
ON THE COHOMOLOGICAL BASE CHANGE FOR UNITARY SIMILITUDE

GROUPS (APPENDIX TO WUSHI GOLDRING’S PAPER)

SUG WOO SHIN

1. Appendix

1 This appendix is devoted to the proof of Theorem 1.1 on the automorphic base change for unitary
similitude groups. The relationship with other results in the literature is explained between Theorem 1.1
and Remark 1.2. We wish to thank Wushi Goldring and Sophie Morel for their valuable comments on this
appendix.

Let F be a CM field and F+ its maximal totally real subfield so that [F : F+] = 2. Let n ≥ 1. Let G1

be a unitary group over F+ associated to a hermitian form on n-dimensional F -vector space. Let G be the
associated unitary similitude group over Q with multipliers in Q× so that the multiplier map G→ Gm has
kernel ResF+/QG

1. We assume that

• F contains an imaginary quadratic subfield E (so that F = EF+).

However we do not assume that G is quasi-split at all finite places, nor do we impose any condition on
G(R). Let (ξ, V ) be an irreducible algebraic representation of G over C. Let π be a discrete automorphic
representation of G(A) such that π∞ is ξ-cohomological. The latter means that there exists j ≥ 0 such that

Hj(g,K, π∞ ⊗ ξ) 6= 0. (1.1)

Let Sram be the set of finite places v of Q such that either G or π is ramified at v. Let G := ResE/QG.
There is an L-embedding

BC : LG = Ĝo Gal(Q/Q)→ LG ' (Ĝ× Ĝ) o Gal(Q/Q) (1.2)

given by g o σ 7→ (g, g) o σ. The corresponding functoriality is usually referred to as (automorphic) base
change. Although the global base change is expected to exist unconditionally, [Lab, Cor 5.3] and [Mor10,
Prop 8.5.3] seem to be the best results available so far. Our modest goal is to make a small improvement
on their work so that Goldring’s result applies without unnecessary restriction.

The global base change is believed to be compatible with local base change, which can be constructed
explicitly and unconditionally at almost all places. There are two cases to consider.

• At finite places outside Sram: According to the unramified Langlands correspondence, (1.2) induces

BCSram,∞ : Irrur(G(ASram,∞))→ Irrur(G(ASram,∞))

as well as a C-algebra morphism BC∗ : H ur(G(ASram,∞))→H ur(G(ASram,∞)) such that

trπ(BC∗φ) = trBCSram,∞(π)(φ), ∀π ∈ Irrur(G(ASram,∞)), φ ∈H ur(G(ASram,∞)). (1.3)

• At a finite place v split in E: Using the isomorphism G(Qv) ' G(Qv)×G(Qv), define

BCv : Irr(G(Qv))→ Irr(G(Qv))

by BCv(π) := π ⊗ π. There is a corresponding algebra morphism BC∗ : H (G(Qv))→H (G(Qv))
such that

trπ(BC∗φ) = trBCSram,∞(π)(φ), ∀π ∈ Irr(G(Qv)), φ ∈H (G(Qv))). (1.4)

The main theorem of appendix is the following. Let χ(·) signify the central character of a representation.

Theorem 1.1. For π and Sram as above, there exists an automorphic representation Π = ψ⊗Π1 of G(A) '
GL1(AE)×GLn(AF ) such that

1The author’s work was supported by The National Science Foundation during his stay at the Institute for Advanced Study
under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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(i) ΠSram,∞ ' BCSram,∞(πSram,∞),
(ii) Πv ' BCv(πv) for any place v ∈ Sram which splits in E,

(iii) The infinitesimal character of Π∞ is the same as that of (ξ ⊗ ξ)∨ of G(C) ' G(C)×G(C).
(iv) χΠ1 |A×E = ψc/ψ and (Π1)∨ ' Π1 ◦ c.
(v) Π1 is isomorphic to an isobaric sum Π1 � · · · � Πr for some r ≥ 1 and discrete automorphic

representations Πi such that Π∨i ' Πi ◦ c.

The theorem is due to Labesse ([Lab, Cor 5.3]) if the following two conditions hold.

• ξ has regular highest weight or G(R) is compact modulo center,
• [F+ : Q] ≥ 2.

(Labesse makes it clear in his footnote 1 that the second condition can be removed with additional work.
He works with unitary groups rather than their similitude groups but it should not be difficult to carry
over his results.) In the other cases his method does not apply as his condition (*) in the corollary 5.3 is
hardly satisfied. The failure of (*) causes the trouble that the coefficients in a certain sum are no longer
nonnegative and have alternating signs. His argument relies on the nonvanishing of that sum, which is not
obvious when there are alternating signs.

The purity of weight for intersection cohomology is what enables us to get around the above difficulty
coming from alternating signs. This strategy (already used by [CL99, Thm A.4.2, Prop A.4.3], based on a
result of Kottwitz for a simpler Shimura variety) was adopted in [Mor10, Cor 8.5.3], which led to the proof
of Theorem 1.1 modulo the fact that it proves (i) and (ii) outside an unspecified finite set of finite primes
unless G is quasi-split over Q. (Strictly speaking, Morel works in the setting F+ = Q. However her method
yields a similar result without that assumption. On the other hand, see [Mor10, Rem 8.5.4] for a case when
the unspecified set can be specified.) Thus our contribution may be seen as getting rid of the unspecified set
from the picture. For this it could have sufficed to supply necessary changes and complements to Morel’s
proof. However, for the reader’s convenience and completeness of the argument, we decided to rewrite the
proof, sketchy as it may sometimes be. No originality is claimed on our part.

Remark 1.2. Eventually the above theorem should be a consequence of the most general base change result
for G, which would follow from a full stabilization of the (twisted) invariant trace formula for G and G and
their endoscopic groups, with all the complicated terms. As such a general result would have to await some
years to come,2 we find it reasonable to prove here a simple case, namely Theorem 1.1, especially when it
has an immediate arithmetic application.

1.1. Proof of Theorem 1.1. We will freely adopt the notation and terminology of [Mor10]. (The reader
may refer to the index at the end of that book.) Occasionally we adopt a few things from [Shi11] as well. The
symbols ξ and V will be used interchangeably. (The former is used in [Shi11] while the latter in [Mor10].)
One notable difference from [Mor10] is our selection of notation for groups, which is as follows:

• G is a unitary similitude group as above, and H denotes its elliptic endoscopic group.
• G := ResE/QG×Q E, H := ResE/QH ×Q E.

(Compare this with the two different uses of G and H in [Mor10]. For instance see §2.3 and §8.4 in that
book.)

Choose a Hecke character ω : A×E/E
× → C× whose restriction to A×/Q× is the quadratic character

associated to the extension E/Q via class field theory. Let Ram(ω) be the set of finite primes v such that
ω is ramified at a place dividing v. We may and will arrange that every prime v in Ram(ω) splits in E. For
each elliptic endoscopic group H of G, one uses ω to fix an L-embedding η : LH → LG as in [Shi11, §3.2].
Then η is unramified outside S ∪ Ram(ω).

Let p be a prime outside Sram ∪Ram(ω) and ℘ a prime of F0 dividing p. Put S := Sram ∪Ram(ω) ∪ {p}.
As G is unramified at p, it has a smooth reductive integral model over Zp. Choose a place λ not divided by
p. For i ≥ 0, define a λ-adic vector space

H i(Sh, V ) := lim−→
K

H i(MK(G,X )∗Q, IC
KVQ),

2At the time of press Chung Pang Mok released a paper extending Arthur’s endoscopic classification for automorphic repre-
sentations to quasi-split unitary groups. This represents a significant step.
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where K = KpG(Zp), and Kp runs over all sufficiently small open compact subgroups Kp of G(Ap,∞). Define

W+
λ :=

∑
2|i

H i(Sh, V ), W−λ :=
∑
2-i

H i(Sh, V ), Wλ = W+
λ −W

−
λ ,

which are considered in the Grothendieck group of H(G(Ap,∞)) × H(G(Qp), G(Zp)) × FrobZ
℘-modules (cf.

[Mor10, Rem 6.3.3]). In view of Zucker’s conjecture (proved by Looijenga, Saper-Stern and Looijenga-
Rapoport) and the Matsushima-Borel-Casselman’s formula, (1.1) implies that Hj(Sh, V ) 6= 0. In particular,

W+
λ 6= 0 or W−λ 6= 0. (1.5)

It is primarily due to Beilinson, Deligne and Pink that ICKVQ is pure of some weight and the following is

satisfied (cf. [Mor10, pp.112-113]; ICKVQ is pure of weight 0 there due to the assumption of the assumption

that V is pure of weight 0, but we do not impose it here).

Lemma 1.3. There exists some integer a ∈ Z such that for every i ≥ 0, every eigenvalue α of Frob℘ on
H i(Sh, V ) is a Weil i+ a-number.

Corollary 6.3.2, Remark 6.3.3 and Proposition 8.3.1 of [Mor10] state that

Proposition 1.4. Let f∞ = fp,∞1G(Zp) with fp,∞ ∈ H(G(Ap,∞)).

(i) One can construct a function fH = (fH)p,∞fH,(j)fHξ ∈ C∞c (H(A), ξ−1
H ) for each elliptic endoscopic

triple (H, s, η0) such that for every sufficiently large integer j > 0,

tr (Φj
℘f
∞|Wλ) =

∑
(H,s,η0)∈E(G)

ι(G,H)STH(fH,(j)).

(ii) Suppose that fH ∈ C∞c (H(A), ξ−1
H ) and φH ∈ C∞c (H0(A), ξ−1

H ) are associated in the sense of [Lab99,

3.2] and that fH∞ and φH∞ are as in [Mor10, Prop 8.3.1]. Then there is a constant c ∈ R× (independent
of φH and fH) such that

TH(φH) = c · STH(fH).

Now we are ready to start the proof. In the notation of diagram of [Shi11, (4.18)] (exception: η is used
instead of η̃ to conform to the notation of [Mor10]), we have commutative diagrams

H ur(G(AS,∞))
ζ̃∗ //

BC∗

��

H ur(H(AS,∞))

BC∗

��

Irrur(G(AS,∞)) Irrur(H(AS,∞))
ζ̃∗oo

H ur(G(AS,∞))
η∗

// H ur(H(AS,∞)) Irrur(G(AS,∞))

BC

OO

Irrur(H(AS,∞))η∗
oo

BC

OO
(1.6)

and similarly over AS,p,∞. Choose any φS,p,∞ ∈ Hur(G(AS,p,∞)). Put (φH)S,p,∞ := ζ̃∗(φS,p,∞), fS,p,∞ :=
BC∗(φS,p,∞) and (fH)S,p,∞ := η∗(fS,p,∞). Take φp, φ

H
p , fp and fHp to be the unit elements in the cor-

responding unramified Hecke algebras. At S, choose fS and let fHS be its transfer. Make a hypothesis,

depending on fS , that there exists φS (resp. φHS ) whose BC-transfer is fS (resp. fHS ). (This assumption will

be satisfied by our later choice of fS .) Since p splits in E, one can find a function φ
H,(j)
p such that f

H,(j)
p

and φ
H,(j)
p are associated in the sense of Labesse. At infinity, by construction ([Kot90, §7], see also [Mor10,

6.2]) fHξ is a finite linear combination of Euler-Poincaré functions. Hence there exists φHξ such that fHξ and

φHξ are associated ([Mor10, Cor 8.1.11]).

Applying (1.3) at finite places away from S one obtains

tr (Φj
℘f
∞|Wλ) = tr (Φj

℘fSφ
S,∞|BCS,∞(Wλ)).

On the other hand the spectral expansion of TH(φH) can be put in the form (cf. [Mor10, Prop 8.2.3] or
[Art88, Thm 7.1])

TH(φH) =
∑
ΠH

aHΠH
(fS , ξ)tr ΠS,p,∞

H ((φH)S,p,∞) (1.7)
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where ΠH runs over automorphic representations of H(A) which are θ-stable and θ-discrete (but not neces-
sarily discrete). Here we wrote aHΠH

(fS , j, ξ) for

adisc(ΠH) · tr (ΠH,p(φ
H,(j)
p )AΠH,p

) · tr (ΠH,S(φHS )AΠH,S
) · tr (ΠH,∞(φHξ )AΠH,∞). (1.8)

Note that an intertwining operator for θ is not needed in the expression tr ΠS,∞
H ((φH)S,∞) of (1.7) because

it does not matter for unramified representations up to sign (due to a normalization of the intertwining
operator). (See the paragraph above (4.5) in [Shi11].)

We may use (1.6) to rewrite as

TH(φH) =
∑
ΠH

aHΠH
(fS , j, ξ) · tr ζ̃∗(ΠS,p,∞

H )(φS,p,∞).

Hence Proposition 1.4 tells us that tr (Φj
℘fSφ

S,∞|BCS,∞(Wλ)) equals∑
(H,s,η0)

∑
ΠH

ι(G,H)aHΠH
(fS , j, ξ) · tr ζ̃∗(ΠS,p,∞

H )(φS,p,∞).

When the functions at S ∪ {p,∞} are fixed, there are only finitely many terms contributing to both sides
of the formula as the choice of φS,p,∞ varies (and the other functions outside S ∪ {p,∞} vary accordingly).
By using the linear independence of Hur(G(AS,p,∞))-modules, we deduce

tr (Φj
℘fS |Wλ{ΠS,p,∞}) =

∑
(H,s,η0)

∑
ΠH

ζ̃∗(Π
S,p,∞
H

)'BC(πS,p,∞)

ι(G,H)aHΠH
(fS , j, ξ). (1.9)

Claim. The left hand side of (1.9) does not vanish for some j � 0 and fS . Moreover this holds for fS such
that the following holds: for every H, any endoscopic transfer fHS of fS is in the image of the BC-transfer

from H to H. (Namely fHS is a BC-transfer of some φHS .)

Proof of claim. For the first assertion it suffices to show that

tr (fS |Wλ{ΠS,∞}) = tr (fS |W+
λ {Π

S,∞})− tr (fS |(W−λ {Π
S,∞}) ∈ Groth(FrobZ

℘)⊗Z C

is nontrivial. Thanks to purity of weight, it is enough to show that tr (fS |W ?
λ{ΠS,∞}) 6= 0 for either

? = + or ? = −. Take fS = 1KS for an open compact subgroup KS ⊂ G(QS). Since π is automorphic
and cohomological, Matsushima-type formula for L2-cohomology (see [Art96, §2] for instance) implies that
Hj(Sh, V ) contains π as a G(A∞)-submodule where j is as in (1.1). Hence tr (fS |W ?

λ{ΠS,∞}) 6= 0 for ? = +
(resp. ? = −) when j is even (resp. odd), if KS is small enough such that πS has a nonzero KS-fixed vector.

It remains to take care of the second requirement of the claim. This is satisfied if KS is sufficiently small
by the lemma 8.4.1.(i) of [Mor10].

�

The claim implies that the right hand side of (1.9) is nonzero. In particular there exists a θ-stable and

θ-discrete automorphic representation ΠH such that ζ̃∗(Π
S,p,∞
H ) ' BC(πS,p,∞). Hence Π := ζ̃∗(ΠH), defined

to be a character twist of n-ind
G(A)
H(A)ΠH (see [Shi11, §4.4] for the precise definition), is automorphic and

satisfies (iv) of the theorem, which amounts to the θ-stable property of Π. A fortiori assertion (v) follows
easily from the construction of Π and the fact that ΠH is θ-stable and θ-discrete. Moreover

ΠS,p,∞ ' BCS,p,∞(πS,p,∞). (1.10)

The character identities at v ∈ S obtained from (1.9) have the form

tr (φS |aπS + · · · ) =
∑
H

∑
i∈IH

bitr (ζ̃∗(Π
i
H)(fS)A

ζ̃∗(ΠiH)
)

where a and bi are nonzero complex numbers and IH is a finite index set parametrizing Πi
H such that

BC(πS,p,∞) = (Πi
H)S,p,∞ and the summand of (1.9) is nonzero. The base change character identity at

split places (cf. [Shi11, 4.2]) shows that there exists Πi
H (i.e. on the right hand side of (1.9)) such that

BCv(πv) = Πv for every v ∈ S split in E. So we could have defined Π by using that Πi
H. Then condition

(ii) holds. Moreover, the coefficient for ΠH = Πi
H in (1.9) being nonzero implies, in view of (1.8), that ΠH,p

is unramified at p, since φ
H,(j)
p belongs to the unramified Hecke algebra.
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Recall that S = Sram ∪ Ram($) and every v ∈ Ram($) splits in E. Hence (1.10) is improved to

ΠSram,p,∞ ' BCSram,p,∞(πSram,p,∞). (1.11)

For (iii), one uses the trace computation of Euler-Poincaré functions and their twisted analogues at infinity.
A careful book keeping of their infinitesimal characters yields the result.

It remains to improve on (1.11) to include the place p. The key point is that the choice of p, made at the
start of the proof, was auxiliary. Choose any other prime p′ outside Sram ∪ Ram(ω) which splits in E and

repeat the above argument. Then we obtain Π′ satisfying (Π′)Sram,p′,∞ ' BCSram,p′,∞(πSram,p′,∞) as well as
(ii), (iii) and (iv). Applying Jacquet-Shalika’s strong multiplicity one to Π and Π′, we deduce that Πp and Π′p
appear as subquotients of the same parabolic induction. On the other hand, Πp and Π′p are both unramified.
Indeed, we have seen this for Πp above, and Π′p ' BC(πp) is unramified as πp is. Therefore, Πp ' Π′p since
there exists at most one unramified representation in a parabolic induction. Hence Πp ' BC(πp) as desired.
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