
ABELIAN VARIETIES AND WEIL REPRESENTATIONS

SUG WOO SHIN

Abstract. The main goal of this article is to construct and study a family of Weil representations over
an arbitrary locally noetherian scheme, without restriction on characteristic. The key point is to recast the
classical theory in the scheme-theoretic setting. As in work of Mumford, Moret-Bailly and others, a Heisenberg
group (scheme) and its representation can be naturally constructed from a pair of an abelian scheme and a
nondegenerate line bundle, replacing the role of a symplectic vector space. Once enough is understood about
the Heisenberg group and its representations (e.g. the analogue of the Stone Von-Neumann theorem), it is
not difficult to produce the Weil representation of a metaplectic group (functor) from them. As an interesting

consequence (when the base scheme is SpecFp), we obtain the new notion of mod p Weil representations of p-

adic metaplectic groups on Fp-vector spaces. The mod pWeil representations admit an alternative construction
starting from a p-divisible group with a symplectic pairing.

We have been motivated by a few possible applications, including a conjectural mod p theta correspondence
for p-adic reductive groups and a geometric approach to the (classical) theta correspondence.

1. Introduction

1 For a quick overview of contents and results, see §1.8.

1.1. Motivation from theta correspondence. The Heisenberg groups, their representations and the
Weil representations (also called oscillator or metaplectic representations) play interesting roles in a wide
range of mathematics. In the context of number theory and representation theory, they give rise to the
theta correspondence, which enables us to relate automorphic forms or representations of one connected
reductive group (or its covering group) to those of another group. It not only helps to establish instances
of the Langlands functoriality, but also reveals deep information about arithmetic invariants, and as such
has led to numerous profound applications. The theta correspondence has been developed very well in both
local and global contexts (namely, for p-adic/real groups and adelic groups, respectively), though there are
still many open questions, for representations on vector spaces over C (or an algebraically closed field of
characteristic 0).

On the other hand, there have been growing interest in the representations of p-adic reductive groups on
vector spaces over Fl (l ̸= p) and Fp (as well as representations with p-adic analytic structure) in connection
with Galois theory, as part of the extended Langlands philosophy under the motto “mod l, mod p and p-adic
local Langlands program”. From the global perspective, one seeks for the theta correspondence for mod p or
p-adic automorphic forms.2 Thus it is a very natural question to ask whether there is a reasonable theory of
local and global theta correspondence for representations on Fl and Fp vector spaces, and more ambitiously
for representations of p-adic analytic nature.

In the classical theory, the following basic ingredients are needed to formulate the local theta correspon-
dence for p-adic groups. The global setup is similar. (Unfortunately the exceptional theta correspondence
is not going to be considered in our work.)

(i) a p-adic Heisenberg group arising from a symplectic vector space (V, ⟨·, ·⟩) over Qp,
(ii) Stone Von Neumann theorem and Schur’s lemma for representations of the Heisenberg group,
(iii) the Weil representation of the p-adic metaplectic group Mp(V, ⟨·, ·⟩), and
(iv) reductive dual pairs in Sp(V, ⟨·, ·⟩).
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It is natural to try to extend (i)-(iv) to a more general setting. The current paper will do this for (i)-(iii),
leaving (iv) (and a conjectural mod p theta correspondence) to a sequel ([Shi]).

1.2. Mod p Weil representations, prelude. Let us briefly point out some difficulty when trying to
construct the Weil representation of a p-adic metaplectic group on an Fp-vector space, which was not done
before but is a special case of our results. There would be two naive approaches. If one tries to define
an Fp-version of a classical p-adic Heisenberg group (e.g. [MVW87, Ch 2]), by replacing the role of C by

Fp, it is impossible to obtain a reasonable group, letting alone (ii) above. For instance, every continuous

additive character Qp → F×p is trivial. Another approach would be to take an explicit (Schrödinger or lattice)

model for the Weil representation and switch the coefficient from C to Fp. Then the problem is that the
group actions are no longer well defined. In the Schrödinger model, some group action is given by Fourier
transform, which cannot be defined for Fp-valued functions on a p-adic group. (See Remark 7.9 for a related
discussion.) In the lattice model, the formula involves p in the denominator, which no longer makes sense.
It is not immediately clear how to fix these problems unless new ideas are introduced.

1.3. Geometric construction via Mumford’s theory. We remedy the situation by giving a uniform
geometric construction of (i)-(iii) regardless of the characteristic of the coefficient field, starting from an
abelian scheme A→ S and a nondegenerate line bundle L instead of a symplectic vector space. In the local
case, the effect is roughly to replace (V, ⟨·, ·⟩) by the rational p-adic Tate module VpA of A with L-Weil
pairing. (Here VpA is regarded as an ind-group scheme as explained in §3.1.) The construction makes sense
even in characteristic p; it just behaves differently. (For an analogy, think about A[p∞] in characteristic
p and away from p.) Actually (i) and (ii) are basically treated in Mumford’s theory of abelian varieties
and theta functions. (As the results are often not in the desired generality in the literature, we fill out the
gaps along the way. See the next paragraph.) Once (i) and (ii) are done, (iii) is obtained without much
difficulty. The theory is so flexible as to allow the construction of the objects (i)-(iii) over an arbitrary locally
noetherian base scheme S.

Early part (§§2-4) of our paper follows the approach of [MNN07, §§3-5] and [MB85, §5] closely, while
adapting several facts in the classical theory of theta correspondence (e.g. [MVW87]) to the geometric
setting. In [MNN07, §§3-5] the Heisenberg groups and their representations are studied mostly over an
(algebraically closed) field, and the scheme-theoretic approach in the relative setting is only sketched on a
few pages. Moret-Bailly consistently works in the relative setting but the theory is treated only at finite
level. Our contribution is to carry out the construction and justify necessary facts (e.g. Theorems 1.1 and
1.2) at infinite level (in a p-adic or a finite adelic limit). As a byproduct we obtain the (dual) lattice model
over a general locally noetherian base scheme and deduce the restriction property of Heisenberg and Weil
representations (§4.5, Lemma 5.10) from the Künneth formula. (It turns out that lattice models always
exist but Schrödinger models are often missing.) We can also make sense of matrix coefficients and dual
representations in this generality. It is hoped that the geometric interpretation will shed light on some facts
well known by other methods.

Our work is definitely not the first attempt toward a geometric construction of Weil representations.
This was considered in an unpublished manuscript of Harris ([Har87]). (It appears that the manuscript
was planned to include an application to some cases of the symplectic-orthogonal theta correspondence,
but that part was not written to our knowledge.) His approach to Heisenberg groups and representations
closely follows that of Mumford’s papers ([Mum66], [Mum67a], [Mum67b]) and works only in characteristic
zero (even though ideas are often generalizable). Hence his setting is simpler than ours and many scheme-
theoretic issues do not arise there. His innovation is to construct a Weil representation in the way that it is
closely tied with the geometry of Siegel modular varieties. On the other hand our construction is so general
that it applies to almost any families of abelian varieties, but when specialized to the universal abelian
scheme over a Siegel modular variety, the two constructions of Weil representations by us and by Harris are
orthogonal in some sense.

From a different perspective and motivation, [GH07] constructs classical Weil representations for finite
metaplectic groups as perverse sheaves (Deligne’s idea), and the function field analogue is dealt with in
[Lys06], [LL09], for instance. Their constructions are quite different from ours and do not seem to carry
over to the number field case. In the converse direction, our construction does not work in the function field
case either. The basic reason is that the p-adic symplectic (or metaplectic) group in our setting appears
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as the automorphism group of a rational p-adic Tate module, which is a vector space over Qp rather than
something like Fp((t)).

In our setup symplectic groups and metaplectic groups are defined as group functors varying over the
base. By introducing a level structure we can trivialize the rational Tate module (ind-scheme), which has
the effect that those group functors may be identified with constant families of groups. When the base is
SpecC we precisely recover the classical notion of (i)-(iv) from our construction.

It is worth emphasizing that we have completely avoided the use of harmonic analysis. This is only natural
for our method to work in all characteristics uniformly. In this regard, even when specialized to the classical
case (over SpecC), our construction of the Weil representation is different from the classical treatment (e.g.
[MVW87]).

As the reader can see, one of our crucial observations was to realize that Mumford’s theory had the key
to the main question raised in §1.1. This may appear to be a simple idea, but when we consulted a few
experts on theta correspondence, we learned that the idea was largely unnoticed though a similar idea must
have been conceived by some experts (e.g. [Har87]).

1.4. Mod p Weil representations. To study finite adelic objects, one may concentrate on one place at a
time. So let us restrict ourselves to p-adic Heisenberg groups and p-adic metaplectic groups. By the Stone-
Von Neumann theorem (more precisely its analogue in our setting), a family of Heisenberg representations,
as well as that of Weil representations, tends to be a constant family (modulo the line bundle pulled back
from the base). However things do change when moving between points of different residue characteristic.
Unsurprisingly new phenomena essentially occur in characteristic p. (This is related to the fact that A[p∞]
is étale away from characteristic p.) It is worth noting that the Heisenberg and metaplectic groups vary
significantly in characteristic p as the isogeny type of A[p∞] varies over fibers. On the other hand, over a base
ring like Zp, a classical Weil representation (over the generic fiber) specializes to a mod pWeil representation
(§7.4).

In view of these new phenomena, we feel that it is fundamental to understand mod pWeil representations,
namely when the base is SpecFp. In order to make their local nature more transparent, we present an
alternative construction of mod p Weil representations using p-divisible groups instead of abelian schemes
(§6.4). Then lattice and Schrödinger models are studied in §7.2 and §7.3. There remains a question whether
the Schrödinger model exists in the non-ordinary case (see the paragraph below Proposition 7.10). Another
interesting question about the p-adic metaplectic group itself is whether it arises from a double covering of
the p-adic symplectic group (see the questions in §5.4).

1.5. Weil representations of real metaplectic groups. In this paper real Heisenberg groups and real
metaplectic groups do not show up. This is not defective but quite natural if we want a uniform theory which
works in positive characteristics, as real groups are not expected to have nice representations on Fp-vector
spaces. In the special case where the base is SpecC, it is possible to extend the Heisenberg representations
to real places (thereby one can define the real Weil representation), as explained in [MNN07, §5, App I] (also
see Proposition 3.2 of the book).

1.6. Summary of main results. Let A be an abelian scheme over a locally noetherian scheme S. Let
f : L → A be a symmetric nondegenerate line bundle of index i over A (0 ≤ i ≤ dimS A). Following

Mumford, we construct the adelic Heisenberg group Ĝ(L) = Ĝ(A,L) fitting in a short exact sequence

1 → Gm → Ĝ(L) → V A → 1. A weight 1 representation of Ĝ(L) is defined to be a quasi-coherent OS-
module equipped with Ĝ(L)-action such that λ ∈ Gm acts by λ. An (adelic) Heisenberg representation

of Ĝ(L) is an irreducible admissible and smooth Ĝ(L)-representation of weight 1 which does not vanish
anywhere on S. (Admissibility and smoothness are defined in Definitions 4.7 and 4.8.)

Theorem 1.1. (Stone Von-Neumann Theorem + Schur’s lemma, Theorem 4.15)

For any Heisenberg representation H of Ĝ(L), there is an equivalence of categories(
weight 1 smooth

Ĝ(L)-representations

)
∼→

(
quasi-coherent
OS-modules

)
given byM 7→ HomĜ(L)(H,M) and N 7→ H⊗N , which are quasi-inverses of each other.
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Theorem 1.2. (construction of Heisenberg representations, Corollary 4.14)

The OS-module V̂(L) := lim
−→n

Rif∗(n
∗L) is a Heisenberg representation of Ĝ(L).

Theorem 1.3. (construction of Weil representations, §5.1)
For any Heisenberg representation H of Ĝ(L), we can construct a “metaplectic” group functor Mp(V A, êL)

sitting in a sequence of group functors on (Sch/S)

1→ Gm → Mp(V A, êL)→ Sp(V A, êL)→ 1 (1.1)

which is an exact sequence of groups upon evaluation at any locally noetherian S-scheme.

Theorem 1.4. (comparison with classical theory, §6.1)
In case S = SpecC, a choice of level structure for V A equipped with L-Weil pairing allows one to identify

Ĝ(L), V̂(L), Sp(V A, êL) and Mp(V A, êL) with the following objects in the classical finite adelic setting: the
Heisenberg group, Heisenberg representation, symplectic group and metaplectic group, respectively. (Here the
metaplectic group is a central extension of the symplectic group by C× as can be seen from (1.1).)

The preceding theorems are also valid in the p-adic setting instead of the finite adelic setting. (In particular
take limits over powers of p rather than all positive integers, and use VpA in place of V A.) Moreover the
analogous construction works for (Σ, ⟨·, ·⟩) in place of (A,L), where Σ is a p-divisible group over S with a
symplectic pairing ⟨·, ·⟩, granted that a Heisenberg representation exists for the Heisenberg group associated
with (Σ, ⟨·, ·⟩). This is most interesting when S is an Fp-scheme. A Heisenberg representation for (Σ, ⟨·, ·⟩)
can be exhibited when S = Spec k for an algebraically closed field k of characteristic p (but the author does
not know in what generality it exists), and leads to a construction of a mod pWeil representation of a p-adic
group functor over Spec k.

1.7. Scope of applications and further developments. As we construct a family of Weil representations
from a family of abelian varieties and line bundles, it would be natural to apply our results to the universal
family of abelian varieties over moduli spaces such as Shimura varieties. This should be related to metaplectic
automorphic forms and a worthy object already in characteristic 0. We hope that our results will be of some
use when studying theta correspondence via Shimura varieties by methods in algebraic geometry, for instance
in the context of Kudla’s program (cf. [Kud02]).

When there is a Weil representation, it is very natural to consider a reductive dual pair and the re-
sulting theta correspondence (§1.1). In the sequel [Shi] we do this for the newly constructed mod p Weil
representation of a p-adic metaplectic group.

In order to access many cases of mod p Weil representations and theta correspondence, a necessary step
would be to explicate the models in §7 further, especially in the case of supersingular abelian varieties (or
p-divisible groups).

1.8. Contents and organization of the paper. This article is naturally divided into two parts. In each
part we have listed some of the main contents. The sequel ([Shi]) may be regarded as Part III.

Part I. Heisenberg groups and Heisenberg representations

• Construction of the p-adic or adelic Heisenberg group and Heisenberg representation from an abelian
scheme A and a nondegenerate line L bundle over a locally noetherian scheme S. (§§2-4)
• A description of the Heisenberg group as Gm × V A with a twisted group law, where V A is the
“rational Tate module”, when L is symmetric. (§3.5)
• A study of the category of representations of the Heisenberg group, subsuming the Stone Von-
Neumann theorem and Schur’s lemma. (Proposition 2.12 and Theorem 4.15)

Part II. Weil representations, level structures and explicit models

• Construction of the p-adic or adelic metaplectic group and the Weil representation over S. (§5.1,
§5.4)
• Comparison with classical theory via level structure. (§§6.1-6.2)
• Weil representations over Fp of p-adic metaplectic group; Igusa level structure; an approach via a
p-divisible group replacing the role of an abelian variety. (§§6.3-6.4)
• Study of lattice and Schrödinger models, examples (§7)
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1.9. Notation and Convention. When S is a scheme, denote by (Sch/S), (Flat/S) and (LocNoeth/S)
the category of S-scheme, flat S-schemes and locally noetherian S-schemes, respectively. All fppf sheaves on
S in sets or groups are considered on a small fppf site. Their category is a full subcategory of the category
functors from (Flat/S) to the category of sets or groups. An OS-module always means a quasi-coherent
OS-module in this article, and often viewed as an fppf sheaf on S as well. The category of OS-modules is
denoted QCohS .

An object of (Flat/S) may be viewed as an fppf sheaf in sets on S, and this induces a fully faithful functor.
The underlined notation such as Hom, End and Aut denote a sheaf or a functor (rather than just a set, a
group, a ring, etc) in the appropriate category determined by the context. Often Mp and Sp are defined as
group functors on (Sch/S).

In this article we will be usually working in (Sch/S) for a base scheme S. In particular any morphism
of schemes is always assumed to be an S-morphism and a fiber product is taken over S, unless specified
otherwise. The tensor product of two OS-modules is denoted by ⊗ (rather than ⊗OS

) if there is no danger
of confusion.

2. Finite Heisenberg groups and their representations

We use the following notation.

• S is a scheme.
• f : A→ S is an abelian scheme over S of relative dimension g ≥ 1.
• f∨ : A∨ → S denotes the dual abelian scheme (cf. [CF90, I.1]).
• L is a line bundle over A.
• Tx : A×S T → A×S T denotes the translation by x, where T is an S-scheme and x ∈ A(T ).
• λL : A→ A∨ is the morphism sending x to T ∗xL⊗ L−1.

When we think of L, we will often go between two equivalent viewpoints: either as an invertible sheaf L
of OS-modules on A or as a line bundle equipped with a projection π : L→ A (cf. [MFK94, §I.3]). Given L,
the corresponding L is described as L(U) = {s : U → L|π ◦ s = idU} for each open subscheme U of A. By
setting L = Spec (⊕n≤0L⊗n) (relative spectrum over A), we recover L from L. In order to avoid cumbersome
switch of notation, we just write L for either L or the corresponding L.

2.1. Nondegenerate line bundles.

Definition 2.1. A line bundle L over A is (relatively) nondegenerate if λL : A→ A∨ is a finite morphism.

Lemma 2.2. If L is nondegenerate then

(i) λL is an isogeny (a surjective quasi-finite homomorphism of group schemes) and
(ii) kerλL is a finite flat group scheme over S.

Proof. We know that λL is compatible with the group scheme structures. Surjectivity and quasi-finiteness
follow from the case of S = Spec k for a field k where the result is well known (cf. [BLR90, Lem 1, p.178]).
Part (ii) is a consequence of the fact that any isogeny of abelian schemes is finite flat. �
Lemma 2.3. The following are equivalent.

(i) L is nondegenerate in the above sense.
(ii) For every point s ∈ S, the fiber Ls over As is nondegenerate (i.e. λLs is finite).
(iii) For every geometric point s ∈ S, the fiber Ls over As is nondegenerate (i.e. λLs is finite).

Proof. It is obvious that (i) implies (ii). By the flat base change theorem (applied to the base extension from
s to s), (ii) and (iii) are equivalent. It remains to deduce (i) from (ii). Observe that (ii) implies that λL is
quasi-finite. An easy application of the valuative criterion shows that λL is proper. Hence λL is finite. �
Lemma 2.4. Suppose that A is defined over S = Spec k where k is a field. For a nondegenerate line bundle
L there exists a unique integer 0 ≤ ind(L) ≤ g (the index of L) such that H ind(L)(A,L) ̸= 0.

Proof. See [Mum74, §16] when k is algebraically closed. The general case is reduced to the algebraically
closed case by the flat base change theorem. �

In general the following result is well-known. We present a proof as we were incompetent in finding a
handy reference.
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Lemma 2.5. Suppose that S is locally noetherian. Let L be a nondegenerate line bundle over A. The index
function s 7→ ind(Ls) from S to Z is locally constant (with Zariski topology on S).

Proof. As the question is local, we may assume that S is noetherian and connected. We know that s 7→
dimH i(As, Ls) is upper semi-continuous and that s 7→ χ(Ls) is constant. Let m be the maximum value
of i such that the function s 7→ dimH i(As, Ls) is nonzero. (We know m ≤ g.) The constancy of χ(Ls)
and Lemma 2.4 imply that ind(Ls) ∈ {m,m − 2,m − 4, ...} for all s ∈ S. Since the specialization map
φm+1(s) : Rm+1f∗L⊗ k(s)→ Hm+1(As, Ls) = 0 is trivially surjective, Theorem III.12.11.(a) of [Har77] tells
us that it is an isomorphism for every s ∈ S, hence Rm+1f∗L = 0. Then part (b) of the cited theorem implies
that φm(s) is surjective for all s ∈ S. On the other hand, φm−1(s) is also trivially surjective for s ∈ S,
so the same theorem shows that Rmf∗L is locally free on S and that φm(s) is an isomorphism. Therefore
ind(Ls) = m for all s ∈ S and we are done.3 �
Definition 2.6. A line bundle L over A is nondegenerate of index i ∈ Z if ind(Ls) = i for all s ∈ S.

Remark 2.7. A nondegenerate line bundle of index 0 is none other than a relatively ample line bundle.

2.2. Heisenberg groups. Define an S-subgroup scheme K(L) := kerλL of A. Concretely the group
K(L)(T ) for each S-scheme T consists of x ∈ A(T ) such that T ∗x (L × T ) ≃ (L × T ) ⊗ p∗2M for some line
bundle M on S, where p2 : A × T → T is the projection map. If L is nondegenerate then K(L) is a finite
flat group scheme by Lemma 2.2.

Let us define a group-valued contravariant functor Aut(L/A) on (Sch/S). The group Aut(L/A)(T ) consists
of pairs (ψ, x), where x ∈ A(T ) and ψ : L× T → L× T is an isomorphism such that the following diagram
commutes.

L× T
ψ //

(π,1)

��

L× T
(π,1)

��
A× T

Tx // A× T
The group law is provided by (ψ1, x1)(ψ2, x2) = (ψ1ψ2, x1 + x2). The functor Aut(L/A) is representable by
a group scheme, to be denoted G(L) and called a theta group or a Heisenberg group (scheme). There
is a natural sequence of S-group schemes

1→ Gm → G(L)→ K(L)→ 1 (2.1)

where the maps are respectively α 7→ (α, 0) and (ψ, x) 7→ x on T -valued points. Here we identified Gm with
the automorphisms of L over A. The argument in the proof of [Mum74, §23, Thm 1] shows that (2.1) is
exact as Zariski sheaves. The commutator map G(L) × G(L) → G(L) given by (γ1, γ2) 7→ γ1γ2γ

−1
1 γ−12 has

image in Gm and induces a bilinear pairing

eL : K(L)×K(L)→ Gm.

Lemma 2.8. If L is nondegenerate then eL is symplectic, namely alternating and nondegenerate. (The

latter means that eL induces an isomorphism K(L)
∼→ HomOS

(K(L),Gm).)

Proof. [MB85, IV.2.4.(ii)]. �
2.3. The Stone-Von Neumann theorem and Schur’s lemma. From here on we will always assume
that L is nondegenerate, unless it is said otherwise.

Definition 2.9. ([MB85, V.1.1]) Let G be a group scheme over S and F an OS-module (always assumed
to be quasi-coherent). We say that F is a G-representation (on an OS-module) when F is equipped with
a morphism of fppf sheaves in groups G→ AutOS

(F). A morphism between two G-representations F1 and
F2 is a morphism of OS-modules F1 → F2 compatible with G-actions. The same definition makes sense
when G is replaced with an fppf sheaf in groups.

Remark 2.10. In general when G is a group functor on (Sch/S), a representation of G will mean an OS-
module F equipped with a morphism of group functors G→ AutOS

(F), where AutOS
(F) is regarded as the

group functor T 7→ AutOT
(F ⊗OS

OT ) on (Sch/S).

3We refer to [Har77] only for convenience, as it has the exact form of the theorem we need. As it is written, it applies to a
(locally) projective abelian scheme A over S. This is no problem as projectivity can be relaxed to properness by [DG63, III.7.7].
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Definition 2.11. ([MB85, V.2.1, V.2.3]) A G(L)-representation F is of weight w ∈ Z if Gm acts on F via
the character λ 7→ λw. A G(L)-representation F is irreducible if every G(L)-subrepresentation F ′ of F has
the form F ′ = F ⊗OS

I for some ideal sheaf I of OS (equipped with trivial G(L)-action).

Most of the time our focus will be on representations of weight 1 or −1. The following lemma due to
Moret-Bailly (but see Remark 2.14 below) is crucial in understanding weight 1 representations of G(L).

Proposition 2.12. Let F be a G(L)-representation of weight 1. Suppose that F is a locally free OS-module
of rank degL. Then

(i) F is an irreducible G(L)-representation.
(ii) There is an equivalence between the category of OS-modules and the category of G(L)-representations

of weight 1 on OS-modules given byM 7→ HomG(L)(F ,M) and N 7→ F ⊗N , which are canonically

quasi-inverses of each other. (The composition of the two functors in any order is canonically
isomorphic to the identity functor.)

(iii) If F ′ is another weight 1 G(L)-representation which is locally free of rank degL, then there exists a
unique (up to isomorphism) line bundleM on S such that

F ′ = F ⊗M.

(iv) EndG(L)(F) ≃ OS canonically.

Proof. The first two assertions are contained in [MB85, V.2.4.2, V.2.4.3]. As for (iii), clearly (ii) implies that
there is an OS-moduleM such that F ′ = F ⊗M. As F ′ and F are locally free of the same rank, it follows
thatM is locally free of rank 1. Part (iv) is a consequence of (ii) since EndG(L)(F) ≃ EndOS

(OS) ≃ OS .
�

For each 0 ≤ j ≤ g note that Rjf∗L is naturally a G(L)-representation of weight 1 (which could be the
zero sheaf) in the above sense. We will need the following fundamental result on G(L)-representations.

Proposition 2.13. Assume that S is locally noetherian and that L has index i.

(i) Rjf∗L = 0 unless j = i.
(ii) Rif∗L is locally free and (rankOS

Rif∗L)
2 = rankOS

K(L) = (degL)2. In particular, it satisfies the
condition of Proposition 2.12.

(iii) (Rif∗L)s ≃ H i(As, Ls) for each s ∈ S.

Proof. When i = 0, (i) and (ii) were deduced in [MFK94, Ch0,§5] from [DG63, III. 7.7.5, 7.7.10 and 7.8.4.].
The same results of [DG63] imply (i) and (ii) for arbitrary i. Part (iii) amounts to the assertion that φi(s)
is an isomorphism, which was shown in the proof of Lemma 2.5. �

Remark 2.14. When S = Spec k for an algebraically closed field k, the results of this subsection in this
case were proved in the appendix of [Sek77]. (The proof is attributed to Mumford; cf. [Mum66, §1].) The
sheaf Rif∗L provides us with a k-vector space H i(A,L) with an action of G(L). Proposition 2.13 says that
H i(A,L) is the unique (up to isomorphism) irreducible G(L)-representation of weight 1. When S = SpecC,
Proposition 2.12 implies the classical Stone Von-Neumann theorem for finite Heisenberg groups on C-vector
spaces.

2.4. Matrix coefficient map. Let F be as in Proposition 2.12. Then F∨ = HomOS
(F ,OS) is a G(L)-

representation of weight -1 via

(γ · v∨)(v) = v∨(γ−1 · v), γ ∈ G(L), v ∈ F , v∨ ∈ F∨. (2.2)

Equip HomGm
(G(L),OS) with a structure of G(L)× G(L)-representation via

((γ1, γ2) · ϕ)(γ) = ϕ(γ−12 γγ1), γ1, γ2, γ ∈ G(L), ϕ ∈ HomGm
(G(L),OS). (2.3)

Lemma 2.15. The map sending v⊗v∨ to γ 7→ v∨(γv) yields an isomorphism of G(L)×G(L)-representations

F ⊗ F∨ ∼→ HomGm
(G(L),OS).

Proof. [MB85, Thm V.2.4.2.(i)]. �
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3. Adelic and p-adic Heisenberg groups

In this section we consider not only a single abelian scheme A but coverings of A simultaneously in order
to obtain a theory of p-adic and adelic Heisenberg groups. Although it would be natural to deal with a
tower of abelian schemes in the sense of Mumford ([Mum67b, §7]), which involves all isogenies to A, we have
chosen to work with only multiplication by n maps (n ∈ Z>0) in favor of simplicity and concreteness. (If
one wishes to make the analogue of Mumford’s polarized tower of abelian schemes in our context, one may
relax the ampleness condition and allow line bundles to be nondegenerate.)

Keep the notation from the previous section. In particular L is a nondegenerate line bundle over A. We
do not assume that L is symmetric until §3.5. No condition (such as being locally noetherian) is imposed
on S in §3.

3.1. Construction of T and V . This subsection is about a general construction. Let X be a commutative
group scheme over S. For each n ∈ Z>0, let n : X → X denote the multiplication by n map by a slight
abuse of notation. Assume that

(*) For every n ≥ 1, the map n is finite and flat.

Set X[n] := kern, which is a finite flat group scheme, and

TX := lim←−
n

X[n]

with respect to m : X[mn] → X[n] for each m,n ≥ 1. Since the latter maps are finite (thus affine) S-
morphisms, [DG67, IV.8.2.3] implies that the limit TX exists in the category of S-group schemes. The
underlying structure ring is TX = Spec (lim

−→
OX[n]), and as a group functor

TX(T ) = {(xr)r≥1|xr ∈ X[r](T ), rxrs = xs, if r, s ≥ 1}.
Define an ind-group scheme

V X := lim
−→

TX

with respect to m : TX → TX (from the n-th copy of TX to the mn-th copy, for all m,n ≥ 1). As a group
functor, for each S-scheme T ,

V X(T ) = {(xr)r≥1|xr ∈ X(T ), Nx1 = 0 for some N ≥ 1, rxrs = xs, ∀r, s ≥ 1}. (3.1)

By a variant of Yoneda’s lemma, V X is determined as an ind group scheme by the above description as a
group functor. By allowing m,n to run over powers of a prime p, we can similarly define Tp and Vp. Note
that there is a canonical isomorphism TX ≃

∏
p TpX, functorial in X.

There is a canonical action of Ẑ on TX, coming from the compatible canonical actions of Z/rZ on X[r]

for r ≥ 1. The Ẑ-action on TX patches to an action of A∞ = lim−→
n

1
n Ẑ on V X. Similarly Zp and Qp act on

TpX and VpX, respectively.
The construction of TX, V X, TpX and VpX is functorial in X and carries over to commutative flat

ind-group schemes X satisfying (∗) above. For instance, TpX and VpX make sense for p-divisible groups X
over S.

Example 3.1. There are natural isomorphisms TGm ≃ Tµ∞, T (Q/Z) ≃ Ẑ, Tp(Qp/Zp) ≃ Zp and TpGm ≃
Tpµp∞ .

Example 3.2. Tpµp∞ = Spec (lim−→OS [T ]/(T
pn − 1)) with transition maps f(T ) 7→ f(T p).

Example 3.3. If X has bounded torsion, i.e. there exists n ≥ 1 such that X[n] = X[mn] for all m ≥ 1,
then TX, V X, TpX and VpX are all trivial group schemes.

An important case is when X is an abelian scheme. An isogeny of abelian scheme α : A′ → A is said to
be bounded if kerα ⊂ A[n] for some n ≥ 1. (This condition is automatic if S has finitely many connected
components because the fiberwise rank of kerα is locally constant on S, but not in general; Suppose that
S =

⨿
j≥1 Sj and that for each j, Sj ̸= ∅ and α is the multiplication by j on A ×S Sj . Then α is not

bounded.) A map of ind-group schemes β : V A′ → V A is said to be bounded if mTA ⊂ β(nTA′) ⊂ TA
for some m,n ≥ 1. The same notion is defined for a map VpΣ

′ → VpΣ where Σ′ and Σ are p-divisible groups
over S.
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Lemma 3.4. Let α : A′ → A be a bounded isogeny of abelian schemes. The induced map V (α) : V A′ → V A
sending (xr)r≥1 to (α(xr))r≥1 is a bounded isomorphism.

Proof. The proof is straightforward. We remark that the boundedness of α is needed to ensure that V (α) is
an invertible map. Also note that if kerα ⊂ A′[m] then mTA ⊂ V (α)(TA′) ⊂ TA.

�

Remark 3.5. In the geometric theory of theta functions à la Mumford, one reason why V A naturally shows
up is that an (ample) line bundle over A can be trivialized over V A. In this regard, V A is the analogue of
the universal covering spaces for complex abelian varieties. Unsurprisingly we will see V A appearing in the
construction of adelic Heisenberg groups and Weil representations.

Lemma 3.6. The scheme TA is flat over S and defines an fppf sheaf in groups on (Flat/S). The ind-scheme
V A also defines an fppf sheaf in groups on (Flat/S). The same is true for TpA and VpA.

Proof. Let us show that TA is flat over S. We may assume that S is affine. Let S = SpecC and A[n] =
SpecBn for n ≥ 1. As m : A[mn]→ A[n] is surjective, we see that m∗ : Bn → Bmn is injective. As Bn is a
flat C-algebra, lim

−→
Bn is also. Hence the assertion about TA follows. The fppf sheaf axiom for V A is easily

deduced from that for TA. The case of TpA and VpA is proved in the same way.
�

Consider a category of p-divisible groups over S in which morphisms are bounded isogenies, and then

obtain a new category by inverting bounded isogenies. When Σ is a p-divisible group over S, let Aut0,bS (Σ)

denote the automorphism group functor on (Sch/S) arising from the latter category. Let AutbS(VpΣ) be the
group functor on (Sch/S) assigning bounded automorphisms. Define a map

ξ : Aut0,bS (Σ)→ AutbS(VpΣ)

by α 7→ ((xpr)r≥0 7→ (α(xpr))r≥0), where x1 ∈ Σ and xpr = pxpr+1 .

Lemma 3.7. The above map ξ is an isomorphism.

Proof. It suffices to present the inverse map ξ−1 of ξ. Let α ∈ AutbS(VpΣ) so that pmTpΣ ⊂ pnα(TpΣ) ⊂ TpΣ
for some m ≥ n ≥ 0. For each r ≥ 0, pnα maps 1

prTpΣ to itself, thus inducing a map Σ[pr] → Σ[pr] by

taking quotients by TpΣ. By patching these maps, we obtain a map α′ : Σ → Σ such that kerα′ is killed
by pm, hence α′ is bounded. Then we define ξ−1(α) = p−nα′. It is routine to verify that ξ−1 is indeed the
inverse map of ξ. �

3.2. Construction of adelic and p-adic Heisenberg groups. Let Ã be the S-group scheme, equipped

with u : Ã→ A, which is the inverse limit of the coverings n : A→ A for all integers n ≥ 1. (Cf. [MNN07,

4.27].) The limit Ã exists as a group scheme since the maps n are affine, again by [DG67, IV.8.2.3]. We
have that TA = keru in the notation of §3.1. Set 1

nTA := u−1(A[n]) = ker(nu). (We interpret u−1(A[n]) as

Ã×u,A A[n].)

Lemma 3.8. For each n ∈ Z>0, K(n∗L) ≃ A×n2,A K(L) canonically. In other words,

K(n∗L)(T ) = {x ∈ A(T )|n2x ∈ K(L)(T )}.

Proof. Set LT := L× T . For x ∈ A(T ),

T ∗xn
∗LT ⊗ (n∗LT )

−1 ≃ n∗(TnxLT ⊗ L−1T ) ≃ T ∗n2xLT ⊗ L
−1
T

where the second isomorphism results from the theorem of the square. Therefore x ∈ K(n∗L)(T ) if and only
if n2x ∈ K(L)(T ). �

Set T (A,L) := u−1(K(L)) and 1
nT (A,L) := (nu)−1(K(L)). There are canonical identifications (as

schemes over A)
1

n
TA ≃ lim←−

m≥1
A[mn], T (A,L) ≃ lim←−

m≥1
K(m∗L).
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We have a natural projection u : 1
nTA → A[n]. For m,n ∈ Z>0, m : A → A induces 1

mnTA
∼→ 1

nTA. Its

inverse map is denoted by 1
m : 1

nTA
∼→ 1

mnTA. Similarly there are natural maps

1

n2
T (A,L) = T (A,n∗L) � K(n∗L),

1

m
:
1

n
T (A,L)

∼→ 1

mn
T (A,L).

A concrete description of T (A,L) is that for each S-scheme T ,

T (A,L)(T ) = {(xr)r≥1|xr ∈ A(T ), x1 ∈ K(L)(T ), xr = sxrs, ∀r, s ≥ 1}.
The ind-group scheme V A (§3.1) is canonically identified with the ind-scheme arising from { 1nTA}n≥1 with

the inclusions 1
nTA ↪→ 1

mnTA for m,n ≥ 1, as can be seen by the following commutative diagram.

· · · // TA
m // TA // · · ·

· · · // 1
nTA

� � //

n ∼
OO

1
mnTA

mn ∼
OO

// · · ·

There are natural inclusions 1
nTA ↪→ V A and 1

nT (A,L) ↪→ V A for each n ≥ 1.

Set G̃(n∗L) := G(n∗L)×K(n∗L)
1
n2T (A,L). The canonical projection G̃(n∗L)→ 1

n2T (A,L) will be labeled
by jn. The next lemma will endow us with an inclusion (3.4) later.

Lemma 3.9. Let T be an S-scheme, x′ ∈ A(T ) and (ψ, x) ∈ G(n∗L)(T ). Suppose that x = mx′. Then there

exists a unique ψ′ : (mn)∗L
∼→ (mn)∗L such that (ψ′, x′) ∈ G((mn)∗L)(T ) and the following commutes

(mn)∗L
ψ′

∼
//

��

(mn)∗L

��
n∗L

ψ

∼
// n∗L

(3.2)

where the vertical maps are the projection maps (as (mn)∗L is the fiber product of n∗L with A over m : A→
A).

Proof. Without loss of generality we may assume that n = 1. The uniqueness is easy. If (ψ′, x′), (ψ′′, x′) ∈
G(m∗L)(T ) have the property as above, then the difference (ψ′′(ψ′)−1, 0) is in the image of some t ∈ Gm(T )
under Gm → G(L). This means that (3.2) remains commutative after multiplying t to the top arrow. This
implies that t = 1 and ψ′ = ψ′′.

Let us verify the existence of ψ′. The fact that (ψ, x) ∈ G(L)(T ) induces an isomorphism ξ : L
∼→ T ∗xL

making the top triangle in the left diagram commute. In the two diagrams, the rectangles are cartesian
squares. (We are abusing the notation to use A and L to denote A×S T and L×S T .)

L ψ

∼

��

ξ

∼
!!CC

CC
CC

CC

T ∗xL

��

∼ // L

��
A

∼
Tx

// A

m∗L ψ′

∼

$$

m∗ξ

∼
$$JJJJJJJJJ

T ∗x′m
∗L

��

∼ // m∗L

��
A

∼
Tx

// A

Then m∗L
m∗ξ
≃ m∗T ∗xL ≃ T ∗x′m

∗L. (The latter holds because m ◦ Tx′ = Tx ◦m.) Let ψ′ ∈ Aut(m∗L)(T ) be
the latter map composed with T ∗x′m

∗L ≃ m∗L in the above diagram. Then (ψ′, x′) ∈ G(m∗L)(T ), thereby
(3.2) commutes up to an automorphism of L fixing L → A. Such an automorphism is a multiplication by
s ∈ O×T . The commutativity of (3.2) is achieved by multiplying t to ψ′. �
Remark 3.10. (This remark is to be recalled in the proof of Lemma 4.5.) By associating ψ′ to x′ ∈ A[m](T )
with x = 0 and ψ = id in Lemma 3.9, we can define an action of A[m] on (mn)∗L. This action is the same
as the A[m]-action induced on (mn)∗L via Proposition 4.1 (by taking G = A[m] and ξ to be n : A → A).
This can be seen from the fact that the quotient of (mn)∗L with respect to the former A[m]-action is n∗L,
as shown in the proof of Lemma 3.15.
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Corollary 3.11. For each S-scheme T , the set G̃(n∗L)(T ) may be described as the set of (ψr, xr)r≥1 such
that

(i) (ψr, xr) ∈ G((rn)∗L)(T ) for all r ≥ 1,
(ii) xr = sxrs for all r, s ≥ 1 and
(iii) the following diagram commutes for all r, s ≥ 1.

(rsn)∗L
ψrs //

��

(rsn)∗L

��
rn∗L

ψr // rn∗L

Proof. The set of (ψr, xr)r≥1 in the corollary will be temporarily called G̃0(n∗L)(T ). As G̃(n∗L) = G(n∗L)×K(n∗L)
1
n2T (A,L), we see that G̃(n∗L)(T ) consists of ψ1 and (xr)r≥1 such that

• (ψ1, x1) ∈ G(n∗L)(T ),
• xr = sxrs for all r, s ≥ 1.

There is an obvious map

G̃0(n∗L)(T )→ G̃(n∗L)(T ) (3.3)

forgetting ψr for r ≥ 2. By Lemma 3.9, for a choice of ψ1 and (xr)r≥1, there exists a sequence (ψr)r≥2
satisfying (iii) of the corollary, and such a sequence is unique. Therefore (3.3) is a bijection.

�

Henceforth, G̃(n∗L) is viewed as the S-group scheme whose associated group functor is described as in
Corollary 3.11. It is flat over S and defines an fppf sheaf on S by essentially the same argument as in the
proof of Lemma 3.6. Thanks to Lemma 3.9 we have a map of group schemes

in,mn : G̃(n∗L)→ G̃((mn)∗L) (3.4)

sending ((ψr, xr)r≥1) 7→ ((ψ′r, x
′
r)r≥1) on T -valued points, where x′r = xrm and ψ′r = ψrm.

Lemma 3.12. The following diagram commutes and its rows are fppf exact.

1 // Gm
//

id

��

G̃(n∗L)
jn //

in,mn

��

1
n2T (A,L) //

1/m

��

1

1 // Gm
// G̃((mn)∗L)

jmn // 1
(mn)2

T (A,L) // 1

Proof. Everything is obvious possibly except the surjectivity. The map jn is fppf surjective as it is a base
change of the fppf surjective map G(n∗L)→ K(n∗L) (cf. §2.2). Similarly jmn is fppf surjective. �

Let us define an ind-group scheme via in,mn:

Ĝ(L) := lim−→
n

G̃(n∗L).

Under the limit, the maps njn : G̃(n∗L) → 1
nT (A,L) induce a map ĵ : Ĝ(L) → V A. The fact that G̃(n∗L)

are fppf sheaves shows that Ĝ(L) is also one. We have a commutative diagram where rows are fppf exact
sequences.

1 // Gm
//

id

��

G̃(n∗L)
njn //

��

1
nT (A,L)

//

natural

��

1

1 // Gm
// Ĝ(L)

ĵ // V A // 1

(3.5)
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Lemma 3.13. Let A′ be an abelian scheme over S, and α : A′ → A a bounded isogeny. Then α induces an

isomorphism Ĝ(α) : Ĝ(α∗L)→ Ĝ(L) fitting in the commutative diagram below.

1 // Gm
//

id

��

Ĝ(α∗L) //

Ĝ(α)∼
��

V A′ //

∼ V (α)

��

1

1 // Gm
// Ĝ(L) // V A // 1

Proof. The map Ĝ(α) comes from the maps G̃(α∗n∗L) → G̃(n∗L) for n ≥ 1, which are constructed as

(ψ, xr)r≥1 7→ (ϕ, α(xr))r≥1. Here ϕ : L
∼→ L is obtained from G̃(α∗n∗L) by taking quotient of the diagram

below by the action of kerα.

α∗n∗L
ψ

∼
//

��

α∗n∗L

��
A

Tx1
∼

// A

It is straightforward to verify that Ĝ(α) is compatible with the maps id and V (α) and thus an isomorphism.
�

Now let L′ be a line bundle over A′ such that L′ ≃ α∗L. This induces an isomorphism Ĝ(L′) ≃ Ĝ(α∗L).
It is easy to check that the latter isomorphism is independent of the choice of the isomorphism L′ ≃ α∗L.

By composing with Ĝ(α), we obtain an isomorphism Ĝ(L′) ≃ Ĝ(L).

Lemma 3.14. Let A, A′, α, L and L′ be as above. The above isomorphism Ĝ(L′) ≃ Ĝ(L) fits into the
following commutative diagram.

1 // Gm
//

id

��

Ĝ(L′) //

∼
��

V A′ //

∼
��

1

1 // Gm
// Ĝ(L) // V A // 1

Proof. In view of Lemma 3.13 it is enough to note the obvious commutativity of

Gm
//

id

��

Ĝ(L′) //

∼
��

V A′

id

��
Gm

// Ĝ(α∗L) // V A′

�

3.3. The map σ̂. Define σ1 : TA→ G(L) by (xr)r≥1 7→ (id, x1), and

σ̃1 : TA→ G̃(L) = G(L)×K(L) T (A,L)

by σ1 and the natural inclusion TA ↪→ T (A,L). For n > 1, set σ̃n := i1,n ◦ σ̃1. Further composing with

the projection G̃(n∗L) → G(n∗L), we obtain σn : TA → G(n∗L). By construction σ̃n’s are compatible with

the inclusions in,mn for m,n ≥ 1, thus yield a map σ̂ : TA → Ĝ(L). Note that σ̃n, σn (n ≥ 1) and σ̂ are

morphisms of (ind-)group schemes and that Gm ∩ σ̂(nTA) = {1} in Ĝ(L) for every n ≥ 1.

Lemma 3.15. ([MNN07, Prop 4.13])

(i) NĜ(L)(σ̂(nTA)) = ZĜ(L)(σ̂(nTA)).

(ii) ZĜ(L)(σ̂(nTA)) ≃ G̃(n
∗L) canonically.

(iii) There is an isomorphism NĜ(σ̂(nTA))/σ̂(nTA)
∼→ G(n∗L) induced by the canonical maps

NĜ(L)(σ̂(nTA)) ≃ G̃(n
∗L) � G(n∗L).
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Proof. As usual, we implicitly work on T -points for an S-scheme T . Let X = (ϕr, xr)r≥1 ∈ NĜ(L)(σ̂(nTA))
and Y = (ψr, yr)r≥1 ∈ σ̂(nTA). Part (i) follows from the fact that

XYX−1Y −1 ∈ Gm ∩ σ̂(nTA) = {1}.

Let us prove (ii). An element of Ĝ(L) may be represented by (ϕ′r, x
′
r)r≥1 ∈ G̃((mn)∗L) for some m ≥ 1.

It suffices to show that if (ϕ′r, x
′
r)r≥1 centralizes σ̂(nTA) then (ϕ′r, x

′
r)r≥1 = in,mn((ϕr, xr)r≥1) for some

(ϕr, xr)r≥1 ∈ G̃(n∗L). Consider the commutative diagram

(rmn)∗L
ϕ′r //

��

(rmn)∗L

��
A

Tx′r // A.

(3.6)

The image of σ̂(nTA) in G̃((mn)∗L) is none other than σ̃mn(nTA), which consists of (ψr, yr)r≥1 such that
yr ∈ A[rm]. Recall that A[m] acts on (rmn)∗L as explained at the beginning of Remark 3.10. Let us verify
that the whole diagram (3.6) is A[m]-equivariant. (In fact it is even A[rm]-equivariant.) Since (ϕ′r, x

′
r)r≥1

commutes with elements of σ̃mn(nTA), the top arrow in the diagram is A[m]-equivariant. The vertical maps
are A[m]-equivariant by [MNN07, Lem 4.11]. The same fact is obvious for the bottom map. By taking
quotients of (3.6) by A[m], we obtain ϕr such that the following commutes.

(rn)∗L
ϕr //

��

(rn)∗L

��
A

Tmx′r // A

According to Lemma 3.9, (ϕ′r, x
′
r)r≥1 = in,mn((ϕr,mx

′
r)r≥1). The proof of (ii) is complete.

For the proof of (iii), it is enough to note that the image of σ̂(nTA) in G̃(n∗L) consists of (ϕr, xr)r≥1 such
that (ϕ1, x1) is the identity element. �

Lemma 3.16. Let (A,L) be as before, α : A′ → A be a bounded isogeny, and L′ = α∗L. Let σ̂′ : TA′ → Ĝ(L′)
denote the analogue of σ̂ constructed from (A′, L′). Then the following commutes.

TA′

α

��

σ̂′
// Ĝ(L′)

Ĝ(α)∼
��

TA
σ̂ // Ĝ(L)

Proof. Let (xr)r≥1 ∈ TA′. Both Ĝ(α) ◦ σ̂′ and σ̂ ◦ α map (xr)r≥1 to (id, α((xr)r≥1)) in G̃(L). �

3.4. The pairing êL. In analogy with eL in §2.2, we obtain a bilinear commutator pairing from the bottom
row of (3.5)

êL : V A× V A→ Gm,

which is a morphism of ind-group schemes over S. On the other hand, the Z/nZ-linear Weil pairings

eL,Weil
n : A[n]×A[n]→ µn ↪→ Gm

for n ≥ 1 are glued to an A∞-linear pairing (cf. §3.1)

êL,Weil : V A× V A→ VGm.

Concretely on the functors of points, the map is

((xn)n≥1, (yn)n≥1) 7→ (eL,Weil
N2n

(xNn, yNn))n≥1

where N ≥ 1 is such that x1, y1 ∈ A[N2]. The definition is independent of the choice of N . The right

hand side is an element of VGm since eL,Weil
N2mn

(xNmn, yNmn)
m = eL,Weil

N2n
(xNn, yNn) for any m,n ≥ 1. Let

♭ : VGm → Gm denote the map ♭((xr)r≥1) = x1 in the notation of (3.1).

Lemma 3.17. The pairing êL is nondegenerate and êL = ♭ ◦ êL,Weil.
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Proof. The nondegeneracy of êL is deduced from the nondegeneracy of en
∗L for all n ≥ 1 (Lemma 2.8).

Indeed, if êL were degenerate, there would be an S-scheme T and a nonzero section x ∈ 1
nT (A,L)(T )

such that êL(x, y) = 1 for any section y of V A in a T -scheme. Choose a large enough m ≥ 1 such that
x /∈ σ̂(mnTA). Then x has nontrivial image x in 1

mnT (A,L)/σ̂(mnTA) ≃ K((mn)∗L) but by the assumption

x pairs trivially with any section of K((mn)∗L) via e(mn)
∗L. This contradicts the nondegeneracy of e(mn)

∗L.

Let us prove the second assertion. Let (ϕ, x), (ψ, y) ∈ Ĝ(L) and write x = (xn)n≥1, y = (yn)n≥1 ∈ V A.
For any N ≥ 1 chosen as above,

♭(êL,Weil((xn)n≥1, (yn)n≥1) = eL,Weil
N2n

(xNn, yNn) = eL(xN , yN )
N2

= eL(x1, y1).

(The second equality is standard. See property (5) of [Mum74, §23] for instance.) Consider the commutative
diagram

1 // Gm
// G((N2)∗L)

j // K((N2)∗L) // 1

1 // Gm

id

OO

//

id

��

G̃((N2)∗L)

OOOO

jN2 //

��

T (A, (N2)∗L) //

OOOO

N2

��

1

1 // Gm
// Ĝ(L)

ĵ // V A // 1.

Let x′ = (x′n)n≥1, y
′ = (y′n)n≥1 be such that x′n = xN2n and y′n = yN2n. Note that x′1, y

′
1 ∈ A[N4] ⊂

K((N2)∗L), thus x′, y′ ∈ T (A, (N2)∗L). The commutativity of the diagram allows us to equalize the com-
mutator pairing for each row. The second assertion follows from

êL(x, y) = ϕψϕ−1ψ−1 = e(N
2)∗L(x′1, y

′
1) = eL(Nx′1, Ny

′
1) = eL(x1, y1).

�
3.5. Symmetric line bundles and the map τ̂ . Our construction of τ̂ is based on [MNN07, §4] as well
as Step V in Appendix I of that book. From here on, assume that L is symmetric, i.e. (−1)∗L ≃ L. There
is an isomorphism (e.g. appeal to Lemma 3.14 with A = A′, α = −1, L′ = L)

Ĝ((−1)∗L) ∼→ Ĝ(L), (3.7)

uniquely characterized as follows: if (ϕr, xr)r≥1 is mapped to (ψr,−xr)r≥1 then the diagram below commutes,
where the vertical maps are induced by the pullback along (−1) : A→ A.

(−1)∗L
ψr //

��

(−1)∗L

��
L

ϕr // L

A choice of an isomorphism I : L ≃ (−1)∗L induces Ĝ(L) ∼→ Ĝ((−1)∗L). By composing with (3.7) we obtain
an isomorphism

iL : Ĝ(L) ∼→ Ĝ(L)
and can show that it is independent of the choice of I (cf. [MNN07, Prop 4.16]). The situation may be
understood through a commutative diagram:

1 // Gm
//

id

��

Ĝ(L)
ĵ //

iL

��

V A //

−1
��

1

1 // Gm
// Ĝ(L)

ĵ // V A // 1.

(3.8)

For each n ≥ 1, clearly the map x 7→ xiL(x)−1 from G̃(n∗L) to G̃(n∗L) factors as the composite of

jn : G̃(n∗L)→ 1
n2T (A,L) and hn : 1

n2T (A,L)→ G̃(n∗L). We construct τ̃2n as the composite

1

2n2
T (A,L)

1
2→ 1

(2n)2
T (A,L)

h2n→ G̃((2n)∗L).
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When n is odd, τ̃n : 1
n2T (A,L)→ G̃(n∗L) is defined as

1

n2
T (A,L)

1
2≃ 1

n2
T (A,L)

hn→ G̃(n∗L).

It is readily checked that τ̃n are compatible with in,mn for m,n ≥ 1 so that they glue together to a map

τ̂ : V A→ Ĝ(L). (Note that τ̃n and τ̃mn provide sections in the diagram of Lemma 3.12.) By construction τ̂

is a section of ĵ, namely

ĵ ◦ τ̂ = id. (3.9)

The map τ̂ enables us to identify Ĝ(L) with Gm×V A equipped with a certain group law which resembles
the classical Heisenberg group law. To be precise, define a group law on Gm × V A by

(λ, x) · (µ, y) = (λµ · êL(1
2
x, y), x+ y). (3.10)

Lemma 3.18. ([MNN07, Prop 4.18.B]) The map

Gm × V A→ Ĝ(L), (λ, x) 7→ λ · τ̂(x)

is an isomorphism of ind-group schemes over S.

Proof. The above map is readily seen to be an isomorphism of ind-schemes over S from the row exactness of
(3.8) together with (3.9). It remains to check the homomorphism property. Set x̃ = τ̂(x/2) and ỹ = τ̂(y/2).
Let λ, µ ∈ Gm. Then

λτ̂(x)µτ̂(y) = λµτ̂(x)τ̂(y)

= λµx̃iL(x̃)−1ỹiL(ỹ)−1

= λµx̃iL(x̃)−1ỹ(x̃iL(x̃)−1ỹ)−1ỹx̃iL(x̃)−1iL(ỹ)−1

= λµêL(ĵ(x̃iL(x̃)−1), ĵ(ỹ))ỹx̃iL((ỹx̃)−1)

= λµêL(x, y/2)τ̂(x̃+ ỹ) = λµêL(x/2, y)τ̂(x̃+ ỹ).

�

It is natural to ask about the difference between σ̂ and τ̂ |TA which are maps from TA to Ĝ(L). Consider
the map

eL∗ :
1

2
TA→ Gm, eL∗ (x) = σ̂L(2x)τ̂(2x)−1. (3.11)

Lemma 3.19. The map eL∗ is a quadratic form factoring as

1

2
TA� A[2]→ µ2 ↪→ Gm

where 1
2TA� A[2] and µ2 ↪→ Gm are canonical surjection and injection. In particular, σ̂ and τ̂ coincide on

2 · TA. For all x, y ∈ 1
2TA (viewed as T -valued points for each S-scheme T ),

eL∗ (x+ y)eL∗ (x)
−1eL∗ (y)

−1 = eL(x, y)2.

Proof. The proof of [MNN07, Prop 4.18.C] is easily adapted to the scheme-theoretic setting as in the proof
of the last lemma. �

Lemma 3.20. Consider (A′, L′) and (A,L) with a bounded isogeny α : A′ → A such that L′ = α∗L. Suppose
that L′ and L are symmetric. Then the following diagram commutes where the row isomorphisms are as in
Lemma 3.18.

Gm × V A′
∼ //

∼ (id,V (α))

��

Ĝ(L′)

∼ Ĝ(α)
��

Gm × V A
∼ // Ĝ(L)
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Proof. The proof is reduced to checking iL ◦ Ĝ(α) = Ĝ(α) ◦ iL′
, which amounts to the commutativity of the

outer rectangle below.

Ĝ(L′)
I1 //

Ĝ(α)
��

Ĝ((−1)∗L′)
Ĝ(−1) //

Ĝ(α)
��

Ĝ(L′)

Ĝ(α)
��

Ĝ(L)
I2 // Ĝ((−1)∗L)

Ĝ(−1) // Ĝ(L)

The maps I1 and I2 are induced by any choice of isomorphisms L′ ≃ (−1)∗L′ and L ≃ (−1)∗L (since such
isomorphisms allow us to identify Aut(L′/A) ≃ Aut((−1)∗L′/A) and Aut(L′/A) ≃ Aut((−1)∗L′/A)) and

easily seen to be independent of the choice. The right half commutes because Ĝ(α)Ĝ(−1) = Ĝ(−1)Ĝ(α) =
Ĝ(−α). In order to verify that the left half commutes, one reduces to the situation where Ĝ, L′ and L are

replaced with G̃, n∗L′ and n∗L, respectively. Then by using the description of Corollary 3.11, one checks
that

(ψr, xr)r≥1
I1 //

Ĝ(α)
��

(ψr, xr)r≥1

Ĝ(α)
��

(ψr, α(xr))r≥1
I2 // (ψr, α(xr))r≥1

where ψr is the induced automorphism of L→ A obtained from taking quotient by kerα of ψr (the latter is
an automorphism of L′ → A′). �

3.6. p-adic Heisenberg groups. It is easy to adapt the construction of this section to obtain p-adic

analogues. There are obvious definitions of 1
pnTp(A,L) and G̃p((p

n)∗L). In order that Tp(A,L) be contained

in VpA, we need to assume that degL is a power of p (including degL = 1), or equivalently that K(L) is a
p-group. Then we have 1

pnTp(A,L) ↪→ VpA for all n ≥ 1. Define

Ĝp(L) := lim−→
n

G̃p((pn)∗L).

There is a commutative diagram similar to (3.5).

1 // Gm
//

id

��

G̃p((pn)∗L)
pnjpn //

��

1
pnT (A,L)

//

natural

��

1

1 // Gm
// Ĝp(L)

ĵp // VpA // 1.

The commutator pairing yields êLp : VpA× VpA→ Gm. A group morphism σ̂p : TpA→ Ĝp(L) is constructed
as before. Now suppose that L is symmetric. Then there is a map τ̂p : VpA→ Ĝp(L) (which is not compatible

with group structure) such that ĵp ◦ τ̂p = id. If p ̸= 2 then σ̂Lp = τ̂p|TpA and eLp,∗ ≡ 1. If p = 2, the map

eL2,∗ :
1
2T2A→ Gm sending x to σ̂L2 (2x)τ̂2(2x)

−1 factors through 1
2T2A� A[2]→ µ2 ↪→ Gm and satisfies the

same formula as in Lemma 3.19. Using τ̂p we get an isomorphism Gm × VpA
∼→ Ĝp(L) (for any p including

p = 2) if the group law on the left hand side is as in (3.10).

4. Adelic and p-adic Heisenberg representations

As before A is an abelian scheme over S, and L is a nondegenerate line bundle over A. Throughout §4 S
is locally noetherian but L is not assumed to be symmetric except briefly at the end of §4.4.

4.1. Some preliminaries on group actions. The following general notation will be used in §4.1.
• G is a finite flat group scheme over S. (Not necessarily étale.)
• α : X → S is an S-scheme of finite type, equipped with a strictly free G-action (i.e. G ×S X →
X ×S X via (g, x) 7→ (gx, x) is a closed immersion) such that every orbit is contained in an affine
open set.
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Then a general theorem of Grothendieck (cf. [Tat97, Thm 3.4]) ensures that the quotient Y := X/G, coming
along with β : Y → S and ξ : X → Y , exists in the category of S-schemes. (This is a universal geometric
quotient as well as an fppf quotient. See [vdGM, Thm 4.16, Thm 4.35] for details.)

Proposition 4.1. Let F ′ and F be a coherent OX-module and a coherent OY -module, respectively. The
canonical maps F → (ξ∗ξ

∗F)G and ξ∗(ξ∗(F ′)G) → F ′ are isomorphisms. (The maps are given by the fact
that ξ∗ is the left adjoint of ξ∗.) The map F 7→ ξ∗F induces an equivalence of the category of coherent
OY -modules (resp. locally free OY -modules of finite rank) and the category of coherent OX-modules with
G-action (resp. locally free OY -modules of finite rank with G-action).

Proof. The statement and proof of [Mum74, §12, Thm 1] can be adapted to the relative setting over S. �
Lemma 4.2. The category of G-representations on OS-modules has enough injectives.

Proof. Let F be a G-representation on an OS-module. Since the category of OS-modules has enough

injectives, there exists an injective OS-module I with i : F ↪→ I. The OS-module Ĩ := HomOS
(G, I) is an

injective object in the category of G-representations on OS-modules since the functor

M 7→ HomG(M,HomOS
(G, I)) ≃ HomOS

(M, I)
is exact by the injectivity of I. (The latter isomorphism is given by ϕ 7→ (m 7→ ϕ(m)(e)), where e is

the identity of G.) The above isomorphism for M = F yields HomG(F , Ĩ) ≃ HomOS
(F , I), and the map

ĩ : F → Ĩ corresponding to i is an injection. �
There is a functor V 7→ VG from the category of G-representations on OS-modules to the category of

OS-modules. (By [MB85, V.1.2], VG is an OS-module.) For i ≥ 0, let Hi(G,V) denote the i-th right derived
functor of the left exact functor V 7→ VG.

Lemma 4.3. There is a spectral sequence Ei,j2 = Hi(G,Rjα∗(ξ∗F))⇒ Ri+jβ∗F .

Proof. Let Rep(G) denote the category of G-representations on OS-modules. Consider the left exact functors
QCohY → Rep(G) and Rep(G)→ QCohS given by F 7→ α∗(ξ

∗F) and V 7→ VG, respectively. Note that

α∗(ξ
∗F)G = β∗F . (4.1)

The desired spectral sequence is none other than the Grothendieck spectral sequence. We only need to show
that the functor F 7→ α∗(ξ

∗F) carries injective objects to acyclic objects.
Set GY := G×S Y . Note that α∗(ξ

∗F) = β∗ξ∗ξ
∗F . One sees that ξ∗ξ

∗F ≃ HomOS
(G,F) and that

β∗HomOS
(G,F) ≃ HomOS

(G, β∗F).
For any OS-module F ′, HomOS

(G,F ′) is acyclic for taking G-invariants, so the proof is complete. (The
argument is the same as the one showing the acyclicity of induced modules in group cohomology. Indeed,
if F ′ → I• is an injective resolution in OS-modules, then HomOS

(G,F ′) → HomOS
(G, I•) is an injective

resolution in Rep(G). When G-invariants are taken, the latter resolution becomes F ′ → I•, which is exact.)
�

Corollary 4.4. Suppose that there exists an integer q ≥ 0 such that Rjα∗(ξ
∗F) = Rjβ∗F = 0 unless j = q.

Then the canonical morphism Rqβ∗F → (Rqα∗(ξ
∗F))G (cf. (4.1)) is an isomorphism.

Proof. The spectral sequence of Lemma 4.3 degenerates at E2 by the assumption and induces the desired
isomorphism. �

4.2. Construction of adelic Heisenberg representations. Temporarily we make an assumption that
L is nondegenerate of index i for some i ≥ 0. (This will be removed at the end of this subsection.) Set

V(n)(L) := Rif∗(n
∗L).

Note that G̃(n∗L) acts on V(n)(L) through its projection onto G(n∗L), whose action was discussed in §2.3.
For m,n ∈ Z>0, there is a natural map functorial in L:

f∗n
∗L→ f∗m∗m

∗(n∗L) ≃ f∗(mn)∗L
induced by the adjunction map n∗L→ m∗m

∗(n∗L). It works similarly with higher direct image of f (as m∗
is exact). Define νn,mn : V(n)(L) → V(mn)(L) to be the functorial map Rif∗(n

∗L) → Rif∗((mn)
∗L). It is
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clear that νmn,mnkνn,mn = νn,mnk for any m,n, k ∈ Z>0 as both sides are the functorial map with respect to

(mnk)∗L → n∗L covering mk : A → A. Moreover νn,mn is compatible with in,mn : G̃(n∗L) ↪→ G̃((mn)∗L),
namely for all γ ∈ G̃(n∗L) and v ∈ V(n)(L), we have in,mn(γ) · νn,mn(v) = νn,mn(γ · v). Indeed, this results
from the commutativity of

(mn)∗L
in,mn(γ) //

��

(mn)∗L

��
n∗L

γ // n∗L

where γ (resp. in,mn(γ)) acts through its image in G(n∗L) (resp. G((mn)∗L)).

Lemma 4.5. As OS-modules, for all m,n ≥ 1,

V(n)(L) ≃ (V(mn)(L))A[m] = (V(mn)(L))σ̃mn(nTA)

where the first isomorphism is induced by νn,mn.

Proof. Take α = β = f , ξ = m, F = n∗L and q = i in Corollary 4.4 to obtain the first isomorphism

V(n)(L) ≃ (V(mn)(L))A[m]. (4.2)

We claim that
(V(mn)(L))A[m] = (V(mn)(L))σ̃mn(nTA). (4.3)

On the right hand side, G̃((mn)∗L) acts through G((mn)∗L). The action of the subgroup scheme σ̃mn(nTA)

of G̃((mn)∗L) factors through σ̃mn(nTA)/σ̃mn(mnTA) ≃ A[m]. In view of Corollary 3.11, the latter A[m]-
action (on the right hand side of (4.3)) is described as follows: x′ ∈ A[m] acts on (mn)∗L via ψ′ which is

obtained from Lemma 3.9 by taking x = 0, ψ = id, and this induces the action of x′ on V(mn)(L). The claim
(4.3) follows from the fact that this A[m]-action is the same as the one used in Corollary 4.4, thus used in
(4.2). (See Remark 3.10.)

�
Using the fact that νn,mn are compatible with in,mn as explained above, we obtain

V̂(L) := lim−→
n

V(n)(L)

as a Ĝ(L)-representation where νn,mn are transition maps. The OS-module V̂(L) carries a weight 1 action

by Ĝ(L). Its properties will be investigated in the next subsection.

Remark 4.6. A more concise definition of V̂(L) would be Rif∗(u
∗L). (In §3.2 u was defined.) It is useful

to view Ĝ(L) as a compatible system of G̃(n∗L)-actions on V(n)(L), as this allows us to derive properties of

V̂(L) from those of V(n)(L).

Now we drop the assumption that the index of L is constant over S. Let g be the relative dimension of
A over S. Since the index function s 7→ Ls is locally constant, we can decompose S =

⨿g
i=0 Si into open

and closed subschemes such that the index function is constantly i on each Si. The previous paragraphs

construct V(n)(L), V̂(L), and so on over each Si, thereby we obtain them over S.

4.3. Basic properties. Just like at the end of the last subsection, we no longer assume that L has fixed
index over S.

Definition 4.7. A Ĝ(L)-representation F (on an OS-module) is admissible if F σ̂(n·TA) is a coherent OS-
module for every n ≥ 1. (We always have that F σ̂(nTA) is an OS-submodule of F .)

Definition 4.8. A Ĝ(L)-representation F is smooth if

F = ∪n≥1F σ̂(n·TA).

A useful observation is that F σ̂(n·TA) is a module over NĜ(σ̂(nTA))/σ̂(nTA) ≃ G(n
∗L), cf. Lemma 3.15.

This will be exploited several times.

Remark 4.9. If L is a symmetric line bundle so that τ̂ is available, an equivalent criterion for smoothness is
that F = ∪n≥1F τ̂(n·TA). The obvious reason is that σ̂ = τ̂ on 2TA.
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Remark 4.10. It is not inconceivable that any weight one Ĝ(L)-representation is smooth, but we have not
checked this.

Lemma 4.11. Suppose that L is nondegenerate of index i. Then

(i) V̂(L)σ̂(nTA) = V(n)(L).
(ii) The Ĝ(L)-representation V̂(L) is admissible and smooth.

Proof. Clearly (i) implies (ii). Part (i) is obtained from Lemma 4.5 by taking limit over m. Note that this
works even if ind(L) is not constant on S, cf. the end of §4.2.

�

We give a tentative definition of a (finite) adelic Heisenberg representation. Perhaps a more satisfactory
definition is (ii) of Proposition 4.19 below.

Definition 4.12. An adelic Heisenberg representation H of Ĝ(L) is a smooth Ĝ(L)-representation of

weight 1 such that Hσ̂(nTA) is a locally free OS-module of rank n2g · degL for all n ≥ 1.

Lemma 4.13. An adelic Heisenberg representation H of Ĝ(L) is a locally free OS-module4 and irreducible.
(The notion of irreducibility is the same as in Definition 2.11.)

Proof. Let H′ ⊂ H be a smooth Ĝ(L)-subrepresentation so that (H′)σ̂(nTA) ⊂ Hσ̂(nTA) is a G̃(n∗L)-
subrepresentation as well as a G(n∗L)-subrepresentation. By Proposition 2.12.(i) there is an ideal sheaf
In of OS such that

(H′)σ̂(nTA) = In · Hσ̂(nTA). (4.4)

By taking σ̂(TA)-invariants where σ̂(TA) acts through its image in G̃(n∗L), we obtain

(H′)σ̂(TA) = In · Hσ̂(TA).

Since Hσ̂(TA) is locally free, the comparison with (4.4) for n = 1 shows that In = I1 for all n ≥ 1. Hence

H′ = H⊗I1. The local freeness of H follows from the fact that Hs = lim
−→n

(Hσ̂(n!TA))s is free over OS,s as it
is an increasing union of finite free modules. (Since each transition map has a section, a basis can be written
down easily.) �

Corollary 4.14. The Ĝ(L)-representation V̂(L) is an adelic Heisenberg representation of Ĝ(L) in the sense
of Definition 4.12.

Proof. This follows from Proposition 2.13.(ii), Lemmas 4.11 and 4.13. �

Theorem 4.15. Let H be a Heisenberg representation of Ĝ(L). Then there is an equivalence of categories

Rep1sm(Ĝ(L))
∼→ QCohS

given byM 7→ HomĜ(L)(H,M) and N 7→ H⊗N , which are quasi-inverses of each other.

Proof. To simplify notation, let us write V̂ for V̂(L). Suppose that the proposition is known for H = V̂.
Then it implies that any Heisenberg representation H′ is isomorphic to V̂ ⊗F for an OS-module F . Since the
σ̂(TA)-invariants in H′ and V̂ are locally free of the same rank, we see that F is an invertible OS-module.

By using this, the proposition for H′ is easily deduced from the case for V̂.
Consider the case H = V̂. We will show that the natural map

V̂ ⊗HomĜ(L)(V̂,M)→M (4.5)

sending v ⊗ f to f(v), which is clearly functorial in M, is an isomorphism in Rep1sm(Ĝ(L)). Once this is

shown, the same argument as on page 113 of [MB85] proves that N → HomĜ(L)(V̂, V̂ ⊗ N ) is a functorial

4Note that we are dealing with an OS-module which is typically of infinite rank. We consider an OS-module H locally free if
the Zariski localization Hs is a free OS,s-module for all s ∈ S. This does not automatically imply that H|U is a free OU -module
in some open neighborhood U of s for a given s ∈ S.
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isomorphism in QCohS , and we will be done. As a preparation, let us consider the functors

OS−mod
F2

((QQQQQQQQQQQQQ
F1 //

Rep1sm(G(n∗L))
G1

oo

Rep1sm(G((mn)∗L))
G2

hhQQQQQQQQQQQQQ

F3

55kkkkkkkkkkkkkk

where F1, F2, G1, G2 are the functors in Proposition 2.12.(ii), which give equivalences of categories, and F3

is given by the rule F3(M0) =MA[m]
0 . Then F3 ◦F2 ≃ F1 canonically. Indeed, in view of Lemma 4.11.(i),

F1(M0) =M0 ⊗ V(n) ≃ (M0 ⊗ V(mn))A[m] = F3(F2(M0)).

Now let M ∈ Rep1sm(Ĝ(L)) and set M(n) := Mσ̂(nTA) for n ≥ 1. It is implied by F3 ◦ F2 ≃ F1 that
canonically

G1F3(F2G2) ≃ (G1F1)G2.

Thanks to Proposition 2.12.(ii), we get a canonical isomorphism G1F3 ≃ G2. Applying to M(mn) and
unraveling the functors, we have a canonical isomorphism

HomG̃((mn)∗L)(V
(mn),M(mn))

∼→ HomG̃(n∗L)(V
(n),M(n)). (4.6)

induced by the restriction to V(n). (The right hand side of (4.6) is a rewriting of HomG(n∗L)(V(n),M(n)),

where we use the fact that σ̂(nTA) is trivial on V(n) and M(n). What happens to the left hand side is
similar.) We obtain the following commutative diagram in which the vertical maps come from natural

inclusions V(n) ↪→ V(mn),M(n) ↪→M(mn) and (4.6).

V(n) ⊗HomG̃(n∗L)(V
(n),M(n)) ∼ //

��

M(n)

��
V(mn) ⊗HomG̃((mn)∗L)(V

(mn),M(mn)) ∼ //M(mn)

By taking limit over n we deduce that (4.5) is an isomorphism. �
Corollary 4.16. The canonical map OS → EndĜ(L)(H) (via the OS-module structure on H) is an isomor-

phism.

Proof. By Theorem 4.15, EndĜ(L)(H) ≃ EndOS
(OS) ≃ OS . �

Corollary 4.17. Let H be as in Lemma 4.13. If H′ is another Ĝ(L)-representation with the same property
then there exists an invertible OS-module N such that

H′ ≃ H⊗N .

Proof. This is proved as in the first paragraph of the proof of Theorem 4.15. �
Corollary 4.18. Suppose that S = SpecR for a local ring R. Then any two Heisenberg representations are
isomorphic.

Proof. Immediate from Corollary 4.17. �
This subsection ends with an alternative characterization of Heisenberg representations. It will be used

in §5.1.

Proposition 4.19. The following are equivalent.

(i) H is a Heisenberg representation of Ĝ(L). (Definition 4.12)

(ii) H is a weight 1 admissible smooth irreducible representation of Ĝ(L) on a locally free OS-module
such that H does not vanish anywhere on S.

Remark 4.20. In (ii) above, it is enough to require H ≠ 0 when S is connected. On the other hand, one
could show that the admissibility in (ii) is superfluous by extending Lemma 4.22 to the case where F may
be of infinite rank. That proof is easily reduced to the finite rank situation.
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Proof. Lemma 4.13 says that (i) implies (ii). In order to show the other implication, let H be as in (ii)

and H′ be a Heisenberg representation of Ĝ(L) (in the sense of Definition 4.12). Theorem 4.15 tells us that
H ≃ H′ ⊗ N for some OS-module N . By taking invariants under σ̂(nTA) for a large enough n (so that
the invariants are nontrivial), we see that N has to be a coherent OS-module. It suffices to show that N is
locally free of rank 1.

Choose an arbitrary s ∈ S. The stalks at s are related by Hs ≃ H′s ⊗OS,s
Ns. We see that Ns is a

projective OS,s-module as H′s and Hs are free over OS,s. Since Ns is finitely generated over the noetherian
ring OS,s, it is free of finite rank. Now let U be an open affine noetherian neighborhood of s in S. The proof
will be complete if N|U is shown to be an invertible OU -module.

Suppose that this is not the case. Lemma 4.23 tells us that N|U has an OU -submoduleM which is not
given as N|U ⊗OU

J for any ideal sheaf J ⊂ OU . Applying Lemma 4.22, we obtain an OS-submodule N ′
of N such that N ′|U =M. Then it is impossible that N ′ = N ⊗OS

I for an ideal sheaf I ⊂ OS . (If it were
possible, by restricting to U , we would get M = NU ⊗OU

I|U , but this is a contradiction.) This means,

via Theorem 4.15 (applicable to H′), that H allows a Ĝ(L)-subrepresentation H′ ⊗N ′ not given by an ideal
sheaf, contradicting the assumption that H is irreducible. We are done.

�
Corollary 4.21. Consider (A′, L′) and (A,L) with a bounded isogeny α : A′ → A such that L′ = α∗L. Let

Ĝ(α) : Ĝ(L′) ∼→ Ĝ(L) be as in Lemma 3.13. If ρ : Ĝ(L) → AutOS
(H) is a Heisenberg representation then

ρ ◦ Ĝ(α) is a Heisenberg representation of Ĝ(L′).

Proof. Clear from the criterion (ii) of Proposition 4.19 and Lemma 3.16. (Thanks to the latter, the fact that

ρ is admissible and smooth shows that ρ ◦ Ĝ(α) is also.) �
The following two lemmas were used in the proof of Proposition 4.19.

Lemma 4.22. Let F be an OS-module and U an open affine subscheme of S. Let M be an OU -module
defined by an OS(U)-submodule of F(U). Define a Zariski presheaf F ′ on S by

F ′(V ) = {a ∈ F(V ) : a|U∩V ∈M(U ∩ V )}.
Then F ′ is a Zariski sheaf and an OS-submodule of F . (Recall that every OS-module (likewise every OU -
module) is required to be quasi-coherent in our convention.)

Proof. It is a routine check that F ′ is a Zariski sheaf. By construction F ′ is a subsheaf of F . The verification
that F ′ is an OS-module reduces to the affine case, in which case it is elementary. �
Lemma 4.23. Let U be a noetherian scheme. Let F be a locally free OU -module of finite rank. Suppose
that F has rank ≥ 1 at every point of U and rank > 1 at some point u ∈ U . (Note that U may not be
connected.) Then there exists an OU -submodule M ⊂ F which is not of the form M = F ⊗OU

I for any
ideal sheaf I ⊂ OU .

Proof. We can find an affine subscheme V = SpecB of U containing u on which F|V is free of rank≥ 2.
Let M be any rank 1 free B-submodule of F(V ) and denote byM′ the corresponding OV -module. Extend
M′ to an OU -module M by the previous lemma. We claim that M satisfies the condition of the lemma.
Indeed, if we had M = F ⊗OU

I for some ideal I ⊂ OU , then we would reach a contradiction by taking
stalk at u and computing the k(u)-dimension after tensoring k(u) := OU,u/mU,u. (Here mU,u denotes the
unique maximal ideal of OU,u.) �

4.4. Dual Heisenberg representations and matrix coefficients. As we have seen in §2.4, there are
isomorphisms of G(n∗L)× G(n∗L)-representations

V(n∗L)⊗ V(n∗L)∨ ∼→ HomGm
(G(n∗L),OS) (4.7)

for varying n. On the right hand side Gm acts on G(n∗L) and OS by multiplication. We will promote (4.7)
to an adelic isomorphism.

Definition 4.24. Define an OS-module

Homsm
Gm

(Ĝ(L),OS) :=
∪
n≥1

HomGm
(Ĝ(L)/σ̂(nTA),OS) =

∪
n≥1

HomGm
(Ĝ(L),OS)σ̂(nTA)×{1}.
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A section ϕ of HomGm
(Ĝ(L),OS) is said to be smooth if it is a section of the above OS-module. (The

definition is equivalent if τ̂ is used in place of σ̂. cf. Remark 4.9.)

Lemma 4.25. The map

V̂(L)⊗ V̂(L)∨ → Homsm
Gm

(Ĝ(L),OS) (4.8)

v ⊗ v∨ 7→ (γ 7→ v∨(γv)) (4.9)

is an isomorphism of Ĝ(L) × Ĝ(L)-representations. Here, V̂(L)∨ is equipped with an action of Ĝ(L) by the

same formula as (2.2). On the right hand side, for ψ ∈ Homsm
Gm

(Ĝ(L),OS) and γ1, γ2 ∈ Ĝ(L), the action is

described by ((γ1, γ2)ψ)(γ) = ψ(γ−12 γγ1).

Proof. Recall from Lemma 3.15 that G̃(n∗L)/σ̂(nTA) ≃ G(n∗L) naturally. Thus (4.7) may be rewritten as

V(n∗L)⊗ V(n∗L)∨ ∼→ HomGm
(G̃(n∗L),OS)σ̂(nTA)×σ̂(nTA) = HomGm

(G̃(n∗L),OS)σ̂(nTA)×{1},

where the last equality holds thanks to Lemma 3.15.(ii). By taking further invariant, we obtain

V(L)⊗ V(n∗L)∨ ∼→ HomGm
(G̃(n∗L),OS)σ̂(TA)×{1}

as maps of G̃(L) × G̃(n∗L)-representations. (Note that V(L) is acted upon by NG̃(n∗L)(σ̂(TA))/σ̂(TA) =

G̃(L)/σ̂(TA).) We patch these isomorphisms via inverse limit, which are compatible as n varies (as they are

given by the same formula as (4.9)), to obtain an isomorphism of G̃(L)× Ĝ(L)-representations

V(L)⊗ V̂(L)∨ ∼→ HomGm
(Ĝ(L),OS)σ̂(TA)×{1}. (4.10)

Likewise there is an isomorphism of G̃(n∗L)× Ĝ(L)-representations

V(n∗L)⊗ V̂(L)∨ ∼→ HomGm
(Ĝ(L),OS)σ̂(nTA)×{1}

given by the same formula as (4.9). By patching again, we arrive at the map (4.8) and see that it is an
isomorphism.

�

Corollary 4.26. For any Heisenberg rep H, (4.9) induces an isomorphism of Ĝ(L)× Ĝ(L)-representations

H⊗H∨ ≃ Homsm
Gm

(Ĝ(L),OS).

Proof. Corollary 4.17 tells us that H ⊗ H∨ ≃ V̂(L) ⊗ V̂(L)∨ canonically. Composing this with (4.8), we
derive the desired isomorphism. �

Definition 4.27. Homsm
OS

(V A,OS) :=
∪
n≥1HomOS

(V A/nTA,OS). A section of Homsm
OS

(V A,OS) is said
to be smooth.

From here until the end of this subsection, assume in addition that L is symmetric. There is a further
isomorphism of OS-modules

HomGm
(Ĝ(L),OS) ≃ HomOS

(V A,OS) (4.11)

by restricting from Ĝ(L) ≃ Gm×V A (Lemma 3.18) to {1}×V A. Then (4.11) induces an isomorphism from

Homsm
Gm

(Ĝ(L),OS) onto Homsm(V A,OS), and the Ĝ(L) × Ĝ(L)-action may be transported to them. This
action will be used in the following corollary.

Corollary 4.28. Suppose that degL = 1. There is a Heisenberg representation H such that

H∨ = HomOS
(V A,OS)σ̂(TA)×{1}

=
{
ϕ ∈ HomOS

(V A,OS)
∣∣∣ϕ(x) = eL∗ (

y

2
)êL(

x

2
, y) · ϕ(x+ y),∀x ∈ V A, y ∈ TA

}
.

=
{
ϕ ∈ Homsm

OS
(V A,OS)

∣∣∣ϕ(x) = eL∗ (
y

2
)êL(

x

2
, y) · ϕ(x+ y),∀x ∈ V A, y ∈ TA

}
.

The action of (λ, z) ∈ Gm × V A ≃ Ĝ(L) (cf. Lemma 3.18, (3.10)) is described by

((λ, z)ϕ)(x) = λ−1êL(x, z/2) · ϕ(x− z).
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Proof. Set H := V̂(L) ⊗ V(L)∨. By the assumption V(L) is an invertible OS-module. The isomorphism
(4.10) provides

H∨ ∼→ HomGm
(Ĝ(L),OS)σ̂(TA)×{1} ≃ HomOS

(V A,OS)σ̂(TA)×{1}.

Let y ∈ TA. If ϕ ∈ HomGm
(Ĝ(L),OS) then σ̂(y) = τ̂(y)eL∗ (y/2) acts on ϕ as follows, where elements of Ĝ(L)

are written using Lemma 3.18.

(σ̂(y) · ϕ)((1, x)) = ϕ(eL∗ (
y

2
)(1, x)(1, y)) = eL∗ (

y

2
) · ϕ((êL(x

2
, y), x+ y)) = eL∗ (

y

2
)êL(

x

2
, y) · ϕ((1, x+ y)).

Thus the condition that σ̂(y) · ϕ = ϕ for all y ∈ TA produces the transformation formula for ϕ. Such a ϕ
is automatically smooth. Indeed, for any x ∈ V A, choose n ≥ 1 such that x ∈ 1

nTA. The transformation

formula tells us that ϕ(x+ y) = ϕ(x) for all y ∈ 2nTA, since eL∗ |2TA ≡ 1 and êL|TA×TA ≡ 1.

To compute the group action, let ψ ∈ HomGm
(Ĝ(L),OS) be the map corresponding to ϕ via (4.11). Then

(the third equality uses Lemma 3.18)

((λ, z)ϕ)(x) = (λτ̂(z)ψ)(τ̂(x)) = λ−1ψ(τ̂(z)−1τ̂(x))

= λ−1ψ(êL(z/2, x)−1τ̂(x− z)) = λ−1êL(z/2, x)−1ψ(τ̂(x− z))
= λ−1êL(x, z/2) · ϕ(x− z)

�
Remark 4.29. Corollary 4.28 may be thought of as presenting the (dual) lattice model for H∨, whose dual
gives rise to the lattice model for H.

Remark 4.30. Although H is a smooth Ĝ(L)-representation, there is no reason to expect H∨ to be smooth
in general. We caution the reader that the smoothness of ϕ in Corollary 4.28 does not imply that H∨ is

smooth as a Ĝ(L)-representation.

Remark 4.31. Let us assume that L has index 0, namely that L is relatively ample. By choosing a particular

section l0 ∈ H0(S, V̂(L)∨) one can associate theta functions for each element of H0(S, V̂(L)) as explained in

[MNN07, §5, App 2]. More precisely, take l0 to be “the evaluation at 0” map V̂(L) → OS . Then (4.8) (by

taking v∨ = l0) and (4.11) induce a map H0(S, V̂(L))→ HomOS
(V A,OS), which is a geometric construction

of theta functions.

4.5. An application of the Künneth formula - I. For r = 1, 2, let fr : Ar → S be an abelian scheme
with a nondegenerate line bundle Lr of index ir. Set A := A1 ×S A2 with projections pr : A→ Ar and the
structure map f : A→ S. Take L := p∗1L1 ⊗ p∗2L2.

Lemma 4.32. We have canonical isomorphisms

Rjf∗L ≃
{
Ri1f1,∗L1 ⊗Ri2f2,∗L2, j = i1 + i2,

0, j ̸= i1 + i2.

In particular L is nondegenerate of index i1 + i2.

Proof. This is a consequence of Théorème 6.7.8 of [DG63]. (Take the two complexes of OS-modules there
to be L1 and L2, where each of them is viewed as a complex concentrated in degree 0.) �

By checking that the isomorphisms in Lemma 4.32 for n∗L are compatible with transition maps for varying
n (namely νn,mn in §3.2 and its analogues for (A1, L1) and (A2, L2)), we obtain a canonical isomorphism

V̂(L1)⊗ V̂(L2) ≃ V̂(L). (4.12)

Moreover we have a natural embedding

G(n∗L1)× G(n∗L2) ↪→ G(n∗L)

for each n ≥ 1, sending ((ϕ1, x1), (ϕ2, x2)) to (p∗1ϕ1 ⊗ p∗2ϕ2, (x1, x2)). This map lifts to a map G̃(n∗L1) ×
G̃(n∗L2) ↪→ G̃(n∗L) and patches to

Ĝ(n∗L1)× Ĝ(n∗L2) ↪→ Ĝ(n∗L). (4.13)
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It is a routine check that (4.12) is equivariant with respect to (4.13). Namely the restriction of the Ĝ(n∗L)-
representation V̂(L) to Ĝ(n∗L1) × Ĝ(n∗L2) via (4.13) is identified via (4.12) with the Ĝ(n∗L1) × Ĝ(n∗L2)-

representation on V̂(L1)⊗ V̂(L2). In §5.3 we will see an analogous result for Weil representations.

4.6. Representations of p-adic Heisenberg groups. We return to the p-adic setup of §3.6; in particular

degL is assumed to be a power of a prime p. Define a Ĝp(L)-representation

V̂p(L) := lim−→
n

V(pn)(L).

The admissibility and smoothness are defined for Ĝp(L)-representations as in Definitions 4.7 and 4.8 by letting

n run over powers of p. A Heisenberg representation of Ĝp(L) is defined exactly as in Proposition 4.19.(ii)

and induces an equivalence of categories as in Theorem 4.15. The representation V̂p(L) is a Heisenberg

representation of Ĝp(L), and any two Heisenberg representations differ by a tensoring with a line bundle
over S. We also have the analogues of results in §4.4 and §4.5.

5. Weil representations

As in the previous section, let A be an abelian scheme over a locally noetherian scheme S. Now L is a
nondegenerate symmetric line bundle over A.

5.1. Adelic Weil representations. Let ρ : Ĝ(L) → AutOS
(H) be any adelic Heisenberg representation

(Definition 4.12, cf. Proposition 4.19). Define a group functor Spb(V A, êL) on (Sch/S) by

Spb(V A, êL)(T ) = {g ∈ AutbT (V A×S T ) such that êL ◦ (g, g) = êL}. (5.1)

(The superscript b stands for “bounded”.) Note that g ∈ Spb(V A, êL)(T ) acts on Gm(T ) × V A(T ) by

g·(λ, x) = (λ, gx) and that this action preserves the group law of (3.10). The automorphism Ĝ(L) ≃ Gm×V A
of Lemma 3.18 allows us to transport the Spb(V A, êL)-action to the side of Ĝ(L).

Let T be a locally noetherian S-scheme. Write LT := L ×S T . Let ρT : Ĝ(L) × T → AutOT
(H ⊗ OT )

be the representation induced from ρ by base extension. It can be seen from the construction of Ĝ(L)
that Ĝ(L) × T ≃ Ĝ(LT ) canonically. Moreover H ⊗ OT is a Heisenberg representation of Ĝ(LT ). For each

g ∈ Spb(V A, êL)(T ), define ρgT := ρT ◦ g, which is a weight 1 representation of Ĝ(LT ).

Lemma 5.1. (i) ρgT is a Heisenberg representation of Ĝ(LT ).
(ii) ρgT ≃ ρT as Ĝ(LT )-representations.

Proof. Without loss of generality we may assume T = S. Since g is a bounded automorphism, there exist
m,m′ ≥ 1 such that g(mnTA) ⊂ nTA and g(nTA) ⊃ m′nTA for every n ≥ 1. Thus

Hρg(τ̂(mnTA)) ⊃ Hρ(τ̂(nTA)), Hρg(τ̂(nTA)) ⊂ Hρ(τ̂(m′nTA)).

Therefore ρg is smooth and admissible. Further, ρg is irreducible since any Ĝ(L)-subrepresentation of ρg is

also a Ĝ(L)-subrepresentation of ρ, which is irreducible. Part (i) follows from Proposition 4.19.

Corollary 4.17 shows that ρg ≃ ρ ⊗OS
N as Ĝ(L)-representations for some invertible sheaf N on S

(equipped with trivial Ĝ(L)-action). The isomorphism provides f : H ≃ H ⊗ N as OS-modules. But f

obviously induces an isomorphism ρ ≃ ρ⊗N of Ĝ(L)-representations. Therefore ρg ≃ ρ. �

Now define a group functor Mpb(V A, êL) on (Sch/S) such that for locally noetherian T ,

Mpb(V A, êL)(T ) = {(g,M) ∈ Spb(V A× T, êL)×AutOT
(H⊗OT ) | M ◦ ρT ◦M−1 = ρgT } (5.2)

with group law (g1,M1)(g2,M2) = (g1g2,M1M2). (The definition is understood as a functor of points.)
Similarly define Mpb(TA, êL) with TA in place of V A. There is a sequence of group functors

1→ Gm → Mpb(V A, êL)→ Spb(V A, êL)→ 1. (5.3)

The first map Gm → Mpb(V A, êL) is given by α 7→ (1, α) using the canonical isomorphism Gm ≃ AutOS
(H),

and the next map sends (g,M) to g.
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We define a variant Sp(V A, êL) (resp. Mp(V A, êL)), which is also a group functor on (Sch/S) (resp.
(LocNoeth/S)). For an S-scheme T , write T =

∏
i∈I Ti as a disjoint union of connected components. Set

Sp(V A, êL)(T ) :=
∏
i∈I

Spb(V A, êL)(Ti)

and similarly for Mp(V A, êL)(T ). The boundedness condition is vacuous in Spb(V A, êL)(Ti) (cf. the para-
graph above Lemma 3.4). As the analogue of (5.3) we have

1→ Gm → Mp(V A, êL)→ Sp(V A, êL)→ 1. (5.4)

Remark 5.2. In general we do not address the issue of representability of Sp, Mp, Spb and Mpb by ind-group
schemes. When there is a level structure (§6) we will see that Sp is often representable.

Lemma 5.3. For any locally noetherian S-scheme T , the sequence of groups obtained from (5.3) by taking
T -points is exact. The same is true for (5.4).

Proof. It is enough to deal with (5.3), which implies the other case easily. The lemma is obvious except for the
surjectivity, which we check now. Let g ∈ Sp(V A, êL)(T ). It suffices to show that HomĜ(LT )

(ρT , ρ
g
T ) has a T -

point. Since ρT ≃ ρgT by the preceding lemma, we have a (non-canonical) isomorphism HomĜ(LT )
(ρT , ρ

g
T ) ≃

AutĜ(LT )
(ρT ). The latter is isomorphic to Gm(T ) by Theorem 4.15, which is certainly nonempty. �

Remark 5.4. In the classical analogue of (5.3) (or (5.4)), the exactness in the middle results from the
irreducibility of the Heisenberg representation and Schur’s lemma. The surjectivity results from the Stone
Von-Neumann theorem.

Definition 5.5. The tautological representation Mpb(V A, êL)→ AutOS
(H) (resp. Mp(V A, êL)→ AutOS

(H))
given as a morphism of group functors on (LocNoeth/S) by (g,M) 7→M is called the Weil representation
or the oscillator representation. (cf. Remark 2.10.)

For the rest of section 5 we mostly focus on Mpb and Spb. The results carry over to Mp and Sp easily
(§5.5). The Weil representation is independent of the choice of the Heisenberg representation H in a suitable
sense, as we are about to see.

Lemma 5.6. If MpbH(V A, ê
L) and MpbH′(V A, ê

L) denote the group functors arising from Heisenberg repre-

sentations H and H′ respectively, then there is a canonical isomorphism of metaplectic group functors sitting
in a commutative diagram below.

1 // Gm
// MpbH(V A, ê

L) //

can∼
��

Spb(V A, êL) // 1

1 // Gm
// MpbH′(V A, ê

L) // Spb(V A, êL) // 1

Proof. By Corollary 4.17, H′ = H⊗N for an invertible OS-moduleN . Thus there is a canonical isomorphism
α : AutOS

(H) ≃ AutOS
(H′). Then (g,M) 7→ (g, α(M)) clearly induces the desired isomorphism. �

Corollary 5.7. With the notation in the previous lemma, we have a commutative diagram

MpbH(V A, ê
L)

Weil //

can∼
��

AutOS
(H)

can∼
��

MpbH′(V A, ê
L)

Weil // AutOS
(H′)

.

Proof. Immediate from the proof of Lemma 5.6. �
We would like to find a splitting of (5.3) over an “open compact subgroup” of Spb(V A, êL). Let m,n ≥ 1.

Let Spb( 1
mT (A,L);nTA, ê

L) denote the subgroup functor of Spb(V A, êL) consisting of g which stabilizes
1
mT (A,L) and nTA, and induces the identity map on 1

mT (A,L)/nTA. Note that Spb( 1
mT (A,L);nTA, ê

L) =

Spb(T (A,L);mnTA, êL). (We will favor the expression on the left hand side when it seems conceptually
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helpful.) Now suppose that (g,M) ∈ Mpb(V A, êL) with g ∈ Spb(12T (A,L); 2TA, ê
L). The latter condition

implies that the g-action on Ĝ(L)
• preserves τ̂(2TA), which is equal to σ̂(2TA) and

• leaves G̃(2∗L) stable and induces the identity map on G(2∗L) ≃ G̃(2∗L)/τ̂(2TA).
By restriction, M induces an isomorphism of representations

M0 : (ρ|G̃(2∗L),H
σ̂(2TA)) ≃ (ρg|G̃(2∗L),H

σ̂(2TA)).

The representations factor through the quotient G(2∗L) of G̃(2∗L). Since g acts as the identity on G(2∗L), we
deduce that ρg = ρ (not just an isomorphism) as G(2∗L)-representations on Hσ̂(2TA). Hence by Proposition
2.12.(iv),

M0 ∈ AutG(L)(Hσ̂(2TA)) ≃ AutOS
(OS) ≃ Gm. (5.5)

Among the two canonical isomorphisms above, the former is given by Proposition 2.12.(ii). In light of (5.5),
there is a unique choice of M (when g is fixed) which restricts to M0. This leads to:

Lemma 5.8. There is a canonical splitting of (5.3) over Spb(TA, êL). Namely, there is a map of group
functors

spl : Spb(
1

2
T (A,L); 2TA, êL)→ Mpb(TA, êL)

such that if spl(g) = (g,Mg), then Mg corresponds to the identity of Gm via (5.5).

Proof. Let α : T → S be an S-scheme. For each g ∈ Spb(12T (A,L); 2TA, ê
L), let us define Mg. As was

seen in the proof of Lemma 5.3, there exists M ′g such that (g,M ′g) ∈ Mpb(TA, êL)(T ). Such an M ′g defines

an automorphism a ∈ Gm(T ) by (5.5). Set Mg := a−1 ·M ′g. Then (g,Mg) ∈ Mpb(V A, êL)(T ) and Mg

corresponds to 1 ∈ Gm(T ) via (5.5). Moreover it is straightforward to verify (g1g2,Mg1g2) = (g1g2,Mg1Mg2)
as the images of Mg1g2 and Mg1Mg2 in Gm via (5.5) are both 1. �

Corollary 5.9. Suppose that degL = 1. Then there is a canonical splitting of (5.3) over Spb(TA, 4TA, êL).

Proof. Immediate since T (A,L) = TA and Spb(TA, 4TA, êL) = Spb(12TA, 2TA, ê
L).

�

5.2. Dual Weil representations. The dual Heisenberg representation H∨ also plays the role of the dual
Weil representation. Namely Mpb(A, êL) acts on H∨ by the rule

((g,M) · v∨)(v) = v∨(M−1v), v ∈ H, v∨ ∈ H∨.

5.3. An application of the Künneth formula - II. We continue §4.5 with the same notation as in that
subsection. Note that there is an obvious embedding

Spb(A1, ê
L1)× Spb(A2, ê

L2) ↪→ Spb(A, êL).

The following is the analogue of a classical result ([MVW87, II.1.(6)]).

Lemma 5.10. The isomorphism

i : V̂(L1)⊗ V̂(L2) ≃ V̂(L)

of (4.12) is an isomorphism of Mpb(V A1, ê
L1)×Mpb(V A2, ê

L2)-representations (the notion of representa-
tions as in Remark 2.10) if the action on the right hand side is pulled back via

Mpb(V A1, ê
L1) × Mpb(V A2, ê

L2) → Mpb(V A, êL)
((g1,M1) , (g2,M2)) 7→ (g1 ⊗ g2, i(M1 ⊗M2)i

−1).

Proof. This is a tautology in view of the way the metaplectic group action is defined. �
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5.4. Local Weil representations. Let ρp : Ĝp(L) → AutOS
(Hp) be a p-adic Heisenberg representation.

Exactly as in §5.1 we can define Mpb(VpA, ê
L
p ), Sp

b(VpA, ê
L
p ) and fit them into a sequence (cf. (5.3)) which

is exact in the sense of Lemma 5.3.

1→ Gm → Mpb(VpA, ê
L
p )→ Spb(VpA, ê

L
p )→ 1 (5.6)

The local Weil representation at p is the tautological representation

Mpb(VpA, ê
L
p )→ AutOS

(Hp).

There is a splitting of (5.6) over Spb(Tp(A,L), TpA, ê
L
p ) if p ̸= 2 and Spb(12Tp(A,L); 2TpA, ê

L) if p = 2. (cf.

Lemma 5.8.) Natural questions on the structure of Mpb(VpA, ê
L
p ) are

(i) When is (5.6) split?
(ii) If (5.6) is not split, does it come from a double cover? Namely, can we show that Mpb(VpA, ê

L
p ) has

a subgroup functor S̃pb(VpA, ê
L
p ) which is an extension of Spb(VpA, ê

L
p ) by µ2?

For the classical p-adic metaplectic group, it is known that the answers to (i) and (ii) are Never and Yes,
respectively, at least when p ̸= 2. The questions seem subtle if S is an Fp-scheme, already when S = SpecFp.
We will see a positive answer to (i) when A is an ordinary abelian variety (Corollary 7.7). We do not have
a clue to (ii). See Example 6.9 for the case of supersingular abelian varieties.

5.5. From Mpb to Mp. Most results of section 5 have been stated about Mpb and Spb. Everything we

have proved or asked about Mpb and Spb applies to Mp and Sp. The proof is easily reduced to the case of

connected base schemes, in which case Mpb (resp. Spb) and Mp (resp. Sp) coincide.

6. Level structures

In our context a level structure is a trivialization of V A, VpA and so on. This allows us to compare our
theory with the representation theory of the usual symplectic and metaplectic groups over number fields
and p-adic fields (which are defined independently of abelian schemes and line bundles). This resembles the
level structure arising naturally in the moduli-theoretic setting. It is interesting to note new characteristic p
phenomena, which are not observed in the classical theory of Weil representations, when studying the Weil
representation of a p-adic metaplectic group in characteristic p (§6.3). Throughout §6 we assume that S is
locally noetherian.

6.1. Level structure on V A. Let S be a Q-scheme and (V, ⟨·, ·⟩) be an even-dimensional Q-vector space
with a symplectic pairing. Let ψ : A∞ → Gm be a nontrivial morphism of (ind-)group schemes over S. (This
is the analogue of the additive character in the classical setting.) By composing we obtain

⟨·, ·⟩ψ : V ⊗ A∞ × V ⊗ A∞ → Gm.

Suppose that there is an isomorphism of ind-group schemes over S

η : V ⊗ A∞ ≃ V A
which carries ⟨·, ·⟩ψ to êL. This forces ψ to factor through µ∞ ↪→ Gm since êL factors through µ∞ ↪→ Gm

(Lemma 3.17).

Lemma 3.18 together with η allows us to identify Gm × (V ⊗A∞) ≃ Ĝ(L) where the left hand side, to be

denoted Ĝ(V, ⟨·, ·⟩ψ), has group law

(λ, x) · (µ, y) = (λµ · ⟨x/2, y⟩ψ, x+ y). (6.1)

Again via η, the exact sequences in (3.5) and (5.4) become

1→ Gm → Ĝ(V, ⟨·, ·⟩ψ)→ V ⊗ A∞ → 0,

1→ Gm → Mp(V ⊗ A∞, ⟨·, ·⟩ψ)→ Sp(V ⊗ A∞, ⟨·, ·⟩ψ)→ 1.

(The analogue for Mpb and Spb is also obtained from (5.3).) The group functor Sp(V ⊗ A∞, ⟨·, ·⟩ψ) is
represented by the constant group scheme associated with the usual symplectic group Sp(V ⊗ A∞, ⟨·, ·⟩ψ),
while Mp is defined by the same recipe as in (5.2) (using Sp in place of Spb).

Remark 6.1. Note that η does not exist unless S is in characteristic 0, because VpA is not a constant ind-group
scheme at any point s ∈ S of residue characteristic p. See §6.3 for a different kind of level structure.
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Remark 6.2. In the simple case where S = Spec k and k is an algebraically closed field of characteristic 0, a
choice of χ : Q/Z ∼→ µ∞ over k gives rise to ψ in the following manner.

ψ : A∞ → A∞/Ẑ can≃ Q/Z
χ
≃ µ∞ ↪→ Gm.

6.2. Local level structure - I. We consider two kinds of level structures on VpA. The first one is the local
analogue of §6.1. Let (Vp, ⟨·, ·⟩) be a symplectic Qp-vector space, and ψ : Qp → Gm a nontrivial morphism
of (ind-)group schemes over S. Thereby obtain ⟨·, ·⟩ψ : Vp×Vp → Gm, where Vp is also viewed as a constant
ind-group scheme over S. A level structure is a Qp-linear isomorphism (Qp acts on VpA as explained in §3.1)

η : Vp ≃ VpA

carrying ⟨·, ·⟩ψ to êLp . As in §6.1, this forces ψ to factor through µp∞ ↪→ Gm. The map η and the p-adic

analogue of Lemma 3.18 enable us to identify Ĝp(Vp, ⟨·, ·⟩ψ) := Gm × Vp with Ĝp(L), where the former is
equipped with the same group law as in (6.1). We obtain exact sequences

1→ Gm → Ĝp(Vp, ⟨·, ·⟩ψ)→ Vp → 0, (6.2)

1→ Gm → Mp(Vp, ⟨·, ·⟩ψ)→ Sp(Vp, ⟨·, ·⟩ψ)→ 1.

6.3. Local level structure - II. When S is in characteristic p, a different level structure is desirable (cf.
Remark 6.1). Let k be a field extension of Fp. Suppose that S is a k-scheme. Let (Σ, ⟨·, ·⟩0) be a p-divisible
group Σ over k with an alternating pairing ⟨·, ·⟩0 : Σ× Σ→ µp∞ . This can be promoted to

⟨·, ·⟩1 : VpΣ× VpΣ→ Vpµp∞

by the functoriality of Vp. Let ♭p : Vpµp∞ → µp∞ be the p-adic analogue of ♭ in §3.4. Set ⟨·, ·⟩ := ♭p ◦ ⟨·, ·⟩1.
Then a level structure is a Qp-linear isomorphism

ζ : VpΣ×k S
∼→ VpA

matching ⟨·, ·⟩ and êLp . Set Ĝp(Σ, ⟨·, ·⟩0) := Gm × VpΣ with the group law

(λ, x) · (µ, y) = (λµ · ⟨1
2
x, y⟩, x+ y). (6.3)

In light of the p-adic analogue of Lemma 3.18, ζ induces an isomorphism Ĝp(Σ, ⟨·, ·⟩0) ≃ Ĝp(L). The p-adic
analogues of exact sequences in (3.5) and (5.4) are identified via ζ with the following, where Mp and Sp are
defined as in §5.1.

1→ Gm → Ĝp(Σ, ⟨·, ·⟩0)→ VpΣ→ 0, (6.4)

1→ Gm → Mp(VpΣ, ⟨·, ·⟩)→ Sp(VpΣ, ⟨·, ·⟩)→ 1.

A priori Mp(VpΣ, ⟨·, ·⟩) depends not only on (Σ, ⟨·, ·⟩0) but also on (A,L) because the definition involves the
Heisenberg representation, which is constructed from (A,L). But Corollary 4.17 shows that two Heisenberg

representations of Ĝp(Σ, ⟨·, ·⟩0) (constructed from two choices of (A,L)) differ by a tensoring with an invertible
OS-module, so Mp(VpΣ, ⟨·, ·⟩) and its Weil representation depend (up to isomorphism) only on (Σ, ⟨·, ·⟩0)
thanks to Corollary 5.7.

Remark 6.3. One can consider a variant when S is not entirely in characteristic p. For instance, if Σ =
(Qp/Zp × µp∞)g for some g ≥ 1, which can be defined (together with ⟨·, ·⟩0) over SpecZ, one can take S to
be any locally noetherian scheme and the above construction goes through. On the other hand, if (Σ, ⟨·, ·⟩0)
is as above except that the base ring is not k but the integer ring O in an algebraic extension field of Qp,
then the above discussion can be adapted to any O-scheme S.

Remark 6.4. The level structure ζ is the analogue of the Igusa level structure used in the literature (e.g.
[KM85], [HT01], [Hid04]).

Remark 6.5. It is an interesting phenomenon that the Heisenberg group and the metaplectic group at p
heavily depends on the isogeny type of Σ (or A[p∞]) when S is in characteristic p. This is evident in (6.4),
for instance. Each isogeny type gives rise to a different mod p Weil representation.
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6.4. Weil representations associated with p-divisible groups, without abelian varieties. Assume
p ̸= 2. Let (Σ, ⟨·, ·⟩0) and ⟨·, ·⟩ be as in §6.3 with k = Fp. For simplicity, assume that ⟨·, ·⟩0 is a perfect
pairing. (In general it is enough to require ⟨·, ·⟩ to be a perfect pairing.) We know that there exists an (A,L)
such that there is a symplectic isomorphism ζ : VpΣ ≃ VpA thanks to Oort’s result ([Rap05, Thm 7.4], cf.
[Oor01]) that any Newton polygon stratum in the mod p fiber of the Siegel modular variety with hyperspecial
level at p is nonempty. Then §6.3 attaches the Heisenberg group/representation and Weil representation to
(Σ, ⟨·, ·⟩0). The goal of this subsection to sketch an alternative approach without using (A,L) at all.

Recall that Ĝp := Ĝp(Σ, ⟨·, ·⟩0) is already defined in §6.3 independently of (A,L). The key point will be

to prove the existence of the Heisenberg representation of Ĝp without resorting to (A,L). In particular,
we use the fact that any nondegenerate theta group possesses a weight 1 irreducible representation over an
algebraically closed field [MB85, Ch 5, Thm 2.5.5].

Take σ̂p : TpΣ → Ĝp(Σ, ⟨·, ·⟩0) to be the natural embedding x 7→ (1, x). (The assumption p ̸= 2 is used
to ensure that the latter embedding preserves group structure.) It is easy to verify the analogue of Lemma

3.15 for Ĝp, σ̂p etc (replacing G̃((pn)∗L) there with G̃(pn) := Gm × 1
pnTpΣ in Ĝp, in which σ̂p(TpΣ) embeds

via the map 1 × pn. Set G(pn) := G̃(pn)/σ̂p(TpΣ), which is isomorphic to Gm × Σ[p2n] (which inherits the
twisted group law). By the theorem of [MB85] cited above, each G(pn) possesses a Heisenberg representation

(irreducible representation over k of dimension pn) for n ≥ 1. The Heisenberg representation H of Ĝp is
obtained by patching via the analogue of Lemma 4.5, and then one can check the analogues of Theorem
4.15, Proposition 4.19, Corollaries 4.26 and 4.28. (Of course TA, V A, êL should be replaced by TpΣ, VpΣ,
⟨·, ·⟩, and eL∗ should be ignored.) The construction of §5.1 carries over to Mp(VpΣ, ⟨·, ·⟩0) and its Weil
representation on H.

Remark 6.6. What we have denoted σ̂p should be thought of as the analogue of τ̂p in the previous sections
(although there is no distinction when p ̸= 2). Perhaps one can still work with p = 2 if we select e∗ :
Σ[2]×Σ[2]→ µ2, satisfying the properties of Lemma 3.19, to play the role of eL∗ . Then the above definition
of σ̂2 should be multiplied by e∗ (cf. (3.11)).

Remark 6.7. If char(k) ̸= p and k = k then one can identify VpΣ with a symplectic Qp-vector space (as a
constant group scheme), and the above construction still goes through without (A,L). When k = C, this
essentially recovers the classical construction.

Remark 6.8. We have worked with Σ over Fp rather than over a more general scheme S. The only essential
reason is that the existence of Heisenberg representations (i.e. the analogue of [MB85, Ch 5, Thm 2.5.5])
no longer holds in general. A sufficient condition for the existence of a Heisenberg representation is that Σ
over S comes from some (A,L).

Example 6.9. Let Σ1/2 denote a supersingular p-divisible group over Fp of height 2 and dimension 1,
equipped with a perfect pairing (·, ·) : Σ1/2 × Σ1/2 → µp∞ . Let D1/2 be a central quaternion algebra over
Qp of invariant 1/2. It is well known that EndFp

(Σ1/2) is isomorphic to the maximal order of D1/2, so

EndFp
(V Σ1/2) ≃ D1/2. (In general one can use Dieudonné theory to classify p-divisible groups Σ over Fp up

to isogeny and identify EndFp
(V Σ) as a semisimple Qp-algebra. See any standard reference such as [Dem72].)

Set Σ := (Σ1/2)
g and define ⟨·, ·⟩ : Σ× Σ→ µp∞ by ⟨(xi)gi=1, (yi)

g
i=1⟩ =

∏g
i=1(xi, yi). Then

Sp(VpΣ, ⟨·, ·⟩0) ≃ Spg(D1/2)

as constant group schemes over Fp. Observe that this group is an inner form of Sp2g(Qp). The questions (i)
and (ii) of §5.4 would be interesting to answer especially in this case. We would guess no to (i) and yes to
(ii) in this case, but without much evidence. The only heuristic reason is that this Σ is the unique p-divisible
group over Fp (up to isogeny) which is self-dual and isoclinic, so it makes harder for (5.6) (or, the analogous

sequence for Σ) to split. (For any other choice of a self-dual Σ, the group of Fp-points of Sp(VpΣ, ⟨·, ·⟩0) is
isomorphic to the group of Qp-points of an inner form of a proper Levi subgroup of Sp2g(Qp). This is a well
known fact in the theory of isocrytals applied to Sp2g, where the former group is often denoted Jb(Qp). See
[Kot97] for instance.)

6.5. Global level structure. It is clear how to put together local level structures to get a global one. Let

A∞,p be the prime-to-p part of A∞, namely Ẑp :=
∏
l ̸=p Zl and A∞,p := lim

−→
1
n Ẑ

p where n runs over positive
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integers prime to p. When S is a Q-scheme, this is done in the obvious manner by globalizing §6.2. Let
us say a few words when S is an Fp-scheme. Consider the analogue ψp : A∞,p → Gm of ψ so that we have
⟨·, ·⟩ψp : V ⊗A∞,p × V ⊗A∞,p → Gm (cf. §6.2). Let (Σ, ⟨·, ·⟩0) be as in §6.3 and set ⟨·, ·⟩p := ♭p ◦ ⟨·, ·⟩1 using
notation there. A level structure in this setting is an A∞-linear isomorphism

(ηp, ζ) : V ⊗ A∞,p × (VpΣ×k S)
∼→ V A

carrying (⟨·, ·⟩ψp , ⟨·, ·⟩p) to êL. We have exact sequences which look like (6.2) away from p and (6.4) at p.

7. Explicit models

In the study of Weil representations and the theta correspondence, it is important to find a good model
on which the group action can be described explicitly. For p-adic or finite adelic metaplectic groups, the
most popular models in the classical context are Schrödinger and lattice models. In §7 we focus on the
p-adic setting and describe the models for Heisenberg and Weil representations in some simple cases. In
those cases S is local, so the Heisenberg representation is unique up to isomorphism (Corollary 4.18). The
mixed characteristic phenomenon of §7.4 is intriguing and begging for further investigation.

Throughout §7, L is assumed to be symmetric and nondegenerate of degree 1. (The assumption on degree
may not be essential but very convenient. Degree one can be achieved over an algebraically closed field
for any (A,L) without disturbing symmetry and nondegeneracy, if we are allowed to modify (A,L) by an
isogeny. See [Mum74, §23, Thm 4, cf. Cor 1].) Let C∞(·, k) (resp. C∞c (·, k)) denote the k-vector space of
locally constant (resp. locally constant and compactly supported) k-valued functions, and D∞(·, k) denote
the k-vector space dual of C∞(·, k). Throughout this section a k-valued function is understood without
further comments as a sheaf-theoretic homomorphism with target OSpec k, but note that in the setting of
§7.1 this is no different from a function in the naive sense.

7.1. Over a field of characteristic ̸= p. Suppose that S = Spec k where k is algebraically closed of
characteristic unequal to p. Therefore VpA is isomorphic to the constant ind-group scheme Q2g

p over S. In
this subsection, we may and will view VpA as a Qp-vector space with symplectic pairing êLp : VpA×VpA→ k×.
Similarly TpA is regarded as a free Zp-module sitting inside VpA.

Corollaries 4.28 and 4.18, adapted to the local setting, tell us that the lattice model for the dual Heisenberg
representation may be described as

H∨lattice =
{
ϕ ∈ C∞(VpA, k)

∣∣∣ϕ(x) = eL∗ (
y

2
)êL(

x

2
, y) · ϕ(x+ y),∀x ∈ VpA, y ∈ TpA

}
(7.1)

with (λ, z) ∈ Gm × V A ≃ Ĝ(L) acting as ((λ, z)ϕ)(x) = λ−1êL(x/2, z) · ϕ(x − z). Note that eL∗ ≡ 1 unless
p = 2 (cf. §3.6). The lattice model Hlattice, the dual of H∨lattice, admits a concrete description

Hlattice =
{
ϕ ∈ C∞c (VpA, k)

∣∣∣ϕ(x) = eL∗ (
y

2
)êL(

x

2
, y)−1 · ϕ(x+ y),∀x ∈ VpA, y ∈ TpA

}
(7.2)

with the dual action, namely (λ, z) acts as ((λ, z)ϕ)(x) = λêL(z/2, x) · ϕ(x+ z). Indeed the pairing

Hlattice ×H∨lattice → k, (f, g) 7→
∑

x∈VpA/TpA

f(x)g(x)

is easily verified to be k-linear, perfect and Ĝ(L)-equivariant. Refer to the literature such as [MVW87, Ch
2.II.8] (when p ̸= 2) for a precise description of the Weil representation on Hlattice. That reference treats
the case k = C but the same formula applies if p ̸= char(k).

On the other hand, let TpA = Λ1 ⊕ Λ2 be a decomposition into free Zp-submodules which are totally
isotropic for êLp and in perfect duality with respect to êLp . Setting Vi = Λi ⊗Zp Qp for i = 1, 2, we have
VpA = V1 ⊕ V2 and may identify V2 with V ∨1 . When p = 2, we assume that

∀x = (x1, x2) ∈ Λ1 ⊕ Λ2, eL∗ (x/2)ê
L
p (x1/2, x2) = 1. (7.3)

The above condition amounts to assuming that L is even symmetric in the terminology of [MNN07, Prop
4.20]. This can always achieved by pulling back L via the translation Tx for a suitable x ∈ A[2](k). See
[MNN07, Cor 4.24]. The Schrödinger model is (e.g. [MVW87, Ch 2.I.4.1], [MNN07, Prop 5.2.A])

HSch = C∞c (V2, k), ((λ, z1, z2) · ϕ)(x2) = λêL(x2, z1)ê
L(z2/2, z1) · ϕ(x2 + z2) (7.4)
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where we write z = (z1, z2) ∈ V1 ⊕ V2. Corollary 4.18 ensures that Hlattice ≃ HSch as Ĝ(L)-representations
on k-vector spaces. Refer to [MNN07, Prop 5.2], for example, to see an explicit isomorphism. Let us recall
an explicit formula for the Weil representation on HSch to be compared with the mod p case later (§7.3).

Proposition 7.1. Consider Mg ∈ Autk(HSch) for g ∈ Sp(VpA, ê
L
p ) in the following three cases. (Here Mg

and g are implicitly T -valued points for a locally noetherian k-scheme T . The matrices below are written with
respect to VpA ≃ V ∨2 ⊕ V2. In (iii) we choose a k-valued Haar measure on V2, which exists as p ̸= char(k).)

(i) g =

(
tB−1 0
0 B

)
, (Mgϕ)(x) = |detB|−1/2p ϕ(B−1x) for any B ∈ GLk(V2).

(ii) g =

(
I C
0 I

)
, (Mgϕ)(x) = êLp (Cx, x)ϕ(x) where C ∈ Homk(V2, V

∨
2 ) is symmetric (i.e. C = C∨).

(iii) g =

(
0 I
−I 0

)
, (Mgϕ)(x) =

∫
V2
êLp (x, y)ϕ(y)dy.

Then we have (g,Mg) ∈ Mp(VpA, ê
L
p ) in all three cases.

Proof. This is proved by the same computation as in the proof of [MNN07, Lem 8.2]. (cf. [MVW87, Ch
2.II.6].) �

Remark 7.2. Classically the factor |detB|−1/2p in (i) is inserted to make Mg a unitary operator. Of course

(g,Mg) ∈ Mp(VpA, ê
L
p ) still holds if |detB|

−1/2
p is erased.

Example 7.3. The classical Heisenberg and Weil representations (for p-adic groups) are obtained when
k = C, A = Cg/Λ with Λ = Zg + iZg, and L arises from a Riemann form Λ × Λ → Z defining a principal
polarization.

Remark 7.4. In the definition of HSch, one cannot use C∞(V2, k) because the latter is not smooth with

respect to the Ĝ(L)-action (defined by the same formula). As for Hlattice, C
∞
c cannot be replaced by C∞

either for the same reason: the Ĝ(L)-action on the C∞-space is not smooth. Likewise H∨lattice is non-smooth.

7.2. Lattice model over Fp. Suppose that S = Spec k with k = Fp. The dual lattice model H∨lattice, which
is again unique up to isomorphism, has the same description as Corollary 4.28 (cf. (7.1)). As before Hlattice

is defined to be the dual of H∨lattice (and equipped with the dual action). Unlike (7.2) we do not have the
notion of compact support on VpA, so view Hlattice just as a space of distributions. An interesting problem
would be to find an explicit formula for the Weil representation on Hlattice.

7.3. Schrödinger model over Fp. Let k = Fp as before. Unlike lattice models, Schrödinger models do not
always exist. The first obstruction is that VpA or A[p∞] is not always completely polarizable. For instance
if A is a supersingular elliptic curve then A[p∞] does not admit a product decomposition. According to
Dieudonné theory, we can achieve

ζ : Σ1 × Σ2 ≃ A[p∞] (7.5)

for mutually dual p-divisible groups Σ1 and Σ2 over k, by modifying A with an isogeny if necessary, if there
are exactly even number of simple p-divisible groups of slope 1/2 in A[p∞]. Let us suppose that this is the
case so that (7.5) exists. Also suppose that (7.5) is a complete polarization, i.e. êLp |Σ1×Σ1 ≡ 1, êLp |Σ2×Σ2 ≡ 1

and êLp defines a perfect pairing between Σ1, Σ2. Then we also have VpA ≃ Vp(A[p∞]) ≃ VpΣ1× VpΣ2. Now
that there is a complete polarization, one can ask whether there is a Schrödinger model for H. The answer
is positive in the simplest case.

Proposition 7.5. Suppose that A is ordinary, in other words there exists an isomorphism A[p∞] ≃ Σ1×Σ2

with Σ1 = (µp∞)g and Σ2 = (Qp/Zp)g. If p = 2, assume that (7.3) holds with TpΣ1 × TpΣ2 in place of
Λ1 ⊕ Λ2. Then the k-vector space

HSch := C∞c (VpΣ2, k)

(where VpΣ2 is viewed as a Qp-vector space) on which (λ, z1, z2) ∈ Gm × VpΣ1 × VpΣ2 ≃ Ĝ(L) acts by

((λ, z1, z2) · ϕ)(x2) = λêLp (x2, z1)ê
L
p (z2/2, z1) · ϕ(x2 + z2),

is a Heisenberg representation of Ĝ(L).
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Remark 7.6. The above formula is the same as (7.4), except that it should be interpreted scheme-theoretically.
On the other hand, the lemma does not generalize to the non-ordinary case as C∞c (VpΣ2, k) has no natural
meaning if Σ2 is not étale.

Proof. Without loss of generality we may assume êLp is the standard symplectic pairing (of the form (7.7)).

Then it is easily verified that Hp
nTpΣ

Sch = C∞( 1
pnTpΣ2/p

nTpΣ2, k). Hence HSch is smooth and admissible.

By the Stone Von-Neumann theorem (Theorem 4.15), HSch is isomorphic to a Heisenberg representation

tensored with a k-vector space. But the fact that dimkH
pnTpΣ
Sch = p2n shows that the latter vector space has

dimension 1. Hence HSch is itself a Heisenberg representation. �

We introduce an ind k-group scheme

P :=

{(
(B∨)−1 C

0 B

)∣∣∣∣B ∈ Aut(VpΣ2), C ∈ Hom(VpΣ1, VpΣ2), C
∨ = C

}
.

(The dual ∨ between VpΣ1 and VpΣ2 is taken with respect to êLp .) Once a basis is chosen, we can identify
Aut(VpΣ2) ≃ GLg(Qp) and Hom(VpΣ1, VpΣ2) ≃ Mg(Vpµp∞) in view of (7.6) below. (We apologize for two
different usages of Mg.)

Corollary 7.7. In the setting of Proposition 7.5, we have

(i) a canonical isomorphism Sp(VpA, ê
L
p ) ≃ P as group functors and

(ii) Gm × P ≃ Mp(VpA, ê
L
p ) as group functors via (λ, g) 7→ λMg, where Mg is defined on HSch as

• g =

(
(B∨)−1 0

0 B

)
, (Mgϕ)(x) = ϕ(B−1x).

• g =

(
I C
0 I

)
, (Mgϕ)(x) = êLp (Cx, x)ϕ(x).

Remark 7.8. The action in (ii) above is the same as (i) and (ii) of Proposition 7.1. Since Sp(VpA, ê
L
p ) is

smaller when char(k) = p, the action (iii) simply does not show up here. Also note that the aboveMg-action

does not involve |detB|−1/2p , which does not make sense in k.

Proof. Part (i) is derived from the canonical isomorphisms

Homk(Z/pnZ,Z/pnZ) ≃ Z/pnZ, Homk(Z/pnZ, µpn) ≃ µpn , (7.6)

Homk(µpn ,Z/pnZ) = 0, Homk(µpn , µpn) ≃ Z/pnZ.

For (ii), the given action of (λ, g) obviously defines a splitting of (5.3). SinceGm×Sp(VpA, êLp ) is representable
by a k-group scheme, the same is true for Mp(VpA, ê

L
p ). �

Remark 7.9. If one naively attempts to find a mod p Weil representation, then one could guess that
C∞c (Qg

p,Fp) is the right model just by imitating the classical Schrödinger model, without using the Heisen-
berg representation (which may be difficult to come up with unless the Heisenberg group is defined scheme-
theoretically). But then one gets into trouble in defining a projective representation of Sp2g(Qp). Indeed,
the group action in (iii) of Proposition 7.1, which amounts to the Fourier transform, does not make sense
over Fp. (For instance there is no Fp-valued Haar measure on V2.) The virtue of our scheme-theoretic

approach is that it renders a precise meaning to C∞c (Qg
p,Fp), which is but a special case of a mod p Weil

representation corresponding to the ordinary p-divisible group. In addition, our approach explains why the
Fourier transform action should disappear from the picture.

Denote by D∞(VpΣ1, k) the dual k-vector space of C∞(VpΣ1, k). The following proposition allows us to
transport the Heisenberg representation structure from C∞(VpΣ1, k) to D

∞(VpΣ1, k).

Proposition 7.10. There is a canonical isomorphism of k-vector spaces

C∞c (VpΣ2, k) ≃ D∞(VpΣ1, k).

Proof. For a finite group scheme G and its dual G∨ over k, recall the standard fact that their rings of
functions are canonically k-dual, namely OG ≃ (OG∨)∨. When applied to G = 1

pnZp/Zp, this provides a

canonical isomorphisms C( 1
pnZp/Zp, k) ≃ D(µpn , k) for all n ≥ 1, where D denotes the distribution. By
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taking inverse limit, Cc(Qp/Zp, k) ≃ D∞(Tpµp∞ , k). Now take the direct limit along the maps on Cc and
D∞ induced by

Qp/Zp
p← Qp/Zp

p← · · · , Tpµp∞
p→ Tpµp∞

p→ · · · ,
we obtain C∞c (Qp, k) ≃ D∞(Vpµp∞ , k). The same argument with multiple copies of Qp and Vpµp∞ proves
the lemma. �

So far we have considered only ordinary p-divisible groups Σ. For a general Σ with a complete polarization
Σ = Σ1×Σ2 with respect to êLp (where C∞c (VpΣ2, k) does not make sense), it remains to be answered whether
D∞(VpΣ2, k) is a Heisenberg representation.

Remark 7.11. When p > 2, the material of this subsection can be rewritten in terms of only (Σ, ⟨·, ·⟩0) by
using §6.4, getting rid of (A,L) from the picture. (See Remark 6.6 for p = 2.) We retained (A,L) to make
the analogy with §7.1 more transparent, and also not to make an exception p ̸= 2.

7.4. Over a ring of mixed characteristic (0, p). In this final example, consider the case where

• K is a field extension of Qp complete with respect to a p-adic valuation vp : K
× → R. Assume that

xp
n − 1 splits completely in K for all n ≥ 1.

• OK := {a ∈ K×|vp(a) ≥ 0} ∪ {0}.
• S = SpecOK .
• Σ = Σ1 × Σ2 with Σ1 = (µp∞)g and Σ2 = (Qp/Zp)g over S.
• ⟨·, ·⟩0 : Σ× Σ→ µp∞ is a symplectic pairing sending

(((xi)
g
i=1, (yi)

g
i=1), ((x

′
i)
g
i=1, (y

′
i)
g
i=1)) 7→

g∏
i=1

(xi, y
′
i)

g∏
i=1

(x′i, yi)
−1 (7.7)

where (·, ·) : µp∞ ×Qp/Zp → µp∞ is the canonical pairing, and ⟨·, ·⟩ is as in §6.3,
• If p = 2, assume that (7.3) holds with TpΣ1 × TpΣ2 in place of Λ1 ⊕ Λ2.

As in the previous subsection, define an ind-group scheme over OK by

P :=

{(
tB−1 C
0 B

)∣∣∣∣B ∈ GLg(Qp), C ∈ Hom(Qg
p, (Vpµp∞)g), C∨ = C

}
.

Since (7.6) still holds with OK in place of k, the exact analogue of Corollary 7.7 holds over OK . The P -
representation on the free OK-module HSch,OK

:= C∞c (VpΣ2,OK) is the Weil representation. It is instructive
to note how this specializes to SpecK and Spec k, where k now denotes the residue field of K. By passing to
Spec k, we recover the Weil representation of Lemma 7.7, which is again a P -representation. Over the generic
fiber, Σ1 becomes isomorphic to (Qp/Zp)g non-canonically. Therefore Sp(VpΣ, ⟨·, ·⟩0)(K) is isomorphic to
Sp2g(Qp). The Weil representation C∞c (VpΣ2,K) over the generic fiber is the classical one described in §7.1
and contains HSch,OK

as an “integral model”. This example illustrates that the integral model may admit
a smaller action than the generic fiber. It would be worthwhile to describe a similar phenomenon for Weil
representations in the case of non-ordinary p-divisible groups over OK .
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