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1. Introduction

1.1. Reading list. This incomplete list of survey articles is only intended to suggest some
starting points for further learning. The reader should not feel compelled to go through too
many of them before starting to read the present article.

• [Tay04] is a nice survey of various topics on Galois representations.
• local and global Weil groups, Weil-Deligne groups [Tat79]; L-groups, morphisms of
L-groups (L-morphisms) and Satake isomorphisms [Bor79].
• representation theory of GLn over p-adic fields or archimedean fields with a view

toward the local Langlands correspondence [Kud94], [Kna94]
• [Art05] may be a good place where one can start to learn the Arthur-Selberg trace

formula. Arthur also wrote several short survey papers on the trace formula, which
one may find very helpful.
• (conjectural formulation of) endoscopy for unitary groups: [Rog92, §2], [Mok15]
• [BR94] would be helpful in that it reviews numerous concepts that constantly show

up in the study of cohomology of Shimura varieties.
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• Surveys on various topics rotating around the trace formula and endoscopy can be
found in the Paris book project volume I [CHLN11].
• We do not do enough justice to the history of the subject though we have a few

remarks in §1.5 below. The best source is papers by Langlands on the subject, found
at:
http://publications.ias.edu/rpl/section/26

The following are research papers and books where one can seriously learn some of the
advanced topics that are important to this article. I do not claim by any means that this
list is even nearly complete but let me add that there has been recent progress on extending
some key constructions like Newton stratification, Igusa varieties, and Rapoport-Zink spaces
to the setup for Shimura varieties of Hodge type (and sometimes abelian type) by Hamacher,
Howard-Pappas, and W. Kim among others.

• Base change for unitary groups: [Lab11], [Mok15]; for GLn: [AC89]
• PEL-type Shimura varieties: [Kot92b] (esp. §5), [HT01, Ch III], [Mil05] (esp. §8),

[Lan13]
• Newton stratification (in the case of interest): [HT01, III.4], [Man]
• Igusa varieties: [HT01, Ch IV], [Man05]
• Rapoport-Zink spaces: [RZ96], [Far04]
• Stabilization of (elliptic part of) the trace formula: [Kot86], [Kot90]

Finally, §1.5 contains some research papers that are directly related to the main theorem
to be discussed.

1.2. Notation.

• A is the adèle ring over Q. If S is a finite set of places of Q then AS is the restricted
product of Qv over v /∈ S. In particular, A∞ is the ring of finite adèles. If F is a
finite extension of Q, AF := A⊗Q F .
• Irr(G(K)) is the set of isomorphism classes of irreducible smooth representations of
G(K), when G is a connected reductive group over a p-adic field K.
• Irr(G(AF )) is the set of isomorphism classes of irreducible admissible representations

of G(A), when G is a connected reductive group over a number field F . Similarly
Irr(G(ASF )) is defined.
• Groth(G) is the Grothendieck group of admissible and/or continuous representations

of G, where G can be a p-adic Lie group, a finite adélic group, a Galois group, and
so on. The precise definition is found in [HT01, pp.23-25].
• � signifies the irreducible parabolic induction either for smooth representations of a
p-adic group or for automorphic representations.

1.3. Main theorem. Let F be a number field. There is a famous conjecture of Langlands,
complemented by an observation of Clozel, Fontaine and Mazur, which goes as follows. For
the notion of a compatible family of Galois representations (for varying primes l and field
isomorphisms Ql ' C), see [Tay04, §1] or [BLGGT14, §5].
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Conjecture 1.1. There is a bijection between the following two sets consisting of isomor-
phism classes.

 cuspidal automorphic
reps Π of GLm(AF )

algebraic at ∞

←→


compatible systems of
irred. continuous reps

ρl,ιl : Gal(F/F )→ GLm(Ql)
unram. at all but fin. many places,

de Rham at l


such that

WD(ρl,ιl(Π)|Gal(F v/Fv))
F−ss ' ι−1

l LFv(Πv) (1.1)

at every finite place v of F .

The algebraicity at ∞ is reviewed in Definition 1.7 below. The “de Rham” property is a
technical condition from l-adic Hodge theory. For our purpose it suffices to remark that it
is the counterpart of the algebraicity condition for Π at ∞. The functor WD(·) assigns a
Weil-Deligne representation to an l-adic local Galois representation, and the superscript “F-
ss” means the Frobenius semisimplification of a Weil-Deligne representation. (See [Tay04, §1]
for definitions.) The notation LFv denotes a “geometric” normalization (e.g. [Shi11, §2.3])
of the local Langlands correspondence for GLm(Fv), which was established by Harris-Taylor
([HT01]) and Henniart ([Hen00]) about 10 years ago.

Remark 1.2. In order to uniquely determine the bijection, it suffices to require (1.1) at all
but finitely many places v by the strong multiplicity one theorem (on the automorphic side)
and the Cebotarev density theorem (on the Galois side).

It is customary to call each direction of the arrow in Conjecture 1.1 as

−→ construction of Galois representations
←− modularity (or automorphy) of Galois representations.

When m = 1, Conjecture 1.1 is a consequence of class field theory. The case m = 2 with
totally real F is discussed in Tilouine’s lectures and will not be discussed in my lectures.
(This case is separated because Hilbert modular varieties and Shimura curves are used when
m = 2 while unitary Shimura varieties are used when m > 2.)

When m ≥ 3, the best known case of the above conjecture is the following theorem due
to various people. (See §1.5 below for major contributions.) The analogue over totally real
fields can be deduced from this theorem (cf. [BLGHT11, Thm 1.1], [BLGGT14, Thm 2.1.1]).

Theorem 1.3. Assume m ≥ 3. If

• F is a CM field,
• Π is a cuspidal automorphic representation of GLm(AF ),
• Π∨ ' Π ◦ c, and
• Π∞ is regular and algebraic,

then for each prime l and ιl there exists a semisimple continuous representation

ρl,ιl(Π) : Gal(F/F )→ GLm(Ql),

which is unramified at all but finitely many places and de Rham at l, such that (1.1) holds at
every finite place v of F .
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Remark 1.4. It is clear that ρl,ιl(Π) is unique up to isomorphism by Cebotarev and Brauer-
Nesbitt theorems. We do not know whether ρl,ιl(Π) is irreducible in general even though it is
expected, unless Π is square-integrable at a finite prime ([TY07, Cor 1.3]). See [BLGGT14,
Thm 5.5.2] and [PT15, Thm D] for some partial results. (The dictionary is that the cuspidality
of Π should correspond to the irreducibility of ρl,ιl(Π).)

Remark 1.5. Roughly speaking, the conditions on Π in the theorem mean that Π comes from
a cohomological automorphic representation of a unitary group via quadratic base change.

Remark 1.6. The information about Π at infinite places is encoded by ρl,ιl(Π) in the image
of complex conjugation (if F has a real place) and the Hodge-Tate numbers at l-adic places.
There is also a sign for ρl,ιl . See [BLGGT14, Thm 2.1.1] for complete statements (also
[CLH16] and [BC11] for complex conjugation and sign; [CLH16] builds on earlier results by
Taylor and Täıbi).

My goal is to explain the ideas for the proof of Theorem 1.3.

1.4. Conditions on Π∞. Let us recall some basic terminology regarding Π∞. The skimming
reader should feel free to skip this subsection.

Let F be any number field. Let Π∞ =
∏
v|∞Πv be a representation of GLm(F ⊗Q R) =∏

v|∞GLm(Fv). Let φv : WFv → GLm(C) be the L-parameter for Πv, where WC = C× and

WR contains WC as an index two subgroup. Thus we can write

φv|WC ' χv,1 ⊕ · · · ⊕ χv,m

for characters χv,i : C× → C×.

Definition 1.7. ([Clo90, Def 1.8]) We say Π∞ is algebraic if there exist av,i, bv,i ∈ Z for all
v|∞ and 1 ≤ i ≤ m such that for all z ∈ C,

χv,i(z) = zav,i+
m−1

2 zbv,i+
m−1

2 .

Remark 1.8. Buzzard and Gee [BG14] defines C-algebraic and L-algebraic representations.
The former coincides with algebraic representations above. To define L-algebraic ones, one
simply removes m−1

2 from the exponent in the above definition.

For simplicity, we restrict ourselves to a CM field F . (See Clozel’s article for the general
case.) Assume that Π∞ is algebraic, and reorder indices so that av,1 ≥ · · · ≥ av,m for each v.

Definition 1.9. ([Clo90, Def 3.12], [Shi11, §7.1]) An algebraic representation Π∞ is said to
be regular algebraic if av,1 > · · · > av,m (or equivalently if Π∞ has the same infinitesimal
character as an algebraic representation Ξ of (RF/QGLm)×Q R). A regular algebraic Π∞ is
slightly regular if there exist v|∞ and an odd i such that

av,i > av,i+1 + 1.

(This may be an unfortunate name. The name indicates that the highest weight of Ξ is
slightly regular.)
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1.5. Methods to construct Galois representations. A natural abundant source of Galois
representations is the l-adic cohomology of varieties over number fields. To make a connection
with automorphic representations, it is the best to work with Shimura varieties, which come
with canonical models over number fields as well as Hecke correspondences which are also
defined over the same number fields. In any successful method (except the m = 1 case covered
by class field theory), the basic starting point is to look for the desired Galois representation
attached to a given automorphic representation in the l-adic cohomology of a well-chosen
Shimura variety, possibly under some technical conditions. Then one tries to relax those
conditions by various methods.

The fundamental idea goes back to 1970s and is due to Langlands, who laid out the
program to study the zeta function and cohomology of Shimura varieties by describing the
mod p points of Shimura varieties and then comparing the Grothendieck-Lefschetz fixed point
formula with the Arthur-Selberg trace formula. Langlands understood the role of endoscopy
in this context early on; when the group G is sandwiched between SL2 and GL2, he noticed
in particular that the zeta function of a Shimura variety was factorized into the L-functions
pertaining to not only G but a smaller “endoscopic” group, cf. [Lan79]. For the early history,
the reader is referred to Langlands’s papers in 1970s; see the last paragraph of [Lan77] for the
author’s guidance to some of them. (The interested reader may also read his commentary
to [Lan77] in 1995 on his IAS website.) Kottwitz substantially contributed to flesh out
Langlands’s ideas and carried out the program for many PEL-type Shimura varieties in
[Kot90, Kot92b, Kot92a], to name a few. Essentially any construction of automorphic Galois
representations ultimately relies on this method initiated by Langlands and furthered by
Kottwitz, which often goes by the “Langlands–Kottwitz method”.

To discuss variants of this method and fine technical points, we list some key considerations
in the construction of Galois representations.

(1) good reduction of Shimura varieties
(1′) bad reduction of Shimura varieties (involving nearby cycles, relation with a moduli

space of p-divisible groups, etc)
(2) counting points on the special fibers of Shimura varieties at good primes
(2′) counting points on Igusa varieties at primes of bad reduction
(3) Arthur-Selberg trace formula (including twisted trace formula) when endoscopy is

trivial
(3′) stable trace formula and nontrivial endoscopy
(4) compactification, boundary contributions in the counting point formula and Arthur-

Selberg trace formula
(5) congruences; p-adic approximation

Let us remark on various approaches to Theorem 1.3 when m ≥ 3.1 As for (1) and (1)′,
every work makes use of certain unitary PEL-type Shimura varieties. Naturally it is essential
to consider the case of unitary (similitude) groups in the trace formula method alluded to
above.

(i) Collaboration of many people ([LR92]): m = 3. (1), (2), (3), (4).
(ii) Clozel ([Clo91]), Kottwitz ([Kot92a], [Kot92b]): (1), (2), (3).

1We apologize for suppressing the rich history when m = 2 for Galois representations associated to (Hilbert)
modular forms. Also when m = 4, there has been much earlier work coming from Shimura varieties for GSp4.
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(iii) Harris-Taylor ([HT01]), Taylor-Yoshida ([TY07]): (1)′, (2)′, (3).
(iv) Morel ([Mor10]): (1), (2), (3)′, (4).
(v) Clozel-Harris-Labesse ([CHL11]): (1), (2), (3)′.
(vi) Shin ([Shi11]): (1)′, (2)′, (3)′.

(vii) Chenevier-Harris ([CH13]): (5).

Note that only (iii) and (vi) prove (1.1) at ramified places. There (1)′ and (2)′ are crucial.
In (ii) and (iii), Theorem 1.3 was proved under the additional assumption that Πw is

square-integrable at some place w. Later (iv), (v) and (vi) established the theorem without
the square-integrability assumption but under a mild condition on Π∞ when m is even (see
Hypothesis 4.9). The last condition was removed by (vii) at the cost of proving (1.1) only up
to semisimplification (thus losing the precise information on the monodromy operator). The
full version of (1.1) was established by Caraiani [Car12, Car14].

It is worth noting that only special cases of the fundamental lemma were available when
(i), (ii) and (iii) were carried out. The improvements (iv)-(vii) have become possible largely
thanks to the proof of the fundamental lemma by Laumon, Ngô, Waldspurger and others.

Finally we mention that there is another approach to the bad reduction of Shimura varieties
and the counting point formula, shedding some new light on the bad reduction of Shimura
varieties and its interaction with representation theory. It may not be unreasonable to say
that the flavor of this approach is somewhere between (1)+(2) and (1)′+(2)′, if compared
with the cited work above. See nice surveys by Rapoport [Rap05] and Haines [Hai05] as well
as some research papers [HR12, Sch13a, Sch13b, SS13]. In particular the last two papers
simplified the proof (by Harris-Taylor and Henniart) of the local Langlands correspondence
for general linear groups and the proof of Theorem 1.3. See [Schb] for a survey on some of
these ideas.

From the next section I will mainly follow the approach of (vi), which improves on the
method of (iii) especially in the aspect of the counting point formula, its comparison with the
Arthur-Selberg trace formula via the stable trace formula. The reader is strongly encouraged
to refer to other references as well.

1.6. The Ramanujan-Petersson conjecture. Here is a vast generalization of the conjec-
ture (proved by Deligne) that Ramanujan’s τ -function satisfies the bound |τ(p)| ≤ 2p11/2 for
all primes p. (This conjecture is a special case of the conjecture below when m = 2, F = Q
and Π corresponds to the cuspform ∆ of weight 12 and level 1.)

Conjecture 1.10. (Ramanujan-Petersson) Let m ≥ 1, F be a number field and Π be a
cuspidal automorphic representation of GLm(AF ). Then Πv is tempered at every finite place
v of F .

Remark 1.11. In fact, it would be reasonable to expect something stronger when Π is alge-
braic. For instance, one can conjecture that if Π is algebraic then for every σ ∈ Aut(C) and
every finite place v, the σ-twist Πσ

v is tempered. In other words, Πv should be “absolutely
tempered”.

By combining Theorem 1.3 and some facts in the representation theory of GLm over p-adic
fields, we obtain

Theorem 1.12. Conjecture 1.10 is true for F and Π as in Theorem 1.3.
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To be precise, the theorem is a corollary of Theorem 1.3 (with a semisimplified version
of (1.1)) when m is even and Π∞ is slightly regular (or when Π is square-integrable at a
finite prime). Several mathematicians have made contributions to this. Namely, whenever
the authors in (i)-(vi) of §1.5 proved the local-global compatibility at v for constructed Galois
representations, they obtained the corresponding case of Theorem 1.12. Finally in the missing
case where m is even and Π∞ is not slightly regular, Caraiani [Car12] proved Theorem 1.12
in the course of strengthening (1.1), improving on Clozel’s result [Clo13] in the unramified
case by a different method.

2. Base change for unitary groups

Throughout the article we assume n ≥ 3. In this case there are no Shimura varieties
attached to GLn (or its inner forms). The next best thing is to study Shimura varieties
associated to unitary (similitude) groups since a unitary group becomes isomorphic to GLn
after quadratic extension of the base field. To analyze the cohomology of those Shimura vari-
eties, it is essential to understand automorphic representations of unitary groups, especially
in connection with those of GLn because the representations of GLn are better understood
and also because we would like to prove a theorem about automorphic representations of GLn
rather than a unitary group. This can be achieved by (automorphic) base change for unitary
groups, which will be discussed in this section. For the case of unitary similitude groups, see
§3.4.

2.1. Unramified local Langlands correspondence. This subsection is a general back-
ground needed for §2 and §3. Details may be found in [Bor79] and [Min11] for instance.
Let G be an unramified connected reductive group over a p-adic field F . Recall that G is
said to be unramified over F if G has a smooth integral model over OF . We will fix such a
model, thus also a compact subgroup G(OF ) ⊂ G(F ), often called “hyperspecial”. Denote
by H ur(G(F )) := C∞c (G(OF )\G(F )/G(OF )) the unramified Hecke algebra equipped with
the convolution product. Then the following sets are in canonical bijection with each other
(e.g. [Min11, 2.6]). This is a consequence of the Satake isomorphism.

(1) C-algebra morphisms χ : H ur(G(F ))→ C.
(2) isomorphism classes of unramified L-parameters ϕ : WF → LG.
(3) isomorphism classes of unramified (irreducible admissible) representations of G(F ).

By definition ϕ is unramified if ϕ(IF ) = (1), and π ∈ Irr(G(F )) is unramified if π has a
nonzero fixed vector under G(OF ).

One is invited to define canonical maps between them and prove that they are bijections
in case G is a torus. The proof in the general case can be reduced, with some work, to the
case of tori by considering a maximal torus of G.

It is an extremely important fact that the bijections among (1), (2) and (3) are functorial in
G. This means the following: IfH, G are connected reductive groups over F and η̃ : LH → LG
is an L-morphism, then there is a canonical map (e.g. [Min11, 2.7])

η̃∗ : H ur(G(F ))→H ur(H(F ))

such that χH : H ur(H(F ))→ C and ϕH : WF → LH correspond if and only if χH ◦ η̃∗ and
η̃ ◦ ϕH correspond. The map

η̃∗ : Irrur(H(F ))→ Irrur(G(F )) (2.1)
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corresponding to ϕH 7→ η̃ ◦ ϕH is basically the “transfer of unramified representations” with
respect to η̃. A quick characterization of the map η̃∗ is possible using the following identity:
for every f ∈H ur(G(F )),

tr η̃∗πH(f) = trπH(η̃∗f). (2.2)

2.2. Setup. Now we restrict our attention to unitary groups and general linear groups. The
following notation will be used.

• F is a CM field with complex conjugation c. Set F+ := F c=1.
• ~n = (n1, . . . , nr), ni, r ∈ Z>0,

∑r
i=1 ni = n.

• i~n : GL~n ↪→ GLN (N =
∑

i ni) is the embedding

(A1, . . . , Ar) 7→


A1 0 · · · 0
0 A2 · · · 0
... · · · · · ·

...
0 · · · 0 Ar

 .

• GL~n =
∏r
n=1GLni (over any base).

• Un is a quasi-split unitary group in n variables over F+ (for an n-dimensional F -vector
space with a Hermitian pairing). Define

U~n :=
∏

1≤i≤r
Uni .

We will work under the following hypothesis. (This is not a vacuous condition. For instance,
F = Q(ζ5) does not satisfy it.)

Hypothesis 2.1. F = EF+ for an imaginary quadratic field E ⊂ F .

Define
G1
~n := RF+/QU~n, G̃1

~n := RE/Q(G1
~n ×Q E)

where R(·) denotes the Weil restriction of scalars. When ~n = (n), we prefer to write G1
n and

G1
n for G1

~n and G1
~n, respectively. (These ugly notations anticipate their similitude cousins,

which will show up in §3.4. The superscript means that the similitude factor equals 1.) The
connected reductive groups G1

~n and G1
~n are defined over Q and G1

~n(Q) = U~n(F+), G1
~n(Q) =

G1
~n(E) = U~n(F ) ' GL~n(F ). Also note that

G1
~n(A) = U~n(AF+), G1

~n(A) = G1
~n(AE) = U~n(AF ) ' GL~n(AF ). (2.3)

Let θ denote the action on G1
~n induced by 1× c on G1

~n ×Q E. Under the above isomorphism,

θ is transported to the action (g1, . . . , gr) 7→ (tg−c1 , . . . , tg−cr ) on GL~n(AF ) up to conjugation
by GL~n(AF ).

Consider the L-groups LG1
~n := Ĝ~n oWQ and LG1

~n := Ĝ1
~n oWQ. The dual groups may be

identified as
Ĝ1
~n = GL~n(C)Hom(F+,C), Ĝ1

~n = GL~n(C)Hom(F,C), (2.4)

equipped with WQ-actions. There is a natural L-morphism

BC~n : LG1
~n →

LG1
~n

which extends the diagonal embedding on the dual group. On the level of dual groups, BC~n

maps (gσ) 7→ (hσ) so that hσ = hσc = gσ for every σ ∈ Hom(F+,C).
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2.3. Local base change. Fix a finite place v of Q. Consider

πv ∈ Irr(G1
~n(Qv)) = Irr(

∏
w|v

U~n(Fw)).

(i) For any v, when πv is unramified, let φ(πv) : WQv → LG1
~n be the corresponding

unramified parameter. Define BC~n,∗(πv) ∈ Irrur(G1
~n(Qv)) corresponding to the un-

ramified parameter BC~n ◦ φ(πv). Thus obtain a map (whose image sits inside the set
of θ-stable representations).

BC~n,∗ : Irrur(G1
~n(Qv))→ Irrur(G1

~n(Qv)). (2.5)

(ii) If v splits in E, say u and uc are primes of E above v. There is an isomorphism
G1
~n(Qv) = G1

~n(Ev) ' G1
~n(Eu) × G1

~n(Euc) where θ acts as (g1, g2) 7→ (gc2, g
c
1). (Note

that c : E
∼→ E induces Eu

∼→ Euc .) Define

BC~n,∗ : Irr(G1
~n(Qv))→ Irr(G1

~n(Qv)) (2.6)

by π 7→ π ⊗ π. The image is clearly θ-stable. It is an exercise to check that the map
(2.6) restricts to the map (2.5) defined above if πv is unramified.

(iii) When v = ∞, the base change of any L-packet of G1
~n(R) can be defined as a repre-

sentation of G1
~n(R) = G1

~n(C), but the details will be omitted. The fact that this is
possible should not be surprising as the local Langlands correspondence is known for
any real or complex group due to Langlands ([Lan89]). We will be interested in only
those L-packets consisting of discrete series representations of G1

~n(R) and their base
change.

Although the “explicit” base change in the above list does not exhaust all cases, it suffices
for constructing Galois representations. (To our knowledge this observation was first made
by Harris.) This is desirable since the base change for unitary groups is not established in
full generality yet.

We will often write BC or BC~n for the map BC~n,∗ in (2.5) or (2.6) if there is no danger of
confusion.

In general the base change along a finite cyclic extension is characterized by a trace identity
with respect to the transfer of test functions. The existence of transfer for any endoscopy
(twisted or untwisted) is a consequence of the recent proof of the fundamental lemma, thanks
to Laumon, Ngô, Waldspurger and others. In particular the transfer of test functions is known
for any cyclic base change, which is an instance of twisted endoscopy. (However see Remark
2.4 below.)

Proposition 2.2. (1) In case (i) and (ii) above, let fv ∈ C∞c (G1
~n(Qv)). Then there exists

φv ∈ C∞c (G1
~n(Qv)) with matching orbital integrals. In case (ii), if fv ∈H ur(G1

~n(Qv))

then one can take φv = B̃C~n
∗
(fv) in the notation of §2.1.

(2) The function φv in part (1) satisfies the following in case (ii).

t̃rBC(πv)(fv) = trπv(φv), ∀πv ∈ Irr(G1
~n(Qv))

In case (i), the same identity holds for all unramified πv ∈ Irr(G1
~n(Qv)).

Sketch of proof. Part (1) is a consequence of the fundamental lemma as explained above. As
for Part (2), (2.2) is the desired identity in case (i). In case (ii) it is shown by a direct
computation (which is not hard). �
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Remark 2.3. We apologize for the imprecision in the statement of (1). We chose not to write
out the precise identity for matching of orbital integrals. Moreover the experienced reader
must have noticed an abuse of language. Orbital integrals there really mean stable (twisted)
orbital integrals.

Remark 2.4. The second assertion of (1) is usually refereed to as the base change fundamental
lemma and due to Kottwitz, Clozel and Labesse and was proved almost 20 years ago.

Remark 2.5. You may have noticed that no properties of unitary groups are used in §2.3.
Indeed, local base change can be defined in the same manner as above when

• the quadratic extension E/Q is replaced with any finite cyclic extension E′/E′′,
• G1

~n is replaced with any connected reductive group H over E′′,
• G1

~n is replaced with H := RE′/E′′(H ×E′′ E′) and
• v runs over places of E′′.

What is nice about the quadratic base change from G1
~n to G1

~n is that the representation
theory of G1

~n (which is a general linear group) is much more complete than that of other
groups. As such, this base change enables us to study representations of G1

~n through those
of G1

~n. (For instance, one may try to define a local or global L-packet for G1
~n as the set of

those representations of G1
~n whose base change images are isomorphic.)

2.4. Weak base change (global).

Definition 2.6. Let π ∈ Irr(G1
n(A)) and Π be an automorphic representation of G1

n(A). We
say that Π is a weak base change of π and write Π = WBC(π) if BC(πv) ' Πv for all but
finitely many v. (This makes sense as πv is unramified and so BC(πv) is defined for almost
all v.)

By strong multiplicity one theorem for GLn, the weak base change WBC(π) is unique (up
to isomorphism) if it exists (cf. (2.3)). There is a fairly general existence result by Clozel
and Labesse.

Proposition 2.7. ([Lab11, Cor 5.3]) If π∞ is a discrete series whose infinitesimal character
is sufficiently regular, then WBC(π) exists. In other words, the conclusion is that there exists
an automorphic representation Π of G1

n(A) such that BC(πv) ' Πv for almost all v.

Remark 2.8. Actually, in the construction of Galois representations, it is not necessary to use
this proposition until the last stage where the p-adic approximation argument ([CH13]) is
used. The reverse of (weak) base change, or “descent”, often turns out to be more essential.
Labesse ([Lab11]) also proves many instances of descent.

We will be mostly interested in the case when

WBC(π) = Π ' Ind(Π1 ⊗ · · · ⊗Πr) (2.7)

such that each Πi is cuspidal and Πθ
i ' Πi. (In general, it can happen that some Πi is discrete

but not cuspidal and also that for i 6= j, Πθ
i ' Πj and Πθ

j ' Πi.) It is built into assumption

that the parabolic induction of (2.7) is irreducible. The Π as above can be thought of as
coming from the discrete tempered spectrum for G1(A) = U(AF+). For our application, the
case r ≤ 2 is the most important.

Definition 2.9. Suppose that WBC(π) exists and has the form as in (2.7). We say π is
stable if r = 1 and endoscopic if r > 1.
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3. Endoscopy for unitary groups

3.1. Endoscopic groups. Define E (G1
n) (resp. E ell(G1

n)) to be the set of G1
~n such that∑r

i=1 ni = n (resp.
∑r

i=1 ni = n and r ≤ 2). In other words,

E ell(G1) = {G1
n} ∪ {G1

n1,n2
|n1 + n2 = n, n1, n2 > 0}.

The elements of E ell(G1) are called the elliptic endoscopic groups for G1
n and play a funda-

mental role in the trace formula for G1
n. For each G1

~n ∈ E ell(G1), fix an L-embedding

η̃1
~n : LG1

~n →
LG1

n (3.1)

extending Ĝ1
~n → Ĝ1

n given by the block diagonal embedding i~n. The choice of η̃1
~n is not unique

and there is no canonical choice in general. An explicit form of η̃1
~n will be omitted but the

interested reader may find it as an exercise or look up [Rog92, §1.2], cf. [Shi11, §3.2].

3.2. Endoscopic transfer. Let G1
~n ∈ E (G1

n). (In fact, G1
~n ∈ E ell(G1

n) suffices for our later
discussion.) There should be a transfer of representations from G1

~n to G1
n corresponding

to η̃1
~n. Such a transfer is called an endoscopic transfer and an instance of the Langlands

functoriality. Although the Langlands functoriality is still largely open, which should involve
the description of L-packets among other things, there are some favorable cases (cf. §2.3), as
we will see below, where the local transfer of representations can be explicitly worked out.

(i) For any finite v,

η̃1
~n,∗ : Irrur(G1

~n(Qv))→ Irrur(G1
n(Qv))

is defined as in (2.1).
(ii) If v splits in E,

η̃1
~n,∗ : Irr(G1

~n(Qv))→ Irr(G1
n(Qv))

is defined as a character twist of the parabolic induction, noting that G1
~n(Qv) and

G1
n(Qv) are isomorphic to

∏
wGL~n(Fw) and

∏
wGLn(Fw), respectively, where w runs

over the half of the places dividing v. The character twist depends on η̃1
~n,∗ at v, which

is not the identity map on WQv (inside LG1
~n) in general.

(iii) If v =∞, the transfer of representations is defined by the Langlands correspondence
for G1

~n(R) and G1
n(R). (We are especially interested in the discrete series representa-

tions.)

We have the analogue of Proposition 2.2 characterizing the endoscopic transfer described
above with respect to the transfer of test functions. As explained in the paragraph above
Proposition 2.2, the existence of transfer is known.

Proposition 3.1. (1) In case (i) and (ii) above, let fv ∈ C∞c (G1
~n(Qv)). Then there

exists φv ∈ C∞c (G1
~n(Qv)) with matching orbital integrals. Moreover in case (ii), if

fv ∈H ur(G1
~n(Qv)) then one can take φv = (η̃1

~n)∗(fv) in the notation of §2.1.
(2) The function φv in part (1) satisfies the following in case (ii).

t̃r
(
η̃1
~n,∗(πH,v)

)
(fv) = trπH,v(φv), ∀πH,v ∈ Irr(G1

~n(Qv))

In case (i), the same identity holds for all unramified πH,v ∈ Irr(G1
~n(Qv)).

Sketch of proof. The same remarks in the proof of Proposition 2.2 apply. Remark 2.3 is valid
here as well. �
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Remark 3.2. The article [CHL11] would be an excellent place to learn details about the
material of this subsection.

3.3. Base change and endoscopic transfer. Let G1
~n ∈ E (G1

n) as before. We would like
to understand the interplay between the local base change and the local endoscopic transfer.
For this let us look at the following diagram of L-morphisms. The three maps η̃~n, BC~n and
BCn are already defined. It is easy to choose ĩ~n explicitly so that the diagram commutes.

LG1
~n

η̃1
~n //

BC~n

��

LG1
n

BCn

��
LG1

~n
ĩ~n

// LG1
n

(3.2)

By §2.1, we immediately obtain a commutative diagram at each finite v.

Irrur(G1
~n(Qv))

η̃1
~n,∗ //

BC~n,∗
��

Irrur(G1
n(Qv))

BCn,∗
��

Irrur(G1
~n(Qv))

ĩ~n,∗

// Irrur(G1
n(Qv))

(3.3)

If v splits in E or v =∞, there is a similar diagram with Irr(·) in place of Irrur(·).
The functoriality with respect to ĩ~n is simply a parabolic induction up to a twist by a

character, noting that G1
~n and G1

n are essentially GL~n and GLn (2.3). (This statement can
be made precise and proved.) This leads to the following interesting observation. Suppose
that π ∈ A (G1

n(A)) is the endoscopic transfer with respect to η̃1
~n of π0 ∈ A (G1

~n(A)) at almost
all places, where ~n 6= (n). Assume the sufficient regularity of Proposition 2.7 for π and π0.
Then WBC(π) ∈ A (G1

n(A)) and WBC(π0) ∈ A (G1
~n(A)) exist. The commutativity of (3.3)

implies that

WBC(π) ' Ind
G1

n

G1
~n

(WBC(π0)⊗ χ) (3.4)

for a certain character χ (determined by η̃1
~n). We have shown that if π is the image of endo-

scopic transfer from an endoscopic group G1
~n different from G1

n, then WBC(π) is endoscopic,
namely it is induced from a representation of a proper parabolic subgroup (if it is also the case
that WBC(π) is induced from a cuspidal representation). This justifies the terminology of
Definition 2.9. The converse is expected to be true and proved in some cases. (The converse
says that any endoscopic π arises from some G1

~n 6= G1
n via endoscopic transfer.)

3.4. Unitary similitude groups. The results of §2 and §3 carry over with very minor
changes to unitary similitude groups G~n (including the case ~n = (n)) sitting inside the
following exact sequence where G~n → Gm is the multiplier map.

1→ G1
~n → G~n → Gm → 1

Define G~n := RE/Q(G~n ×Q E). Observe that

G~n(A) = G(AE) ' GL1(AE)×GL~n(AF ).
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The extra factor GL1(AE), which did not exist in G1
~n(A), is a nuisance but does not increase

technical difficulty.
It is the groups G~n and G~n that constantly show up later on. Why do we care about

G~n and G~n when it looks simpler to work with G1
~n and G1

~n? The main reason is that
G~n naturally occurs in the context of PEL-type Shimura varieties, whose cohomology is
an essential input in the construction of Galois representations. Although it is possible to
understand the representations of G~n through those of G1

~n, it seems more satisfactory to deal
with G~n directly. Nevertheless, in the first reading of the subject, it may be harmless to
ignore the similitude part and pretend that you are working with unitary groups.

4. Shimura varieties

We keep the previous notation. In particular, F is a CM field, F+ is the maximal totally
real subfield of F , and F = EF+ for some imaginary quadratic field E ⊂ F .

4.1. Choice of unitary group. From here on, we will fix an odd integer n ∈ Z≥3. Let G
be an inner form of the quasi-split group Gn over Q. Such a G is also a unitary similitude
group and fits into an exact sequence

1→ G1 → G→ Gm → 1

so that G1 is an inner form of G1
n. When n is odd, there is no obstruction in finding G such

that

• G1 is quasi-split at all finite places and

• G1(R) ' U(1, n− 1)× U(0, n)[F+:Q]−1.

(In general, there is a cohomological obstruction for finding a unitary group with prescribed
local conditions at all places. The obstruction always vanishes if n is odd, which is not the
case if n is even. See [Clo91, §2] for a detailed computation of cohomological obstructions.)
The main reason for choosing G1 to be quasi-finite at all finite places is that we want to see
in the cohomology of Shimura varieties as many Galois and automorphic representations as
possible.2 In case you wonder why we choose G1(R) as above, see Remark 4.4 and 5.2.

Remark 4.1. In work of Clozel, Kottwitz and Harris-Taylor, they had an assumption which
implies that G1 is not quasi-finite at some finite place (but they had the same G1(R)). That
assumption was imposed mainly because some techniques in the trace formula were available
only in limited cases at that time (but there was another good reason for Harris-Taylor when
they proved a counting point formula). This is why Π was assumed to be square-integrable
at a finite place in their proof of Theorem 1.3. The whole point of recent work by several
people is to remove the last assumption on Π, so it would be reasonable to appreciate the
quasi-split condition on G1 at finite places.

2A general principle is that a quasi-split group has more representations than its non quasi-split inner
forms, either locally or globally. For an example, think of the Jacquet-Langlands correspondence between
GLn and its inner form coming from a division algebra.
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4.2. l-adic cohomology. Let Sh = {ShU} be (the projective system of) Shimura varieties
associated to G. (To be precise we also have to choose an R-morphism RC/RGm → G but
in our case there is a natural choice for this morphism, which we suppress.) Each ShU is a
smooth quasi-projective variety over F of dimension n − 1 (if U is sufficiently small). From
now on, we make another

Hypothesis 4.2. F+ 6= Q

so that G1(R) has at least one compact factor U(0, n). Then it can be shown that ShU
is projective. Postponing the moduli problem for ShU to §5.1, we would like to explain the
rough structure of the l-adic étale cohomology of Sh.

Let ξ be an irreducible algebraic representation of G over Ql. The ξ gives rise to a com-
patible system of smooth Ql-sheaves Lξ on ShU . (We have seen this in Tilouine’s lectures.

For a precise construction, refer to [HT01, III.2].) The Ql-vector space

Hk(Sh,Lξ) := lim−→
U

Hk(ShU ×F F ,Lξ)

is equipped with a smooth action of G(A∞) × Gal(F/F ). (Smoothness means that each
vector has an open stabilizer in G(A∞).) There is a direct sum decomposition

Hk(Sh,Lξ) =
⊕
π∞

π∞ ⊗Rkl (π∞)

where π∞ runs over irreducible admissible representations of G(A∞) and Rkl (π∞) is a finite

dimensional representation of Gal(F/F ). (Comparison with Matsushima’s formula tells us
that the above formula is indeed a direct sum.)

Often it is convenient to consider virtual representations (integral combinations of repre-
sentations with possibly negative coefficients)

H(Sh,Lξ) =
∑
k≥0

(−1)kHk(Sh,Lξ), Rkl (π∞) =
∑
k≥0

(−1)kRkl (π∞).

Let Π = χ ⊗ Π1 be an automorphic representation (not necessarily cuspidal) of G(A) =
G(AE) ' GL1(AE)×GLn(AF ). Define a finite sum

Rl(Π) :=
∑

WBC(π∞)=Π∞

Rl(π
∞).

In order to understand Hk(Sh,Lξ) (for instance if one is interested in the L-functions for

ShU ), it would be ideal to describe Rl(π
∞) for each π∞, or even Rkl (π∞) for each k ∈ Z≥0.

For the construction of Galois representations, it suffices to describe Rl(Π).
Let Π1 = �r

i=1Π1
i such that each Π1

i is θ-stable (cf. (2.7)). We assume that Rl(Π) 6= 0.
(Roughly speaking, this is the case if Π∞ is the base change of the discrete series represen-
tation “determined by” ξ.) Then we expect that

(1) If Π1 is cuspidal (r = 1) then Rl(Π) = 0 or Rl(Π) should correspond to Π1 (in the
sense of Conjecture 1.1) up to a character twist.

(2) In general, there should exist some i such that Rl(Π) corresponds to Π1
i .

(3) Among Hk(Sh,Lξ), only Hn−1 contributes to Rl(Π). (This is not expected to be
true if some θ-stable representation Π1

i is discrete but not cuspidal.) So Rl(Π) should
come with the sign (−1)n−1.
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Remark 4.3. The same assertion should hold for Rl(π
∞) in place of Rl(Π) if WBC(π∞) = Π∞.

In particular, we should allow a nonzero integral multiplicity for Rl(Π) (which is harmless)
in general.

Remark 4.4. The above expectation is valid only under the condition on G1(R) as in §4.1.
Let us briefly discuss what happens to (1) and (2) if that condition is given up. If U(1, n−1)
is replaced with U(a, b) with a+ b = n then Rl(Π) should be roughly the a-th exterior power
of the Galois representation associated to Π1 if Π1 is cuspidal. (Depending on the convention,
you get the b-th exterior power, which is dual to the a-th exterior power up to twist.) In
the U(a, b) case, if Π1 is not cuspidal, the description of Rl(Π) is more complicated. In fact
there is a concrete recipe for predicting Galois representations in the cohomology of PEL-type
Shimura varieties which are of unitary or symplectic type in terms of Arthur’s parameters
([Kot90, §10]). The above expectation for Rl(Π) should be viewed as a special case of the
general principle.

4.3. Finding a candidate Galois representation. Let us go back to the setting of Theo-
rem 1.3. Changing notation slightly from the theorem, let Π1 denote a cuspidal automorphic
representation of GLm(AF ) which is θ-stable. A big question is where to look for ρl(Π

1)
corresponding to Π1. One can learn the following recipe from some experience.

m: odd
Take n := m and choose ψ : A×E/E

× → C× so that Π := ψ ⊗ Π1 is a θ-stable represen-
tation of Gn(A). Then ρl(Π

1) := Rl(Π) should work for the main theorem (up to a nonzero
multiplicity and a character twist).

m: even
Take n := m + 1 and set Π1 := Π1. Choose ψ : A×E/E

× → C× and Π2 : A×F /F
× → C×

so that Π defined as below is a θ-stable representation of Gn(A). (In particular, Π∨2 = Π−1
2

should hold.)

ΠM := ψ ⊗Π1 ⊗Π2, Π := IndGn
Gm,1

(ΠM ) = ψ ⊗ (Π1 � Π2) (4.1)

Then ρl(Π1) := Rl(Π) should work (again up to a nonzero multiplicity and a character twist),
as long as Rl(Π) corresponds to not Π2 but Π1. (See the paragraph preceding Remark 4.3.)
If Π1 is slightly regular, then Π2 (and ψ) can be chosen such that Rl(Π) corresponds to
Π1. (The proof involves an explicit sign computation in endoscopy theory, especially for real
L-parameters. As this is not very intuitive at first sight, you may regard this as a black box.
In case you are curious, the relevant result is Lemma 7.3 of [Shi11].)

The problem is more tractable if we control the set of primes where ramification occurs:

Hypothesis 4.5. If v is a finite place of Q such that either v is ramified in F or Πv is ramified,
then v splits in E.

If v splits in E then G(Qv) is isomorphic to a product of general linear groups (cf. (5.1))
in which case almost everything is better understood than other groups, so the ramification
causes less difficulty. (If v is not split in E then G(Qv) is a v-adic unitary similitude group.)
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4.4. What should we do? To prove Theorem 1.3, we must show that ρl(Π
1) defined as

in §4.3 does correspond to Π1 at each finite place (excluding those dividing l) via the local
Langlands correspondence. This amounts to analyzing Rl(Π) in the two cases depending on
the parity of m. Indeed, the main theorem will essentially follow from

Theorem 4.6. Keep the notation of §4.3. At each finite place w not dividing l,

Rl(Π)|WFw
∼
{

LFw(Π1
w), if m is odd,

LFw(Π1,w) or LFw(Π2,w), if m is even

where ∼ means an isomorphism up to a nonzero multiplicity, a character twist and semisim-
plification.

In fact we prove the theorem under one more hypothesis:

Hypothesis 4.7. p := w|Q splits in E.

That is to say, we compute Rl(Π) only at those places where G is a product of general linear
groups. This may seem like a defect, but it turns out that once the theorem is shown under
Hypothesis 4.7, the latter can be removed without much difficulty (cf. §4.5).

Remark 4.8. The ambiguity in ∼ raises nontrivial issues, but they are resolved after all. The
possibility that the multiplicity could be greater than one is handled by Taylor’s trick ([HT01,
Prop VII.1.8]). The character twist is not a problem as one can always twist back. As for the
last issue, Taylor and Yoshida ([TY07]) removed semisimplification by proving the purity of
WD(Rl(Π)|WFw

) by studying Shimura varieties with Iwahori level structure. See their article
for further detail.

If m is odd, it is not hard to see that Theorem 4.6 implies Theorem 1.3 (cf. Remark 4.8
above). In case m is even, if

Rl(Π)|WFw
∼ LFw(Π1,w) (4.2)

(resp. Rl(Π)|WFw
∼ LFw(Π2,w)) at one w then it is so at every other w - l. We would

be happy if (4.2) is the case. Unfortunately we are unable to tell whether LFw(Π1,w) or
LFw(Π2,w) occurs. (This problem is linked with the computation of the sign e2 in (6.8).)
Nevertheless, if LFw(Π2,w) occurs in the formula for a given Π = χ⊗ (Π1 �Π2), we can show
the following key fact ([Shi11, Lem 7.3]) by some technical sign computation in endoscopy:
if we suppose

Hypothesis 4.9. Π1 is assumed to be slightly regular when m is even

then there exists Π′2 such that if we set Π′ := χ⊗(Π1�Π′2), then Rl(Π
′)|WFw

∼ LFw(Π1,w) for
all w - l. This suffices for the purpose of deducing Theorem 1.3 under the running hypotheses,
as Rl(Π

′) is essentially the desired Galois representation of that theorem (cf. Remark 4.8).
In summary, if Theorem 4.6 is known to be valid under Hypotheses 2.1, 4.2, 4.5 and 4.7,

then Theorem 1.3 can be proved under Hypotheses 2.1, 4.2, 4.5, 4.7 and 4.9. In §4.5 below,
we briefly explain how to obtain Theorem 1.3 by removing all the hypotheses. Starting from
§5, our focus will be how to tackle Theorem 4.6 under Hypotheses 2.1, 4.2, 4.5 and 4.7.
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4.5. Removal of hypotheses. Suppose that Theorem 1.3 is shown under Hypotheses 2.1,
4.2, 4.5, 4.7 and 4.9. In other words, we assume that the desired Galois representations
are constructed under these hypotheses. Using them as initial seeds, we can remove all
the hypotheses except Hypothesis 4.9 by various tricks. Among key ingredients are Arthur-
Clozel’s base change for general linear groups ([AC89]) and the so-called patching lemma
(due to Blasius-Ramakrishnan [BR89] and generalized by [Sor]) among others. Rather than
delving into detail, we refer the reader to [CH13, 3.1] or the proof of Theorem VII.1.9 in
[HT01] for this type of argument. (The corresponding part in [Shi11] appears in the proof of
Proposition 7.4 and Theorem 7.5.)

Finally Hypothesis 4.9 needs to go away. Chenevier and Harris constructed Galois rep-
resentations without Hypothesis 4.9 (but assuming the other hypotheses and then removing
them again) by p-adic congruences. Namely they made use of p-adic families of Galois rep-
resentations on eigenvarieties for definite unitary groups. They derived various expected
properties for ρl,ιl(Π), including l-adic Hodge theoretic properties, but established a weaker
form of (1.1). Caraiani [Car12, ?] obtained (1.1) in general (without Hypothesis 4.9). A main
point in her work is to show that the Galois representations associated to Π in the cohomology
of U(1, n− 1)× U(1, n− 1)-Shimura varieties are pure in a spirit similar to [TY07].

5. local geometry of Shimura varieties

As we commented at the end of §4.4, our aim in the rest of the article is to sketch the idea
of proof of Theorem 1.3 under Hypotheses 2.1, 4.2, 4.5, 4.7 and 4.9 assuming v - l.

In §5.1 we briefly discuss integral models for Shimura varieties. We omit the detail on the
integral models with bad reduction (defined in terms of Drinfeld level structure at p) but
note that these play a crucial role in establishing the first basic identity in §5.5. It is worth
noting at the outset that the contents of §5.2-§5.5 are not needed in the analysis of good
reduction (namely the methods (1) and (2) of §1.5). Indeed, in the case of good reduction
modulo p, Kottwitz ([Kot92b]) derived a nice counting point formula for the whole special
fiber of Shimura varieties (generalizing earlier work of Ihara and Langlands) rather than
for an individual Newton stratum. Kottwitz’s formula describes the Hecke action outside a
prime p and the Frobenius action at p on the cohomology of Shimura varieties. However,
the strategy should be modified quite a bit in the case of bad reduction and our aim is to
introduce some of the new tools, which are largely due to Harris and Taylor in the setting
of unitary Shimura varieties. In the case of GL2 the tools were developed earlier by Deligne
and Carayol.

5.1. Moduli definition of integral models. Keep the notation and hypotheses from §4.4.
It is convenient to define a place u := w|E of E (as a restriction of w to E).

Let U = Up × Up be an open compact subgroup of G(A∞). We will assume that Up is a
maximal compact subgroup of G(Qp). (It may not be hyperspecial as p may ramify in F .)
Consider the following moduli problem which associates to a connected locally noetherian
scheme S the set of equivalence classes {(A, λ, i, η̄)}/ ∼ where

• A is an abelian scheme over S.
• λ : A→ A∨ is a prime-to-p polarization.
• i : OF ↪→ End(A)⊗Z Z(p) such that λ ◦ i(f) = i(f c)∨ ◦ λ, ∀f ∈ OF .
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• η̄p is a π1(S, s)-invariant Up-orbit of isomorphisms of F ⊗Q A∞,p-modules ηp : V ⊗Q
A∞,p ∼→ V pAs which take the pairing 〈·, ·〉 to the λ-Weil pairing up to (A∞,p)×-
multiples. (Here s is any geometric point of S. The map η̄p for any two choices of s
can be identified.)
• LieA with the induced OF -action satisfies a “determinant” condition ([Kot92b, §5]).
• Two quadruples (A1, λ1, i1, η̄

p
1) and (A2, λ2, i2, η̄

p
2) are equivalent if there is a prime-

to-p isogeny A1 → A2 taking λ1, i1, η̄
p
1 to γλ2, i2, η̄

p
2 for some γ ∈ Z×(p).

If Up is sufficiently small, the above functor is representable by a smooth projective OFw -
scheme, which is denoted ShUp . (Recall that Up is maximal, which means we are in prime-to-p
level.)

If Up is not maximal but a certain congruence subgroup of G(Qp), the integral model for
ShU can be constructed by adding Drinfeld level structure at p to the moduli problem ([HT01,
Ch II.2, III.4]). In general ShU has bad reduction mod p, although ShU is smooth over OFw

if Up is maximal compact. Although we will not discuss this further, the integral model with
bad reduction plays a crucial role in the proof of Theorem 5.11.

5.2. Newton stratification. The prototype for Newton stratification is seen on the mod p
fiber Y of an affine elliptic modular curve Y . Let k be a field of characteristic p. A k-point on
Y corresponds to an elliptic curves over k (with level structure). Thus there is a set-theoretic
decomposition

Y = Y
ord∐

Y
ss

such that the points of Y
ord

(resp. Y
ss

) correspond to ordinary (resp. supersingular) elliptic

curves. Note that Y
ord

(resp. Y
ss

) is Zariski open (resp. closed) in Y .
There is an analogous construction for the mod w fiber ShUp of ShUp (and also for the

mod w fiber of integral models with Drinfeld level structure at p). To do this, we need a
little preparation. Let (A univ, λuniv, iuniv) denote the universal abelian scheme over ShUp

with polarization and endomorphism structure. Let s be an Fp-point of ShUp . Then A univ
s ,

denoting the fiber of A univ at s, is an abelian variety over Fp. Since its p-divisible group
A univ
s [p∞] is equipped with an action of OF ⊗Z Zp '

∏
x|pOFx (and a polarization), it is

decomposed as

A univ
s [p∞] =

⊕
x|p

A univ
s [x∞]

with respect to that action. The OFw -height of each A univ
s [x∞] is n. The determinant

condition in the moduli problem implies that the dimension of A univ
s [x∞], which is the same

as dimFp
Lie A univ

s [x∞], equals 1 if x = w and 0 if x 6= w and x|E = u. In other words, whereas

in the latter case, dimFp
Lie A univ

s [x∞] is an étale p-divisible group. (If x|E 6= w|E then

xc|E = w|E and A univ
s [x∞] is isomorphic to A univ

s [(xc)∞]∨ via the prime-to-p polarization
induced by λuniv.) The upshot is that there is a stratification of ShUp into locally closed
subsets

ShUp =
∏

0≤h≤n−1

Sh
(h)
Up
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such that s ∈ ShUp(Fp) lands in Sh
(h)
Up if and only if the maximal étale quotient of A univ

s [w∞]

has OFw -height h. For any 0 ≤ h′ ≤ n − 1, the union of Sh
(h)
Up for all 0 ≤ h ≤ h′ is Zariski

closed in ShUp . The last fact reflects the principle that the Newton polygon of a p-divisible
group can only go up under specialization on the base scheme. Each locally closed subset

Sh
(h)
Up is viewed as a scheme with the reduced subscheme structure. It turns out that each

Sh
(h)
Up has dimension h (but it is a nontrivial fact that every stratum is nonempty).

Remark 5.1. Recall that Newton polygons may be used to classify isogeny classes of p-divisible
groups over Fp in the context of Dieudonné theory. In general the Newton stratification for
Shimura varieties is defined according to isogeny classes of p-divisible groups with polarization
and endomorphism structure. In our case it can be shown that the latter isogeny classes are
classified by the integer h introduced above (which amounts to the Newton polygon of height
n, dimension 1 and “étale height” h with nonnegative slopes).

Remark 5.2. Our Shimura varieties are nice in that the study of the universal p-divisible
group A univ[p∞] over ShUp (with additional structure) is essentially reduced to the study of
p-divisible groups of dimension 1. This dimension is linked to the signature of G1(R) in §4.1
via the determinant condition in the moduli problem. (For a different choice of signatures,
the dimension is higher than 1 in general.) In the dimension 1 case, the deformation theory
of p-divisible groups works nicely and the Drinfeld level structure for the integral models
behaves well. This gives another reason why our choice of G is favorable (cf. §4.1, Remark
4.3).

5.3. Igusa varieties. Igusa varieties in the case of elliptic modular curves were studied in
[Igu59] and [KM85]. They also appear in the context of p-adic automorphic forms as in
Hida’s work. (See [Hid04] for instance.) In work of Harris and Taylor, Igusa varieties and
Rapoport-Zink spaces are used to study the bad reduction of Shimura varieties (Theorem
5.5). We will use the same strategy here. In this subsection we give basic definitions for
Igusa varieties.

Temporarily fix 0 ≤ h ≤ n − 1. Let Σ(h) :=
∏
x|p Σx and Σw = Σ0

w × Σet
w where each Σx

denotes the p-divisible group over Fp with an OFx-action and

• Σ0
w is connected of OFw -height n− h and dimension 1,

• Σet
w is étale of OFw -height h and

• Σx is étale of OFx-height n for x 6= w, x|u.
• Σxc = Σ∨x for x|u.

The Newton stratification is defined so that the geometric fibers of A univ[x∞] are isogenous

to Σx as p-divisible groups with OFx-action on Sh
(h)
Up . (In fact, a little more is true in our

particular case. Namely, A univ[p∞] is fiberwise isogenous to Σ(h) with OF ⊗ Zp-action and
polarization.)

Define
J (h)
w (Qp) := AutOFw

(Σh) ' D×n−h,Fw
×GLn(Fw)

and
J (h)(Qp) := Q×p × J (h)

w (Qp)×
∏

x|u, x 6=w

GLn(Fx)

where Dn−h is a central division algebra over OFw with Hasse invariant 1
n−h .
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Remark 5.3. The group J (h)(Qp) may be naturally identified with the automorphism group

of Σ(h) with OF ⊗Z Zp-action and polarization (the latter preserved up to Q×p -multiples) in

the isogeny category. We will often ignore the Q×p -part to simplify exposition, and this allows

us to view J (h)(Qp) loosely as the automorphism group of
∏
x|u Σx with

∏
x|uOFx-action in

the isogeny category.

Note that

G(Qp) ' Q×p ×
∏
x|u

GLn(Fx). (5.1)

Thus J (h) is an inner form of a Levi subgroup of (a parabolic subgroup of) G over Qp.

Example 5.4. In the case of elliptic modular curves, the analogue of J (h)(Qp) is Q×p × Q×p
(resp. D×) for the ordinary (resp. supersingular) stratum, where D is a central division
algebra over Qp of degree 4.

By abuse of notation, the pullback of A univ from ShUp to Sh
(h)
Up will still be denoted by

A univ. Let G 0 (resp. G et) be the maximal connected sub p-divisible group (resp. maximal
quotient p-divisible group) of A univ[p∞].

We will introduce Igusa varieties and Rapoport-Zink spaces which are closely related to

the stratum Sh
(h)
Up . Let m ≥ 1. The first object Ig

(h)
Up,m is the moduli space over Sh

(h)
Up which

associates to a scheme S over Sh
(h)
Up the quadruple of isomorphisms j = (jp,0, j

0
w, j

et
w , {jx})

where

• jp,0 : Z×p
∼→ Zp(1)×.

• j0
w : Σ0

h[wm]×Fp
S
∼→ G 0[wm]×

Sh
(h)
Up
S which is compatible with OFw -actions,

• jet
w : Σet

h [wm]×Fp
S
∼→ G et[wm]×

Sh
(h)
Up
S which is compatible with OFw -actions,

• jx : Σx[xm] ×Fp
S
∼→ G [xm] ×

Sh
(h)
Up
S for x|u and x 6= w which is compatible with

OFx-actions and

To be precise, there is a technical condition imposed on the data that (jp,0, j
0
w, j

et
w , {jx})

should be liftable to the level of p-divisible groups.

Remark 5.5. An equivalent formulation is that Ig
(h)
Up,m parametrizes graded isomorphisms

j : Σ(h)[pm]
∼→ gr(G 0)[pm] compatible with OF ⊗Z Zp-actions and polarizations, the latter up

to (Z/pmZ)×-multiple, where the grading is given by slope filtration. (See [Man05, Def 3].)
We have chosen to give a more down-to-earth moduli problem above.

It turns out that each Ig
(h)
Up,m is a smooth variety over Fp and finite Galois over Sh

(h)
Up . By

abuse of notation, Lξ will also denote its pullback from Sh
(h)
Up to each Ig

(h)
Up,m. Define

Hc(Ig
(h),Lξ) :=

∑
k≥0

(−1)k lim−→
Up,m

Hk
c (Ig

(h)
Up,m,Lξ)

which is naturally a virtual representation of G(A∞,p) × J (h)(Qp). Indeed, the action of

G(A∞,p) is inherited from the Hecke action on the tower Sh
(h)
Up . (Note that the tower of Sh

(h)
Up
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for varying Up is invariant under the Hecke action of G(A∞,p).) The action of J (h)(Qp) is
defined by extending the natural action of

Z×p × (ODn−h,Fw
×GLh(OFw))×

∏
x|u,x6=w

GLn(OFw)

on the quadruple (jp,0, j
0
w, j

et
w , {jx}). The computation of Hc(Ig

(h),Lξ), which we will focus
on in §6, is the most innovative part of [Shi11] and a vital input for the computation of
H(Sh,Lξ).

5.4. Rapoport-Zink spaces and the map Mant(h). The Rapoport-Zink spaces are local
analogues of PEL Shimura varieties. Indeed, the former are moduli spaces of p-divisible
groups with additional structure whereas the latter are moduli spaces of abelian schemes
with additional (PEL) structure. Just as a Shimura variety is constructed from a reductive
group over Q and other data, a Rapoport-Zink space is associated with a reductive group over
Qp and some other data. Recall that our main strategy is based on the philosophy that the
cohomology of Shimura varieties is closely related to the global Langlands correspondence.
Similarly it is believed that the cohomology of Rapoport-Zink spaces has a lot to do with
the local Langlands correspondence. Indeed, this was one of the main motivations to study
these spaces. For some precise conjectures, see Remark 5.10 below.

Rapoport-Zink spaces were introduced by Rapoport and Zink in an attempt to generalize
the non-abelian Lubin-Tate spaces and the Drinfeld spaces. The latter two spaces are as-
sociated with general linear groups and the unit groups of division algebras, and had been
studied the most in connection with the local Langlands correspondence for GLn (and in fact
the Jacquet-Langlands correspondence as well). When n = 1, this reduces to the well-known
relationship between the classical Lubin-Tate theory and local class field theory.

In our setting, the relevant Rapoport-Zink spaces are associated with G(Qp) and isomor-
phic to (products of) the so-called non-abelian Lubin-Tate spaces. To be more concrete, the

Rapoport-Zink space with no level structure, denoted RZ
(h)
w , represents (as a formal scheme)

the moduli problem

RZ(h)
w (S) = {(H, i, β)}/ '

from the category of OFur
w

-scheme in which p is locally nilpotent to the category of sets, where

• H is a p-divisible group over S,
• i : OFwQp ↪→ End(H) is a Qp-algebra morphism,

• β : Σ
(h)
w ×Fp

S → H ×S S is a quasi-isogeny compatible with OFw -actions, where S is

the closed subscheme of S defined by the ideal sheaf pOS .
• The determinant condition as in [RZ96, 3.23.(a)].

Then RZ
(h)
w is a Rapoport-Zink space associated to RFw/Qp

GLn. The Rapoport-Zink space

RZ
(h)
0 (without level structure) associated to G can be defined as the product of RZ

(h)
w and

the zero-dimensional Rapoport-Zink spaces accounting for Q×p and
∏
x|u,x 6=wGLn in the de-

composition 5.1.

The formal scheme RZ
(h)
0 gives rise to a rigid analytic space. With this space at the

bottom, one can throw in level structure to construct a projective system of rigid analytic
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spaces RZ(h) = {RZ(h)
Up
} indexed by open compact subgroups Up of G(Qp). They are (not of

finite type but) locally of finite type over F̂ ur
w .

We will not give detail, but the l-adic cohomology of RZ(h) comes equipped with a natural
commuting action of J (h)(Qp), G(Qp) and WFw . (The group J (h)(Qp) acts on the deformation

datum for each fixed level Up. On the other hand, G(Qp) acts on the tower RZ(h) in the style
of Hecke correspondences.) To study its cohomology effectively, especially in connection with
the cohomology of Shimura varieties, it is useful to define the following map

Mant(h)
n : Groth(J (h)(Qp))→ Groth(G(Qp)×WFw)

as
Mant(h)

n (ρ) :=
∑
i,j≥0

(−1)i+j lim−→
Up

Exti
J(h)(Qp)

(Hj
c (RZ

(h)
Up
,Ql), ρ).

In the case under consideration, a complete description of Mant(h) was given by Harris-Taylor.
(See [Shi11, Prop 2.2] for a summary of results.) The case h = 0 turns out to be the most
interesting. To show the flavor we state a result in the supercuspidal case, which was proved
by Carayol ([Car86]) for n = 2 and Harris-Taylor for any n. (The analogue of the Mant map
for Drinfeld spaces was computed in [Car90] for n = 2 and in [Dat07] for any n.) When
n = 1, the formula essentially follows from the classical Lubin-Tate theory.

Theorem 5.6. ([HT01, Thm VII.1.3]) Let ρ ∈ Irr(J (h)(Qp)) be such that JL(ρ) is supercus-
pidal. Then

Mant(0)
n (ρ) = (−1)n−1 · JL(ρ)⊗LFw(JL(ρ)).

The known proofs of the theorem are global in nature in that a key input comes from
the cohomology of Shimura varieties and its interaction with Mant(h) (as in Theorem 5.11
below). The proof of the local Langlands correspondence for GLn over p-adic fields, either
by Henniart or by Harris-Taylor, is also global as it relies on a result on the cohomology of
Shimura varieties.

For h > 0 we have an induction formula, which is implicit in [HT01].

Theorem 5.7. Mant
(h)
n (ρ1 ⊗ ρ2) = IndGLn

GLn−h,h
(Mant

(0)
n−h(ρ1)⊗ ρ2).

As the notation suggests,

Mant
(0)
n−h : Groth(Q×p ×D×n−h)→ Groth(Q×p ×GLn−h(Fw)×WFw)

is built from the Rapoport-Zink spaces for GLn−h, corresponding to the Newton polygon

height n−h and dimension 1. As we already remarked, Mant
(0)
n−h can be explicitly described

thanks to Harris and Taylor. Therefore Theorem 5.7 enables us to compute Mant
(h)
n for all

1 ≤ h ≤ n− 1 as well.

Remark 5.8. It would natural and interesting to figure out Hj
c (RZ

(h)
Up
,Ql) directly, without

taking the alternating sum over j. In the case at hand, the result was obtained by Boyer
([Pas09]).

Remark 5.9. In the history of class field theory, local class field theory was first proved by
using its global counterpart, but later established by purely local methods. Thus it would be
desirable to find a purely local proof of Theorem 5.6 and the local Langlands correspondence.
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Let us mention some partial results (which are not meant to be exhaustive by any means). For
the first problem, see [Str05]. As for the second problem, Bushnell and Henniart ([BH05a],
[BH05b]) explicitly constructed the Langlands correspondence in the “essentially tame” case.

Remark 5.10. Theorem 5.6 is concerned with the Rapoport-Zink spaces for GLn correspond-
ing to the “basic” Newton polygon of pure slope 1/n. It is basic in the sense that it lies above
the other Newton polygons with the same end points. A natural generalization of Theorem
5.6 would be a description of the analogue of Mant(h) for other Rapoport-Zink spaces. In
this direction of research, the most prominent conjectures seem to be the following, which
are very precise but stated here only loosely.

• Kottwitz’s conjecture ([Rap95, Conj 5.1], cf. [Har01, Conj 5.3, 5.4]) - the Mant map
for a basic Newton polygon is described in terms of discrete L-parameters.
• Harris’s conjecture ([Har01, Conj 5.2]) - the Mant map for a non-basic Newton poly-

gon is obtained by an induction formula.

In fact Theorem 5.7 is a special case of Harris’s conjecture, but the general case is a wide
open question. For a progress toward the first (resp. second) conjecture, see [Far04] (resp.
[Man08]). The paper [Shi12] provides a little extra information in the case of Rapoport-Zink
spaces for GLn.

5.5. The first basic identity. The cohomology of each Newton stratum in the special fiber
of Shimura varieties can be related to the cohomology of Igusa varieties and Rapoport-Zink
spaces via a very neat formula. For our Shimura varieties, the result is due to Harris and
Taylor. (Although their Shimura varieties are attached to an inner form of our G, their proof
carries over to our case.) The following is a reformulation in the style of Mantovan’s theorem.
See the remark below Theorem 5.11.

Theorem 5.11. (Harris-Taylor) The following holds in Groth(G(A∞)×WFw). (We regard

Mant(h) as the identity map on the space of G(A∞,p)-representations.)

H(Sh,Lξ) =
∑

0≤h≤n−1

Mant(h)(Hc(Ig
(h),Lξ))

Sketch of proof. For simplicity, we assume Lξ = Ql. Let RΨSh denote the nearby cycle

complex on Sh associated with Ql. Then

H(Sh,Ql) = H(Sh, RΨSh) =
∑

0≤h≤n−1

H(Sh
(h)
, RΨSh)

in Groth(G(A∞)×WFw), where RΨSh also denotes the sheaves on Sh
(h)

by abuse of notation.

Let us pretend that m : RZ
(h) ×Fp

Ig(h) → Sh
(h)

is a Galois covering with Galois group

J (h)(Qp). Although this is not literally true, we hope that this helps the reader to grasp some
core ideas more easily.

Let p1 : RZ
(h) ×Fp

Ig(h) → RZ
(h)

denote the projection map. Berkovich’s theory provides

RΨRZ on RZ
(h)

, which is the analogue for formal schemes of nearby cycle complexes. Harris
and Taylor proved (and Mantovan generalized) a deep fact that

m∗RΨ
(h)
Sh ' p

∗
1RΨRZ,
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which roughly asserts that Shimura varieties and Rapoport-Zink spaces present the same
kind of singularities along the Newton stratum for h. Then the following is morally true.

The second last equality uses the fact that Hc(RZ
(h)
, RΨRZ) is dual to Hc(RZ(h),Ql) via

Berkovich’s theory.

H(Sh
(h)
, RΨSh) = H∗(J

(h)(Qp), Hc(RZ
(h) × Ig(h),m∗RΨSh)

= H∗(J
(h)(Qp), Hc(RZ

(h) × Ig(h), p∗1RΨRZ)

= TorC∞c (J(h)(Qp))(Hc(RZ
(h)
, RΨRZ), Hc(Ig

(h),Ql))

= ExtJ(h)(Qp)(Hc(RZ(h),Ql), Hc(Ig
(h),Ql))

= Mant(h)(Hc(Ig
(h),Ql)).

�

Remark 5.12. Theorem 5.11 was extended by Mantovan ([Man05], [Man11]) to PEL-type
Shimura varieties of unitary or symplectic type when the PEL datum is “unramified” at p
(which amounts to the running assumption in [Kot92b]) and Kottwitz’s integral model of Sh
(with good reduction) is proper over OFw . Fargues obtained a similar formula ([Far04, Cor
4.6.3]) when restricted to the basic (cf. Remark 5.10) stratum.

Remark 5.13. In the problem of understanding H(Sh,Lξ) as a virtual representation of
G(A∞) ×WFw , two sources of difficulty are bad reduction (or ramified Galois action) at w
and global endoscopy for G. Theorem 5.11 enables us to separate the two kinds of difficulty.
Namely, the information of bad reduction is mostly contained in Mant(h) (which arises from

a purely local geometric object) while the global endoscopy is captured by Hc(Ig
(h),Lξ). It

is worth noting that Ig(h) is global in nature whereas RZ(h) is a purely local object which can
be defined independently of Shimura varieties.

Write Hc(Ig
(h),Lξ) =

∑
i∈I ni[π

∞,p
i ][ρi] where I is an index set, π∞,p ∈ Irr(G(A∞,p)) and

ρp ∈ Irr(J (h)(Qp)). Define the “Π∞,p-part” as

Hc(Ig
(h),Lξ){Π∞,p} :=

∑
WBC(π∞,p

i )=Π∞,p

ni[ρi] ∈ Groth(J (h)(Qp)). (5.2)

This is independent of the expansion of Hc(Ig
(h),Lξ). We can prove

Corollary 5.14. In Groth(G(Qp)×WFw),

πp ⊗Rl(Π) =
∑

0≤h≤n−1

Mant(h)(Hc(Ig
(h),Lξ){Π∞,p}).

Proof. The corollary is basically obtained by taking the {Π∞,p}-part of Theorem 5.11. �

Since we know how Mant(h) works, the proof of Theorem 4.6 is reduced to the problem of
understanding Hc(Ig

(h),Lξ){Π∞,p} as a virtual representation of J (h)(Qp). This brings us to
the next section.
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6. Cohomology of Igusa varieties

6.1. Counting point formula. The action of G(A∞,p)× J (h)(Qp) on Hc(Ig
(h),Lξ){Π∞,p}

is basically given by “Hecke correspondences”. (The G(A∞,p)-action is indeed compatible

with the Hecke action on Shimura varieties but the J (h)(Qp)-action is more subtle. We will

ignore the subtlety here, though.) The trace of the Hecke action on Hc(Ig
(h),Lξ) can be

computed in terms of fixed points of Ig(h)(Fp) under algebraic correspondences thanks to
Fujiwara and Varshavsky, who proved Deligne’s conjecture ([Fuj97, Cor 5.4.5], [Var07, Thm
2.3.2]). The latter is a version of the Grothendieck-Lefschetz trace formula and needed here

as Ig(h) is usually non-proper over Fp. Roughly speaking, Deligne’s conjecture says that the
Grothendieck-Lefschetz trace formula holds for an algebraic correspondence on a non-proper
variety if that correspondence is twisted by a large enough power of Frobenius.

Since Ig(h) is a moduli space for (A, λ, i, η̄p) as well as certain isomorphisms of p-divisible

groups, the fixed points under a correspondence on Ig(h) are naturally described in terms of
the moduli data. Our hope is to extract some automorphic information from the fixed point
formula. The best way might be to relate the fixed point formula to an analogous3 formula
in automorphic representation theory, such as the Arthur-Selberg trace formula. But the
latter formula has obviously no reference to abelian varieties or their structures. So the main
problem is to massage the fixed-point formula for Ig(h) to obtain a trace formula for the
Hecke action on Ig(h) which resembles the geometric side of the trace formula for G. (So
to speak, it is about the passage from (6.2) to the statement of Theorem 6.3 below.) In
the context of unitary Shimura varieties, this was carried out by Harris and Taylor for a
certain U(1, n−1)-type unitary group with no endoscopy. A trace formula for Igusa varieties
was proved ([Shi10]) for any PEL-type Shimura varieties associated to unitary or symplectic
groups (possibly with nontrivial endoscopy), in the spirit of Langlands-Kottwitz’s formula
([Kot92b]) for Shimura varieties with good reduction.

Before stating the result, we define the notion of Kottwitz triples in our context (which are
somewhat different from those for Shimura varieties with good reduction as in [Kot90, §2]).

Definition 6.1. By an effective Kottwitz triple (of type 0 ≤ h ≤ n−1), we mean a triple
(γ0; γ, δ) where

• γ0 ∈ G(Q) is semisimple, and elliptic in G(R)
• γ ∈ G(A∞,p) and γ0 ∼A∞,p γ.

• δ ∈ J (h)(Qp) is acceptable (to be explained) and γ0 ∼Qp
δ in G(Qp) via a natural

embedding J (h)(Qp) ↪→ G(Qp) (natural up to G(Qp)-conjugacy).
• a certain Galois cohomology invariant α(γ0; γ, δ) vanishes.

Two Kottwitz triples (γ0; γ, δ) ∼ (γ′0; γ′, δ′) are said to be equivalent if γ0 ∼st γ′0, γ ∼A∞,p γ′,

and δ ∼ δ′. For each 0 ≤ h ≤ n − 1, we define KT (h),eff to be the set of equivalence classes
of all effective Kottwitz triples of type h.

Remark 6.2. The word “effective” refers to the last condition, which is closely tied with the
phenomenon of endoscopy. The analogous fact is that an element γ ∈ G(A) is not always
G(A)-conjugate to an element ofG(Q). The failure is detected by the nonvanishing of a similar
Galois cohomology invariant. When we say that a group G over Q has “no endoscopy”, it

3Only remotely analogous, a priori.
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indicates that this failure does not occur. (In that case no endoscopic groups other than the
quasi-split inner form of G will contribute to the stable trace formula for G.)

The counting point formula is stated below. The terminology “acceptable” will not be
defined but morally means that “twisted by enough power of Frobenius” in a suitable sense.

Theorem 6.3. ([Shi09, Thm 13.1])

If ϕ ∈ C∞c (G(A∞,p)× J (h)(Qp)) is acceptable, then

tr (ϕ|Hc(Ig
(h),Lξ)) =

∑
(γ0;γ,δ)∈KT (h),eff

vol(I∞(R)1)−1|A(I0)| tr ξ(γ0) ·OG(A∞,p)×J(h)(Qp)
(γ,δ) (ϕ)

Sketch of proof. For simplicity, assume ξ is trivial so that Lξ = Ql. Let Up(m) ⊂ J (h)(Qp)

denote the kernel of Aut(Σ(h)) → Aut(Σ(h)[pm]). It is enough to treat the case where ϕ =
ϕ∞,pϕ′p with ϕ∞,p = charUpgpUp and ϕ′p = charUp(m)gpUp(m), as the general case is obtained
by taking linear combinations. Then the left hand side is identified with

tr ([UpgpUp]× [Up(m)gpUp(m)]|Hc(Ig
(h)
Up,m,Ql)) (6.1)

where [UpgpUp] and [Up(m)gpUp(m)] are Hecke correspondences for Ig
(h)
Up,m. The solution of

Deligne’s conjecture allows us to evaluate (6.1) as the number of fixed points on Ig(h)(Fp)
under the product correspondence. Recall from §5.3 that

Ig(h)(Fp) = {(A, λ, i, ηp, j)}/ '

where A is an abelian variety over Fp equipped with additional structure. It is not difficult
to show that the number of fixed points corresponding to a given (A, λ, i) equals a sum of
orbital integral of ϕ. To summarize the situation more precisely, we have

tr (ϕ|Hc(Ig
(h),Ql)) =

∑
{(A,λ,i)}/'

 ∑
a∈Aut0(A,λ,i)

(const.) ·OG(A∞,p)×J(h)(Qp)
a (ϕ)

 (6.2)

where Aut0 is the automorphism in the isogeny category (with additional structure). Then

the proof is essentially completed by proving a natural bijection between KT (h),eff and the
set of A, λ, i, a in the sum. This is the core of the argument and involves a refinement of
Honda-Tate theory, CM-lifting of abelian varieties from characteristic p to characteristic 0,
Galois cohomology computations, theory of isocrystals over Fp and others. �

We do not lose generality by restricting ourselves to acceptable functions. More precisely,

Lemma 6.4. ([Shi09, Lem 6.4]) For Π1,Π2 ∈ Groth(G(A∞,p)× J (h)(Qp)),

tr Π1(ϕ) = tr Π2(ϕ)

for all acceptable functions ϕ ∈ C∞c (G(A∞,p) × J (h)(Qp)) if and only if Π1 = Π2 in the
Grothendieck group.

Remark 6.5. The lemma was used in [HT01] without stating it as a lemma.
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6.2. Stabilization. We intend to use Theorem 6.3 to understand Hc(Igb,Lξ) in terms of
automorphic representations of G. It is very common (e.g. in the trace formula approach to
the Langlands functoriality) that the trace formula should be stabilized to have interesting
applications. Thus it is natural to attempt to stabilize the right hand side of Theorem 6.3.
In other words, we want to rewrite the sum of orbital integrals as a sum of stable orbital
integrals on (G and its endoscopic groups). As far as elliptic conjugacy classes are concerned,
the stabilization process has been well-known thanks to Langlands and Kottwitz. In fact
it has been conditional on the fundamental lemma, but the latter is recently established by
Laumon, Ngô, Waldspurger and others.

However, there is an immediate obstacle due to the peculiarity of our trace formula. First
of all, G(A∞,p)×J (h)(Qp) is a strange topological group in that it is not the set of A∞-points
of any reductive group over Q. So it is not a priori clear how to adapt the stabilization
process and make sense of the Langlands-Shelstad transfer at p. This problem is successfully
solved in [Shi10] for PEL-Shimura varieties of unitary or symplectic type. The result has the
following form.

Theorem 6.6. ([Shi10, Thm 7.2]) Let ϕ ∈ C∞c (G(A∞,p)× J (h)(Qp)) be an acceptable func-

tion. For each G~n ∈ E ell(G), one can construct a function φ~n from ϕ such that

tr (ϕ|Hc(Ig
(h),Lξ)) = | ker1(Q, G)|

∑
G~n∈E ell(G)

ι(G,G~n)STG~n
e (φ~n)

(See the end of §6.2 for nice properties enjoyed by φ~n.)

Sketch of idea. It suffices to handle the case ϕ = (
∏
v 6=p,∞ ϕv)×ϕ′p. Away from p and∞, the

function φ~nv is the Langlands-Shelstad transfer of ϕv via η̃~n. At v = ∞ one has an explicit
construction using Shelstad’s real endoscopy and Clozel-Delorme’s pseudo-coefficients for
discrete series. The most interesting and important for applications is the case of v = p.
Here the construction of φ~np from ϕ′p has no analogue in the usual trace formula business, as

we must find a natural transfer from J (h)(Qp) (not G(Qp)) to G~n(Qp) which is an endoscopic

group of G(Qp) (but typically not of J (h)(Qp)).
The idea is that there is a natural finite set of groups {MH} where each MH is simultane-

ously an endoscopic group of J (h) and a Levi subgroup of G~n. For each MH , ϕ′H transfers to
MH by the Langlands-Shelstad transfer and then to G~n by a certain non-standard transfer
(which makes sense if ϕ′ is acceptable in the same sense as in Theorem 6.3). Then ϕ′p is
constructed as the signed sum of these transfers over the set of all MH which intervene. �

After all the stable trace formula above will be used to extract spectral information. Thanks
to a concrete description of φ~n as sketched above (via the Langlands-Shelstad transfer or other
means), the following is known (when ϕ and φ~n admit product decompositions). The notation

Red
(h)
~n will be defined in the next subsection when ~n = (n) and ~n = (n− 1, 1). These are the

only cases which concern us.

Proposition 6.7. (1) When v 6= p,∞, the identity in Proposition 3.1 holds (whenever
case (i) or (ii) applies).

(2) ([Shi11, Lem 5.10]) When v = p, we have for all πH,v ∈ Irr(G~n(Qp)),

tr
(

Red
(h)
~n (πH,v)

)
(ϕ′p) = trπH,v(φ

~n
p ), .
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(3) When v =∞, the trace of φ~n∞ on any discrete series of G~n(R) explicitly.

6.3. The maps Red
(h)
n and Red

(h)
n−1,1. The main reference for this subsection is [Shi11, §5.5].

Recall that

J (h)(Qp) ' Q×p × (D×n−h,Fw
×GLh(Fw))×

∏
x|u, x 6=w

GLn(Fx)

G(Qp) ' Q×p ×
∏
x|u

GLn(Fx).

Denote by

LJn−h,h : Groth(GLn−h(Fw)×GLh(Fw)→ Groth(D×n−h,Fw
×GLh(Fw))

Badulescu’s Jacquet-Langlands map ([Bad07]) on the first factor and the identity map on
the second. For πw ∈ Irr(GLn(Fw)), set

Red(h)
n;w(πw) := LJn−h,h(Jacn−h,h(πw))

where Jacn−h,h is the Jacquet module from GLn to GLn−h ×GLh. Define

Red(h)
n : Groth(G(Qp))→ Groth(J (h)(Qp))

so that for irreducible πp = πp,0 ⊗ (⊗x|uπx),

Red(h)
n (πp) := πp,0 ⊗ Red(h)

n;w(πw)⊗

 ⊗
x|u,x6=w

πx

 .

Remark 6.8. We are not being precise about normalization, for instance that of the Jacquet
modules and parabolic inductions in this subsection (and other places). Also we dropped the
sign appearing in [Shi11, §5.5] as the final result will be stated up to sign. See [Shi11, §5.5]
for precise normalizations and signs.

The definition of Red
(h)
n−1,1 is more technical as it is supposed to account for endoscopic

terms. Recall

G(Qp) ' Q×p ×
∏
x|u

(GLn−1(Fx)×GL1(Fx)).

Let us define its w-part

Red
(h)
n−1,1;w : Groth(GLn−1(Fw)×GL1(Fw))→ Groth(D×n−h,Fw

×GLh(Fw))

πw,1⊗πw,2 7→


0, if h = 0,

Ind
GLn−h,h

GLn−h,h−1,1
(Jacn−h,h−1(πw,1)⊗ πw,2) , if 0 < h < n− 1,

Ind
GLn−h,h

GLn−h,h−1,1
(Jacn−h,h−1(πw,1)⊗ πw,2)− πw,2 ⊗ πw,1, if h = n− 1.

The notation Ind
GLn−h,h

GLn−h,h−1,1
means the obvious parabolic induction from GLn−h ×GLh−1 ×

GL1 to GLn−h × GLh. Again we avoid the issue of precise sign and normalization. Finally
define

Red
(h)
n−1,1 : Groth(Gn−1,1(Qp))→ Groth(J (h)(Qp))
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for irreducible πH,p = πH,p,0 ⊗ πH,w ⊗ (⊗x|u,x6=wπH,x,1 ⊗ πH,x,2) by

Red
(h)
n−1,1(πH,p) := Red

(h)
n−1,1;w(πH,w)⊗

⊗
x|u,x 6=w

IndGLn
GLn−1,1

(πH,x,1 ⊗ πH,x,2). (6.3)

Example 6.9. Let πw,1 ∈ Irr(GLn−1(Fw)), πw,2 ∈ Irr(GL1(Fw)) be supercuspidal represen-
tations. Let πw := πw,1 � πw,2. (The induction is always irreducible as n ≥ 3.) Then the
above formulas yield

Red
(h)
n−1,1;w(πw) =

 0, if h 6= 1, n− 1,
LJ(πw,1)⊗ πw,2, if h = 1,
πw,2 ⊗ πw,1, if h = n− 1.

(6.4)

Red
(h)
n−1,1;w(πw,1 ⊗ πw,2) =

 0, if h 6= 1, n− 1,
LJ(πw,1)⊗ πw,2, if h = 1,
−πw,2 ⊗ πw,1, if h = n− 1.

(6.5)

Remark 6.10. It may appear that Red
(h)
n−1,1 is a very unnatural map, but it is not. It is the

signed sum of two functorial transfers from Gn−1,1 to J (h) represented by the L-morphisms
which occur naturally in the stabilization problem of §6.2. Since only inner forms of general

linear groups are involved, the transfers may be made explicit, and thereby Red
(h)
n−1,1 was

obtained in [Shi11].

6.4. Application of the twisted trace formula. Denote by πp ∈ Irr(G(Qp)) a represen-
tation such that BC(πp) ' Πp. (Such a πp is unique up to isomorphism as p splits in E.)
When m is even, define πH,p ∈ Irr(Gn−1,1(Qp)) such that BC(πH,p) ' ψp⊗Π1,p⊗Π2,p in the
notation of §4.3. In the latter case we recall (7.5), which says in particular

Π1
w = Ind(Π1,w ⊗Π2,w) (6.6)

(The parabolic induction can be shown to be irreducible.) Recall that Hc(Ig
(h),Lξ){Π∞,p}

was defined in (5.2).

Theorem 6.11. For each 0 ≤ h ≤ n − 1, the following equalities hold in Groth(J (h)(Qp)),
where the sign e2 is independent of h. The constants in the formulas are some explicit positive
integers.

(1) (m odd)

Hc(Ig
(h),Lξ)){Π∞,p} = (const.) · [Red(h)

n (πp)]. (6.7)

(2) (m even)

Hc(Ig
(h),Lξ){Π∞,p} = (const.) · 1

2

[
(Red(h)

n (πp) + e2Red
(h)
n−1,1(πH,p))

]
. (6.8)

Sketch of proof. Suppose that ϕ admits a product decomposition and that each φ~n in The-
orem 6.6 is a transfer of f~n in base change (§2.3). Then the following identity is essentially
due to Labesse:

STG~n
e (φ~n) = T̃G~n(f~n)
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where the right hand side is the twisted trace formula for G~n (with respect to θ in §2.2).
Thus Theorem 6.6 implies that

tr (ϕ|Hc(Ig
(h),Lξ)) = | ker1(Q, G)|

∑
~n

ι(G,G~n)T̃G~n(f~n) (6.9)

∼ T̃Gn(fn) +
1

2
T̃Gn−1,1(fn−1,1) + (other terms).

The notation ∼ indicates that | ker1(Q, G)| is ignored. The spectral expansion of the twisted
trace formula looks like

T̃Gn(fn) =
∑
Π′

t̃r Π′(fn) +
1

2

∑
Π′M

t̃r (Ind(Π′M ))(fn) + (other terms).

The first (resp. second) sum runs over θ-stable automorphic representations of Π′ of GLn(AF )
(resp. Π′M of (GLn−1 × GL1)(AF )). The twisted trace with respect to θ is denoted by t̃r .
When ~n = (n− 1, 1),

T̃Gn−1,1(fn−1,1) =
∑
Π′H

t̃r Π′H(fn−1,1) + (other terms).

What (3.4) means for us is essentially (ignoring the character twist there)

t̃r (Π′H)∞,p((fn−1,1)∞,p) = t̃r Ind((Π′H)∞,p)((fn)∞,p).

The identity holds outside p and ∞ because everything is the usual transfer along the way
outside p,∞ but there are some deviations from the usual transfer at p and ∞, as we have
seen in the stabilization process.

On the other hand, the base change identities in Proposition 2.2 allows to rewrite the left
hand side of (6.9) as

tr (ϕ|Hc(Ig
(h),Lξ)) = tr ((fn)∞,pϕ′p|BCp(Hc(Ig

(h),Lξ))) (6.10)

where BCp is the map applying local base change away from p and ∞.
Now we look back at the situation of §4.3 and suppose that m is odd. We can separate the

Π∞,p-part from the two sides of (6.9) (with (6.10) applied to the left hand side) by varying
test functions outside p and ∞. Then only the Π′ = Π term survives on the right hand side.
(For this we appeal to the strong multiplicity one theorem of Jacquet and Shalika.) Hence

tr (ϕ′p|Hc(Ig
(h),Lξ){Π∞,p}) ∼ t̃r Πp(f

n
p ) · t̃r Π∞(fn∞).

Propositions 2.2.(2) and 6.7.(2) tell us that

t̃r Πp(f
n
p ) = trπp(φ

n
p ) = tr Red(h)

n (ϕ′p) (6.11)

and t̃r Π∞(fn∞) turns out to be a constant (depending only on ξ). Hence we obtain

tr (ϕ′p|Hc(Ig
(h),Lξ){Π∞,p}) ∼ tr Red(h)

n (ϕ′p).

Since ϕ′p can be chosen to be an arbitrary acceptable function, Lemma 6.4 concludes the
proof.
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It remains to treat the case when m is even. Again we can separate the Π∞,p-part from
the two sides of (6.9) and notice that only the terms for Π′M = ΠM and Π′H = ΠM survive.
Hence

tr (ϕ′p|Hc(Ig
(h),Lξ){Π∞,p}) ∼

1

2
t̃r Ind(ΠM,p)(f

n
p ) · t̃r Ind(ΠM,∞)(fn∞)

+
1

2
t̃r ΠM,p(f

n−1,1
p ) · t̃r ΠM,∞(fn−1,1

∞ )

By applying Propositions 2.2.(2) and 6.7.(2) to the second term at p, we obtain

t̃r ΠM,p(f
n−1,1
p ) = trπH,p(φ

n−1,1
p ) = tr Red

(h)
n−1,1(ϕ′p).

One can compute that t̃r Ind(ΠM,∞)(fn∞) and t̃r ΠM,∞(fn−1,1
∞ ) are constants which coincide

up to ±1. Assign e2 = 1 if they are the same and e2 = −1 otherwise. By the above identity
and (6.11),

tr (ϕ′p|Hc(Ig
(h),Lξ){Π∞,p}) ∼

1

2
tr Red(h)

n (ϕ′p) +
1

2
e2 · tr Red

(h)
n−1,1(ϕ′p).

The proof is finished by Lemma 6.4 as in the case when m is odd.
�

Remark 6.12. In work of Harris-Taylor, where no endoscopy arises, Theorem [HT01, Thm
V.5.4] corresponds to part (1) of Theorem 6.11. In fact their theorem takes the form

Hc(Ig
(h),Lξ) = (const.) · Red(h)

n H(Sh,Lξ) (6.12)

and is justified by the comparison of the trace formulas for Hc(Ig
(h),Lξ) and H(Sh,Lξ). (For

the latter, the Arthur-Selberg trace formula suffices as the Galois action is to be forgotten in
the identity.) As long as no endoscopy occurs, (6.12) generalizes ([Shi12, Thm 6.7]). In the
presence of endoscopy, a simple identity like (6.12) is not expected and the type of argument
in the above proof seems to be more effective.

7. Proof of Theorem 4.6 under hypotheses

In the remainder we finish the proof of Theorem 4.6 under running hypotheses, namely
Hypotheses 2.1, 4.2, 4.5, 4.7 and 4.9). This achieves the goal of the article: it was already
explained how Theorem 4.6 implies Theorem 1.3 under the same running hypotheses, and
§4.5 gave a short outline and references for a strategy to get rid of those assumptions.

The main ingredients of this section are the computation of Mant
(h)
n (§5.4), Corollary

5.14 and Theorem 6.11. As in the previous sections the argument will be sketched while
overlooking some delicate points. A precise treatment can be found in section 6.2 of [Shi11],
especially the proof of Theorem 6.4 there.

7.1. In case m is odd.

Lemma 7.1. ([Shi11, Prop 2.3]) For every πp ∈ Irr(G(Qp)), the following holds in Groth(G(Qp)×
WFw).

n−1∑
h=0

Mant(h)
n (Red(h)

n (πp)) = πp ⊗LFw(Π1
w) (7.1)
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Idea of proof. By taking the explicit description of Mant
(h)
n and Red

(h)
n (§5.4, §6.3) as inputs,

one proves the lemma by computations with representations of p-adic general linear groups.
We omit the detail, but see Example 7.2 below. �

Corollary 5.14 and Theorem 6.11 show that

πp ⊗R(Π)|WFw
∼

n−1∑
h=0

Mant(h)
n (Red(h)

n (Π1
w)).

The above lemma tells us that the latter is equal to πp ⊗LFw(Π1
w). Hence the first part of

Theorem 4.6 holds.

Example 7.2. We illustrate the proof of Lemma 7.1 in a particular case. Let

πp = πp,0 ⊗ (⊗x|uπx) (7.2)

where πw = πw,1 ⊕ πw,2 is as in Example 6.9. According to Theorems 5.6 and 5.7,

Mant(1)
n (LJ(πw,1)⊗ πw,2) = IndGLn

GLn−1,1
(Mant

(0)
n−1(πw,1)⊗ πw,2) (7.3)

= (πw,1 � πw,2)⊗LFw(πw,1).

Similarly

Mant(n−1)
n (πw,2 ⊗ πw,1) = (πw,1 � πw,2)⊗LFw(πw,2). (7.4)

In light of (6.4), the left hand side of (7.1) is computed as

πp,0 ⊗
(

Mant(1)
n (LJ(πw,1)⊗ πw,2) + Mant(n−1)

n (πw,2 ⊗ πw,1)
)
⊗ (⊗x|uπx)

= πp ⊗ (LFw(πw,1) + LFw(πw,2)) = πp ⊗LFw(πw,1 � πw,2)

= πp ⊗LFw(πw) = πp ⊗LFw(Π1
w).

The last identity uses Π1
w ' πw, which follows from the fact that Πp = BC(πp) (cf. §2.3.(ii)).

7.2. In case m is even.

Lemma 7.3. For every πH,p ∈ Irr(Gn−1,1(Qp)), the following holds in Groth(G(Qp)×WFw).

n−1∑
h=0

Mant(h)
n (Red

(h)
n−1,1(πH,p)) = πp ⊗ (LFw(Π1,w)−LFw(Π2,w)) (7.5)

Proof. The proof is contained in the proof of [Shi11, Thm 6.4.(ii)]. Also see Example 7.5
below. �

Remark 7.4. This is an amazing identity. Lemmas 7.1 and 7.3 demonstrate how the repre-
sentations in different Newton polygon strata add up to the expected Galois representation,
even in the endoscopic case.

Again by Corollary 5.14 and Theorem 6.11,

πp ⊗R(Π)|WFw
∼ 1

2

n−1∑
h=0

Mant(h)
n

(
Red(h)

n (πp)± Red
(h)
n−1,1(πH,p)

)
,
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where the sign depends on e1 and e2 in the cited theorem. The equality (6.6) and Lemmas
7.1 and 7.3 identify the right hand side with

πp ⊗
(

1

2
(LFw(Π1,w � Π2,w)± (LFw(Π1,w)−LFw(Π2,w)))

)
= πp ⊗

(
1

2
(LFw(Π1,w) + LFw(Π2,w)± (LFw(Π1,w)−LFw(Π2,w)))

)
= πp ⊗LFw(Π1,w) or πp ⊗LFw(Π2,w)

depending on the sign. This concludes the proof of Theorem 4.6 in the second case.

Example 7.5. Lemma 7.3 can be shown without pain in a particular case as follows. Take
πp as in (7.2) where πw is as in the setting of Example 6.9. Recall that πH,p was given at the
start of §6.4. If we write

πH,p = πH,p,0 ⊗ πH,w ⊗ (⊗x|u,x6=wπH,x,1 ⊗ πH,x,2)

then

πx = πH,x,1 � πH,x,2, ∀x|u.
Now the left hand side of (7.5) is identified with the following, with help of (6.3), (6.5), (7.3)
and (7.4).

πp,0 ⊗
(

Mant(1)
n (LJ(πw,1)⊗ πw,2)−Mant(n−1)

n (πw,2 ⊗ πw,1)
)
⊗ (⊗x|uπx)

= πp ⊗ (LFw(πw,1)−LFw(πw,2)) .
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