) on (LieNop

ν )F is contracting, i.e., all its eigenvalues λ ∈ F have the
property that |λ| < 1.

By definition, a ∈ AMν (F ) is acceptable if and only if a ∈ A−−
P op
ν

. The subset of

acceptable elements is nonempty, open, and stable under Mν(F )-conjugacy. Define
Hacc(Mν) ⊂ H(Mν) as the subspace of functions supported on acceptable elements.
We also write Hν-acc(Mν) to emphasize the dependence on ν. As in §2.2 we often
omit F for simplicity.

Lemma 3.1.2. Let φ ∈ Hacc(Mν). There exists f ∈ H(G) with the following properties.

(1) For every g ∈ G(F )ss,

OGg (f) = δPν (m)−1/2OMν
m (φ)

if there exists an acceptable m ∈ Mν(F ) which is conjugate to g in G(F ) (in
which case m is unique up to Mν(F )-conjugacy, and the Haar measures are
chosen compatibly on the connected centralizers of m and g), and OGg (f) = 0
otherwise.

(2) Tr (f |π) = Tr
(
φ|JP op

ν
(π)
)

for π ∈ Irr(G(F )).

Proof. This is [Shi10, Lem. 3.9] except that we corrected typos in the statement.
The same proof still works with two remarks. Firstly, we removed the assumption in
loc. cit. that orbital integrals of φ vanish on semisimple elements with disconnected
centralizers. This is possible by reducing to the case of G with simply connected
derived subgroup (then Mν,der is also simply connected by Lemma 1.9.1) so that the
centralizers of semisimple elements are connected in both Mν and G. Secondly, the

mistake in loc. cit. occurs in line 1, p.806, where it should read φ0 := φ · δ−1/2
Pν

. �

Corollary 3.1.3. Let φ and f be as in Lemma 3.1.2. For every g ∈ G(F )ss,

SOGg (f) = δPν (m)−1/2SOMν
m (φ)

if there exists an acceptable m ∈Mν(F ) which is conjugate to g in G(F ). Otherwise,
SOGg (f) = 0.

Proof. This is clear from the preceding lemma, using [Shi10, Lem. 3.5]. �

Definition 3.1.4. In the setup of Lemma 3.1.2, we say that f is a ν-ascent of φ.

Recall the definition of I(·) and the trace Paley–Wiener theorem from §2.2. Ac-
cording to [BDK86, Prop. 3.2], the Jacquet module induces the map

Jν : I(Mν)→ I(G), F 7→
(
π 7→ F(JP op

ν
(π))

)
. (3.1.1)

Write Iacc(Mν) for the image of Hacc(Mν) in I(Mν). Then Lemma 3.1.2 means
that, when φ ∈ Iacc(Mν), a ν-ascent of φ is well defined as an element of I(G),
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which is nothing but Jν(φ). The lemma yields extra information on orbital integrals.
Xu [Xu17, Prop. C.4] shows that (3.1.1) induces a similar map for the stable analogues,
which we denote by the same symbol:

Jν : S(Mν)→ S(G). (3.1.2)

Write X∗F (G) for the group of F -rational characters of G. Define X∗F (G)Q :=
X∗F (G)⊗Z Q and aG := Hom(X∗F (G)Q,R). We have the map

HG : G(F )→ aG, g 7→ (χ 7→ log |χ(g)|). (3.1.3)

It is easy to see that HG is invariant under G(F )-conjugacy. Indeed, if g1, g2 become
conjugate in G(F ′) for a finite extension F ′/F , then it boils down to the obvious fact

that HG′(g1) = HG′(g2), since the map HG is functorial with respect to G ↪→ G′ :=
ResF ′/FG.

For f ∈ H(G), define the following subsets of aG:

suppaG(f) := {HG(x) : x ∈ G(F )ss s.t. f(x) 6= 0},
suppOaG(f) := {HG(x) : x ∈ G(F )ss s.t. Ox(f) 6= 0}, (3.1.4)

suppSOaG (f) := {HG(x) : x ∈ G(F )ss s.t. SOx(f) 6= 0}.

Obviously suppSOaG (f) ⊂ suppOaG(f) ⊂ suppaG(f). Writing

P(∗) := collection of subsets of ∗,

we obtain a map suppaG (resp. suppOaG , suppSOaG ) from H(G) (resp. I(G), S(G)) to
P(aG).

We define analogous objects for Mν in place of G. The injective restriction map
X∗F (G)Q → X∗F (Mν)Q induces a canonical surjection

prG : aMν
→ aG. (3.1.5)

Set aPν := aMν and identify X∗(AMν )R ' aPν by µ ∈ X∗(AMν ) 7→ (χ 7→ 〈χ, µ〉).
Then it is an easy exercise to describe prG as the average map along Weyl orbits: if
T is a maximal torus of Mν (thus also of G) over F , and if the Weyl group is taken
relative to T , then

prG(µ) = |ΩG|−1
∑
ω∈ΩG

ω(µ) = |ΩG|−1
∑
ω∈Ω

G

ω(µ), µ ∈ X∗(AMν
)R. (3.1.6)

Lemma 3.1.5. The sets suppaG(f), suppOaG(f), and suppSOaG (f) remain unchanged if
we restrict x in the definition (3.1.4) to a subset D ⊂ G(F )reg that is open dense in
G(F ).

Proof. Since the map HG is continuous with discrete image, for each y in suppaG(f),

suppOaG(f), or suppSOaG (f), the preimage (HG)−1(y) is open and closed. If y ∈
suppaG(f) then suppaG(f) ∩ (HG)−1(y) is nonempty open in G(F ) thus intersects
D. This proves the assertion for suppaG(f).

Next let y ∈ suppOaG(f). Then (HG)−1(y) ∩ D is open dense in (HG)−1(y). If

Ox(f) = 0 for every x ∈ (HG)−1(y) ∩D, we claim that

Ox(f) = 0, x ∈ (HG)−1(y) ∩G(F )ss.

If x is regular, this follows from local constancy of Ox(f) on regular elements. A
Shalika germ argument then proves Ox(f) = 0 for non-regular semisimple x. (Com-
pare with the proof of Lemma 3.4.5 (1) below.) However, the claim contradicts
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y ∈ suppOaG(f). The lemma for suppOaG(f) follows. Finally, the stable analogue is
proved likewise. �

Lemma 3.1.6. The following diagrams commute.

Iacc(Mν)
Jν //

suppOaMν
��

I(G)

suppOaG
��

P(aPν )
prG //P(aG)

Sacc(Mν)
Jν //

suppSOaMν

��

S(G)

suppSOaG

��
P(aPν )

prG //P(aG)

Proof. This follows from Lemma 3.1.2 and Corollary 3.1.3 since, for each m ∈Mν(F ),
the canonical map aMν

→ aG sends HMν (m) to HG(m). �

Let k ∈ Z and φ ∈ H(Mν). Define φ(k)(l) := φ(ν($)−kl) for l ∈ Mν(F ) so that
φ(k) ∈ H(Mν). Since ν is central in Mν , this induces a map

(·)(k) : I(Mν)→ I(Mν). (3.1.7)

Lemma 3.1.7. If φ ∈ Hacc(Mν) then φ(k) ∈ Hacc(Mν) for all k ≥ 0. Given φ ∈ H(Mν),
there exists k0 = k0(φ) such that φ(k) ∈ Hacc(Mν) for all k ≥ k0. The analogue holds
true with I in place of H. Moreover, letting f (k) denote the ν-ascent of φ(k) for
k ≥ k0, we have

supp?aG

(
f (k)

)
= prG(supp?aMν (φ(k))) = k ·HG(ν($)) + prG(supp?aMν (φ)),

for ? ∈ {O,SO} and where prG : aMν
→ aG is the canonical surjection.

Proof. The assertions before “Moreover” follow from the facts that ν($) is acceptable
and that φ has compact support. As for the last assertion, the second equality is
obvious, so we check the first equality. By Lemma 3.1.5 it is enough to verify firstly
that if Og(f

(k)) 6= 0 for g ∈ G(F )reg then HG(g) ∈ prG(suppOaMν (φ(k))), and secondly

that if Om(φ(k)) 6= 0 for m ∈ M(F )reg then prG(HM (m)) ∈ suppOaG(f (k)). This
follows from Lemma 3.1.2 (1) and Lemma 3.1.6. The case of stable orbital integrals
is analogous. �

Let Groth(Mν(F )) denote the Grothendieck group of admissible representations of
Mν(F ).

Lemma 3.1.8. Let π1, π2 ∈ Groth(Mν(F )). Assume that for each φ ∈ I(Mν), there
exists k0(φ) ∈ Z such that Trπ1(φ(k)) = Trπ2(φ(k)) for all k ≥ k0(φ). Then π1 = π2

in Groth(Mν(F )).

Proof. This is proved by the argument of [Shi09, p.536]. �

3.2. ν-ascent and constant terms. Fix an F -rational minimal parabolic subgroup P0 ⊂
P op
ν of G with a Levi factor M0 ⊂ Mν . Let P be another F -rational parabolic

subgroup of G containing P0, with a Levi factor M containing M0. Henceforth we
will often write L := Mν .

We have the constant term map (compare with (3.1.1))

CG
M : I(G)→ I(M), F 7→

(
(πM 7→ F(n-indGM (πM ))

)
, (3.2.1)

where n-indGM : Groth(M(F ))→ Groth(G(F )) is the normalized parabolic induction
(which does not change if P is replaced with a different parabolic with Levi factor
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M). On the level of functions, when f ∈ H(G), we can define fM ∈ H(M) by an
integral formula (e.g., [Shi11, (3.5)]) so that

OGg (f) = 0, ∀g ∈ G(F )reg not conjugate to an m ∈M(F ),

OGm(f) = DG/M (m)1/2OMm (fM ), ∀ G-regular m ∈M(F ),
(3.2.2)

where DG/M : M(F )→ R×>0 denotes the Weyl discriminant of G relative to M . This
identity and parts (i) and (ii) of [Shi11, Lem. 3.3] tell us that f 7→ fM descends to
the map CG

M above. (Even though G is a general linear group in loc. cit., everything
applies to general reductive groups since that lemma is based on the general results
of [vD72].)

Since n-indGM induces a map R(M)st → R(G)st [KV16, Cor. 6.13], the map CG
M

descends to a map on the stable spaces, still denoted by the same symbol:

CG
M : S(G)→ S(M).

Define the following set of representatives for ΩL\ΩG/ΩM :

ΩGM,L := {ω ∈ ΩG : ω(M ∩ P0) ⊂ P0, ω
−1(L ∩ P0) ⊂ P0}.

For ω ∈ ΩGM,L, write Mω := M ∩ ω−1(L), Pω := M ∩ ω−1(Pν), and Lω := ω(M) ∩ L.

Note that Mω (resp. Lω) is an F -rational Levi subgroup of M (resp. L) and that

ω induces an isomorphism Mω
∼→ Lω, thus also ω : I(Mω)

∼→ I(Lω) by φ 7→ (g 7→
φ(ω−1g)). Since ν is central in L, its image lies in Lω. So νω := ω−1(ν) is a cocharacter
of Mω. Hence we have a chain of maps

I(L)
CL
Lω−→ I(Lω)

ω−1

' I(Mω)
Jνω−→ I(M).

Lemma 3.2.1. If φ ∈ Iν-acc(L) then C L
Lω

(φ) is contained in Iν-acc(Lω).

Proof. The proof of Lemma 3.3.5 below works verbatim: just replace stable orbital
integrals there with ordinary orbital integrals, and use (3.2.2). (Since Lemma 3.3.5 is
more general, we supply a detailed argument only for the latter.) �

Lemma 3.2.2. We have the following commutative diagram. The exact analogue is
true with S(·) in place of I(·).

I(L)
Jν //

⊕CL
Lω

��

I(G)
CG
M // I(M)

⊕
ω∈ΩGM,L

I(Lω)
⊕ω−1

∼
// ⊕
ω∈ΩGM,L

I(Mω)

∑
ω Jνω

OO

Proof. Let φ ∈ I(L). We check that the images of φ in I(M) given in the two different
ways have the same trace against every πM ∈ Irr(M(F )):

Tr
(
C L
Lω (Jν(φ))|πM

)
= Tr

(
Jν(φ)|n-indGL (πM )

)
= Tr

(
φ|JPν (n-indGL (πM ))

)
=

∑
ω∈ΩGM,L

Tr
(
φ|n-indLLω

(
ω(JPνω (πM ))

))
=

∑
ω∈ΩGM,L

Tr
(
Jνω (ω−1(C L

Lω (φ)))|πM
)
,

where the second last equality comes from Bernstein–Zelevinsky’s geometric lemma
[BZ77, 2.12]. The S(·)-version is immediate from the I(·)-version proven just now,
since each map in the big diagram descends to a map between the stable analogues. �
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3.3. ν-ascent and endoscopic transfer. In this subsection we assume that G is quasi-
split over F . Let e = (Ge,Ge, se, ηe) be an endoscopic datum for G such that Ge =
LGe. (The last condition will be removed via z-extensions in §3.6.) Here we fix ΓF -

pinnings (Be, T e, {Xαe}) and (B, T , {Xα}) for Ĝe and Ĝ, respectively. (These choices
are implicit in the discussion of §2.6.) Conjugating ηe we may and will assume that
ηe(T e) = T and ηe(Be) ⊂ B.

We have a standard embedding LPν ↪→ LG and a Levi subgroup LMν ⊂ LPν as
in [Bor79, 3.3, 3.4]. Choose a subtorus S ⊂ T such that Cent(S, LG) = LMν . (This
is possible by [Bor79, Lem. 3.5].) Following [Xu17, §6], define

ΩG(e, ν) := {ω ∈ ΩG |Cent(ω(S), LGe)→WF is surjective}

and Ωe,ν := ΩG
e\ΩG(e,Mν)/ΩMν . For each ω ∈ Ωe,ν , we obtain an endoscopic datum

eω = (Ge
ω,
LGe

ω, s
e
ω, η

e
ω) for L = Mν

as follows. (Henceforth we view LGe as a subgroup of LG via ηe.) Pick g ∈ Ĝ such
that Int(g) induces ω on S. Then g LPνg

−1∩LGe is a parabolic subgroup of LGe with
Levi subgroup g LMνg

−1, so there is a corresponding standard parabolic subgroup
P e
ν = M e

νN
e
ν such that the standard embedding LP e

ν ↪→ LGe (resp. LM e
ν ↪→ LGe)

becomes g LPνg
−1 ∩ LGe (resp. g LMνg

−1 ∩ LGe) after composing with Int(ge) for

some ge ∈ Ĝe. Then there is a unique L-embedding ηeω : LM e
ν ↪→ LMν such that

Int(g) ◦ ηeω = ηe ◦ Int(ge). Set Ge
ω := M e

ν , and seω := g−1sg ∈ M̂ν . Then it is a routine
exercise to check that (Ge

ω,
LGe

ω, s
e
ω, η

e
ω) is an endoscopic datum for Mν .

There is a canonical embedding AMν
↪→ AMe

ν
= AGe

ω
(just like ZH ↪→ Z in §2.6).

Composing with ν : Gm → AMν
, we obtain

νω : Gm → AGe
ω
.

By construction, Ge
ω = M e

ν is a Levi subgroup of Ge that is the centralizer of νω. In
particular we have a map Jνω : S(Ge

ω)→ S(Ge) as in (3.1.2). Consider the following
commutative diagram

WF
// LGe

ω

ηeω //
� _

Int(ge)

��

LMν
//

� _

Int(g)

��

LZ0
Mν

��
WF

// LGe ηe // LG // LZ0
G,

(3.3.1)

where the maps out of WF come from canonical splittings for the L-groups, the two
horizontal maps on the right are induced by Z0

Mν
⊂ Mν and Z0

G ⊂ G, the first two
vertical maps correspond to the Levi embeddings (coming fromGe

ω ⊂ Ge andMν ⊂ G)
followed by Int(ge) and Int(g) respectively, and finally the rightmost vertical map is
induced by Z0

G ⊂ Z0
Mν

. The left square in (3.3.1) commutes by Int(g)◦ηeω = ηe◦Int(ge)
above. The commutativity of the right square is obvious since Int(g) acts trivially on
LZ0

G. Denote by

λeω : Z0
Mν

(F )→ C× (resp. λe : Z0
G(F )→ C×)

the smooth character corresponding to the composite morphism from WF to LZ0
Mν

(resp. LZ0
G) in the first (resp. second) row. The character λe is the same as in §2.6.

The commutativity of (3.3.1) implies that λeω|Z0
G(F ) = λe. The canonical splittings

from WF to LGe
ω and LGe commute with the Levi embedding LGe

ω ↪→ LGe without
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Int(ge), but the point is that Int(ge) on LGe is equivariant with the trivial action on
LZ0

G via the horizontal maps in (3.3.1).

Lemma 3.3.1. Assume that ηe(WF ) is a bounded subgroup of LG in the sense above
Lemma 2.6.2. (This condition can always be ensured by that lemma.) Then λeω is a
unitary character.

Proof. By assumption and commutativity of (3.3.1), ηeω(WF ) is a bounded subgroup
of LMν , whose image in LZ0

Mν
is a bounded subgroup accordingly. Therefore λeω is a

unitary character via the Langlands correspondence for tori. �

Proposition 3.3.2. The following diagram commutes.

I(Mν)
Jν //

⊕LSe,ω

%%

I(G)
LSe

// S(Ge)

⊕
ω∈Ωe,ν

S(Ge
ω)

∑
ω Jνω

99

Let φ ∈ C∞c (Mν(F )). If f (k) = Jν(φ(k)) then writing φ
(k)
ω := LSe,ω(φ)(k), we have

φ(k)
ω = λeω(ν($))−kLSe,ω(φ(k)), LSe(f (k)) =

∑
ω∈Ωe,ν

λeω(ν($))kJνω

(
φ(k)
ω

)
.

Remark 3.3.3. When e is given by a Levi subgroup M as in §3.2 (so that Ge = M),
we have LSe = CG

M , LSe,ω = C L
Lω

, and the meaning of νω is consistent between §3.2
and §3.3. We leave it to the interested reader to compare the diagram above with
that of Lemma 3.2.2.

Proof. The first equality follows from the equivariance property of transfer as dis-
cussed in the paragraph containing (2.6.3) (applied to z = ν($)−k, G = Mν , Ge = Ge

ω,
and f = φ). The commutative diagram comes from (C.4) in [Xu17] (when θ is trivial).
This, together with the first equality, implies the last equality. �

Corollary 3.3.4. Let φ(k), φ
(k)
ω , and f (k) be as in Proposition 3.3.2. Then

suppSOaGe

(
Jνω (φ(k)

ω )
)

= k ·HGe

(νω($)) + prGe

(
suppSOaLω (LSe,ω(φ))

)
, ω ∈ Ωe,ν ,

where prGe : aGe
ω
� aGe is the natural projection.

Proof. By Lemma 3.1.7 and Proposition 3.3.2,

suppSOaGe

(
Jνω (φ(k)

ω )
)

= prGe

(
suppSOaGe

ω
(φ(k)
ω )
)

= prGe

(
suppSOaGe

ω
(LSe,ω(φ(k))).

)
= prGe

(
k ·HGe

ω (νω($)) + suppSOaGe
ω

(LSe,ω(φ))
)
.

We finish by observing that prGe(HGe
ω (νω($))) = HGe

(νω($)). �

It is useful to know preservation of acceptability in the setting of Proposition 3.3.2
as this will allow an inductive argument in the proof of Corollary 4.2.3 below.

Lemma 3.3.5. If φ ∈ Iacc(Mν) then φω := LSe,ω(φ) is contained in Sacc(Ge
ω).
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Proof. Suppose that SOγω (φω) 6= 0 for a strongly Mν-regular element γω ∈ Ge
ω(F ).

We need to check that γω is νω-acceptable. (This is enough thanks to Lemma 3.1.5.)
From the orbital integral identity for SOγω (φω) (cf. (2.6.1)), we see the existence

of γ ∈Mν(F )sr whose stable conjugacy class matches that of γω such that Oγ(φ) 6= 0.
The latter implies that γ is ν-acceptable. Write T , Tω for the centralizers of γ, γω
in Mν , Ge

ω, respectively. The matching of conjugacy classes tells us that there is a
canonical F -isomorphism i : T ' Tω which carries γ to γω, cf. [Kot86, §3.1]. (A priori
i sends the stable conjugacy class of γ to that of γω and is canonical up to a Weyl
group orbit. But i is determined if required to send γ to γω.) Since ν is central in
Mν , the map i necessarily carries ν to νω. Regarding T and Tω as maximal tori of
G and Ge, respectively, we have an injection i∗ : R(Ge

ω, Tω) ↪→ R(G,T ) between the
sets of roots induced by i (again [Kot86, §3.1]) such that

〈α, νω〉 = 〈i∗(α), ν〉, α ∈ R(Ge
ω, Tω). (3.3.2)

We are ready to show that γω is νω-acceptable. Let α ∈ R(Ge
ω, Tω) such that

〈α, νω〉 > 0. We need to verify that |α(γω)| < 1, cf. Definition 3.1.1. But 〈i∗(α), ν〉 > 0
by (3.3.2), so the ν-acceptability of γ implies that |i∗(α)(γ)| < 1. Since i∗(α)(γ) =
α(γω), the proof is finished. �

3.4. C-regular functions and constant terms. Assume that G is split over F and fix
a reductive model over OF , still denoted by G. Let T be a split maximal torus of G
over OF . Let C ∈ R>0.

Definition 3.4.1. A cocharacter µ : Gm → T is C-regular if the following two condi-
tions hold.

(1) |〈α, µ〉| > C for every α ∈ Φ(T,G),
(2) |〈α|AM ,prM (ωµ)〉| > C for every proper Levi subgroup M of G containing T ,

every ω ∈ ΩG, and every α ∈ Φ(T,G)\Φ(T,M).

Write X∗(T )C-reg for the set of C-regular cocharacters.

Lemma 3.4.2. The following are true.

(1) The subset X∗(T )C-reg of X∗(T ) is nonempty, and stable under both nonzero
Z-multiples and the ΩG-action.

(2) Let µ, µ0 ∈ X∗(T ). If µ is C-regular, then there exists k0 ∈ Z>0 such that
µ0 + kµ is C-regular for all k ≥ k0.

Proof. (1) Let X∗(T )R,C-reg denote the subset of X∗(T )R defined by the same inequal-
ities as in Definition 3.4.1. We choose an inner product on X∗(T )R invariant under
the Weyl group action. Clearly X∗(T )C-reg and X∗(T )R,C-reg are stable under nonzero
Z-multiples and the Weyl group action, and the latter is open. It suffices to verify the
claim that X∗(T )R,C-reg is nonempty. Indeed, if the claim is true, we choose an open
ball U ⊂ X∗(T )R,C-reg. For k ∈ Z>0 large enough, k · U contains a point of X∗(T ),
which then also lies in X∗(T )C-reg.

Let us prove the claim. Identify X∗(T )R with the standard inner product space
Rn via a linear isomorphism. Say that a measurable subset A ⊂ Rn has density 0 if
vol(A ∩B(0, r))/vol(B(0, r))→ 0 as r →∞, where B(0, r) denotes the ball of radius
r centered at 0. We will show that the complement of X∗(T )R,C-reg in X∗(T )R is a
density 0 set. Since a finite union of density 0 sets still has density 0, it is enough to
check that each of the conditions |〈α, µ〉| ≤ C and |〈α|AM ,prM (ωµ)〉| ≤ C defines a
density 0 subset in X∗(T )R. Either condition defines a subset of Rn of the form

|a1x1 + · · ·+ anxn| ≤ C (3.4.1)
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in the standard coordinates (x1, ..., xn), with a1, ..., an ∈ R. Moreover, not all ai’s are
zero, since neither 〈α, µ〉 nor 〈α|AM ,prM (ωµ)〉 is identically zero on all µ ∈ X∗(T )R.
(In the case of 〈α|AM ,prM (ωµ)〉, the reason is that prM : X∗(T )R → X∗(AM ) is
surjective, and that α|AM ∈ X∗(AM ) is nontrivial since α /∈ Φ(T,M).) Now it is
elementary to see that (3.4.1) determines a density 0 subset. This proves the claim.

(2) Since the pairings in Definition 3.4.1 are linear in µ, it is enough to choose k0

such that (k0 − 1)C is greater than |〈α, µ〉| and |〈α|AM ,prM (ωµ)〉| for all α,M,ω as
in that definition. �

Define T (F )C-reg to be the union of µ($F )T (OF ) as µ runs over the set of C-regular
cocharacters. For each M ∈ L(G) containing T , set

aM,C := {a ∈ aM : |〈α, a〉| > C| log |$||, ∀α ∈ Φ+(T,G)\Φ+(T,M)}. (3.4.2)

Here we use the pairing X∗(T )R × X∗(T )R → R to compute 〈α, a〉, viewing a in
X∗(T )R via aM = X∗(AM )R ⊂ X∗(T )R. Recall that X∗(AM )R ' Hom(X∗(M)R,R)
via a 7→ (χ 7→ 〈χ, a〉). Analogously X∗(AT )R ' Hom(X∗(T )R,R). Write prM :
X∗(AT )R � X∗(AM )R for the map induced by the restriction X∗F (M) → X∗F (T ).
(This is the analogue of prG in §3.1.)

Lemma 3.4.3. Let M ( G be a Levi subgroup containing T over F . Then the image
of T (F )C-reg under HM is contained in aM,C .

Proof. Consider t := µ($) with µ ∈ X∗(T )C-reg. Then HM (t) ∈ Hom(X∗(M)R,R) is
identified with the unique element a ∈ X∗(AM )R such that

〈χ, a〉 = log |χ(µ($))| = 〈χ, µ〉 log |$|, χ ∈ X∗(M)R.

Let α ∈ Φ(T,G)\Φ(T,M). Since the composite of the restriction maps X∗F (M)R →
X∗F (T )R → X∗(AM )R is an isomorphism, we can find χ ∈ X∗F (M)R such that χ|AM =
α|AM . Hence

〈α, a〉 = 〈α|AM , a〉 = 〈χ|AM , a〉 = 〈χ, a〉 = 〈χ, µ〉 log |$| = 〈χ|AT , µ〉 log |$|
= 〈χ, prM (µ)〉 log |$| = 〈α|AM ,prM (µ)〉 log |$|.

Since µ is C-regular, |〈α|AM ,prM (µ)〉| > C. Hence |〈α, a〉| > C| log |$||. �

The following definition is motivated by [FK88, p.195].

Definition 3.4.4. Let C > 0. We say f ∈ H(G) is C-regular if supp(f) is contained in
the G(F )-conjugacy orbit of T (F )C-reg.5 Write H(G)C-reg for the space of C-regular
functions.

Lemma 3.4.5. Let f ′ ∈ H(G). Assume that every g ∈ G(F )reg such that Og(f
′) 6=

0 (resp. SOg(f
′) 6= 0) is G(F )-conjugate (resp. stably conjugate) to an element of

T (F )C-reg. Then

(1) Og(f
′) = 0 (resp. SOg(f

′) = 0) if g ∈ G(F )ss is not regular, and
(2) there exists f ∈ H(G)C-reg such that f and f ′ have the same image in I(G)

(resp. S(G)).

Proof. (1) If g ∈ G(F )ss is not regular then no regular element in a sufficiently small
neighborhood of g intersects the G(F )-orbit of T (F )C-reg. (Since every t ∈ T (F )C-reg

satisfies |1− α(t)| = 1 for α ∈ Φ(T,G), no α(t) approaches 1.) Thus f ′ has vanishing
regular orbital integrals in a neighborhood of g. This implies that Og(f

′) = 0, by an

5In practice it seems enough to impose the condition on suppO(f). However when producing
examples of C-regular f , often we have this condition satisfied.
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argument as in the proof of [Rog83, Lem. 2.6] via the Shalika germ expansion around
g. The case of stable orbital integrals is analogous.

(2) The point is that the G(F )-conjugacy orbit of T (F )C-reg is open and closed
in G(F ). (Since T (F )C-reg is open and closed in T (F ), and the map G(F )/T (F ) ×
T (F )C-reg → G(F ) induced by (g, t) 7→ gtg−1 is a local isomorphism.) Thus the
product of f ′ and the characteristic function on the latter orbit is smooth and com-
pactly supported, and thus belongs to H(G)C-reg. Denoting the product by f , we see
that f and f ′ have equal orbital integrals (resp. stable orbital integrals) on regular
semisimple elements. Therefore have the same image in I(G) (resp. S(G)). �

Corollary 3.4.6. Fix a C-regular cocharacter µ : Gm → T . Let φ ∈ H(T ). Then there
exists an integer k0 = k0(φ) such that for every integer k ≥ k0, the µ-ascent of φ(k)

is represented by a C-regular function on G(F ).

Proof. There is a finite subset X ⊂ X∗(T ) such that supp(φ) ⊂
⋃
µ0∈X µ0($F )T (OF ).

Applying Lemma 3.4.2 to each µ0 ∈ X and also Lemma 3.1.7, we can find k0 = k0(φ) ∈
Z≥0 such that φ(k) is µ-acceptable and supp(φ(k)) ⊂ T (F )C-reg for all k ≥ k0. Write

f (k) for a µ-ascent of φ(k). By Lemma 3.4.5 it suffices to check for each k ≥ k0 and
g ∈ G(F )reg that if Og(f

(k)) 6= 0 then g is in the G(F )-orbit of T (F )C-reg. This

follows from the observed properties of φ(k) by Lemma 3.1.2. �

Lemma 3.4.7. Let f ∈ H(G)C-reg, M ∈ L<(G), and e ∈ E<(G). The following are
true.

(1) CG
M (f) ∈ I(M) is represented by a function fM ∈ H(M) whose support is

contained in the M(F )-conjugacy orbit of T (F )C-reg. (In particular fM is a
C-regular function on M(F ).)

(2) LSe(f) ∈ S(Ge) vanishes unless Ge is split over F . If Ge is split over F then
LSe(f) is represented by a C-regular function on Ge(F ).

Proof. (1) We keep writing T (F )C-reg for the set of C-regular elements relative to
G, which contain C-regular elements relative to M . Since T (F )C-reg is invariant
under the Weyl group of G, an element γ ∈ M(F )ss is conjugate to an element of
T (F )C-reg in G(F ) if and only if it is so in M(F ). In light of Lemma 3.4.5, it suffices
to show the following: if Oγ(CG

M (f)) 6= 0 for regular semisimple γ ∈ M(F ) then γ is
M(F )-conjugate to an element of T (F )C-reg.

If γ is G-regular then we have from §3.2 that Oγ(f) = DG/M (γ)Oγ(CG
M (f)), which

is nonzero only if γ is conjugate to an element of T (F )C-reg. If γ is regular but outside
the M(F )-orbit of T (F )C-reg, then a sufficiently small neighborhood V of γ does not
intersect the M(F )-orbit of T (F )C-reg. On the other hand, G-regular elements are
dense in V . Since an orbital integral is locally constant on the regular semisimple set,
it follows that Oγ(CG

M (f)) = 0.
(2) If T transfers to a maximal torus in Ge then Ge is split over F since T is a split

torus. Thus LSe(f) = 0 unless Ge is split over F . Now we assume that T transfers
to a maximal torus T e ⊂ Ge, equipped with an F -isomorphism T ' T e (canonical up
to the Weyl group action). Via the isomorphism we transport λ to λe : Gm → T e

and identify Φ(T e, Ge) as a subset of Φ(T,G). By abuse of notation, keep writing
T (F )C-reg for its image in T e(F ). Then C-regular elements of T e(F ) are contained in
T (F )C-reg.

Now the rest of the proof of (2) similar to that of (1), based on Lemma 3.4.5. It
suffices to check that if SOγe(LSe(f)) 6= 0 for G-regular semisimple γe ∈ Ge(F ) then
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γe is stably conjugate to an element of T (F )C-reg. This is evident from the transfer
of orbital integral identity. �

Corollary 3.4.8. For f ∈ H(G)C-reg and M ∈ L<(G), we have suppOaM (CG
M (f)) ⊂

aM,C .

Proof. Let fM be as in the preceding lemma. Then

suppOaM (CG
M (f)) = suppOaM (fM ) ⊂ suppaM (fM ) ⊂ HM (T (F )C-reg) ⊂ aM,C ,

where the last inclusion comes from Lemma 3.4.3. �

The following lemma, to be invoked in §7.5, sheds light on how much C-regular
functions detect.

Lemma 3.4.9. Let I be a finite set and let C > 0. Let πi ∈ Irr(G(F )) and ci ∈ C for
i ∈ I. If ∑

i∈I
ciTrπi(f) = 0 ∀ f ∈ H(G)C-reg

then
∑
i∈I ci · JP0

(πi) = 0 in Groth(G(F ))⊗Z C.

Proof. Fix a regular cocharacter µ : Gm → T over F such that P0 = P op
µ . For each

φ ∈ H(T ), we have some integer k0 such that φ(k) are µ-acceptable for all k ≥ k0 and
their µ-ascent f (k) are represented by C-regular functions by Corollary 3.4.6. Thanks
to Lemma 3.1.2,

0 =
∑
i∈I

ciTr (f (k)|πi) =
∑
i∈I

ciTr (φ(k)|JP0
(πi)), ∀k ≥ k0.

We conclude by Lemma 3.1.8. �

3.5. Fixed central character. We explain that the facts thus far in §3 hold in the
setup with fixed central character. Let ν : Gm → G be a cocharacter over F and
(Ge,Ge, se, ηe) an endoscopic datum for G with Ge = LGe. We can view X as a closed
subgroup of Mν(F ), Ge(F ), and Ge

ω(F ) of the preceding sections via the canonical
embeddings of Z(F ) into their centers.

As before, Hacc(Mν , χ
−1) ⊂ H(Mν , χ

−1) is the subspace of functions which are
supported on acceptable elements. Taking the image, we also have Iacc(Mν , χ

−1)
and Sacc(Mν , χ

−1). Since acceptability is invariant under the translation by central
elements, the χ-averaging map induces a surjection Hacc(Mν)→ Hacc(Mν , χ

−1). The
analogous surjectivity holds for Iacc and Sacc.

The earlier results are valid in the setting of fixed central characters, with the
following minor modifications. The proofs are omitted as no new ideas are required.

To adapt §3.1. Averaging the ν-ascent map, we obtain

Jν : I(Mν , χ
−1)→ I(G,χ−1), Jν : S(Mν , χ

−1)→ S(G,χ−1)

satisfying the orbital integral and trace identities in Lemma 3.1.2 (with central char-
acter of π equal to χ) and Corollary 3.1.3. The obvious analogues of Lemmas 3.1.5
and 3.1.6 hold true (with no changes to the bottom rows in the latter lemma). The
map (·)(k) in (3.1.7) induces linear automorphisms on I(Mν , χ

−1) and I(G,χ−1).
With this, Lemmas 3.1.7 and 3.1.8 imply their natural analogues, restricting π1, π2 in
the latter lemma to those with central character χ.
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To adapt §3.2. Averaging the map H(G) → H(M) given by f 7→ fM , we obtain a
map H(G,χ−1)→ H(M,χ−1), which induces

CG
M : I(G,χ−1)→ I(M,χ−1)

satisfying the same orbital integral identity as in §3.2. We can also describe CG
M

by the same formula (3.2.1) from the space of linear functionals on R(G,χ) to that
on R(M,χ). Lemmas 3.2.2 and 3.2.1 carry over as written, with χ−1-equivariance
imposed everywhere.

To adapt §3.3. The Langlands–Shelstad transfer with fixed central character was al-
ready considered in §2.6 by averaging the transfer without fixed central character.
With this in mind, we deduce the obvious analogues of Proposition 3.3.2, Corol-
lary 3.3.4, and Lemma 3.3.5. In particular, the diagram in that proposition yields the
following analogue.

I(Mν , χ
−1)

Jν //

⊕LSe,ω

((

I(G,χ−1)
LSe

// S(Ge, χe,−1)

⊕
ω∈Ωe,ν

S(Ge
ω, χ

e,−1)

∑
ω Jνω

66

To adapt §3.4. Definition 3.4.4 extends obviously to H(G,χ−1) by the same support
condition. A key observation is that the notion of C-regularity is invariant under
Z(F )-translation, so that the latter definition behaves well. More precisely, the χ-
averaging map from H(G) � H(G,χ−1) is still surjective when restricted to the
respective subspaces of C-regular functions. Using this, we carry over all results in §3.4
to the setup with fixed central character, restricting to χ−1-equivariant functions and
representations with central character χ.

3.6. z-extensions. Throughout this section up to now, we assumed Ge = LGe on the
endoscopic datum e. When the assumption is not guaranteed, we pass from e and G
to e1 and G1 via z-extensions and pull back the central character datum from (X, χ)
to (X1, χ1) as explained in §2.7.

Let ν1 : Gm → G1 be a cocharacter lifting ν. (Such a ν1 is going to be chosen in
practice; see §7.4 below.) By Definition 3.1.1, γ1 ∈ Mν1

(F ) is ν1-acceptable if and
only if its image in Mν(F ) is ν-acceptable. Everything in this section goes through
with e1, G1, (X1, χ1), ν1 playing the roles of e, G, (X, χ), ν. We write λe1, λ

e
1,ω for the

characters λe, λeω of §3.3 in the setup for e1 and G1.

4. Asymptotic analysis of the trace formula

We prove key trace formula estimates in this section, to be applied to identify
leading terms in the trace formula for Igusa varieties in §7. The main estimate is
Theorem 4.2.2, whose lengthy proof is presented in §4.4. We work in a purely group-
theoretic setup, with no reference to Shimura or Igusa varieties in order to enable
an inductive argument on Q-semisimple rank. The point is that the trace formula
appearing in the intermediate steps need not arise from geometry.

4.1. Setup and some basic lemmas. Throughout Section 4, G is a connected quasi-split
reductive group over Q.

Let (X, χ) be a central character datum as in §2.8. Let ξ be an irreducible algebraic
representation of GC and ζ : G(R) → C× be a continuous character such that ξ ⊗ ζ
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has central character χ−1
∞ on X∞. The restriction χ∞|AG,∞ via AG,∞ ⊂ X∞ can be

viewed as an element of X∗(AG)C, which is again denoted χ∞ by abuse of notation.
We will write HG

v : G(Qv) → aGQv
for the function defined by Equation (3.1.3)

(which also makes sense for F = R). We have a canonical identification

aG = X∗(AG)R = Hom(X∗Q(G),R), a 7→ (χ 7→ 〈χ|AG , a〉). (4.1.1)

A similar map induces indentifications aGQv
= X∗(AGQv

)R = Hom(X∗Qv (G),R). In
particular there is a natural surjection aGQv

� aG at each place v. Thereby we often

view the image of HG
v in aG.

Let λχ∞ denote the unique character making the following diagram commute. (The
existence is obvious since the composition AG,∞ → aG is an isomorphism.)

AG,∞
� � //

χ∞

55G(R)
HG∞ // // aGR

// // aG = X∗(AG)R
λχ∞ // C×

Fix distinct primes p, q. Let ν : Gm → GQp be a cocharacter over Qp. Let ν ∈
Hom(X∗Q(G),Q) denote the image of ν ∈ X∗(AMν )Q = Hom(X∗Q(Mν),Q) induced by

Mν ↪→ G.6 By definition, ν(χ) = ν(χ) for χ ∈ X∗Q(G). Viewing ν as a member of aG,
we can compute 〈χ∞, ν〉 ∈ C via the canonical pairing X∗(AG)C ×X∗(AG)C → C.

Lemma 4.1.1. λχ∞(HG
p (ν(p))) = p−〈χ∞,ν〉.

Proof. By definition HG
p (ν(p)) sends χ ∈ X∗Q(G) to log |χ(ν(p))|p. Similarly for a ∈

AG,∞, we have HG
∞(a) = (χ 7→ log |χ(a)|∞). We claim that HG

p (ν(p)) ∈ aGQp
and

HG
∞(ν(p)−1) ∈ aGR have the same image in aG. To show this, choose r ∈ Z≥1 such

that rν ∈ X∗(AG). Since aG is torsion-free it suffices to check that HG
p ((rν)(p)) =

HG
∞((rν)(p)−1), or equivalently that

|χ((rν)(p))|p = |χ((rν)(p))|−1
∞ , χ ∈ X∗Q(G).

Since χ((rν)(p)) ∈ Q is an integral power of p (as both χ and rν are algebraic), we
have |χ((rν)(p))|∞ = |χ((rν)(p))|−1

p = |χ((rν)(p))|−1
p . This proves the claim. Now

the claim implies that

λχ∞(HG
p (ν(p))) = λχ∞(HG

∞(ν(p)−1)) = χ∞(ν(p)−1) = p−〈χ∞,ν〉.

�

If G is a connected reductive group over Q and S is a set of Q-places, we write

HG
S (γ) :=

∑
v∈S

HG
v (γ) ∈ aG.

If Sc is the complement of S, we write HG,Sc := HG
S .

Lemma 4.1.2. Let G be a connected reductive group over Q.

(i) Let S be a set of Q-places. Let γ, γ′ ∈ G(Q). If γ and γ′ are conjugate in
G(Q) then we have HG

S (γ) = HG
S (γ′) ∈ aG.

(ii) Let S be the set of all Q-places. Let γ ∈ G(Q), then HG
S (γ) = 0 ∈ aG.

6In the notation of the preceding section, ν = prG(ν).
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Proof. (i) Let F/Q be a finite extension such that γ and γ′ are conjugate in G(F ).
Set G′ := ResF/QM . The natural embedding i : G → G′ allows to view γ, γ′ as
elements of G′(Q), and induces an injection aG ↪→ aG′ . Thus it suffices to prove that

HG′

S (γ) = HG′

S (γ′), since the map HG
S : G(AS) → aG is functorial with respect to

i. By the reduction in the preceding paragraph, we may assume that γ and γ′ are
conjugate in G(Q). Then the proof is trivial since HG

S is a homomorphism into an
abelian group.

(ii). Using the functoriality for G → Z ′G from step 1, we may replace G by
its cocenter Z ′G, then Z ′G by the maximally split torus A inside Z ′G, and finally we
may replace A by Gm, in which case the statement boils down to the usual product
formula. �

If M ∈ Lcusp(G), we write ΓR-ell,X(M) for the set of γ ∈M(Q) such that γ ∈M(R)
is elliptic, and γ is taken up to M(Q)-conjugacy. The following will be useful when
studying Levi terms in the geometric side of the trace formula.

Lemma 4.1.3. Let M ∈ Lcusp(G) and let γ ∈ ΓR-ell,X(M) be a regular element. Let
P ⊂ G be a parabolic subgroup with Levi component M . Let ξ be an irreducible
representation of MC, and ζ : M(R)→ C× a continuous character. Write fMζ,ξ for the

function on M(R) given by (2.4.1). Then

vol(XQ\X/AG,∞)−1χ(IMγ )ζ(γ)Tr (γ; ξ)

= d(M)vol(IMγ (Q)AIMγ ,∞\IMγ (A)/X)OMγ (fMξ,ζ).

Proof. By Equation (2.8.3) we have

χ(IMγ ) = (−1)q(I
M
γ )τ(IMγ )vol(AIMγ,∞\I

M,cmpt
γ (R))−1d(IMγ ) = 1.

As γ is regular, IMγ is a torus and d(IMγ ) = 1. Additionally q(IMγ ) = 0 (as γ is elliptic)
and

τ(IMγ ) = vol(IMγ (Q)AIMγ ,∞\IMγ (A)).

Thus we obtain

χ(IMγ ) = vol(IMγ (Q)AIMγ ,∞\IMγ (A))vol(AIMγ,∞\I
M,cmpt
γ (R))−1.

Since γ is R-elliptic, we obtain from (2.4.2) that

ζ(γ)Tr (γ; ξ) = d(M)vol(AM,∞\IM,cmpt
γ (R))OMγ (fMξ,ζ).

(we also used e(IMγ ) = 1; recall AM,∞ := AM (R)0). We obtain

vol(XQ\X/AG,∞)−1χ(IMγ )ζ(γ)Tr (γ; ξ)

= d(M)
vol(IMγ (Q)AIMγ ,∞\IMγ (A))

vol(XQ\X/AG,∞)

vol(AM,∞\IM,cmpt
γ (R))

vol(AIMγ ,∞\IM,cmpt
γ (R))

OMγ (fMξ,ζ)

= d(M)vol(IMγ (Q)AIMγ ,∞\IMγ (A)/X)OMγ (fMξ,ζ),

where we used that AM equals AIMγ because γ is elliptic. �

4.2. The main estimate and its consequences. We prove the following bounds for
elliptic endoscopic groups and Levi subgroups of G, to be applied in §7.

The notation O(f(k)) (resp. o(k)) for a nonzero C-valued function f(k) on k ∈ Z
means that the quantity divided by |f(k)| has bounded absolute value (resp. tends
to 0) as k → +∞. In practice we take f(k) to be complex powers of p (so we take
absolute values). In our argument, every instance of o(f(k)) turns out to represent a
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power-saving, namely it is bounded by a power of p with (the real part of) exponent
strictly smaller than the exponent for f(k).

Let us fix a Q-rational Borel subgroup B with Levi component T ⊂ B (which is
a maximal torus in G). We fix a Levi decomposition B = TN0. As before we write
AT ⊂ T for the maximal Q-split subtorus. Additionally we write Sp ⊂ TQp for the
maximal Qp-split subtorus.

Part of our setup is a cocharacter ν : Gm → G over Qp. By conjugating, we may and
do assume that ν has image in T and that ν is B-dominant. Write ρ ∈ X∗(T )Q for the

half sum of all B-positive roots of T in G over Qp. Thus we have 〈ρ, ν〉 ∈ 1
2Z>0. We

transport various data over Qp or Qp to ones over C via an isomorphism ιp : Qp ' C.
(We will fix ιp in §5.2.)

We also fix a prime q such that GQq is a split group. (For the existence, choose a
number field F over which G splits. Then any prime q that splits completely in F
will do.) If needed for endoscopy, an auxiliary z-extension G1 of G over Q is always
chosen to be split over Qq; this is possible because GQq is split. Thus the contents
of §3.4 and their adaptation to z-extensions apply to G and G1 over Qq. Since all
endoscopic groups appearing in the argument will be split over Qq (to be ensured by
Lemma 3.4.7 in the proof of Corollary 4.2.3), whenever choosing their z-extensions,
we take them to be also split over Qq without further comments.

Proposition 4.2.1. Let f∞,p =
∏
v 6=∞,p fv ∈ H(G(A∞,p), (χ∞,p)−1) and φp ∈ Hacc(

Mν(Qp), χ−1
p ). For k ∈ Z, write f

(k)
p ∈ H(G(Qp), χ−1

p ) for a ν-ascent of φ
(k)
p as

in §3.2. Then

TGdisc,χ(f (k)
p f∞,pfξ,ζ) = O

(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
.

Proof. The left hand side equals∑
π∈Adisc,χ(G)

m(π)Tr (f (k)
p |πp)Tr (f∞,p|πp)Tr (fξ,ζ |π∞).

Write JP op
ν

(πp) =
∑
i ciτi in Groth(Mν(Qp)) with τi ∈ Irr(Mν(Qp)). Let ωτi denote

the central character of τi. Then

Tr (f (k)
p |πp) = Tr

(
φ(k)
p |JP op

ν
(πp)

)
=
∑
i

ciTr (φ(k)
p |τi) =

∑
i

ciωτi(ν(p))kTr (φp|τi).

We define a character λA : G(Q)\G(A)→ R×>0 as the composite

λA : G(Q)\G(A)
HG→ aG

λχ∞→ R×>0.

Write λv for the restriction of λA to G(Qv) for a place v of Q. For each π ∈ Adisc,χ(G)

contributing to the sum, we see that π⊗λ−1
A is a unitary automorphic representation

of G(A) since π∞ ⊗ λ−1
∞ is unitary (by construction, π∞ ⊗ λ−1

∞ has trivial central
character on AG(R)0). Thus πp⊗λ−1

p is unitary. Applying Corollary 2.5.2 to π⊗λ−1

at p, we have ∣∣ωτi(ν(p))λ−1
p (ν(p))

∣∣ ≤ δ−1/2

P op
ν

(ν(p)) = p〈ρ,ν〉,

noting that ν(p) ∈ A−−Pν . We deduce via Lemma 4.1.1 that

|ωτi(ν(p))| ≤ p〈ρ,ν〉|λp(ν(p))| = p〈ρ,ν〉−〈χ∞,ν〉.

By [BZ77, Cor. 2.13] the length of JP op
ν

(πp), namely
∑
i ci, can be bounded only in

terms of G. This completes the proof. �
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We state the main trace formula estimate of this paper. The proof will be given
in §4.4 below.

Theorem 4.2.2 (main estimate). Let G, (X, χ), p, q, ξ, ζ, ν be as defined in the beginning
of Section 4. Let

• f∞,p,q =
∏
v 6=∞,p,q fv ∈ H(G(A∞,p,q), (χ∞,p,q)−1),

• φp ∈ Hacc(Mν(Qp), χ−1
p ), and

• f (k)
p ∈ H(G(Qp), χ−1

p ) be a ν-ascent of φ
(k)
p , for k ∈ Z≥0.

Then there exists a constant C = C(f∞,q, φp) ∈ R>0 such that for each fq ∈
H(G(Qq), χ−1

q )C-reg,

TGell,χ(f (k)
p fqf

∞,p,qfξ,ζ) = TGdisc,χ(f (k)
p fqf

∞,p,qfξ,ζ) + o
(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
.

As a corollary, we derive the stable analogue of Theorem 4.2.2. We keep the setup

of Theorem 4.2.2 and let f∞,p,q, φp, f
(k)
p be as in that theorem. For each e ∈ E<ell(G),

we have e1 = (Ge
1,
LGe

1, s
e
1, η

e
1) and a central character datum (Xe

1, χ
e
1) as in §2.7.

Moreover we choose the representatives e, e1 such that ηe(WF ) and ηe1(WF ) have
bounded images, as explained in Lemma 2.6.2 and §2.7. Let

f
(k),e
1 =

∏
v

f
(k),e
1,v ∈ H(Ge

1(A), (χe
1)−1)

be a transfer of f
(k)
p fqf

∞,p,qfξ,ζ . Then we have the following bound.

Corollary 4.2.3. In the setup of Theorem 4.2.2, there exists a constant C ∈ R>0,
depending on f∞,q, φp, ξ, ζ, such that for every fq ∈ H(G(Qq))C-reg, firstly

STGell,χ(f (k)
p fqf

∞,p,qfξ,ζ) =

{
TGdisc,χ(f

(k)
p f∞,p,qfqfξ,ζ) + o

(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
,

O
(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
,

and secondly for each e ∈ E<ell(G) (note that f
(k),e
1,q inherits C-regularity from fq),

ST
Ge

1

ell,χe
1

(
f

(k),e
1

)
= o

(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
.

Remark 4.2.4. The inductive proof of the last bound only uses the fact that its q-
component is C-regular, the ∞-component is a Lefschetz function, and most impor-
tantly the p-component is an ascent for a suitable cocharacter. We do not rely on the

fact that f
(k),e
1 is a transfer of a function on G(A).

Proof. The second estimate is immediate from the first via Proposition 4.2.1. Let us
prove the first and third asymptotic formulas, by reducing the former to the latter.

We induct on the semisimple rank of G. (For each G, we prove the corollary for all

central character data and all ν.) When G is a torus, the estimate is trivial as STGell,χ =

TGell,χ = TGdisc,χ. We assume that G is not a torus and that Corollary 4.2.3 is true for

all groups which have lower semisimple rank than G. Put f (k) := f
(k)
p fqf

∞,p,qfξ,ζ .
Proposition 2.9.1 tells us that

STGell,χ(f (k)) = TGell,χ(f)−
∑

e∈E<ell(G)

ι(G,Ge)ST
Ge

1

ell,χe
1

(
f

(k),e
1

)
.

In light of Theorem 4.2.2, since the summand is nonzero only for a finite set of e by
Lemma 2.9.2 (depending only on the finite set of primes v where either GQv or fv is
ramified), it suffices to establish the last bound of the corollary. This task takes up
the rest of the proof.
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If Ge
R contains no elliptic maximal torus or if AGe 6= AG (equivalently if AGe

1
6=

AG1
), then f e1,∞ is trivial as observed in [Kot90, p.182, p.189] so the desired estimate

is trivially true. Henceforth, suppose that Ge
R contains an elliptic maximal torus.

Then f
(k),e
1,∞ is a finite linear combination of fηe1 ,ζe1 over the set of (ηe1, ζ

e
1) such that

ηe1 ◦ $ηe1 ,ζ
e
1
' $ξ,ζ . Proposition 3.3.2 and its adaptation to z-extensions according

to §3.5 and §3.6 tell us that

f
(k),e
1,p =

∑
ω

λe1,ω(ν1(p))kJν1,ω

(
φ

(k),e
1,p,ω

)
=
∑
ω

λe1,ω(ν1(p))kf
(k),e
1,p,ω,

where we have put f
(k),e
1,p,ω := Jν1,ω

(
φ

(k),e
1,p,ω

)
for a ν1,ω-ascent of the operator φ

(k),e
1,p,ω ∈

Hacc(Ge
1,ν(Qp), (χe

1,p)
−1). Here we applied Lemma 3.3.5 (keeping §3.5 and §3.6 in

mind) to have the transfer φ
(k),e
1,p,ω of φ

(k)
1,p supported on ν1,ω-acceptable elements.

Recalling that ηe1(WF ) ⊂ LG1 is a bounded subgroup, we see from Lemma 3.3.1
that λe1,ω is a unitary character. Thus we are reduced to showing the existence of some
Ce > 0 such that the following estimate holds for ω and (ηe1, ζ

e
1) as above whenever

f e1,q is Ce-regular:

ST
Ge

1

ell,χe
1

(
f e,∞,q,p1 f e1,qf

(k),e
1,p,ωfηe1 ,ζe1

)
?
= o

(
pk(〈ρ,ν〉−〈χ∞,ν〉)

)
, k ∈ Z≥0. (4.2.1)

Indeed, take C to be the maximum of all Ce over the finite set of e contributing to
the sum. Then for each C-regular fq, Lemma 3.4.7 tells us either that Ge

1 is split over
Qq and f e1,q is C-regular (thus also Ce-regular), or that Ge

1 is non-split over Qq and
f e1,q vanishes. Thus the bound (4.2.1) applies, and we will be done.

By the induction hypothesis, there exists Ce > 0 such that whenever f e1,q is

Ce-regular, the left hand side of (4.2.1) is O
(
pk(〈ρe1,ν1,ω〉−〈χe

1,∞,ν1,ω〉)
)

, with ν1,ω ∈
X∗(AGe

1
) defined from ν1,ω in the same way ν from ν, and where ρe1 is the half sum

of positive roots of Ge
1 for which ν1,ω is a dominant cocharacter. (In other words, ρe1

is to ν1,ω as ρ is to ν.) Therefore it is enough to check that

(a) 〈ρe1, ν1,ω〉 < 〈ρ, ν〉 (in Q).
(b) Re〈χe

1,∞, ν1,ω〉 = Re〈χ∞, ν〉.
Let us begin with (a). Since 〈ρ, ν〉 = 〈ρ1, ν1〉, with ρ1 defined for G1 as ρ is for G

(recall that ν1 : Gm → G1 is a lift of ν), the proof of (a) is reduced to the case when

G1 = G and ν1 = ν. We have an embedding Ĝe ↪→ Ĝ coming from ηe, which restricts

to Ĝe
ω ↪→ M̂ν . Here we have chosen ΓF -invariant pinnings for the dual groups such

that the restriction works as stated. We may and will arrange that the Borel subgroup

of Ĝ restricts to that of Ĝe. Fix a maximal torus T̂ ⊂ Ĝe
ω that is part of the pinning

for Ĝe
ω. Viewing T̂ also as a maximal torus in each of Ĝe and Ĝ, we write Φ∨(T̂ , Ĝ)

and Φ∨(T̂ , Ĝe) for the corresponding sets of coroots. Then

〈ρe, νω〉 =
∑

α∨∈Φ∨(T̂ ,Ĝe
ω)

〈α∨,ν〉>0

〈α∨, ν〉, 〈ρ, ν〉 =
∑

α∨∈Φ∨(T̂ ,Ĝ)

〈α∨,ν〉>0

〈α∨, ν〉. (4.2.2)

Thus it suffices to verify that there exists a coroot α∨ ∈ Φ∨(T̂ , Ĝ) outside Ĝe such

that 〈α∨, ν〉 > 0. Write ν̂ ∈ X∗(T̂ ) for the dominant member in the Weyl orbit of

characters determined by ν. The centralizer of ν̂ in Ĝ is identified with the dual

group M̂ν (namely 〈α∨, ν〉 = 0 if and only if α∨ is a coroot of M̂ν), so we will

be done if Lie M̂ν + Lie Ĝe is a proper subspace of Lie Ĝ. This is exactly proved
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in [KST20, Lem. 4.5 (ii)] applied to G = Ĝ, M = M̂ν , and δ = se. (The proof of
loc. cit. greatly simplifies. One reduces to the case when the Dynkin diagram of G is
connected as in the first paragraph in the proof of that lemma. Then argue as in the
fourth paragraph of that lemma, with Xn = 0 and with the role of Xss played by the
semisimple element se.)

Now we prove (b). Since 〈χ∞, ν〉 = 〈χ1,∞, ν1〉, we reduce to showing (b) when
G1 = G and e1 = e (with possibly nontrivial central character data). Thus we drop
the 1’s from the subscripts and check that

Re〈χe
∞, ν〉 = Re〈χ∞, νω〉.

We claim that ν = νω in X∗(AG)R = X∗(AGe)R. In the diagram below, the triangle
on the right commutes, and we want that the triangle on the left commutes as well.

Gm
ν




νω

��
ν

""

νω

))
AG AGe AMν

� � // AGe
ω

We choose maximal tori T ⊂ Mν ⊂ G and T e ⊂ Ge
ω ⊂ Ge with an isomorphism

TF ' T e
F

to identify the absolute Weyl group Ω
Ge

as a subgroup of Ω
G

. (This is done

as in [Kot86, §3].) The isomorphism also identifies ν = νω. By (3.1.6), we have the
equalities

ν = |ΩG|−1
∑
ω∈Ω

G

ω(ν), νω = |ΩG
e

|−1
∑

ω∈Ω
Ge

ω(ν).

Hence ν = |ΩG/ΩG
e

|−1
∑
ω∈Ω

G
/Ω

Ge ω(νω) = νω. Indeed, the last equality follows since

νω ∈ X∗(AGe)R = X∗(AG)R, which tells us that ω(νω) = νω for ω ∈ Ω
G

.
Applying (2.6.3) at the archimedean place, we have χ∞ = λe∞χ

e
∞ as characters of

AG(R). Since λe∞ is unitary, |χ∞| = |χe
∞|. Since ν ∈ X∗(AG)R (not just in X∗(AG)C),

we conclude that Re〈χe
∞, ν〉 = Re〈χ∞, ν〉 as desired. This verifies (b). �

4.3. Some facts and notation on Weyl groups and Weyl chambers. In this subsection
we fix some additional notation on Weyl groups, Weyl chambers, which will be needed
in the proof of the main estimate in the next subsection.

Let P = MN ⊂ G be a parabolic subgroup such that B ⊂ P and T ⊂ M .
Write Z0

M for the identity component of the center of M and SM,p for te maximal
Qp-split subtorus in Z0

M . If M = T , we will write more simply Sp := SM,p. Thus
AT,Qp ⊂ Sp ⊂ TQp . We will write

ΩG ⊂ ΩGp ⊂ Ω
G

for the Weyl groups of AT , Sp, and T in G. Similar notation will be used for other
objects related to Weyl groups, for instance we write ΩGM,p ⊂ ΩGp for the set of Kostant

representatives for ΩGp /Ω
M
p .

Write ΦGM = ΦGM (AM ;G) for the set of roots of AM in Lie(G). Write Φ(AM ;B),
Φ(SM,p;BQp), Φ(ZM ;B) for the sets of positive roots attached to AM , SM,p and ZM .

We write areg
M ⊂ aM for the subset of all regular elements, i.e., x ∈ aM such that

〈α, x〉 6= 0 for all α ∈ ΦGM . The connected components of areg
M are said to be the (open)

Weyl chambers of aM . The subset

C+
M := {x ∈ areg

M | ∀α ∈ Φ(AM , B) : 〈α, x〉 > 0} ⊂ areg
M ,
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is the dominant Weyl chamber. Let ΩGM ⊂ ΩG be the set of Kostant representatives
for the quotient ΩG/ΩM . The Weyl chambers C ∈ π0(areg

M ) are parametrized via the
bijection

ΩGM → π0(areg
M ), ω 7→ Cω := ω−1(C+

M ) ∈ π0(areg
M )

If C ⊂ areg
M is a Weyl chamber, we write C∨ ⊂ a∗M for the dual chamber, i.e., the set

of t ∈ a∗M such that t(x) > 0 for all x ∈ C.

Lemma 4.3.1. The following statements are true:

(1) The inclusions AM,Qp ⊂ SM,p,Qp ⊂ Z0
M,Qp

induce (by restriction) a sequence

of maps

Φ(Z0
M ;B)→ Φ(SM,p;B)→ Φ(AM ;B)

which are all surjective.
(2) The following 3 subsets of aM are equal:

(a) The set of x ∈ aM such that for all α ∈ Φ(Z0
M ;B) we have 〈α, x〉 > 0;

(b) The set of x ∈ aM such that for all α ∈ Φ(SM,p;B) we have 〈α, x〉 > 0;
(c) The set of x ∈ aM such that for all α ∈ Φ(AM ;B) we have 〈α, x〉 > 0.

(3) The natural maps π0(areg
M ) → π0(X∗(SM,p)

reg
R ) → π0(X∗(Z

0
M )reg

R ) are injec-
tions.

Proof. We have inclusions of the centralizer groups

MQp = Cent(AM,Qp , GQp) ⊃ Cent(SM,p,Qp , GQp) ⊃ Cent(Z0
M,Qp

, GQp) ⊃MQp ,

where the first equality is well known [Bor91, Prop. 20.6(i)]. Hence the equality holds
everywhere. So Φ(AM ;B), Φ(SM,p;B), and Φ(Z0

M ;B) consist of eigen-characters for
the adjoint actions of AM,Qp ⊂ SM,p,Qp ⊂ Z

0
M,Qp

on the same space Lie (B)/Lie (B ∩
M), respectively. Therefore the maps in (1) are surjections. Statements (2) and (3)
are directly deduced from (1). �

4.4. Proof of Theorem 4.2.2. The rest of this section is devoted to establishing the
main estimate in Theorem 4.2.2 over several pages. Lemma 4.4.1 (which is techni-
cal) could be taken for granted at a first reading. Before diving into the details we
recommend the reader to review the outline that we sketched below (1.4.2) in the
introduction.

Proof of 4.2.2. We argue by induction on the Q-semisimple rank rG of G. If rG = 0,
then we have TGell,χ = TGdisc,χ, and the statement follows. Assume now that the theorem
is established for all groups of lower Q-semisimple rank and all accompanying data
(i.e., (X, χ), p, q, ξ, ζ and ν).

We introduce a constant to control regularity at q:

C = C(f∞,q, φp) :=
1

log q
· max
M,xp,q,∞,εp,α

|〈α, xp,q,∞ + εp〉|, (4.4.1)

where M,xp,q,∞, εp, α range over the sets

Lcusp(G), suppOaM (f∞,p,qM ),prM suppOaωp(M)∩Mν
(φp,ωp(M)∩Mν

), α ∈ ΦGM

respectively. Define the constants

vX := vol(XQ\X/AG,∞) and cM := (−1)dim(AM/AG) |ΩM |
|ΩG|

, M ∈ Lcusp(G).
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Write f∞,(k) := f∞,p,qf
(k)
p fq, to indicate the dependence on k at p. The running

hypothesis on fq is that it is C-regular for (4.4.1). By Proposition 2.8.1 we have

TGdisc,χ(fξ,ζf
∞,(k)) =

d(G)−1
∑

M∈Lcusp

cMv
−1
X

∑
γ∈ΓR-ell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M )

|ιM (γ)||StabMX (γ)|
. (4.4.2)

We first compare the term corresponding to M = G ∈ Lcusp on the right hand side
of Equation (4.4.2) with TGell,χ. Only regular R-elliptic conjugacy classes contribute

to (4.4.2): For γ ∈ Γell,X(G) non-regular, we have Oγ(fq) = 0 since fq is C-regular.

Additionally, the orbital integrals O
G(R)
γ (fξ,ζ) vanish for non R-elliptic γ ∈ G(R). In

Lemma 4.1.3 we checked that for γ ∈ ΓR-ell,X(G) we have

d(G)−1cGv
−1
X

χ(IGγ )ζ(γ)ΦG(γ, ξ)OGγ (f∞,(k))

|ιG(γ)||StabGX(γ)|
=

vol(Iγ(Q)\Iγ(A)/X)OGγ (fξ,ζf
∞,(k))

ι(γ)−1|StabGX(γ)|−1

(4.4.3)
(this uses ΦG(γ, ξ) = Tr (γ, ξ), cf. [Art89, below eq. (4.4)]). Therefore TGell,χ(fξ,ζf

∞,(k))

appears on the right hand side of (4.4.2) as the summand for M = G (see also (2.8.2)).
Thus (4.4.2) can be rearranged as

TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

− d(G)−1
∑

M∈L<cusp

cMv
−1
X

∑
γ∈Γell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M )

|ιM (γ)||StabMX (γ)|
. (4.4.4)

As f
(k)
p is a ν-ascent of φ

(k)
p , we have by Lemma 3.2.2

f
(k)
p,M =

∑
ωp∈Ω

GQp
M,Mν

f
(k)
p,M,ωp

∈ H(M(Qp), χ−1
p ), (4.4.5)

where
f

(k)
p,M,ωp

:= Jνωp
(ω−1
p φ

(k)
p,Mωp

), Mωp = ωp(M) ∩Mν . (4.4.6)

At the prime q, we may arrange by Lemma 3.4.7(1) and Lemma 4.3.1 that the
constant term fq,M is supported on C-regular elements. Thus fq,M is decomposed
according to the various chambers C of areg

M :

fq,M =
∑

ωq∈ΩGM

fq,M,ωq ∈ H(M(Qq), χ−1
q )C-reg,

where fq,M,ωq satisfies suppOaM (fq,M,ωq ) ⊂ Cωq . We define

f
∞,(k)
M,ωp,ωq

:= f∞,p,qM f
(k)
p,M,ωp

fq,M,ωq ∈ H(M(A), χ−1),

so that
f
∞,(k)
M =

∑
ωp∈Ω

GQp
M,Mν

,ωq∈ΩGM

f
∞,(k)
M,ωp,ωq

∈ H(M(A), χ−1).

Changing the order of summation (each sum is finite), Equation (4.4.4) becomes

TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

− d(G)−1
∑

M,ωp,ωq

cM
vX

∑
γ∈Γell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
, (4.4.7)
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where the sum is over M ∈ L<cusp, ωp ∈ Ω
GQp
M,Mν

, ωq ∈ ΩGM .
To state the next lemma, we define a constant

k1 = k1(f∞,q, φp) := max
M,ωp,ωq,α,εp,xp,∞

∣∣∣∣ 〈α, εp + xp,∞〉
log(p)〈α,prM (ω−1

p ν)〉

∣∣∣∣ ∈ R>0, (4.4.8)

where the maximum is taken over M ∈ L<cusp(G), ωp ∈ Ω
GQp
M,Mν

, ωq ∈ ΩGM , εp ∈
prM suppOaMωp

(ω−1
p φp,Mωp

), xp,∞ ∈ suppOaM (f∞,pM ),

and α ranges over those α ∈ ΦGM such that 〈α,prM (ω−1
p ν))〉 6= 0.

We have fixed a maximal torus T in GC (we have GC ' GQp via ιp), along with

a Borel subgroup B. We write ρ = ρG for the half sum of the B-positive roots of T
in Lie(B). Note that we have ρ|AT = ρ. We use similar definitions for ρM and ρM if
M ⊂ G is a Levi subgroup. Let λ = λB , λ

∗
B ∈ X∗(T ) denote the highest weight of ξ

and its dual representation ξ∗, respectively, relative to B.
For each M ∈ Lcusp(G) we introduce the following notation. Denote by P(M) the

set of parabolic subgroups P of G of which M is a Levi component. We remark that
in [GKM97] the set P(MR) is used, meaning parabolic subgroups P of GR such that
MR is a Levi component of P . As M ∈ Lcusp(G), we know that (AM )RAGR = AMR ,
and therefore any parabolic subgroup of GR that contains M is defined over Q. In
particular P(MR) = P(M).

For each λ0 ∈ X∗(T )+ we write ξMλ0
for the irreducible MC-representation with

highest weight λ0. We define ω∞ ? λ0 := ω∞(λ0 + ρ) − ρ for each ω∞ ∈ Ω
G

M and

λ0 ∈ X∗(T )+. Let ω∞ ∈ Ω
G

M . Write ωM0 ∈ Ω
M

for the longest Weyl group element,
and

λB(ω∞) := −ωM0 (ω∞ ? λ∗B) = ωM0 ω∞ω
M
0 λB − ωM0 ω∞ρ− ωM0 ρ,

so that we have

ξMλB(ω∞) = (ξMω∞?λ∗B )∗.

Lemma 4.4.1. Assume that k > k1. Consider M,ωp, ωq, γ as in (4.4.7), and assume
that

OMγ (f
∞,(k)
M,ωp,ωq

) 6= 0. (4.4.9)

Let xR := HM
∞ (γ) ∈ aMR and write x∞ for the image of xR under aMR → aM . The

following are true.

(i) The element x∞ ∈ aM is regular and lies in the chamber C0 = C0(M,ωp, ωq) ⊂
areg
M which has the following set of positive roots

{α ∈ ΦGM | 〈α,prM (ω−1
p ν)〉 > 0} ∪ {α ∈ ΦGM | 〈α,prM (ω−1

p ν)〉 = 0 and α ∈ −C∨ωq}.
(4.4.10)

(ii) There exists an explicit subset Ω
G�
M = Ω

G�
M (M,ωp, ωq) ⊂ Ω

G

M (see (4.4.22))
and an explicit sign ε� = ε�(M,ωp, ωq) (see (4.4.23)) such that we have

ΦM (γ, ξ) = ε�
∑

P∈P(M)

δ
−1/2
P (γ)

∑
ω∞∈Ω

G�
M

ε(ω∞)Tr (γ; ξMλB(ω∞)),

where ε(w∞) ∈ {±1} denotes the sign as an element of the Weyl group Ω
G

.

Proof. (i) If S is a set of places of Q, we write in this proof

xS := HM
S (γ) ∈ aM , xS := HM,S(γ) ∈ aM .
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We check that 〈α, x∞〉 6= 0 for all α ∈ ΦGM (i.e., x∞ is regular). By the product
formula in Lemma 4.1.2 we have

− 〈α, x∞〉 = 〈α, xp,∞〉+ 〈α, xp〉. (4.4.11)

At p, Oγ(f
(k)
p,M,ωp

) 6= 0 implies that xp ∈ suppOaM (f
(k)
p,M,ωp

). By Lemma 3.1.7 (and

Equation (4.4.6))

suppOaM (f
(k)
p,M,ωp

) = k ·HM
p (ω−1

p ν(p)) + prM (suppOaMωp
(ω−1
p φp,Mωp

)).

Therefore
xp = k ·HM

p (ω−1
p ν(p)) + εp (4.4.12)

for some εp ∈ prM suppOaMωp
(ω−1
p φp,Mωp

). Thus

〈α, xp〉 = k · 〈α,HM
p (ω−1

p ν(p))〉+ 〈α, εp〉 = −k(log p) · 〈α,prM (ω−1
p ν))〉+ 〈α, εp〉.

(4.4.13)
We now distinguish cases. First consider α ∈ ΦGM such that 〈α,prM (ω−1

p ν)〉 6= 0.
By (4.4.11) and (4.4.12),

− 〈α, x∞〉 = 〈α, xp,∞〉+ 〈α, εp〉 − k(log p) · 〈α,prM (ω−1
p ν)〉. (4.4.14)

As k > k1 (see (4.4.8)) we have

k(log p) · |〈α,prM (ω−1
p ν)〉| > |〈α, εp + xp,∞〉|.

Thus from (4.4.14) we get 〈α, x∞〉 6= 0.
Consider α ∈ ΦGM such that 〈α,prM (ω−1

p ν)〉 = 0. Again by (4.4.11) and (4.4.12),

− 〈α, x∞〉 = 〈α, xp,∞〉+ 〈α, εp〉. (4.4.15)

As fq is C-regular, we have from (3.4.2), (4.4.1), and Lemma 4.3.1 that

|〈α, xq〉| > C log q ≥ |〈α, xp,q,∞ + εp〉|. (4.4.16)

for all α ∈ ΦGM . In particular

〈α, xq〉+ 〈α, xp,q,∞ + εp〉 6= 0.

Therefore each side of (4.4.15) does not vanish. Hence 〈α, x∞〉 6= 0 for all α ∈ ΦGM .
We now determine for which α ∈ ΦGM we have 〈α, x∞〉 > 0. If 〈α,prM (ω−1

p ν)〉 6= 0,
then

sign(〈α, x∞〉) = sign(〈α,prM (ω−1
p ν)〉)

by the arguments following (4.4.13). If 〈α,prM (ω−1
p ν)〉 = 0, then

sign(〈α, x∞〉) = −sign(〈α, xq〉)
by C-regularity (see (4.4.16)). We have xq ∈ suppaM (fq,M,ωq ). Statement (i) follows.

(ii) Let us start by recalling a result of Goresky, Kottwitz and MacPherson in
[GKM97]. We write pr∗MR

: X∗(T )R → X∗(AMR)R for the restriction map. Let P =
MN ∈ P(M) Write ρNR (resp. ρNR

) for the half sum of the positive roots of AMR

(resp. T ) that occur in the Lie algebra of the unipotent radical NR of PR. Write
ωξ for the central character of ξ. Write α1, . . . , αn ∈ a∗MR

for the simple roots of
AMR in Lie (NR), which form a basis of (aMR/aGR)∗. This determines the dual basis
consisting of t1, . . . , tn ∈ aMR/aGR . Put I := {1, 2, . . . , n}. Define the following subsets
of I (cf. [GKM97, p.534])

I(γ) := {i ∈ I | 〈αi, xR〉 < 0},
I(ω∞) := {i ∈ I | 〈pr∗MR

(−ω∞ ? λ∗B)− ρNR
− ωξ, ti〉 > 0}. (4.4.17)
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Since M ∈ Lcusp the map

aMR/aGR → aM/aG (4.4.18)

is an isomorphism. In particular α1, . . . , αn is also a basis for (aM/aG)∗, and we can
replace xR by x∞ in the definition of I(γ), without changing the set.

By the discussion above Thm. 7.14.B in [GKM97] we have

ϕP (−xR,pr∗MR
(ω∞ ? λ∗B) + ρNR

+ ωξ) ={
(−1)dim(AGR )(−1)dim(AMR/AGR )−|I(γ)|, if I(ω∞) = I(γ),

0, otherwise.
(4.4.19)

By (i), x∞ ∈ aM is regular, and as M ∈ Lcusp(G) we have aMR/aGR = aM/aG, so the
element xR ∈ aMR is also regular.

We define LM (γ) ∈ C following [GKM97, p. 511],7 when xR is regular8:

LM (γ) := (−1)dim(AGR )
∑

P∈P(M)

δ
−1/2
P (γ)

∑
ω∞∈Ω

G
M

ε(ω∞)Tr (γ−1; ξMω∞?λ∗B )·

· ϕP (−x∞,pr∗MR
(ω∞ ? λ∗B) + ρN + ωξ). (4.4.20)

Theorems 5.1 and 5.2 of [GKM97] imply the following identity9

ΦM (γ, ξ) = LM (γ). (4.4.21)

Thus the right hand side of (4.4.20) is an expression for ΦM (γ, ξ).
By assumption (4.4.9), x∞ = HM

∞ (γ) lies in the chamber C0(M,ωp, ωq) by part (i)
of this lemma. So the set I(γ) does not depend on x∞. Write I0 = I0(M,ωp, ωq) for
I(γ), and

Ω
G�
M = Ω

G�
M (M,ωp, ωq) := {ω∞ ∈ Ω

G

M | I(ω∞) = I0}, (4.4.22)

in terms of (4.4.17). Then (4.4.20) simplifies thanks to (4.4.19):

LM (γ) = (−1)dim(AMR/AGR )−|I0|
∑

P∈P(M)

δ
−1/2
P (γ)

∑
ω∞∈Ω

G�
M

ε(ω∞)Tr (γ−1; ξMω∞?λ∗B ).

We obtain (ii) by using Tr (γ−1; ξMω∞?λ∗B
) = Tr (γ, ξMλB(ω∞)) and taking

ε� := (−1)dim(AMR/AGR )−|I0|. (4.4.23)

�

We keep on assuming k > k1 and write c′M := ε�ε(ω∞)cMd(G)−1 from now. We
apply Lemma 4.4.1 (ii) to Equation (4.4.7) and change the order of summation to
obtain

TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))−∑
M,P,ωp,ωq,ω∞

c′Mv
−1
X

∑
γ∈Γell,X(M)

χ(IMγ )Tr (γ; ξMλB(ω∞) ⊗ ζδ
−1/2
P )OMγ (f

∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
,(4.4.24)

7We write LM (γ) where the authors of [GKM97] write LνM (γ). This is because we only need to

use the “middle weight profile”, so there is no need to distinguish between different profiles ν in our
notation. Since we use the middle weight profile, we have ν = −ρN − ωξ.

8On p. 504 the authors give a definition of LM (γ) without the requirement that x∞ is regular

(but we don’t need it here). Under this more general definition, Equation (4.4.21) also holds for

non-regular x∞.
9In [GKM97], they write ΦM (γ,Θξ

∗
) for ΦM (γ, ξ∗). Their E corresponds to our ξ∗.
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where M,ωp, ωq run over the same sets as before and P, ω∞ range over P(M),Ω
G�
M ,

respectively. We apply Lemma 4.1.3 to equalize

v−1
X

∑
γ∈Γell,X(M)

χ(IMγ )Tr (γ; ξMλB(ω∞) ⊗ ζδ
−1/2
P )OMγ (f

∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|

= d(M)
∑

γ∈Γell,X(M)

vol(IMγ (Q)AIMγ ,∞\IMγ (A)/X)OMγ (f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
,(4.4.25)

using that every γ with OMγ (f
∞,(k)
M,ωp,ωq

) 6= 0 in (4.4.25) is regular since fq,M,ωq is

supported on regular elements. Define

XM := X ·AM,∞, vM := vol(XQ\X/AG,∞)−1vol(XM,Q\XM/AM,∞).

The restriction of the central character of ξMλB(ω∞) ⊗ ζδ
−1/2
P to AM,∞ is denoted by

zMω∞ : AM,∞ → C×.

Since the central character of ξMλB(ω∞) restricts to the central character of ξ on ZG,

we have
zMω∞ |AG,∞ = χ−1

0 .

On the other hand, ZG(R) ∩AM,∞ = AG,∞ ⊂ ZM (R). Therefore

X ∩AM,∞ = AG,∞.

Consequently, there exists a unique character

χMω∞ : XM → C×

such that
χMω∞ |AM,∞ = (zMω∞)−1 and χMω∞ |X = χ.

The pair (XM , χ
M
ω∞) is a central character datum for M as in §2.8. Moreover,

f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

∈ H(M(A), χM,−1
ω∞ ).

The expression in (4.4.25) can be rewritten as

d(M)
∑

γ∈Γell,XM
(M)

vM · vol(IMγ (Q)AIMγ ,∞\IMγ (A)/XM )OMγ (f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMXM (γ)|

= d(M)vM · TMell,χMω∞
(fλB(ω∞), ζδ

−1/2
P f

∞,(k)
M,ωp,ωq

).

(4.4.26)

Put c′′M := c′MvMd(M). Combining (4.4.24) and (4.4.26), we obtain

TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

−
∑

M,P,ωp,ωq,ω∞

c′′M · TMell,χMω∞
(f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

). (4.4.27)

Let ωp be as in the sum. Since ωp ∈ Ω
GQp
M,Mν

, we have ωp(M ∩ B) ⊂ B and

ω−1
p (Mν ∩ B) ⊂ B. In particular, for each root α in Lie(M ∩N0), the root ωpα also

appears in Lie(M ∩N0). So

〈α,w−1
p ν〉 = 〈wpα, ν〉 ≥ 0.
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Hence w−1
p ν is dominant for M ∩ B. (See the paragraph above Proposition 4.2.1 for

dominance of ν relative to B.) By Proposition 4.2.1 and the induction hypothesis for
M ∈ L<cusp, we have

TMell,χMω∞
(f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

) = O
(
pk(〈ρM ,ω−1

p ν〉−〈(χMω∞ )∞,prM (ω−1
p ν)〉)

)
. (4.4.28)

(To apply the induction hypothesis, we need to ensure that the setup of Theorem 4.2.2
applies to the left hand side. The point is that the conditions at p and q are satisfied.

At p, this is a consequence of (4.4.6) and Lemma 3.2.1; thus each f
(k)
p,M,ωp

is an ascent

from an acceptable function. At q, this follows from Lemma 3.4.7 (1).) In the special
case M = G we obtain

TGdisc,χ(f (k)
p f∞,pfξ,ζ) = O

(
pk(〈ρ,ν〉−〈χ∞,prGν〉)

)
. (4.4.29)

Now assume that the datum (M,P, ωp, ωq, ω∞) contributes to (4.4.27), in particular
M ∈ L<cusp, and also assume that

OMγ (f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

) 6= 0

for some γ ∈ Γell,XM (M). Then we claim that

Re(〈ρ, ν〉 − 〈χ∞,prGν〉) > Re(〈ρM , ω−1
p ν〉 − 〈(χMω∞)∞,prM (ω−1

p ν)〉). (4.4.30)

This claim, together with (4.4.28) and (4.4.29), tells us that the main term for G
dominates the proper Levi terms in (4.4.27), thereby implies the theorem.

It remains to verify the claim (4.4.30). Clearly it is sufficient to show that

(a) 〈ρ, ν〉 > 〈ρM , ω−1
p ν〉,

(b) Re〈χ∞,prGν〉 ≤ Re〈(χMω∞)∞,prM (ω−1
p ν)〉.

Moreover, it is enough to prove (a) and (b) for sufficiently large k (note that the
set ΩG�M and thus ω∞ depends on k). To prove (a), we start from the equality
〈ρM , ω−1

p ν〉 = 〈ρωpM , ν〉. Since ωp is a Kostant representative (cf. (4.4.5)),

〈ρωpM , ν〉 ≤ 〈ρ, ν〉.
To check that

〈ρωpM , ν〉 6= 〈ρ, ν〉,
we argue as in the paragraph below Equation (4.2.2): As ν is not central, the argument
for Lemma 4.5(ii) of [KST20] shows that Lie(Mν) + Lie(M) 6= Lie(G). Hence we can
find a root α in Lie(G) which in either Lie(M) or Lie(Mν), i.e., 〈α, ν〉 6= 0. The proof
of (a) is finished.

Now we prove (b). Recall that xR = HG
∞(γ), and that x∞ is the image of xR in

aG. Write shorthand

X = pr∗M (−ω∞ ? λ∗B)− ρN − ωξ and Y = prM (w−1
p ν).

The equality I(γ) = I(ω∞) from (4.4.22) implies 〈αi, x∞〉 < 0 ⇔ 〈X, ti〉 > 0 (cf.
(4.4.17), and the isomorphism in (4.4.18)), and thus also

〈αi, x∞〉 ≥ 0⇐⇒ 〈X, ti〉 ≤ 0.

By Equation (4.4.10) we have

〈αi, x∞〉 > 0⇐⇒ 〈αi, Y 〉 > 0 or [〈αi, Y 〉 = 0 and αi ∈ −C∨ωq ].
Since x∞ is regular, we have 〈αi, x∞〉 6= 0, thus 〈αi, x∞〉 > 0⇔ 〈αi, x∞〉 ≥ 0, and so
by combining the above

〈X, ti〉 ≤ 0⇐⇒ 〈αi, Y 〉 > 0 or [〈αi, Y 〉 = 0 and αi ∈ −C∨ωw ]. (4.4.31)
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Write X =
∑
i ciαi and Y =

∑
i diti. Then (4.4.31) implies

〈X,Y 〉 =
∑
i

cidi ≤ 0.

We now conclude:

Re〈(χMω∞)∞, Y 〉 = −Re〈zMω∞ , Y 〉

= −Re〈pr∗M (λB(ω∞)), Y 〉 − Re〈ζδ−1/2
P , Y 〉

= −Re〈pr∗M (−w0(ω∞ ? λ∗B)), Y 〉 − Re〈ζ − ρN , Y 〉
= −Re〈X,Y 〉︸ ︷︷ ︸

≥0

+ Re〈−ωξ − ζ, Y 〉︸ ︷︷ ︸
=〈χ∞,Y 〉

We are now done by observing that 〈χ∞, Y 〉 = 〈χ∞,prGν〉. �

5. Shimura varieties of Hodge type

The goal of this section is to set up the scene for the mod p geometry of Shimura
varieties and central leaves, paving the way for introducing Igusa varieties in the next
section. We pay special attention to the connected components and H0.

5.1. Connected components in characteristic zero. From this point onward, let (G,X)
be a Shimura datum as in [Del79] satisfying axioms (2.1.1.1), (2.1.1.2), and (2.1.1.3)
therein. Write E = E(G,X) for the reflex field [Del79, 2.2.1], which is a finite
extension of Q in C. We have the algebraic closure E ⊂ C. Let K be a neat
open compact subgroup of G(A∞). (See [Lan13, p.82] for the definition of neatness
in an adelic group following Pink.) We write ShK = ShK(G,X) for the canonical
model over E, which forms a projective system of quasi-projective varieties with
finite étale transition maps as K varies. We have the E-scheme Sh := lim←−K ShK .

Put d := dim ShK (which does not depend on K). Write G(Q)+ for the preimage
of G(R)+ (defined in §2.4) in G(Q). The closure of G(Q)+ in G(A∞) is denoted by
G(Q)−+.

Recall some facts about connected components from [Del79, 2.1]. We have a bijec-
tion

π0(ShK,E)
∼→ G(Q)\G(A)/G(R)+K, (5.1.1)

which yields a G(A∞)-equivariant bijection π0(ShE)
∼→ G(A)/G(Q)%(Gsc(A))G(R)+

upon taking limit over all K. Note that G(A)/G(Q)%(Gsc(A))G(R)+ is an abelian
group quotient of G(A), and G(Q)\G(A)/G(R)+K is a finite abelian group quotient.

Fix a prime ` and a field isomorphism ι : Q` ' C. When V is a Q`-vector space,
write ιV := V ⊗Q`,ι C. By convention, all instances of cohomology in this paper

are étale cohomology. The description of π0(ShE) translates into a G(A∞)-module
isomorphism

ιH0(ShE ,Q`) '
⊕
π

π∞, (5.1.2)

where the sum runs over one-dimensional automorphic representations π such that
π∞ is trivial when restricted to G(R)+. Indeed, at each prime p, we have dimπp = 1

since πp factors through G(Qp) → G(Qp)[ = G(Qp)/%(Gsc(Qp)), cf. Corollary 2.3.3.
Since one-dimensional automorphic representations have automorphic multiplicity
one, there is no multiplicity factor in (5.1.2).
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Now fix a prime p 6= ` and an open compact subgroup Kp ⊂ G(Qp). By taking
limit of (5.1.1) over neat open compact subgroups Kp ⊂ G(A∞,p), writing ShKp :=
lim←−Kp

ShKpKp ,

π0(ShKp,E)
∼→ G(Q)−+\G(A∞)/Kp. (5.1.3)

We have a G(A∞,p)-module10

Hi(ShKp,E ,Q`) = lim−→
Kp

Hi(ShKpKp,E ,Q`), i ≥ 0,

where Kp runs over sufficiently small open compact subgroups of G(A∞,p).

Lemma 5.1.1. There is a G(A∞,p)-module isomorphism

ιH0(ShKp,E ,Q`) '
⊕
π

π∞,p,

where the sum runs over discrete automorphic representations π of G(A) such that
(i) dimπ = 1, (ii) πp is trivial on Kp, and (iii) π∞ is trivial on G(R)+.

Proof. This is clear from (5.1.2) by taking Kp-invariants. �

5.2. Integral canonical models. Let (G,X) be a Shimura datum of Hodge type. This
means that there exists an embedding into the Siegel Shimura datum

iV,ψ : (G,X) ↪→ (GSp(V, ψ), S±V,ψ),

where (V, ψ) is a symplectic space over Q, and S±V,ψ denotes the associated Siegel half

spaces. For simplicity we write GSp = GSp(V, ψ) and S± = S±V,ψ.

Definition 5.2.1. An unramified Shimura datum is a quadruple (G,X, p,G), where
(G,X) is a Shimura datum, p is a prime, and G is a reductive model for G over
Z(p). (In particular G is unramified over Qp.) Write SDur

Hodge for the collection of
unramified Shimura data whose underlying Shimura data are of Hodge type.

For the rest of this paper, we fix (G,X, p,G) ∈ SDur
Hodge and iV,ψ, thus also a

hyperspecial subgroup Kp := G(Zp) of G(Qp). Since G is unramified over Qp, the

prime p is unramified in the reflex field E. We fix an isomorphism ιp : C ' Qp, which

induces an embedding E ↪→ Qp as well as a p-adic place p of E. Thereby we identify

Ep ' Qp. The integer ring OE localized at p is denoted by OE,(p), and its residue field

by k(p). Identify the residue field of Qp with Fp, thus fixing an embedding k(p) ↪→ Fp.
We follow [Kis17, (1.3.3)] to review integral canonical models for Sh = Sh(G,X)

over OE,(p), leaving the details to loc. cit. We may assume that iV,ψ is induced by an
embedding G ↪→ GL(VZ(p)

) for a Z(p)-lattice VZ(p)
⊂ V and that ψ induces a perfect

pairing on VZ(p)
. There exists a finite set of tensors (sα) ⊂ V ⊗Z(p)

such that G is the

scheme-theoretic stabilizer of (sα) in GL(VZ(p)
). We may assume that one of the

tensors is given by ψ⊗ψ∨ ∈ (V ∨Z(p)
)⊗2⊗V ⊗2

Z(p)
, whose stabilizer is GSp(VZ(p)

, ψ).11 We

fix the set (sα). There is a hyperspecial subgroup K ′p ⊂ GSp(V, ψ)(Qp) extending Kp

(i.e., K ′p ∩G(Qp) = Kp) such that iV,ψ induces an E-embedding of Shimura varieties

ShKp(G,X) ↪→ ShK′p(GSp, S±)⊗Q E. (5.2.1)

10See [Sta16, Tag 03Q4] for the canonical isomorphism, which is G(A∞,p)-equivariant by a routine
check. Alternatively, it is harmless to think of the identity as a definition for the left hand side.

11This way the weak polarization in the sense of [Kis17] is remembered by (sα). So we need not
keep track of polarizations on abelian varieties separately.

https://stacks.math.columbia.edu/tag/03Q4
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Kisin [Kis10, Thm. 2.3.8] (for p > 2) and Kim–Madapusi Pera [KMP16, Thm. 4.11]
(for p = 2) constructed integral canonical models, as a projective system of smooth
quasi-projective schemes SKpKp over OE,(p) for all sufficiently small open compact
subgroups Kp ⊂ G(A∞,p) with finite étale transition maps SKpKp,′ → SKpKp for
Kp,′ ⊂ Kp. The projective system is equipped with an action of G(A∞,p), given by
the isomorphism

SKpKp
∼→ SKpg−1Kpg, g ∈ G(A∞,p), Kp ⊂ G(A∞,p),

extending the isomorphism ShKpKp
∼→ ShKpg−1Kpg giving the action of g on the

generic fiber. The inverse limit SKp := lim←−KpSKpKp is a scheme over OE,(p) with a

G(A∞,p)-action, uniquely characterized by an extension property [Kis10, Thm. 2.3.8].
The construction yields a map of OE,(p)-schemes

SKp → SK′p
(GSp, S±)⊗Z(p)

OE,(p), (5.2.2)

whose base change to E is identified with (5.2.1), where SK′p
(GSp, S±) is the inte-

gral model over Z(p) for Sh(GSp(V, ψ), S±V,ψ) parametrizing polarized abelian schemes

up to prime-to-p isogenies with prime-to-p level structure, as in [Kis10, (2.3.3)]. By
pulling back the universal polarized abelian scheme over the Siegel Shimura vari-
eties, we obtain polarized abelian schemes h : AKpKp → SKpKp compatible with the
transition maps in the projective system.

Let SKpKp,k(p) := SKpKp ⊗OE,(p)
k(p) denote the special fiber. Write ShKp

(resp. SKp,k(p)) for the inverse limit of ShKpKp (resp. SKpKp,k(p)) over Kp. By

base change to Ep, OEp
, and k(p), respectively, we obtain ShKp,Ep

, SKp,OEp
, and

S
Kp,k(p)

from ShKp , SKp , and SKp,k(p). There are canonical G(A∞,p)-equivariant

embeddings of generic and special fibers

ShKp,Ep
↪→ SKp,OEp

←↩ S
Kp,k(p)

.

These embeddings induce G(A∞,p)-equivariant bijections by means of arithmetic com-
pactification as implied by [MP19, Cor. 4.1.11]:

π0(ShKp,Ep
)
∼→ π0(SKp,OEp

)
∼← π0(S

Kp,k(p)
).

Lemma 5.2.2. The G(A∞,p)-action is transitive on π0(ShKp,Ep
) and π0(S

Kp,k(p)
).

Remark 5.2.3. Oki [Oki23] showed that the analogous transitivity is false if GQp is
ramified.

Proof. By the bijections above the lemma, it is enough to check the transitivity on
π0(ShKp,Ep

), which is [Kis10, Lem. 2.2.5] (applicable since Kp is hyperspecial). Alter-

natively, this also follows from weak approximation, which tells us that the diagonal
embedding G(Q) ↪→ G(Qp)×G(R) has dense image. For this, apply [PR94, Thm. 7.7]
and notice that the set S0 of the theorem can be taken away from p and ∞ from the
discussion in §7.3 of loc. cit. since G is unramified at p. (In the argument on p.421
of [PR94] the torus T can be chosen to be unramified by examining the proof of
Proposition 2.10 in loc. cit. Thus it suffices to check that the conclusion of Proposi-
tion 7.10 therein holds for K = Q and S = {p,∞} when the diagonalizable group F
in that proposition is unramified at p. This follows immediately from Corollary 2 on
p.418.) �

Let T be a k(p)-scheme. At each point x ∈ SKpKp(T ) we have an abelian variety
Ax over T (up to a prime-to-p isogeny) pulled back from AKpKp . As in [Kis17, (1.3.6)]
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and [KSZ, §5.1.5, Rem. 5.1.6], we have (sα,`) ⊂ (R1hét∗Q`)⊗ for each prime ` 6= p and
also adelically away from p,∞. By pullback, we equip the prime-to-p rational Tate
module V p(Ax) of Ax with (sα,`,x)` 6=p.

When T = Spec k with k/k(p) an extension in k(p), write D(Ax[p∞]) for the (in-
tegral) Dieudonné module of Ax[p∞], and Φx for the Frobenius operator acting on
it. Following [Kis17, (1.3.10)] we have crystalline Tate tensors (sα,0,x) ⊂ D(Ax[p∞])⊗

coming from (sα). Lovering [Lov17], and also Hamacher [Ham19, §2.2], have glob-
alized (sα,0,x). Namely there exist crystalline Tate tensors (sα,0) on the Dieudonné
crystal D(AKpKp [p∞]) associated with AKpKp [p∞] over S

KpKp,k(p)
such that (sα,0)

specializes to (sα,0,x) at every x ∈ SKpKp(k(p)).

5.3. Central leaves. Continuing from §5.2, we review central leaves in the special
fiber of a Shimura variety of Hodge type. Let B(GQp) denote the set of (G(Q̆p), σ)-

conjugacy classes in G(Q̆p). Fix a Borel subgroup B ⊂ GZp and a maximal torus

T ⊂ B over Zp. We have the set of dominant coweights X∗(TQp)+ and X∗(TQp)+
Q .

Via the fixed isomorphism ιp : Qp ' C, we obtain TC ⊂ BC ⊂ GC as well as X∗(TC)+

and X∗(TC)+
Q . Since the conjugacy class {µX} is defined over E and since GQp is

quasi-split, we have a cocharacter

µp ∈ X∗(TQp)+ defined over Ep.

in the conjugacy class {ιpµX}. When there is no danger of confusion, we omit the

subscripts Qp and C. Write ρ ∈ X∗(T )Q for the half sum of all positive roots, and 〈·, ·〉
for the canonical pairing X∗(T )Q ×X∗(T )Q → Q or its extension to C-coefficients.

Each b ∈ G(Q̆p) gives rise to a Newton cocharacter νb : D → GQ̆p (so it is a

“fractional” cocharacter of GQ̆p) and a connected reductive group Jb over Qp given by

Jb(R) := {g ∈ G(R⊗Qp Q̆p) : g−1bσ(g) = b}, R : Qp-algebra. (5.3.1)

Recall that AJb denotes the maximal Qp-split torus in the center of Jb.

Lemma 5.3.1. The Newton cocharacter νb factors through the center of Jb. The in-
duced cocharacter D→ AJb is Qp-rational.

Proof. The centrality follows from [Kot85, (4.4.2)]. The cocharacter D → AJb is
σ-invariant by the definition of Jb, thus Qp-rational. �

We define an open compact subgroup of Jb(Qp) (where “int” stands for integral):

J int
b := Jb(Qp) ∩ G(Z̆p) = {g ∈ G(Z̆p) : g−1bσ(g) = b}.

Given b ∈ G(Q̆p), we denote its (G(Q̆p), σ)-conjugacy class by [b] and (G(Z̆p), σ)-

conjugacy class by [[b]]. Recall that b ∈ G(Q̆p), or [b] ∈ B(GQp), is basic if νb :
D → GQ̆p has image in Z(GQ̆p), or equivalently if Jb is an inner form of G [RR96,

Prop. 1.12]. The following condition will appear in our irreducibility results later.
The definition makes a difference only when Gad is not Q-simple. See Lemma 5.3.7
below for a relation to §2.5.

Definition 5.3.2. Let Gad =
∏
i∈I G

ad
i be a decomposition into Q-simple factors. An

element b ∈ G(Q̆p), or [b] ∈ B(GQp), is said to be Q-non-basic if its image in B(Gi,Qp)

via the natural composite map G→ Gad → Gi is non-basic for every i ∈ I.
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Remark 5.3.3. The definition is not purely local in that it depends on not only GQp
but also G. Compare G = GL2 × GL2 with G = ResF/QGL2, where F is a real
quadratic field in which p splits.

Let x ∈ SKpKp,k(p) be a closed point. Then there exists a sufficiently divisible
r ∈ Z≥1 such that Fpr ⊃ k(p) and there exists a Zpr -linear isomorphism (cf. [Kis17,
(1.4.1)])

V ∗Z(p)
⊗Z(p)

Zpr ' D(Ax[p∞])⊗W (k(p)) Zpr (5.3.2)

carrying (sα) to (sα,0,x). The Frobenius operator Φx on the right hand side is trans-
ported to an σ-semilinear operator on the left hand side of the form bx(1 ⊗ σ) for a
unqiue bx ∈ G(Qpr ). Then [[bx]] (thus also [bx]) is independent of the choice of r and

the isomorphism. Now let x : SpecFp → SKpKp,k(p) be a geometric point supported
at x ∈ SKpKp,k(p). Then we can define bx, [bx], and [[bx]] similarly.

Write |SKpKp,k(p)| for the set of closed points on SKpKp,k(p). As a subset of
|SKpKp,k(p)|, the central leaf associated with b is defined as

Cb,Kp := {x ∈ |SKpKp,k(p)| : [[bx]] = [[b]]},

Clearly the definition depends only on [[b]]. By [HK19, Cor. 4.12], Cb,Kp is a locally

closed subset of |SKpKp,k(p)|. (The result is stated for Fp-points there, but the same
proof applies to the underlying set of closed points.) We promote Cb,Kp to a locally
closed k(p)-subscheme of SKpKp,k(p) equipped with reduced subscheme structure. We
still write Cb,Kp for the scheme and call it the central leaf associated with b. As Kp

varies, the transition maps for SKpKp,k(p), which are finite étale ([Kis10, Thm. 2.3.8]),
induce finite étale transition maps between Cb,Kp . Put Cb := lim←−Kp

Cb,Kp . We say

either Cb,Kp or Cb is Q-non-basic if b is Q-non-basic.

Proposition 5.3.4. The k(p)-scheme Cb,Kp is smooth. If nonempty, its dimension is
〈2ρ, νb〉.

Proof. These properties can be checked after extending base to k(p). Since Cb,Kp

is reduced, it is still reduced over k(p). Thus the proposition follows from [Ham19,
Prop. 2.6]. �

A finite subset B(GQp , µ
−1
p ) ⊂ B(GQp) is defined in [Kot97, §6] by a group-theoretic

generalization of Mazur’s inequality. The set B(GQp , µ
−1
p ) contains exactly one basic

element, but may contain several elements that are not Q-non-basic. Set Zur
p :=

∪r≥1Zpr as a subring of Q̆p.

Proposition 5.3.5. The central leaf Cb,Kp is nonempty if and only if the (G(Z̆p), σ)-
conjugacy class [[b]] intersects G(Zur

p )σµ−1
p (p)G(Zur

p ) nontrivially.

Proof. By [KMPS22, Prop. 1.3.9], the Newton stratum for b is nonempty if and only
if [b] ∈ B(GQp , µ

−1
p ). On the other hand, if b ∈ G(Zur

p )σµ−1
p (p)G(Zur

p ) then [b] ∈
B(GQp , µ

−1
p ) by [RZ96, §4].

To prove the “only if” part of the proposition, we assume Cb,Kp 6= ∅. Then [b] ∈
B(GQp , µ

−1
p ) by the preceding paragraph. Since Cb,Kp is of finite type over k(p), a

closed point x ∈ Cb,Kp has finite residue field, and there exists an isomorphism (5.3.2)
for some r. Then [[bx]] = [[b]], and bx ∈ G(Zpr )σµ−1

p (p)G(Zpr ) by [Kis17, 1.4.1].

In the“if”direction, the condition on b implies that [b] ∈ B(GQp , µ
−1
p ), so Nb,Kp 6= ∅

for neat subgroups Kp. Pick a closed point x ∈ Nb,Kp . Then bx lies in the double
coset G(Zpr )σµ−1

p (p)G(Zpr ) by [Kis17, 1.4.1], and [bx] = [b]. Writing b = g−1bxσ(g) for
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some g ∈ G(Q̆p), we see that g lies in the affine Deligne–Lusztig variety for (bx, σµ
−1
p ).

Using x as a base point, we can apply the p-power isogeny corresponding to g to find
a closed point y ∈ Nb,Kp , thanks to [Kis17, Prop. 1.4.4]. By construction [[by]] = [[b]],
so Cb,Kp is nonempty as desired. �

For r ∈ Z≥1 define a subset G(Qur
p )r-good ⊂ G(Qur

p ) consisting of b such that

(br1) b ∈ G(Zpr )σµ−1
p (p)G(Zpr ),

(br2) r is divisible by [Ep : Qp] (equivalently Fpr ⊃ k(p)),
(br3) rνb : Gm → GQ̆p is a cocharacter (not just a fractional cocharacter).

Clearly G(Zur
p )σµ−1

p (p)G(Zur
p ) is the union of G(Qur

p )r-good over all r, and G(Qur
p )r-good

is contained in G(Qur
p )r′-good if r divides r′. Proposition 5.3.5 tells us that Cb,Kp is

nonempty if and only if b belongs to G(Qur
p )r-good up to (G(Z̆p), σ)-conjugacy for a

sufficiently divisible r, where r can be chosen independently of Kp. For the purpose
of studying central leaves, we may and will always assume from now that

b ∈ G(Qur
p )r-good for a sufficiently divisible r.

Conditions (br1)–(br3) imply the following.

(br1)’ [b] ∈ B(GQp , µ
−1
p ) and νb is defined over Qpr , by (br1).

(br2)’ µp is defined over Qpr , by (br2).

Since µp is defined over Ep, which is unramified over Qp, (br2)’ is easy to see. In
(br1)’, [b] ∈ B(GQp , µ

−1
p ) comes from [RR96, Thm. 4.2]. we already explained above

that νb is defined over Qpr if b ∈ G(Qpr ). Since bx ∈ G(Qpr ), [Kot85, (4.4.1)] tells us
that νbx is defined over Qpr .

Since the G(Qpr )-conjugacy class of rνb is defined over Qp [Kot85, (4.4.3)], but rνb
itself need not be defined over Qp. To apply harmonic analysis results of §3 and §4 let
us introduce a σ-conjugate element b◦ such that rνb◦ is a cocharacter over Qp. Since
GQp is quasi-split, there exists h ∈ G(Qpr ) such that h−1(rνb)h is defined over Qp.
Multiplying h on the right by an element of G(Qp), we can ensure that h−1(rνb)h
factors through Gm → T and is B-dominant, namely h−1(rνb)h ∈ X∗(T )+. Fix such
a h and put b◦ := h−1bσ(h) so that νb◦ = h−1(νb)h from [Kot85, (4.4.2)]. We also
have a Qp-isomorphism

Jb
∼→ Jb◦ , g 7→ h−1gh

determined by h, which carries rνb to rνb◦ .
Starting from νb◦ ∈ X∗(T )+

Q defined over Qp as above, we put Pb◦ := Pνb◦ in the

notation of §3.1, and similarly define P op
b◦ , Nb◦ , N

op
b◦ , and Mb◦ . In particular P op

b◦

(resp. Mb◦) is a standard Qp-rational parabolic (resp. Levi) subgroup of GQp , and
Mb◦ is the centralizer of νb◦ in GQp . There is an inner twist [RZ96, Cor. 1.14]

Jb◦ ⊗Qp Qpr 'Mb◦ ⊗Qp Qpr (5.3.3)

given by the cocycle Gal(Qpn/Qp) → Mb◦(Qpr ), σ 7→ b◦. Thus Mb◦ is also an inner
twist of Jb over Qp (which is independent of the choice of b◦ up to isomorphism of inner
twists by routine check). Under the canonical Qp-isomorphisms Z(Mb◦) ' Z(Jb) and
AMb◦ = AJb , it is readily checked that νb◦ is carried to νb.

Example 5.3.6. We have the following for the ordinary strata of modular curves,
when GQp = GL2. Take B and T to the subgroup of upper triangular (resp. diagonal)
matrices. Then µ is the cocharacter z 7→ diag(z, 1) up to conjugacy. We can take
b = b◦ such that νb(z) = diag(1, z−1), which is visibly B-dominant. Then P op

b = B =
P−νb , Mb = T , and δPb(νb(p)) = |p−1| = p.
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Lemma 5.3.7. The element b ∈ G(Q̆p) as above is Q-non-basic if and only if (Q-
nb(Pb)) of §2.5 holds.

Proof. Write Gad =
∏
i∈I G

ad
i as in Definition 5.3.2 and bi ∈ Gad

i (Q̆p) for the image
of b. By functoriality of Newton cocharacters, the composition of νb with the natural
map G→ Gad

i is νbi , which is Qp-rational since νb is. This implies that the image of
Pb in Gad

i is Pbi , where Pbi ⊂ Gad
i is defined analogously as Pb in G over Qp. Each

bi ∈ Gad
i (Q̆p) is basic if and only if νbi is central in Gad

i (i.e. trivial) if and only if
Pbi = Gad

i . Therefore (Q-nb(Pb)) holds if and only if bi is non-basic for every i ∈ I,
and the latter is the definition for b to be Q-non-basic. �

Let 1→ Z1 → G1 → G→ 1 be a z-extension over Qp that is unramified over Qp.
Let µp,1 : Gm → G1,Qpr be a cocharacter lifting µp : Gm → GQpr . (Such a µp,1 always
exists since Z1 is connected, but we will make a choice of µp,1 coming from a lift of
Shimura data, cf. §7.2 below.)

Lemma 5.3.8. Assume that b ∈ G(Qur
p )r-good. Then there exists an element b1 ∈

G1(Qpr ) lifting b, as well as an element b◦1 ∈ G1(Qpr ) in the σ-conjugacy class of b1,
such that

• the analogues of (br1), (br1)’, and (br2)’ hold true with G,µp, b replaced by
G1, µp,1, b1,

• νb◦ is defined over Qp and lifts ν◦b .

Moreover, we can make r more divisible (without changing µp, b, µp,1, b1, b◦1) such
that rνb1 is a cocharacter of G1.12 (So b1 ∈ G1(Qur

p )r-good for the new r.)

Proof. Since G1(Zpr ) → G(Zpr ) is onto (by the surjectivity on Fpr -points and the
smoothness of G1 → G), the map G1(Qpr )→ G(Qpr ) induces a surjection

G1(Zpr )σµ−1
p,1(p)G1(Zpr ) � G(Zpr )σµ−1

p (p)G(Zpr ).

Take b1 ∈ G1(Qpr ) to be any preimage of b under this map. This takes care of the
first bullet point. As for the second point, since G1 is quasi-split over Qp, there exists
b◦1 ∈ G1(Qpr ) σ-conjugate to b1 such that νb◦1 is defined over Qp, and also such that
νb◦1 factors through T1 ⊂ G1, where T1 is the preimage of T . Then the composite of
νb◦1 with G1 � G is conjugate to νb◦ in G, so differs from νb◦ by an element of the
Qp-rational Weyl group of G [Kot84a, Lem. 1.1.3 (a)]. Identifying the latter with the
Qp-rational Weyl group of G1, we can use the same element to modify νb◦1 so that νb◦1
maps to νb◦ under G1 � G. Finally, the last point on r in the lemma is obvious. �

In the settting of the lemma, we introduce Qp-algebraic groups Jb1 , Jb◦1 , Pb◦1 , Mb◦1
,

etc. for G1 by mimicking the definition for G. Let T1, B1 denote the preimages of
T,B in G1. Since νb◦1 maps to νb◦ , it is clear that ν◦b1 ∈ X∗(T1)+, where + means
B1-dominance, and that Pb◦1 , Mb◦1

map to Pb◦ , Mb◦ . As before, we can identify
Z(Mb◦1

) = Z(Jb◦1 ), which carries νb◦1 to νb1 . The point of the discussion about b◦ and
b◦1 is that it is usually harmless to work with b◦ and b◦1 in place of b and b1 regarding
harmonic analysis questions. With this understanding, we will abuse notation to write
Mb, Pb,Mb1 , Pb1 etc. for Mb◦ , Pb◦ ,Mb◦1

, Pb◦1 etc. to simplify notation, and write νb, νb1
for νb◦ , νb◦1 if there is little danger of confusion.

12A priori we only know that rνb1 is a fractional cocharacter, even though rνb is an (integral)

cocharacter of G.
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6. Igusa varieties

Here we state the main theorem on H0 of Igusa varieties and carry out the initial
reduction to the completely slope divisible case, where we have a tower of finite-type
Igusa varieties over a fixed finite field. This prepares us to apply a fixed-point formula
in the next section.

6.1. Infinite-level Igusa varieties. We continue in the setting of §5.3, with b an element
of G(Qur

p )r-good. Let b′ ∈ GSp(Q̆p) denote the image of b. By Dieudonné theory, we
have a polarized p-divisible group Σb′ over Fpr such that D(Σb′) = V ∗Z(p)

⊗Z(p)
Zpr with

Frobenius operator b′(1⊗σ). By Σb we mean the p-divisible group Σb′ equipped with
crystalline Tate tensors (tα) on D(Σb′) corresponding to (sα) on VZ(p)

. When there is

no danger of confusion, we still write Σb and Σb′ for their base changes to Fp.
Applying the construction of §5.3 to SK′pK

′,p(GSp, S±) and b′, we obtain a central

leaf Cb′,K′,p ⊂ SK′pK
′,p(GSp, S±). Let R be an Fp-algebra. Following [CS17, Sect. 4.3]

we have the Igusa variety Igb′,K′,p → Cb′,K′,p,Fp whose R-points parametrize isomor-

phisms
Σb′ ×Fp R ' AR[p∞] (6.1.1)

compatible with polarizations up to Z×p -multiples, where AR denotes the pullback
of the universal abelian scheme via SpecR → Cb′,K′,pFp . Then Igb′,K′,p is a perfect

scheme, which is an Aut(Σb′)-torsor over Cb′,K′,pFp by [CS, Cor. 2.3.2], where Aut(Σb′)

denotes the group scheme of automorphisms of Σb′ (preserving the polarization up to
Z×p -multiples).

The map SKpKp,Fp → SK′pK
′,p,Fp clearly induces a map Cb,Kp,Fp → Cb′,K′,p,Fp .

We define the subscheme

Igb,Kp ⊂ (Igb′,K′,p ×Cb′,K′,p,Fp Cb,Kp,Fp)perf = Igb′,K′,p ×Cperf

b′,K′,p ,Fp
Cperf

b,Kp,Fp
(6.1.2)

to be the locus where (6.1.1) carries (sα) to (sα,0) on the Dieudonné modules. Com-

posing with the projection maps, we have Fp-morphisms Igb,Kp → Igb′,K′,p and

Igb,Kp → Cperf

b,Kp,Fp
. The latter gives rise to the composite map

Igb,Kp → Cperf

b,Kp,Fp
→ Cb,Kp,Fp → SKpKp,Fp .

As Kp varies, the Hecke action of G(A∞,p) on SKpKp,Fp restricts to an action on

Cb,Kp,Fp and extends to an action on Igb,Kp by [HK19, Lem. 6.4]. (The point is that

the central leaves and Igusa varieties are defined in terms of p-adic invariants, which
are preserved under the prime-to-p Hecke action.)

Lemma 6.1.1. The following are true.

(1) The Fp-scheme Igb,Kp is perfect and a pro-étale J int
b -torsor over Cperf

b,Kp,Fp
. 13

(2) The map Igb,Kp → Igb′,K′,p is a closed embedding, under which the Jb′(Qp)-
action on Igb′,K′,p restricts to an action of Jb(Qp) on Igb,Kp (via the embed-
ding Jb(Qp) ↪→ Jb′(Qp)).

Proof. This follows from [Ham19, Prop. 4.1, 4.10], noting that our Igb,Kp is his

J
(p−∞)
∞ (the perfection of his J∞) and that our J int

b is his Γb. Two points re-
quire some further explanation. Firstly, we see that J int

b = Γb as follows. Observe

13It can be shown that Igb,Kp → Cb,Kp is an Aut(Σb)-torsor by [CS, Cor. 2.3.2] and adapting

the argument there, but we do not need it.
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that J int
b ⊂ Jb(Qp) ⊂ Jb′(Qp) and J int

b ⊂ G(Z̆p) ⊂ GSp(Z̆p). Thus J int
b consists of

automorphisms of Σb′ which are exactly the stabilizers of (tα) via Dieudonné theory.
Secondly, [Ham19, Prop. 4.1] tells us that J∞ → Cb,Kp,Fp is a pro-étale J int

b -torsor.

Since every perfection map (as a limit of absolute Frobenius) is a universal homeo-
morphism, which preserves the pro-étale topology [BS15, Lem. 5.4.2], it follows that

the perfection J
(p−∞)
∞ → Cperf

b,Kp,Fp
is also a pro-étale J int

b -torsor. �

Lemma 6.1.2. Let R be a perfect Fp-algebra. Then Igb,Kp(R) is identified with the set
of equivalence classes of (x, j), where

• x ∈ SKpKp(R) is an abelian scheme over SpecR and
• j : Σb ×Fp R→ Ax[p∞] is a quasi-isogeny carrying (sα) to (sα,0,x),

and Ax denotes the pullback of the universal abelian scheme along x. Here (x, j) and
(x′, j′) are considered equivalent if, in the notation of §5.2, there exists a p-power
isogeny i : Ax → Ax′ carrying (sα,`,x)` 6=p to (sα,`,x′) 6̀=p and (sα,0,x) to (sα,0,x′) such
that i◦ j = j′. Each ρ ∈ Jb(Qp) acts on the R-points of Igb,Kp by sending j to j ◦ρ.14

Proof. This is the Hodge-type analogue of [CS17, Lem. 4.3.4] proven in the PEL
case. By loc. cit., Igb′,K′,p(R) is the set of p-power isogeny classes of (A, j) with A ∈
SK′pK

′,p(R) and j : Σb ×Fp R→ A[p∞] a quasi-isogeny compatible with polarizations

up to Q×p . Now we have a commutative diagram from the construction of central
leaves and Igusa varieties:

Igb,Kp
//

� _

closed

��

Cb,Kp,Fp
� � loc. closed //

��

SKpKp,Fp

��
Igb′,K′,p // Cb′,K′,p,Fp

� � loc. closed // SK′pK
′,p,Fp

Now we prove the first assertion by constructing the maps in both directions, which
are easily seen to be inverses of each other. Given y ∈ Igb,Kp(R), its image gives
x ∈ SKpKp(R). The j comes from the image of y in Igb′,K′,p(R). The compatibility
of j with crystalline Tate tensors follows from the very definition of Igb,Kp . Conversely,
let (x, j) be as in the lemma. Modifying by a quasi-isogeny, we may assume that j
is an isomorphism. Then (x, j) comes from a point y′ ∈ Igb′,K′,p(R) as observed
above. Since SpecR and Cb,Kp are reduced, x ∈ SKpKp(R) comes from a point in
x ∈ Cb,Kp(R). Then y′ and x have the same image in Cb′,K′,p,Fp(R), so determine a

point

y ∈
(
Igb′,K′,p ×Cb′,K′,p,Fp Cb,Kp,Fp

)perf
(R) =

(
Igb′,K′,p ×Cb′,K′,p,Fp Cb,Kp,Fp

)
(R).

The compatibility of j with crystalline Tate tensors exactly tells us that y ∈ Igb,Kp(R).
It remains to show the last assertion. In light of Lemma 6.1.1 (2), the assertion on

the Jb(Qp)-action follows from the analogue description for Jb′(Qp)-action on Igb′,K′,p
as in [CS17, Lem. 4.3.4, Cor. 4.3.5]. �

Now we compare Igusa varieties arising from two central leaves Cb and Cb0 in the
same Newton stratum. Thus we assume that b, b0 ∈ G(Qur

p )r-good for some r and that

14We make a right action of Jb(Qp) on Igb,Kp so that it becomes a left action on the cohomology.

In [CS17, §4.3], their arrow j is reverse to ours, from A[p∞] to Σb ×Fp R. The two conventions are

identified via taking the inverse of j (with the understanding that the authors of loc. cit. are also
using the right action of Jb(Qp), though this does not appear there explicitly).
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b is σ-conjugate to b0 in G(Q̆p). We have an isomorphism Jb(Qp) ' Jb0(Qp) (induced

by a conjugation in the ambient group G(Q̆p)), canonical up to Jb(Qp)-conjugacy.

Corollary 6.1.3. There exists a G(A∞,p)-equivariant isomorphism

Igb
∼→ Igb0 ,

which is also equivariant for the actions of Jb(Qp) and Jb0(Qp) through a suitable
isomorphism Jb(Qp) ' Jb0(Qp) in its canonical Jb(Qp)-conjugacy class.

Proof. Since [bx] = [bx0
], there exists a quasi-isogeny f : Σb0 → Σb compatible with G-

structures. Using the description of Lemma 6.1.2, we can give an isomorphism Igb
∼→

Igb0 on R-points by (A, j) 7→ (A, j ◦f). The equivariance property is straightforward.
�

The Jb(Qp)-action on Igb,Kp commutes with the Hecke action of G(A∞,p) (as Kp

varies) as it is clear on the moduli description. Now we would like to understand the
G(A∞,p)× Jb(Qp)-representation

Hi(Igb,Q`) := lim−→
Kp

Hi(Igb,Kp ,Q`), i ≥ 0,

where the limit is over sufficiently small open compact subgroups of G(A∞,p).
From §2.3 we obtain the following commutative diagram. Indeed, all maps and

the commutativity are obvious except possibly the map Jb(Qp)ab �Mb(Qp)ab, which
comes from the proof of Corollary 2.3.3. (The latter also tells us that Mb(Qp)ab =

Mb(Qp)[ and G(Qp)ab = G(Qp)[.)

Jb(Qp)

����

Mb(Qp)

����

// G(Qp)

����
Jb(Qp)ab // // Mb(Qp)ab // G(Qp)ab.

(6.1.3)

The diagram yields the composite maps

ζb : Jb(Qp)→ G(Qp)ab and ζ∗b : Mb(Qp)→ G(Qp)ab. (6.1.4)

Thus every one-dimensional smooth representation πp of G(Qp) (necessarily factoring
through G(Qp)ab) can be pulled back to one-dimensional representations of Jb(Qp)
and Mb(Qp), to be denoted πp ◦ ζb and πp ◦ ζ∗b .

As a reminder from §5.3, every nonempty Q-non-basic central leaf can be written
as Cb, where b is a Q-non-basic element contained in G(Qur

p )r-good for a sufficiently
divisible r ∈ Z≥1. (Conversely such a b gives rise to a nonempty leaf.) We are ready
to state the main theorem of this paper.

Theorem 6.1.4 (Main Theorem). Let (G,X, p,G) be a Shimura datum of Hodge type.
For every (nonempty) Q-non-basic central leaf Cb, there exists a G(A∞,p) × Jb(Qp)-
module isomorphism

ιH0(Igb,Q`) '
⊕

π∈A1(G)

π∞,p ⊗ (πp ◦ ζb),

where A1(G) stands for the set of one-dimensional automorphic representations π of
G(A) such that π∞ is trivial on G(R)+.

Proof. After reduction to the completely slope divisible case by Lemma 6.2.2, the
theorem will be established in §7 below. �



H0 OF IGUSA VARIETIES 61

Remark 6.1.5. Since dimπp = 1, we have (πp ◦ ζb)⊗ δPb = JP op
b

(πp)⊗ δ1/2
Pb

as Jb(Qp)-
representations. (The point is that the unipotent radical Nop

b acts trivially on πp.)
This is closely related to Lemma 3.1.2. It is also worth comparing with [HT01,
Thm. V.5.4] and [Shi12, Thm. 6.7], where a similar expression appears in the descrip-
tion of cohomology of Igusa varieties.

6.2. Finite-level Igusa varieties in the completely slope divisible case. We recall the
definition of finite-level Igusa varieties following [Man05,CS17,Ham19]. From §5.3 we
have r ∈ Z≥1 such that b ∈ G(Qur

p )r-good. In this subsection, we further assume that
b is completely slope divisible in the sense of [Kim19, Def. 2.4.1]. In particular, the
decency equation holds:

bσ(b) · · ·σr−1(b) = rνb(p). (6.2.1)

A priori, (6.2.1) holds for some r ∈ Z≥1 but then it is still true for all multiples of r.
So we may and will assume that (6.2.1) holds for the same r as in §5.3 by making r
more divisible.

We start from the Siegel case. Write Igb′,m,K′,p → Cb′,K′,p for Igusa varieties of
level m ∈ Z≥1 as in [Man05, §4] or [Ham19, §3.1] (the definition works over Fpr
not just over Fp), defined to parametrize liftable isomorphisms on the pm-torsion
subgroup of each slope component. As shown in loc. cit., Igb′,m,K′,p → Cb′,K′,p is a
finite étale morphism, forming a projective system over varying m via the obvious
projection maps. Write Igb′,K′,p for the projective limit of Igb′,m,K′,p over m. There
are maps Igb′,K′,p → Igb′,m,K′,p,Fp for m ≥ 1 compatible with each other, since the

isomorphism (6.1.1) induces isomorphisms on isoclinic components. This induces

an isomorphism Igb′,K′,p → Igperf

b′,K′,p,Fp
. See [CS17, Prop. 4.3.8] and the preceding

paragraph for details.
Following [Ham19, §4.1] (but working over Fpr rather than Fp), define the Fpr -

subscheme

Ĩgb,Kp ⊂
(
Igb′,K′,p ×Cb′,K′,p Cb,Kp

)perf

to be the locus given by the same condition as in (6.1.2). Define Igb,m,Kp as the image
of the composite map

Ĩgb,Kp → Igb′,K′,p ×Cb′,K′,p Cb,Kp → Igb′,m,K′,p ×Cb′,K′,p Cb,Kp .

The projection onto the second component gives an Fpr -morphism Igb,m,Kp → Cb,Kp ,
which is finite étale by [Ham19, Prop. 4.1]. Via the canonical projection Igb,m+1,Kp →
Igb,m,Kp commuting with the maps to Cb,Kp , we take the projective limit and denote
it by Igb,Kp .

Besides the Hecke action of G(A∞,p) on the tower of Igb,Kp , we also have an action
on Igb,Kp,Fp by a submonoid Sb ⊂ Jb(Qp) defined in [Man05, p.586]. (The latter

action is defined only over Fp in general since self quasi-isogenies of Σb are not always
defined over finite fields.) The precise definition is unimportant, but it suffices to
know two facts. Firstly, Sb generates Jb(Qp) as a group. Secondly, Sb contains p−1

(the inverse of the multiplication by p map on Σb) and 15

fr−r := rνb(p) ∈ Jb(Qp).

By Lemma 5.3.1, fr−r ∈ AJb(Qp). Let Fr denote the absolute Frobenius morphism
on an Fp-scheme.

15Here is a note on the sign. On the slope 0 ≤ λ ≤ 1 component, the action of frr is pλr, but νb
records slope −λ since we use the covariant Dieudonné theory.
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Lemma 6.2.1. The following hold true.

(1) fr−r ∈ A−−
P op
b
⊂ AMb

(Qp) = AJb(Qp). As an element of Mb(Qp), we have

fr−r ∈ A−−
P op
b

. (Recall that A−−
P op
b

was defined in §2.1. For AMb
(Qp) = AJb(Qp),

see §5.3.)
(2) The action of Frr× 1 on Igb,Kp ×Fpr Fp induces the same action on Igb,Kp as

the action of fr−r ∈ Jb(Qp).
(3) There is a canonical isomorphism Igb,Kp ' Igperf

b,Kp,Fp
over Cb,Kp,Fp , compatible

with the G(A∞,p)× Sb-actions as Kp varies.

Proof. (1) We already know fr−r ∈ AJb(Qp) = AMb
(Qp). Since rνb is B-dominant

(§5.3), we have rνb(p) ∈ A−P op
b

. Moreover rνb(p) ∈ A−−P op
b

as the centralizer of rνb(p) in

G is exactly Mb.
(2) Write FrΣ for the absolute Frobenius action on Σb/Fpr . In view of (6.2.1),

fr−r = rνb(p) acts on Σb/Fpr as (FrΣ)r. Thus fr−r sends (x, j) to (x, j ◦ FrrΣ) in the
description of R-points in Lemma 6.1.2. On the other hand, Frr × 1 on Igb,Kp sends

(x, j) to (x(r), j(r)), where x(r) corresponds to the pr-th power Frobenius twist of x (so
that Ax(r) = (Ax)(r)), and j(r) is the pr-th power twist of j. Finally we observe that
(x(r), j(r)) is equivalent to (x, j◦FrrΣ) via the pr-power relative Frobenius Ax → Ax(r) .

(3) We have the map Igb,Kp → Igb,Kp,Fp over Cb,Kp,Fp from the definition, which

factors through Igb,Kp → Igperf

b,Kp,Fp
since Igb,Kp is perfect. This is shown to be an

isomorphism exactly as in the proof of [CS17, Prop. 4.3.8], the point being a canonical

splitting of the slope decomposition over the perfect scheme Igperf

b,Kp,Fp
. �

Lemma 6.2.2. In the setting of Theorem 6.1.4, if the theorem is true for every b which
satisfies (6.2.1) for some r, then the theorem is true in general.

Proof. Let b0 be arbitrary in the setting of Theorem 6.1.4. By [Kim19, Prop. 2.4.5]

(alternatively by the argument of [Zha, Lem. 4.2.8]), there exists b ∈ G(Q̆p) which is
σ-conjugate to b0 such that

• b ∈ G(Z̆p)σµp(p)−1G(Z̆p),
• b is completely slope divisible and satisfies (6.2.1) for some r ∈ Z≥1.

It follows that we have (br1) for b, namely b ∈ G(Zpr )σµp(p)−1G(Zpr ) for some
r. By making r more divisible (note that (6.2.1) still holds for the new r), we can
ensure (br2) and (br3) for b. Thus b ∈ G(Qur

p )r-good and Cb 6= ∅. By hypothesis,
Theorem 6.1.4 is true for this b. On the other hand, we see from Corollary 6.1.3 that,
fixing an isomorphism Jb(Qp) ' Jb0(Qp) as in there,

H0(Igb,Q`) ' H0(Igb0 ,Q`) as G(A∞,p)× Jb(Qp)-modules.

Therefore Theorem 6.1.4 for b implies that the same theorem holds for b0. (Note that
the transfer of one-dimensional representations via Jb(Qp) ' Jb0(Qp) is canonical.)

�

7. Cohomology of Igusa varieties

The main purpose of this section is to prove Theorem 6.1.4. Throughout we are
in the setting of §6.2, namely we are assuming (6.2.1) on b and r in addition to
(br1)–(br3) of §5.3, since this is sufficient in light of Lemma 6.2.2. We will swtich
to compactly supported cohomology via Poincaré duality and apply Mack-Crane’s
Langlands–Kottwitz style formula to bring in techniques from the trace formula and
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harmonic analysis. All ingredients will be combined together in §7.6 to identify the
leading term in the Lang–Weil estimate.

7.1. Compactly supported cohomology in top degree. In §6.2 we constructed Igb,Kp

over Fpr such that Igb,Kp is isomorphic to the perfection of Igb,Kp,Fp (compatibly with

the transition maps as Kp varies). Recall that dim Igb = 〈2ρ, νb〉. Define for i ∈ Z≥0,

Hi
c(Igb,m,Fp ,Q`) := lim−→

Kp

Hi
c(Igb,m,Kp,Fp ,Q`), Hi

c(Igb,Fp ,Q`) := lim−→
m≥0

Hi
c(Igb,m,Fp ,Q`).

As for Hi
c(Igb,Fp ,Q`), we have a G(A∞,p)×Jb(Qp)-module structure on Hi

c(Igb,Fp ,Q`).
This is an admissibleG(A∞,p)×Jb(Qp)-module as the cohomology is finite-dimensional
at each finite level. It is convenient to prove the following dual version of Theo-
rem 6.1.4.

Theorem 7.1.1. Assume that b is Q-non-basic, and that Σb is completely slope divisible.
Then there is a G(A∞,p)× Jb(Qp)-module isomorphism

ιH〈4ρ,νb〉c (Igb,Fp ,Q`) '
⊕

π∈A1(G)

π∞,p ⊗ ((πp ◦ ζb)⊗ δPb) .

Proof. The proof will be carried out in §7.6 after recalling a stabilized trace formula
(Theorem 7.5.1), by employing the estimates in §4. �

Theorem 7.1.1 implies Theorem 6.1.4. We may put ourselves in the completely slope
divisible case by Lemma 6.2.2. Write d := 〈2ρ, νb〉. Applying Poincaré duality to
finite-level Igusa varieties Igb,m,Kp and taking direct limit over m and Kp, we obtain
a pairing

H0(Igb,Fp ,Q`)×H
2d
c (Igb,Fp ,Q`(d))→ Q`,

where Q`(d) denotes the d-th power Tate twist. The construction of duality (Exp.
XVIII, §3 in [SGA73]) goes through a family of canonical isomorphisms Rf !

m,KpQ` '
Q`(d)[−2d] (concentrated in degree 2d) over m and Kp, where fm,Kp : Igb,m,Kp →
SpecFpr denotes the structure map. Thus the action of G(A∞,p) × Jb(Qp) on Igb =

{Igb,m,Kp} induces an action on Q`(d)[−2d], through a character ς : G(A∞,p) ×
Jb(Qp) → Q×` . (As in §6.2.1, the action of Jb(Qp) is defined a priori on a sub-
monoid Sb and then extended to Jb(Qp). Alternatively, this action can be defined
directly after perfectifying Igb.) Together with the G(A∞,p) × Jb(Qp)-action on Igb,

this yields an action of G(A∞,p)×Jb(Qp) on H2d
c (Igb,Fp ,Q`(d)) and H0(Igb,Fp ,Q`), re-

spectively. It follows from the functoriality of Poincaré duality that the above pairing
is G(A∞,p)× Jb(Qp)-equivariant. Thus H0(Igb,Fp ,Q`) is isomorphic to the (smooth)

contragredient of H2d
c (Igb,Fp ,Q`(d)), which is isomorphic to H2d

c (Igb,Fp ,Q`)⊗ς. There-

fore Theorem 7.1.1 implies that

ιH0(Igb,Fp ,Q`) '
⊕

π∈A1(G)

((π∞,p)⊗ ((πp ◦ ζb)⊗ δPb))
∨ ⊗ ς−1. (7.1.1)

On the other hand, H0(Igb,Fp ,Q`) is the space of smooth Q`-valued functions on

π0(Igb,Fp), on which G(A∞,p)× Jb(Qp) acts through right translation. (Here smooth-

ness means invariance under an open compact subgroup of G(A∞,p) × Jb(Qp).) In

particular, the trivial representation appears in H0(Igb,Fp ,Q`) as the subspace of con-

stant functions on π0(Igb,Fp). Hence ς−1 = (π∞,p0 ) ⊗ ((π0,p ◦ ζb) ⊗ δPb) for some
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π0 ∈ A1(G). Plugging this formula into (7.1.1) and using the fact that A1(G) is
invariant under taking dual and twisting by π0, we can rewrite (7.1.1) as

ιH0(Igb,Fp ,Q`) '
⊕

π∈A1(G)

π∞,p ⊗ (πp ◦ ζb).

Finally, the same holds with Igb in place of Igb,Fp thanks to Lemma 6.2.1 (3). �

Remark 7.1.2. It may be possible to compute the character ς in the proof, but we
have got around it. As we know the Frobenius action on Q`(d)[−2d], Lemma 6.2.1
(2) tells us that fr−r ∈ Jb(Qp) acts by prd. We guess that ς is trivial on G(A∞,p) and

equal to δ−1
Pb

on Jb(Qp).

7.2. Preparations in harmonic analysis. Let φ∞,p = ⊗′v 6=∞,pφv ∈ H(G(A∞,p)) and

φp ∈ H(Jb(Qp)). With a view towards Theorem 7.1.1, we want to compute

Tr
(
φ∞,pφ(j)

p

∣∣∣ιHc(Igb,Fp ,Q`)
)

:=
∑
i≥0

(−1)iTr
(
φ∞,pφ(j)

p

∣∣∣ιHi
c(Igb,Fp ,Q`)

)
.

We keep T , B, b ∈ G(Q̆p), and r ∈ Z≥1 as before, so that rνb ∈ X∗(T )+. Recall
that rνb(p) ∈ AJb . Given φp ∈ H(Jb(Qp)), define

φ(j)
p ∈ H(Jb(Qp)) by φ(j)

p (δ) := φp(jνb(p)
−1δ), j ∈ rZ≥1.

This coincides with the analogous definition of φ
(k)
p in §3.1, namely φ

(j)
p = φ

(k)
p via

k = j/r and ν = rνb. (The difference is that ν is a cocharacter but νb is only a
fractional cocharacter.)

An element δ ∈ Jb(Qp) is acceptable if its image in Mb(Qp) is acceptable (Defi-

nition 3.1.1) under the isomorphism Jb(Qp) ' Mb(Qp) induced by some (thus any)
inner twist at the end of §5.3. As in §3.1, let Hacc(Jb(Qp)) ⊂ H(Jb(Qp)) denote the
subspace of functions supported on acceptable elements. Choose j0 ∈ Z≥0 such that

φ(j)
p ∈ Hacc(Jb(Qp)), j ∈ rZ, j ≥ j0.

Such a j0 exists by the argument of Lemma 3.1.7. By Lemma 6.2.1 and the definition

of φ
(j)
p ,

Tr
(
φ∞,pφ(j)

p

∣∣∣ιHc(Igb,Fp ,Q`)
)

= Tr
(
φ∞,pφp × (Frj × 1)

∣∣∣ιHc(Igb,Fp ,Q`)
)
, (7.2.1)

where Frj is the j/r-th power of the relative Frobenius of Igb over Fpr . Since the

action of Frj is the same as the action of a central element of Jb(Qp), it commutes
with the action of φ∞,pφp. Thus (7.2.1) and the Lang–Weil bound tell us that the top
degree compactly supported cohomology in Theorem 7.1.1 is captured by the leading
term as j → ∞. This will be the basic idea underlying the proof of the theorem
in §7.6 below.

We fix the global central character datum (X, χ0) = (AG,∞, 1) for G, which can also
be viewed as a central character datum for G∗ via Z(G) = Z(G∗). (Since we compute
the cohomology with constant coefficients, we do not need to consider nontrivial χ0.)

We also fix a z-extension 1→ Z1 → G1 → G→ 1 over Q once and for all, which is
unramified over Qp. As explained in [KSZ, §7.3.3], we can promote G1 to a Shimura
datum (G1, X1) lifting (G,X) together with the conjugacy class {µX1} of cocharacters
of G1,C lifting {µX}. Therefore, in ιp{µX1

}, we can find a cochacter

µp,1 : Gm → G1
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which lifts µp and is defined over an unramified extension of Qp (since the reflex field
of (G1, X1) is unramified at p). Making r more divisible, we arrange that µp,1 is
defined over Qpr . We apply Lemma 5.3.8 to find a lift b1 ∈ G1(Qpr ) of b; we also
ensure that rνb1 is a cocharacter as in the last assertion of that lemma. We mention
that µp,1 and b1 are going to enter the construction of test functions at ∞ and p,
respectively.

For each e ∈ Eell(G), fix a Q-rational minimal parabolic subgroup of Ge and its
Levi component as at the start of §4.2 (with Ge in place of G there). Call them P ∗0
and M∗0 in the case e = e∗. On the other hand, we have GQp ⊃ BQp ⊃ TQp from §5.3.

Since GQp is quasi-split, there is a canonical Gad(Qp)-conjugacy class of isomorphisms
GQp ' G∗Qp . We fix one such isomorphism such that BQp (resp. TQp) is carried into

P ∗0,Qp (resp. M∗0,Qp). The images of BQp and TQp in G∗Qp will play the roles of B and

T in §4.2.
For each e ∈ E<ell(G), we have a central extension 1→ Z1 → Ge

1 → Ge → 1 over Q,
determining an endoscopic datum e1 for G1 and a central character datum (Xe

1, χ
e
1)

for Ge
1 as in §2.7.

7.3. The test functions away from p. For each e ∈ Eell(G), Let us introduce the test
functions to enter the statement of Theorem 7.5.1 below. Here we consider the places
away from p. The place p will be treated in the next subsection.

The first case is away from p and∞. When e = e∗, we have (f Ig,∗)∞,p = ⊗′v 6=∞,pf∗v ,

where f∗v ∈ H(G∗(Qv)) is a transfer of φv as in §2.5. In case e ∈ E<ell(G), at each
v 6= ∞, p, the function φv admits a transfer f e1,v ∈ H(Ge

1(Qv), (χe
1,v)
−1). Then we

take

(f Ig,e)∞,p1 = ⊗′v 6=∞,pf e1,v ∈ H(Ge
1(A∞,p), (χe,∞,p

1 )−1).

The next case is the real place. We construct the test function f Ig,e
1,∞ ∈ H(Ge

1(R),

(χe
1,∞)−1) by adapting [Kot90, §7] to the case with central characters. In the easier

case of e = e∗ = (G∗, LG∗, 1, id), we take f Ig,∗
∞ := e(G∞)f1 in the notation of §2.4.

Now let e ∈ E<ell(G). In the notation of §2.4, both ξ and ζ are trivial in the current
setup (since we are focusing on the constant coefficient case). Write ξ1 and ζ1 for
the pullbacks of ξ and ζ from G to G1; they are again trivial. We obtain a discrete
L-packet Π(ξ1, ζ1) for G1(R) along with an L-parameter φξ1,ζ1 : WR → LG1 as in §2.4.
Let Φ2(Ge

1,R, φξ1,ζ1) denote the set of discrete L-parameters φ′ ∈ Φ(Ge
1(R)) such that

ηe1φ
′ ' φξ1,ζ1 . Then define (cf. [Kot90, p.186])

f Ig,e
1,∞ := (−1)q(G1)〈µ1, s

e
1〉
∑
φ′

det(ω∗(φ
′))fφ′ ,

where fφ′ is the averaged Lefschetz function for the L-packet of φ′ defined in §2.4,

and the sum runs over φ′ ∈ Φ(Ge
1,R, φξ1,ζ1). As in [KSZ, §8.2.5] we check that f Ig,e

1,∞ is

(χe
1,∞)−1-equivariant and compactly supported modulo Xe

1,∞.

7.4. The test functions at p. We apply the contents of §3 to the cocharacter ν := rνb
over F = Qp with uniformizer $ = p. In particular, we have Pb := Pν whose Levi
factor is Mb = Mν .

Consider the case e = e∗. Each function φp ∈ H(Jb(Qp)) admits a transfer
φ∗p ∈ H(Mb(Qp)) as explained in §2.3. When φp ∈ Hacc(Jb(Qp)), we can arrange
that φ∗p ∈ Hacc(Mb(Qp)) after multiplying by the indicator function on the set of
acceptable elements in Mb(Qp). (This is possible as the subset of acceptable elements



H0 OF IGUSA VARIETIES 66

is nonempty, open, and stable under Jb(Qp)-conjugacy.) The image of φ∗p in S(Mb)
depends only on φp (as an element of S(Jb)). In the notation of §3.1, define

f Ig,∗,(j)
p := Jν

(
δ

1/2
Pν
· φ∗,(j)p

)
∈ S(G), j ∈ Z≥0,

As before, we still write f
Ig,∗,(j)
p for a representative in H(G(Qp)). Lemma 3.1.2

implies that

Tr
(
f Ig,∗,(j)
p |πp

)
= Tr

(
φ∗,(j)p |JP op

ν
(πp)⊗ δ1/2

Pν

)
, ∀πp ∈ Irr(G(Qp)).

Remark 7.4.1. In the definition of f
Ig,∗,(j)
p , we have not multiplied the constant cMH

appearing in [Shi10, §6] (with H,MH there corresponding to G∗,Mb here). In the sign
convention of Remark 6.4 therein, the transfer factor between Jb and Mb equals e(Jb),
resulting in cMH

= e(Jb). In contrast, we have taken the transfer factor between inner
forms to be 1 (cf. Remark 2.3.6), so cMH

= 1 in our convention.

Now let e ∈ E<ell(G). Recall from (7.2) that b1 ∈ G1(Qpr ) was chosen. Take
ν1 := rνb1 . By pulling back the z-extension 1 → Z1 → G1 → G → 1 via Mb ↪→ G,
and using the definition of Jb and Jb1 , we obtain z-extensions over Qp as follows:

1→ Z1 →Mb1 →Mb → 1, 1→ Z1 → Jb1 → Jb → 1.

(For Jb, the point is that the σ-stabilizer subgroup of ResQ̆p/QpGm is simply Gm.)

We pull back φ
(j)
p ∈ H(Jb(Qp)) to obtain φ

(j)
1,p ∈ H(Jb1(Qp), χ1,p). (Recall that

χ1 =
∏
v χ1,v is the trivial character on X1 = Z1(A).) Write φ∗p ∈ H(Mb(Qp))

for a transfer of φp, and φ∗1,p ∈ H(Mb1(Qp), χ1,p) for the pullback of φ∗p. Then φ
∗,(j)
p

(defined in §3.1) is a transfer of φ
(j)
p (namely φ∗,(j) = (φ

(j)
p )∗ in S(Jb)), and φ

∗,(j)
1,p is

a transfer of φ
(j)
1,p, for all j ∈ Z.

The desired test function f Ig,e
1,p is described by the process in [Shi10, §6] (which

is applicable since G1 has simply connected derived subgroup), with Jb1 , G
e
1, G1 in

place of Jb, H,G therein, followed by averaging over X1 = Xe
1. We summarize the

construction as follows:

f
Ig,e,(j)
1,p :=

∑
ω∈Ωe1,ν1

f
Ig,e,(j)
1,p,ω , where (7.4.1)

f
Ig,e,(j)
1,p,ω := cω ·Jν1,ω

(
LSe1,ω(δ

1/2
Pν1
· φ∗,(j)1,p )

)
∈ H(Ge

1(Qp), χe,−1
1,p ),

Here cω ∈ C are constants (possibly zero) independent of φp. Note that Jν1,ω and
LSe1,ω denote the maps in the setup with fixed central character as in §3.5. We observe
the following about the right hand side of (7.4.1).

δ
1/2
Pν1
· φ∗,(j)1,p = δ

1/2
Pν1

(ν1(p))
(
δ

1/2
Pν1
· φ∗1,p

)(j)
= p〈ρ,ν〉

(
δ

1/2
Pν1
· φ∗1,p

)(j)
. (7.4.2)

7.5. The stable trace formula for Igusa varieties. Continuing from the preceding sub-
sections, we freely use the notation from §2.9 . The following stabilized formula for
Igusa varieties is of key importanance to us.

Theorem 7.5.1. Given φ∞,p ∈ H(G(A∞,p)) and φp ∈ H(Jb(Qp)), there exists j0 =

j0(φ∞,p, φp) ∈ Z≥1 such that φ
(j)
p ∈ Hacc(Jb(Qp)) and

Tr
(
φ∞,pφ(j)

p

∣∣ιHc(Igb,Q`)
)

= STG
∗

ell,χ0
(f Ig,∗,(j))+

∑
e∈E<ell(G)

ι(G,Ge)ST
Ge

1

ell,χe
1

(
f

Ig,e,(j)
1

)
.

(7.5.1)
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for every integer j ≥ j0 divisible by r.

Proof. The point is to stabilize the main result of [MC21]. This is carried out in [BMS];
see Theorems 3.3.9 and 4.4.2 therein.

�

Remark 7.5.2. The coefficients cω in (7.4.1) for e 6= e∗ can be made precise with a
normalization of transfer factors as in [BMS], but we do not need the information in
this paper.

7.6. Completion of the proof of Theorem 7.1.1. The main term in the right hand side
of Theorem 7.5.1 will turn out to be the following. Recall A1(G) from Theorem 6.1.4.

Proposition 7.6.1. Fix φ∞,pφp ∈ H(G(A∞,p)×Jb(Qp)), from which f∗,(j) ∈ H(G∗(A))
is given as in §7.4 for every j ∈ Z≥1 such that j ≥ j0 = j0(φ∞,pφp). As j ≥ j0 varies
over positive integers divisible by r, we have the estimate

TG
∗

disc,χ0

(
f Ig,∗,(j)) =

∑
π∈A1(G)

Tr (φ∞,p|π∞,p) ·Tr
(
φ(j)
p |(πp ◦ ζb)⊗ δPb

)
+ o

(
pj〈2ρ,νb〉

)
.

Proof. We have

TG
∗

disc,χ0

(
f Ig,∗,(j)

)
=
∑
π∗

m(π∗)Tr
(
f Ig,∗,p|π∗,p

)
Tr
(
f Ig,∗,(j)
p |π∗p

)
. (7.6.1)

Let JH(JP op
b

(π∗p)) denote the multi-set of irreducible subquotients of JP op
b

(π∗p) (up

to isomorphism). The central character of τ ∈ JH(JP op
b

(π∗p)) is denoted ωτ . We see

from Lemma 3.1.2 (ii) that

Tr
(
f Ig,∗,(j)
p |π∗p

)
= Tr

(
δ

1/2
Pb
φ∗,(j)p |JP op

b
(π∗p)

)
= Tr

(
φ∗,(j)p |JP op

b
(π∗p)⊗ δ1/2

Pb

)
=

∑
τ∈JH(JPop

b
(π∗p))

ωτ (jνb(p))δ
1/2
Pb

(jνb(p)) Tr (φ∗p|τ). (7.6.2)

We have jνb(p) ∈ A−−P op
b

, cf. §3.1. Since our running assumption that b is Q-non-basic

implies (Q-nb(P op
b )) by Lemma 5.3.7, it follows from Corollary 2.5.2 that the largest

growth of ωτ (jνb(p)) as a function in j is achieved exactly when dimπ∗ = 1. In
that case, we have m(π∗) = 1 and π∗p is a unitary character. Via Lemma 2.5.3, π∗

corresponds to a unique one-dimensional automorphic representation π of G(A). We
have π∗p ' πp via G∗(Qp) ' G(Qp). Thus

Tr (φ∗,(j)p |JP op
b

(π∗p)⊗ δ1/2
Pb

)
Rem. 6.1.5
==== Tr (φ∗,(j)p |(π∗p ◦ ζ∗b )⊗ δPb)

= Tr (φ(j)
p |(πp ◦ ζb)⊗ δPb) = δPb(jνb(p))Tr (φp|(πp ◦ ζb)⊗ δPb)

= pj〈2ρ,νb〉Tr (φp|(πp ◦ ζb)⊗ δPb). (7.6.3)

We used Lemma 2.3.7 for the second equality above. Indeed, (π∗p ◦ ζ∗b ) ⊗ δPb as a
character of Mb(Qp) and (πp ◦ ζb)⊗ δPb as a character of Jb(Qp) correspond to each
other via the diagram (6.1.3).

Let f1 denote the averaged Lefschetz function on G(R) as in §2.4 with ξ = 1
and ζ = 1. Write e(G∞,p) :=

∏
v 6=∞,p e(Gv) for the product of Kottwitz signs. We
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rewrite (7.6.1) as

TG
∗

disc,χ0

(
f Ig,∗,(j))

=
∑
π∗

dimπ∗=1

Tr
(
f Ig,∗
∞ |π∗∞

)
Tr
(
f Ig,∗,∞,p|π∗,∞,p

)
Tr
(
f Ig,∗,(j)
p |π∗p

)
+ o
(
pj〈2ρ,νb〉

)
=

∑
π

dimπ=1

Tr (f1|π∞)Tr (φ∞,p|π∞,p)Tr
(
φ(j)
p |(πp ◦ ζb)⊗ δPb

)
+ o
(
pj〈2ρ,νb〉

)
,

where the last equality was obtained from (7.6.2) at p, Lemma 2.4.2 at ∞, and
Lemma 2.3.7 at the places away from p. To conclude, we invoke Lemma 2.4.3 to see
that Tr (f1|π∞) = 1 if π∞|G(R)+

= 1 and Tr (f1|π∞) = 0 otherwise. �

Finally we complete the proof of Theorem 7.1.1 employing the main estimates of §4.

Corollary 7.6.2. Theorem 7.1.1 is true.

Proof. Let q 6= p be an auxiliary prime such that GQq is split. Fix φ∞,p,qφp ∈
H(G(A∞,p,q) × Jb(Qp)). Let e ∈ E<ell(G). There exists a constant Ce > 0, depending
on φ∞,p,q, φp, such that for each φq ∈ H(G(Qq))Ce-reg, we have the following bound
on endoscopic terms in the stabilization of Theorem 7.5.1 by applying the last bound

in Corollary 4.2.3 to k = j/r, ν = rν1,ω, φ
(k)
p = cω(δ

1/2
Pν1

φ∗1,p)
(k), and χ = χ0 for

each ω ∈ Ωe1,ν1
. Notice that f

Ig,e,(j)
1,p,ω is p〈ρ

e,ν1,ω〉 times f
(k)
p of that corollary, in light

of (7.4.1) and (7.4.2). We have

ST
Ge

1

ell,χe
1

(
(f Ig,e,p

1 )f
Ig,e,(j)
1,p,ω

)
= O

(
pk(〈2ρe,rν1,ω〉−〈χe

1,rν1,ω〉)
)

= O
(
pj(〈2ρ

e,ν1,ω〉−〈χe
1,ν1,ω〉)

)
.

To turn this into a more manageable bound, we use (a) and (b) from the proof of
Corollary 4.2.3 and the fact that 〈χ0,∞, ν〉 = 0 since χ0 (which plays the role of χ

there) is trivial. Thereby we see that the right hand side is o
(
pj〈2ρ,νb〉

)
. Taking the

sum over ω ∈ Ωe1,ν1
, we obtain

ST
Ge

1

ell,χe
1

(
f

Ig,e,(j)
1

)
= o

(
pj〈2ρ,νb〉

)
, e ∈ E<ell(G). (7.6.4)

By Lemma 2.9.2, there are only finitely many e contributing to the sum in Theo-
rem 7.5.1 for a fixed choice of φ∞,p,qφp. Thus the coefficients ι(G,Ge) are bounded
by a uniform constant (depending on φ∞,p,qφp). We deduce the following by apply-
ing Theorem 7.5.1, (7.6.4), Corollary 4.2.3 (the first estimate therein), and Propo-
sition 7.6.1 in the order: there exists a constant C = C(φ∞,p,q, φp) > 0 (e.g., the
maximum of Ce over the set of finitely many e which contribute) such that for every
φq ∈ H(G(Qq))C-reg, we have

Tr
(
φ∞,pφ(j)

p |ιHc(Igb,Q`)
)

= STG
∗

ell,χ

(
f Ig,∗,(j))+ o

(
pj〈2ρ,νb〉

)
= TG

∗

disc,χ

(
f Ig,∗,(j))+ o

(
pj〈2ρ,νb〉

)
=

∑
π∈A1(G)

Tr (φ∞,p|π∞,p) · Tr
(
φ∗,(j)p |(πp ◦ ζb)⊗ δPb

)
+ o

(
pj〈2ρ,νb〉

)
.

We have seen in (7.6.3) that Tr
(
φ

(j)
p |(πp ◦ ζb)⊗ δPb

)
is either 0 or a nonzero multiple

of pj〈2ρ,νb〉 as j varies over multiples of r. Since dim Igb = 〈2ρ, νb〉, it is implied
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by (7.2.1) and the Lang–Weil bound that the leading term should be of order pj〈2ρ,νb〉.
16 Therefore

Tr
(
φ∞,pφ(j)

p |ιH〈4ρ,νb〉c (Igb,Q`)
)

=
∑

π∈A1(G)

Tr (φ∞,p|π∞,p) Tr
(
φ(j)
p |(πp ◦ ζb)⊗ δPb

)
.

Let Bq be a Borel subgroup of GQq over Qq with a Levi component Tq. According to
Lemma 3.4.9, we have an isomorphism of G(A∞,p,q)×Jb(Qp)×Tq(Qq)-representations

JBq

(
H〈4ρ,νb〉c (Igb,Q`)

)
'

∑
π∈A1(G)

π∞,p,q ⊗ ((πp ◦ ζb)⊗ δPb)⊗ JBq (πq).

(A priori the isomorphism exists up to semisimplification, but distinct one-dimensional
representations have no extensions with each other.) Repeating the same argument
for any other prime q′ /∈ {p, q} such that G(Qq′) is split, the above isomorphism
exists with q′ in place of q. Comparing the two consequences, we deduce that as
G(A∞,p)× Jb(Qp)-modules,

ιH〈4ρ,νb〉c (Igb,Q`) '
⊕

π∈A1(G)

π∞,p ⊗ ((πp ◦ ζb)⊗ δPb)

by multiplicity one for A1(G) and weak approximation for G. �

8. Applications to geometry

This section is devoted to working out geometric consequences of Theorem 6.1.4,
continuing in the setting of Hodge-type Shimura varieties with hyperspecial level at
p.

8.1. Irreducibility of Igusa varieties. In §1.2, we reviewed earlier results on irreducibil-
ity of Igusa towers over the µ-ordinary Newton strata of certain PEL-type Shimura
varieties. Now we explain that our main theorem implies a generalization thereof to
Hodge-type Shimura varieties and to non-µ-ordinary strata.

Let (G,X, p,G) ∈ SDur
Hodge and b ∈ G(Q̆p) be as in §6.1. Assume that b is Q-

non-basic. Define J(Qp)′ := ker(ζb : Jb(Qp) → G(Qp)ab), cf. (6.1.4). Recall that

pr : Igb → Cperf

b,Fp
is a pro-étale J int

b -torsor. From Theorem 6.1.4, we deduce that Igusa

varieties are “as irreducible as possible”.

Theorem 8.1.1 (Irreducibility of Igusa varieties). In the setting of §6.1, the stabilizer
of each connected component of Igb under the Jb(Qp)-action is equal to Jb(Qp)′.
Proof. Fix a component I ⊂ Igb and write Stab(I) for the stabilizer of I in Jb(Qp).
Since the Jb(Qp)-action on every πp in Theorem 6.1.4 factors through Jb(Qp)/Jb(Qp)′,
we see that Stab(I) ⊃ Jb(Qp)′. To prove the reverse inclusion, we show that every

δ ∈ Jb(Qp)\Jb(Qp)′ acts nontrivially on H0(Igb,Q`). Write δab := ζb(δ) ∈ G(Qp)ab.
Then δab 6= 1 by assumption. It suffices to show that some π in the summation of
Theorem 6.1.4 has the property that πp(δ

ab) 6= 1. This follows from Lemma 2.5.4. �

Corollary 8.1.2. Let S be a connected component of Cperf

b,Fp
. Then the set π0(pr−1(S)) ⊂

π0(Igb) is a torsor under the group J int
b /(J int

b ∩Jb(Qp)′). Every component of pr−1(S)
is a pro-étale torsor under J int

b ∩ Jb(Qp)′, and conversely, if I ⊂ Igb is an open
subscheme such that I → S is a pro-étale J int

b ∩ Jb(Qp)′-torsor via pr, then I is
irreducible.

16In fact, the Lang–Weil bound proves that dim Igb = 〈2ρ, νb〉 even if we did not know it a priori.

This gives an alternative proof of the dimension formula in Proposition 5.3.4.
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Proof. As pr is a J int
b -torsor, J int

b acts transitively on π0(pr−1(S)). Theorem 8.1.1 tells
us that the action factors through a simply transitive action of J int

b /J int
b ∩ Jb(Qp)′,

implying the first assertion. The second assertion also follows from the same theorem
and the fact that pr is a J int

b -torsor. �

For the remainder of this subsection, we compare with similar irreducibility results
in the µ-ordinary case. Thus we specialize to the case when [b] ∈ B(G,µ−1

p ) is µ-
ordinary, meaning either of the following equivalent conditions [Wor, Rem. 5.7 (2)]:

• [b] = [µ−1
p (p)] in B(G) (which implies [b] ∈ B(G,µ−1

p )).

• [b] is the unique minimal element in B(G,µ−1
p ) for the partial order � therein.

In this case, we may and will take b = b◦ = µ−1
p (p). Indeed, we can change b within its

σ-conjugacy class thanks to Corollary 6.1.3. Put r := [k(p) : Fp]. By the convention

of §5.3, µp is defined over Qpr . Then we have νb = 1
r

∑r−1
i=0 σ

iµ−1
p (this follows from

(4.3.1)–(4.3.3) of [Kot85] with n = r and c = 1), which is defined over Qp, and
conditions (br2) and (br3) are satisfied.

We define the µ-ordinary Newton stratum Nb,Kp as in [Wor], that is, by changing
the definition of Cb,Kp (§5.3) to require the existence of an isomorphism only after
inverting p. Then Cb,Kp ⊂ Nb,Kp is closed by [Ham17, §2.3, Prop. 2]. It is worth

verifying that Cb,Kp = Nb,Kp , so that Igb is a pro-étale torsor over Nperf
b,Kp (not just

Cperf
b,Kp).

Lemma 8.1.3. In the µ-ordinary setup above, Cb,Kp = Nb,Kp .

Proof. This is a consequence of two facts: that the µ-ordinary Newton stratum is
an Ekedahl-Oort stratum [Wor, Thm. 6.10], and that every Newton stratum contains
an Ekedahl-Oort stratum that is a central leaf [SZ22, Thm. D]. (We thank Pol van
Hoften for communicating this proof to us.) �

We explain that Corollary 8.1.2 gives another proof for the irreducibility of Igusa
towers in the µ-ordinary case, for unitary similitude PEL-type Shimura varieties as
in [CEF+16, EM21], cf. [Hid11, §2,§3]. Analogous arguments can be made in the
elliptic/Hilbert/Siegel modular cases.

Write
(
Igµ-ord
m,Kp

)
m≥1

for the Igusa tower (Igµ)m,1, m ≥ 1, over the µ-ordinary stra-

tum Nb,Kp in [EM21, §3.2] (relative to the same Kp) with finite étale transition

maps. The scheme Igµ-ord
Kp = lim←−m Igµ-ord

m,Kp is a pro-étale J int
b -torsor over Nb,Kp . Then

Igb,Kp ' (Igµ-ord
Kp )perf compatibly with the actions of G(A∞,p) × Sb (see Prop. 4.3.8

and the paragraph above Cor. 4.3.9 in [CS17]; see also [CS, Rem. 2.3.7]), and we have
a Jb(Qp)-equivariant bijection

π0(Igb,Kp) ' π0((Igµ-ord
Kp )perf) ' π0(Igµ-ord

Kp ).

Therefore each connected component of Igµ-ord
Kp has stabilizer Jb(Qp)′ in Jb(Qp).

The Zp-group Jµ in [EM21, Rem. 2.9.3] has the property that J int
b = Jµ(Zp). Let

I ⊂ Igµ-ord
Kp denote the open subscheme IgSUµ over a fixed component S of Nb,Kp as

defined in [EM21, §3.3] (more precisely, we mean the special fiber of IgSUµ over Fp).
Then I is a pro-étale J int

b ∩ J(Qp)′-torsor over S by construction. (The determinant
map of [EM21, §3.3] goes from a J int

b -torsor to a torsor under Gab(Zp), so the fiber
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is a torsor under ker(J int
b → Gab(Zp)).)17 Hence I is irreducible by the preceding

paragraph, cf. the proof of Corollary 8.1.2.
If [b] is moreover ordinary, namely if [b] is µ-ordinary and νb is conjugate to µ−1

p ,
then µp is defined over Qp (since the conjugacy class of νb is always defined over
Qp). Also r = [Ep : Qp] = 1. By our choice b = µp(p)

−1, we have νb = µ−1
p (not just

conjugate) in this case. The following lemma is handy when comparing with results in
the ordinary case such as [Hid09, Hid11]. Note that trivially %(Gsc(Qp)) = Gder(Qp)
when Gder = Gsc.

Lemma 8.1.4. If [b] is ordinary, then Jb = Mb, J
int
b = Mb(Zp), and Jb(Qp)′ =

Mb(Qp) ∩ %(Gsc(Qp)).

Proof. By definition, Mb is the centralizer of νb = µ−1
p in G. From the defini-

tion (5.3.1) with b = µ−1
p (p), we see that Mb is a closed Qp-subgroup of Jb. On

the other hand, Mb is an inner form of Jb, so we conclude Mb = Jb. Then J int
b =

Jb(Qp) ∩ G(Z̆p) = Mb(Qp) ∩ G(Z̆p) = Mb(Zp). The description of Jb(Qp)′ is obvious
from Jb = Mb. �

8.2. The discrete Hecke orbit conjecture. We state the Hecke orbit conjecture for
Shimura varieties of Hodge type with hyperspecial level at p. We prove the discrete
part of the Hecke orbit conjecture, and find purely local criteria for the irreduciblity
of central leaves.

Fix (G,X, p,G) ∈ SDur
Hodge. Let x ∈ SKpKp,k(p)(Fp). Denote by x̃ ⊂ |SKp,k(p)| the

preimage of x in the topological space |SKp,k(p)| via the projection map SKp,k(p) →
SKpKp,k(p). Define the prime-to-p Hecke orbit as a set:

H(x) := x̃ ·G(A∞,p) ⊂ |SKp,k(p)|.

Write HKp(x) for the image of H(x) in |SKpKp,k(p)|. By CKp(x) we mean the central
leaf through x, namely Cbx,Kp . Since the action of G(A∞,p) does not change the

(G(Z̆p), σ)-conjugacy class [[bx]], we see that

HKp(x) ⊂ |CKp(x)|.

Following Chai and Oort, cf. [Cha05,Cha06], we formulate the Hecke Orbit Problem
as follows.

Question 8.2.1 (Hecke Orbit Problem). Let x ∈ SKpKp,k(p)(Fp) such that [bx] is Q-
non-basic. Does the subset HKp(x) have the following properties?

(HO) HKp(x) is Zariski dense in the central leaf CKp(x).
(HOcont) The Zariski closure of HKp(x) in CKp(x) is a union of irreducible components

of CKp(x).
(HOdisc) HKp(x) meets every irreducible component of CKp(x).

(HO+
disc) For every x ∈ SKpKp(k(p)) such that [bx] is Q-non-basic, the immersion

CKp(x) ↪→ SKpKp,k(p) induces a bijection π0(CKp(x))
∼→ π0(S

KpKp,k(p)
).

Remark 8.2.2. The hypothesis on [bx] cannot be weakened to only requiring that [bx]
be non-basic. For example, for Shimura varieties arising from (G×· · ·×G,X×· · ·×X),
with (G,X) a Shimura datum, we see the necessity to assume [bx] to be basic in every
copy of G (which is a Q-factor).

17In fact we have not understood the definition of the determinant map in [EM21, §3.3] unless B
is a field, so we should restrict our comparison with loc. cit. to this setup.
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Note that (HO) is the analogue of the Hecke orbit conjecture for Hodge-type
Shimura varieties, which is divided into discrete and continuous parts in the sense
that (HOdisc) and (HOcont) combined is obviously equivalent to (HO). We usually
refer to (HO+

disc) as “irreducibility of central leaves”, as it states that the central
leaf through x is irreducible in each connected component of the ambient Shimura
variety. Regarding (HOdisc) and (HO+

disc), we have the following relationship and
representation-theoretic interpretations.

Lemma 8.2.3. Let b be Q-non-basic such that Cb is nonempty. Between the following
statements, there are logical implications (1) ⇔ (2) ⇒ (3) ⇔ (4).

(1) (HO+
disc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(2) H0(Cb,Q`) ' H0(ShKp ,Q`) as G(A∞,p)-modules. (This asserts the existence
of an isomorphism, which need not be induced by the natural map Cb → ShKp .)

(3) (HOdisc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(4) dimG(A∞,p) Hom(1, H0(Cb,Q`)) = 1.

Remark 8.2.4. The nonemptiness condition in the lemma is essentially equivalent
to the condition that b ∈ G(Zur

p )σµp(p)
−1G(Zur

p ). Indeed, by Proposition 5.3.5,
the latter implies that Cb (as well as Cb,Kp for all neat Kp) is nonempty; con-
versely, if Cb is nonempty then we can re-choose b without changing Cb such that
b ∈ G(Zur

p )σµp(p)
−1G(Zur

p ).

Proof. As Kp varies, the immersion Cb,Kp ↪→ SKpKp,k(p) induces a G(A∞,p)-equiva-
riant map

π0(Cb)→ π0(S
Kp,k(p)

), (8.2.1)

which is surjective since G(A∞,p) acts transitively on π0(S
Kp,k(p)

) by Lemma 5.2.2.

Condition (1) is equivalent to the condition that the above map is an isomorphism,
and (3) is equivalent to the condition that G(A∞,p) acts transitively on π0(Cb). From
this, it is clear that (1) ⇒ (2) and that (1) ⇒ (3) ⇔ (4).

Now suppose that (2) holds. Then the G(A∞,p)-equivariant injection H0(ShKp ,Q`)
↪→ H0(Cb,Q`) induced by (8.2.1) must be an isomorphism by (2), since ιH0(ShKp ,Q`)
is a semisimple module in which each π∞,p appears with finite multiplicity (in fact
multiplicity one) by Lemma 5.1.1. Hence (8.2.1) is a bijection, and (1) follows. �

Now we allow b ∈ G(Q̆p) which need not be Q-non-basic for the moment. The map
ζb : Jb(Qp) → G(Qp)ab from (6.1.4) is an open map as it is the composite of open
maps.

Write Gab for the abelianization of G as an algebraic group over Zp. Then Gab is a
torus over Zp, and Gab(Zp) is a unique maximal subgroup of Gab(Qp). On the level of
points, denote by G(Zp)ab the image of G(Zp) under the projection G(Qp)→ G(Qp)ab.
When Gder = Gsc, then G(Zp)ab = Gab(Zp) as subgroups of G(Qp)ab = Gab(Qp).

Given a cocharacter υ : Gm → G over Q̆p, define the affine Deligne–Lusztig set

Xυ(b) := {g ∈ G(Q̆p)/G(Z̆p) : g−1bσ(g) ∈ G(Z̆p)υ(p)G(Z̆p)},

equipped with the left multiplication action by Jb(Qp). In fact Xυ(b) is the set of

closed points of a perfect variety over Fp [Zhu17,BS17].

Lemma 8.2.5. The subgroup ζb(J
int
b ) ⊂ G(Qp)ab is open, compact, and contained in

G(Zp)ab. Furthermore, there exists b0 ∈ G(Zur
p )σµp(p)

−1G(Zur
p ) which is σ-conjugate

to b in G(Q̆p) such that ζb0(J int
b0

) = G(Zp)ab.
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Proof. Since ζb is an open map, it carries the open subgroup J int
b of Jb(Qp) onto an

open subgroup of G(Qp)ab. Since ζb(J
int
b ) is contained in both G(Qp)ab and the image

of G(Z̆p) under the abelianization map, it is contained in G(Zp)ab. This proves the
first assertion.

As for the second assertion, we start by claiming that there exists an element
b0 in the double coset G(Zur

p )σµp(p)
−1G(Zur

p ) which is σ-conjugate to b such that

J int
b0

contains an Iwahori subgroup of Jb0(Qp). This follows from the proof of [ZZ20,
Prop. 3.1.4], which is based on results of He [He14]. (The claim amounts to the exis-
tence of a point on Xσµ−1

p
(b) whose stabilizer in Jb(Qp) contains an Iwahori subgroup.

It is enough to check this on the level of Iwahori affine Deligne–Lusztig varieties. More-
over, the assertion is invariant under Jb(Qp)-equivariant bijections between Iwahori
affine Deligne–Lusztig varieties. With this in mind, take w and x as in the first two
paragraphs of the proof of [ZZ20, Prop. 3.1.4]. Then the claim follows from the fact

that Jẋ(Qp) ∩ P(Z̆p) is a parahoric subgroup of Jẋ(Qp), cf. p.168, line 14 in loc. cit.,
where P is a parahoric subgroup of GQ̆p defined therein.)

By the last claim, it suffices to show that

ζb0(Iw) = G(Zp)ab

for just one Iwahori subgroup Iw of Jb0(Qp) since all Iwahori subgroups are Jb0(Qp)-
conjugate. As the statement is now only about b0, we drop the subscript 0 to simplify
notation.

By using an unramified z-extension 1→ Z1 → G1 → G→ 1 over Qp (which gives
rise to a smooth map of reductive models G1 → G with connected kernel over Zp;
the induced map G1(Zp)→ G(Zp) is thus surjective) and choosing b1 ∈ G1(Q̆p) as in
Lemma 5.3.8, we reduce to the case when Gder = Gsc. So Mb and Jb also have simply
connected derived subgroups. In particular, G(Qp)ab = Gab(Qp) and likewise for Mb

and Jb.
SinceMb splits over Qur

p , we see from (5.3.3) that Jb also splits over Qur
p . By [DeB06,

§2.4], Jb contains an unramified elliptic maximal torus Tb over Qp. Write Tb for the
torus over Zp extending Tb. Then Tb is contained in some Iwahori subgroup of Jb(Qp)
(associated with the chamber whose closure contains the facet F in [DeB06, §2.4]).
In view of (6.1.3), we can think of ζb as the map on the set of Qp-points arising from
the composite Qp-morphism

Jb → Jab
b 'Mab

b → Gab.

Composing with Tb ↪→ Jb, we obtain a Qp-morphism Tb → Gab of unramified tori.
This uniquely extends to a Zp-morphism Tb → Gab, inducing the map

Tb(Zp)→ Gab(Zp).

We will be done if this map is surjective. By smoothness and Lang’s theorem over
finite fields, it is enough to check that ker(Tb → Gab) is connected. To see this,
observe that T ′b := ker(Tb → Gab) is connected, since it becomes a maximal torus

of Gder after base change from Qp to Qp. Thus we have a short exact sequence

1→ T ′b → Tb → Gab → 1 of unramified tori over Qp. It follows that ker(Tb → Gab) is
the torus over Zp extending T ′b, hence connected. �

Remark 8.2.6. In an earlier version of this paper, we incorrectly asserted that ζb(J
int
b )

equals ζb0(J int
b0

). This led us to mistakenly claim that (HO+
disc) was true for non-Q-

basic b. As illustrated by Example 8.2.12 below, (HO+
disc) is false in general.
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Write Up(b) for the preimage of ζb(J
int
b ) under the projection G(Qp) → Gab(Qp).

Then Up(b) is an open subgroup of G(Qp) by Lemma 8.2.5. Now we can describe
H0 of every non-Q-basic central leaf and deduce the discrete part of the Hecke orbit
conjecture.

Theorem 8.2.7. Let b be as in Lemma 8.2.3. As a G(A∞,p)-module,

ιH0(Cb,Q`) '
⊕

π∈A1(G)

dimπUp(b)
p · π∞,p.

Moreover, (HOdisc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

Proof. According to Remark 8.2.4 we may assume that b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ),

hence that (br1), (br2), and (br3) are satisfied by a sufficiently divisible r ∈ Z≥1. The
first assertion is a consequence of Theorem 6.1.4 and Lemma 6.1.1 (1), noting that
perfection does not change cohomology. For the second assertion, let π ∈ A1(G) with
π∞,p = 1. In light of Lemma 8.2.3 it suffices to check that if πp|Up(b) = 1, then π is
trivial. We have π∞|G(R)+

= 1 from π ∈ A1(G). Thus π as a continuous character

G(Q)\G(A) → C× is trivial on G(A∞,p)Up(b)G(R)+. Since G(Q) ↪→ G(Qp) × G(R)
has dense image (cf. proof of Lemma 5.2.2), π is trivial. �

Remark 8.2.8. The only fact about Up(b) used in the above proof is that Up(b) ⊂
G(Qp) is an open subgroup. Thus the same argument shows the obvious analogue
of (HOdisc) for finite-level Igusa varieties Igb,m,Kp since Igb,Kp is a pro-étale J-torsor

over Igb,m,Kp after perfection for an open subgroup J of J int
b . Indeed, we only need to

replace Cb with the projective limit of Igb,m,Kp over Kp, and Up(b) with the preimage
of ζb(J) in G(Qp). (This remark was suggested by the referee, whom we thank.)

In light of (1) ⇔ (2) in Lemma 8.2.3, the following theorem gives criteria for

(HO+
disc). Observe that (c2) and (c3) are purely local conditions at p, depending only

on the data pertaining to GQp .

Theorem 8.2.9. Let b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ). Assume that b is Q-non-basic. The

following are equivalent.

(c0) (HO+
disc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(c1) H0(Cb,Q`) ' H0(ShKp ,Q`) as G(A∞,p)-modules.

(c2) ζb(J
int
b ) = Gab(Zp).

(c3) The stabilizer in Jb(Qp) of 1 ∈ Xσµ−1
p

(b) maps onto Gab(Zp) under ζb.

Proof. (c0) ⇔ (c1). Already shown in Lemma 8.2.3.

(c2)⇒ (c1). For each π ∈ A1(G), it is enough to check the claim that π
Up(b)
p 6= 0 if

and only if π
G(Zp)
p 6= 0. As a character πp factors through G(Qp)→ Gab(Qp), and (c2)

ensures that the images of Up(b) and G(Zp) in Gab(Qp) are both equal to Gab(Zp).
The claim follows.

(c1) ⇒ (c2). Assuming ζb(J
int
b ) ( Gab(Zp), it is enough to find π ∈ A(G)1 such

that πp|ζb(J int
b ) = 1 but πp|Gab(Zp) 6= 1, where πp is viewed as a character of Gab(Qp).

This is proved in the same way as Lemma 2.5.4. (When reducing to the torus case,
use a z-extension which is unramified at p.)

(c2) ⇔ (c3). Clear since the stabilizer of in Jb(Qp) of 1 ∈ Xσµ−1
p

(b) is nothing but

J int
b . �

Corollary 8.2.10. (HO+
disc) is true on the µ-ordinary Newton stratum.
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Proof. Let b = bx ∈ G(Q̆p) for x in the µ-ordinary stratum. Choose b0 as in
Lemma 8.2.5 so that ζb0(J int

b0
) = G(Zp)ab. Then (HO+

disc) holds true for Cb0,Kp for ev-
ery Kp, through criterion (c2) of Theorem 8.2.9. Since Cb0,Kp is the entire µ-ordinary
Newton stratum by Lemma 8.1.3, the proof is finished. �

We also have a partial analogue of Theorem 8.2.9 that is isogeny-invariant, i.e.,
depending on b only through [b].

Corollary 8.2.11. Let b ∈ G(Q̆p). Assume that [b] ∈ B(GQp , µ
−1
p ) and that b is Q-

non-basic. The following are equivalent.

(C0) (HO+
disc) is true on the Newton stratum Nb,Kp , for all neat open compact

Kp ⊂ G(A∞,p).
(C3) The stabilizer in Jb(Qp) of each closed point of Xσµ−1

p
(b) maps onto Gab(Zp)

under ζb.

Proof. (C3) ⇒ (C0). Let x ∈ Nb,Kp(Fp). Then bx = g−1bσ(g) for some g ∈ G(Q̆p).
The map x 7→ xg induces an isomorphism Xσµ−1

p
(bx) ' Xσµ−1

p
(b) equivariantly with

respect to the actions by the Qp-groups Jbx(Qp) ' Jb(Qp). The latter isomorphism

comes from the conjugation by g on G(Q̆p), and it commutes with the maps ζbx and
ζb to G(Qp)ab. Hence (c3) of Theorem 8.2.9 for bx is implied by (C3) of this corollary.
We deduce (C0) from the same theorem.

(C0)⇒ (C3). Fix a neat subgroup Kp ⊂ G(A∞,p). Let x ∈ Nb,Kp(Fp). Since [bx] =

[b], we may assume b = bx. Now, for each b′ ∈ Xσµ−1
p

(b), there exists y ∈ Nb,Kp(Fp)
such that b′ = by by [Kis10, Prop. 1.4.4]. As in the proof of (2) ⇒ (1), the stabilizer
of b′ in Jb(Qp) maps onto Gab(Zp) under ζb if and only if (c3) of Theorem 8.2.9 holds
for by (in place of b). The latter condition holds as we are assuming (C0), again via
the same theorem. Hence (C3) holds. �

Example 8.2.12. Condition (C3) of the last corollary makes it convenient to generate
a counterexample to (HO+

disc) by utilizing facts about affine Deligne–Lusztig varieties.
We learned such an example from Rong Zhou in an email correspondence together
with Pol van Hoften, via a Shimura datum (G,X) of PEL type A such that Gad is
Q-simple but (C3) is violated by some non-basic element b ∈ B(GQp , µ

−1
p ). It comes

down to an explicit affine Deligne–Lusztig variety associated with GL2 which is a
union of irreducible components isomorphic to projective lines. In this case, it can be
shown that some component contains a closed point whose stabilizer is too small to
satisfy (C3). See [vHX, §6.3] for details.
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[Lan83] , Les débuts d’une formule des traces stable, Publications Mathématiques de
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