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Introduction.

In this article, we state the necessary background for cluster algebras and quiver representations
to formulate and prove a result of Caldero and Chapoton which gives a nice formula connecting
the two subjects. In our exposition, we mostly follow the paper [CC], but we have tried to mini-
mize the reliance of citing outside sources as much as possible. In particular, we avoid having to
introduce cluster categories and quantized universal enveloping algebras. Of course, a completely
self-contained account would take up far too many pages, so we have taken the liberty of assuming
some results from cluster algebras and quiver representations, and a little bit of Auslander–Reiten
theory. All of the necessary definitions and results are given in the first section.

This article was written as a final paper for the MIT course 18.735 Topics in Algebra: Quivers
in Representation Theory, which was taught by Travis Schedler during the spring 2009 semester.

1 Background.

1.1 Quiver representations.

Throughout, we assume that Q is a finite acyclic quiver. We let Q0 and Q1 denote its vertices
and arrows, respectively, and KQ denotes the path algebra of Q over the field K. We will identify
representations of Q with modules over KQ.

Given α, β ∈ ZQ0 , we define the Euler form by

〈α, β〉 =
∑

i∈Q0

αiβi −
∑

(i→j)∈Q1

αiβj . (1.1)

Alternatively, given two representations M and N , we can define

〈dim(M),dim(N)〉 = dimK HomQ(M,N)− dimK Ext1Q(M,N), (1.2)

where dim(M)i = dimK(Mi), and one can show that this agrees with (1.1), and hence only depends
on the dimension vectors of the representations involved.

The projective indecomposable modules of Q are parametrized by the vertices. For each i ∈ Q0,
we define Pi as follows: for each vertex j ∈ Q0, we have a copy of our field K if there is a path
from i to j (including the trivial path), and 0 otherwise. All arrows going between two copies of K
are isomorphisms in Pi. From this description, it is immediate that Pj is a submodule of Pi if and
only if there is a path from i to j. We also have that KQ =

⊕
i∈Q0

Pi, which shows that these are
all of the projectives.

We shall focus our attention on simply-laced Dynkin quivers: by this, we mean that the
underlying graph of Q is a Dynkin diagram of type ADE. In this case, Q has an associated root
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system Φ, and we can label the vertices of Q so that the Euler form agrees with the Cartan form
of Φ. We will need the following theorem which establishes that Q has finite representation type.

Theorem 1.1 (Gabriel). Let Q be a simply-laced Dynkin quiver. Then the mapM 7→
∑

i dim(Mi)εi
establishes a bijection between the indecomposable representations of Q and the positive roots of Φ,
and thus Q has finitely many indecomposable representations up to isomorphism.

1.2 Cluster algebras.

In this section, we give the relevant definitions and results for coefficient-free cluster algebras.
Fix an integer n. An integer matrix B = (bi,j) is skew-symmetrizable if there exists a

diagonal matrix D with nonnegative integer entries such that DB is skew-symmetric. In this case,
we define the mutation of B at index w to be the matrix µw(B) = B′ given by

b′y,z =

{
−by,z if y = w or z = w,

by,z +
1
2(|by,w|bw,z + by,w|bw,z|) otherwise.

(1.3)

We say that B and B′ are mutation equivalent. Note that B′ is still skew-symmetrizable since
DB′ is also skew-symmetric.

Now let x = (x1, . . . , xn) be an algebraically independent generating set of Q(u1, . . . , un). We
call the pair (x,B) a seed, and for an index w, we define x′w by

xwx
′
w =

∏

by,w>0

x
by,w
y +

∏

by,w<0

x
−by,w
y , (1.4)

and x′ = (x1, . . . , x
′
w, . . . , xn). The convention for the above equation is that products taken over

empty sets are equal to 1. The pair (x′, µw(B)) is the mutation of the seed (x,B). Define u =
(u1, . . . , un). The possible tuples obtained by (u,B) via successive mutations are called clusters,
and their elements are called cluster variables. The variables u1, . . . , un are the initial variables.

Alternatively, in the case that B is skew-symmetric, one can think of mutations as follows:
Define a quiver Q(B) by letting Q(B)0 be a set indexing the rows of B, and draw bij arrows from j
to i if bij > 0. Now label the vertex i with the variable ui. A mutation µk of B gives a corresponding
mutation µk of Q(B): first, for every pair of arrows i → k → j, add an arrow i → j and then
delete all resulting directed 2-cycles, and second, all arrows incident with k are reversed. This
gives a quiver Q(B′), whose labels are the same as Q(B) except that uk is replaced by u′k. This is
compatible with the matrix mutation defined above and our correspondence between quivers and
skew-symmetric matrices. We shall use this idea of mutation in the sequel, although we shall only
make use of mutations at sinks, so that we do not have to worry about the first mutation rule.

Now we define the (reduced) cluster algebra A(B) associated to B to be the subalgebra of
Q(u1, . . . , un) generated by the cluster variables. The first remarkable result about cluster algebras
is the so-called Laurent phenomena:

Theorem 1.2 (Fomin–Zelevinsky). Let B be an skew-symmetrizable matrix. Then A(B) is a
subalgebra of Q[u±1 , . . . , u

±
n ].

Proof. See [FZ1, Theorem 3.1].

A cluster algebra is said to be of finite type if the number of cluster variables is finite. In this
case, there is a complete classification of such cluster algebras. First, given a skew-symmetrizable
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matrix B, define is Cartan counterpart A(B) = (ai,j) by

ai,j =

{
2 if i = j,

−|bi,j| if i 6= j.

Theorem 1.3 (Fomin–Zelevinsky). A cluster algebra A(B) is of finite type if and only if B is
mutation equivalent to a Cartan matrix B′ of finite type. In this case, all cluster variables can
be written in the form P (u)/uα where P (u) is a polynomial with positive integer coefficients. The
number of non-initial cluster variables is the same as the number of positive roots of the corre-
sponding root system of B′. Furthermore, B′ is unique up to simultaneous reordering of columns
and rows.

Proof. See [FZ2, Theorem 1.4] for the first statement, and [FZ2, Theorem 1.10] for the second
statement.

We can refine this statement. Given a cluster algebra of finite type, it has an associated finite
type Cartan matrix, and hence a finite root system Φ. Let ∆ denote a choice of basis {ε1, . . . , εn} for
Φ, where we are indexing them to be compatible with the action of simple roots si(εj) = εj −ai,jεi.
Every non-initial cluster variable can be written in the form

x[α] =
Pα(u)

uα1

1 · · · uαn
n
.

Then the map x[α] 7→
∑

i αiεi establishes a bijection between the non-initial cluster variables of
A(B) and the positive roots of Φ (see [FZ2, Theorem 1.9]).

In light of this, it may be reasonable to ask whether the coefficients of Pα(u) count something.
This question is answered by the Caldero–Chapoton formula (Theorem 2.1).

1.3 Auslander–Reiten theory.

In this section, we give the basic properties of almost split sequences and Auslander–Reiten trans-
lates. A more detailed account can be found in [Wey]. Let Q be a quiver. Given a representation
M , write M∗ = HomK(M,K), and define the Auslander–Reiten translate (AR translate)

τ−(M) = Ext1Q(M
∗,KQ). (1.5)

If M is injective, then τ−(M) = 0. The converse is also true. We will also need the following
duality statement:

Theorem 1.4 (Auslander–Reiten duality). There are natural isomorphisms

HomQ(τ
−(M), N) ∼= Ext1Q(N,M)∗ (1.6)

Ext1Q(τ
−(M), N) ∼= HomQ(N,M)∗ (1.7)

Proof. Let 0 →M → I0 → I1 → 0 be an injective resolution for M . The sequence

0 → HomQ(M
∗,KQ) → HomQ(I

∗
0 ,KQ) → HomQ(I

∗
1 ,KQ) → τ−(M) → 0

is exact since τ− kills injective modules. So we get an exact sequence

0 → HomQ(τ
−(M), N) → HomQ(HomQ(I

∗
1 ,KQ), N) → HomQ(HomQ(I

∗
0 ,KQ), N).
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One also has an exact sequence

0 → Ext1Q(N,M)∗ → HomQ(N, I1)
∗ → HomQ(N, I0)

∗,

so it is enough to show that there is a natural isomorphism

HomQ(HomQ(I
∗,KQ), N) = HomQ(N, I)

∗

whenever I is injective, and which respects the above sequences. Let P = HomQ(I
∗,KQ), which

is projective. Note that the composition map

HomQ(P,KQ)⊗KQ N ∼= HomQ(P,KQ)⊗KQ HomQ(KQ,N) → HomQ(P,N)

is an isomorphism: this is true for P = KQ, so is true for its direct summands. Then

HomQ(P,N) = HomQ(P,KQ)⊗KQ N = HomQ(N,HomQ(P,KQ)∗)∗ = HomQ(N, I)
∗,

where the last equality follows from the fact that HomQ(−,KQ) gives an equivalence between (left)
projective and (right) projectives, and I∗ is a right projective.

This establishes (1.6); (1.7) is similar.

The translate τ− will allow us to do inductive arguments via the following result.

Theorem 1.5. Let Q be a simply-laced Dynkin quiver. Then every indecomposable representation
M of Q is of the form (τ−)r(Pi) for some r ≥ 0 and Pi a projective indecomposable.

We introduce some terminology. Let L and M be KQ-modules. A map f : L → M is right

minimal if for every h : L→ L, fh = f implies that h is an automorphism. We say that f is right
almost split if f is not a retraction, and for every map g : N →M which is not a retraction, there
exists a map g̃ : N → L such that f g̃ = g. Dually, we can define left minimal and left almost

split. A short exact sequence

0 → L
f
−→M

g
−→ N → 0

is almost split if f is left minimal almost split, and g is right minimal almost split. Furthermore,
almost split sequences are unique in the sense thatM is determined by L and N up to isomorphism.

The AR translate and almost split sequences are linked together in the following theorem.

Theorem 1.6. Let Pi be a projective indecomposable KQ-module and pick r > 0 such that
(τ−)r(Pi) 6= 0. Then there exists an almost split sequence of the form

0 → (τ−)r−1(Pi) →
⊕

j→i

(τ−)r−1(Pj)⊕
⊕

i→k

(τ−)r(Pk) → (τ−)r(Pi) → 0.

2 The Caldero–Chapoton formula.

For this section, our treatment follows [CC]. Let Q be a simply-laced Dynkin quiver, and let M
be a representation of Q over a field K. For a dimension vector e, we let Gr(e,M) be set of
submodules of M with dimension e. This is naturally a subset of the product of Grassmannians∏

i∈Q0
Gr(ei,Mi), and is defined in terms of incidence relations, which are closed conditions. In

particular, given ϕ : Mi → Mj, a subrepresentation N ⊆ M must satisfy ϕ(Ni) ⊆ Nj , and this is
equivalent to asking for the vanishing of the (ej +1)× (ej +1) minors of the matrix whose rows are
the ϕ applied to the basis vectors for Ni, together with basis vectors for Nj (relative to some fixed
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basis of M). So Gr(e,M) is a projective subvariety, which we call the quiver Grassmannian.
For K = C, we set χ(Gr(e,M)) to be the Euler characteristic of Gr(e,M) thought of as a complex
analytic space (in general, this variety need not be smooth). Letting m = dim(M), we define
XM ∈ Q(u1, . . . , un) by

XM =
∑

e

χ(Gr(e,M))

n∏

i=1

u
−〈e,εi〉−〈εi,m−e〉
i . (2.1)

Let EQ be the Q[u1, . . . , un]-submodule of Q(u1, . . . , un) generated by the XM , as M ranges over
all isomorphism classes of representations of Q. Then we have the following theorem:

Theorem 2.1 (Caldero–Chapoton). With the notation above, EQ is a subalgebra of Q(u1, . . . , un),
and furthermore, it is equal to the cluster algebra of BQ. The non-initial cluster variables are given
by XM where M ranges over the indecomposable representations of Q.

The strategy of the proof is as follows. First, we show that EQ is a subalgebra generated
by the ui and XM for M indecomposable. In particular, we show that XM⊕N = XMXN for all
representations M and N . This is the content of Proposition 2.4. Second, we establish relations
among the variables XM for M indecomposable in Propositions 2.5 and 2.6. Finally, we show by
induction with the help of the Auslander–Reiten translate τ− and the established relations that
each XM is a cluster variable. Since each XM is distinct, and they give the expected number of
generators for A(B) by Theorems 1.3 and 1.1, we conclude that A(B) = EQ.

In order to get a handle on the Euler characteristic, we will need the following result.

Lemma 2.2. Let X be a variety defined over Z, and suppose that there exists a polynomial P (t)
such that for some prime p, P (pr) = #X(Fpr) for all r ≥ 1. Then P (t) has integer coefficients,
and the Euler characteristic of X(C) (as a complex analytic space and with compact cohomology)
is P (1).

Proof. Fix a prime p for which there exists a polynomial P (t) = cdt
d + · · · + c1t + c0 such that

P (pr) = #X(Fpr). Let Φ be the Frobenius map x 7→ xp on X = X × Fp where Fp denotes
an algebraic closure of Fp. For each i, let λi,1, . . . , λi,ni

be the eigenvalues of Φ on the ith ℓ-adic
cohomology group (with compact support) Hi

c(X ;Qℓ) where ℓ is some prime different from p. Since
the fixed points of Φr are precisely X(Fpr), we have by the Grothendieck–Lefschetz trace formula
(see [Del, Théorème 3.2]):

d∑

m=0

cmp
rm = P (pr) = #X(Fpr) =

∑

i≥0

(−1)i
ni∑

j=1

λri,j.

Let Ar be the left hand side, and Br be the right hand side. In general, sequences defined by∑
i aiγ

i satisfy linear recurrences, and conversely, sequences which satisfy linear recurrences are
given by such expressions. The correspondence is unique: any one piece of data determines the
other, so since Ar = Br define the same sequences, we have an equality of sets {pm} = {λi,j}. So
we know that for each i and j, λi,j = qm for some m, and cm =

∑
i≥0(−1)i#{j | λi,j = qm}. Now

plugging in t = 1 into P (t) gives

P (1) =

d∑

m=0

cm =

d∑

m=0

∑

i≥0

(−1)i#{j | λi,j = qm} =
∑

i≥0

(−1)i dimHi
c(X;Qℓ),

and the last term agrees with the Euler characteristic of X(C) with compact cohomology (see
[SGA4, Exposé XVI, Théorème 4.1]).
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The Plücker ideal of a Grassmannian is defined over Z, as are the incidence relations for quiver
Grassmannians, since the isomorphism types of the representations of Q can be defined over Z.
Hence Gr(e,M) has a Z-form. Since quiver Grassmannians are projective varieties, the condition
“with compact cohomology” can be omitted. So to apply the above lemma, we need to count the
number of submodules of M when K = Fq where q is a prime power.

Proposition 2.3. Let Q be an acyclic quiver and M a representation of Q defined over Z. Let
pe(M, q) denote the number of submodules of M of dimension e after base changing to Fq. Then
pe(M, q) is a polynomial in q.

Proof. Without loss of generality, we may assume that Mi 6= 0 for all i ∈ Q0 by replacing Q with a
smaller quiver if necessary. Let s ∈ Q0 be a sink, and pick a line L ∈Ms. Then L is a submodule of
M , and every other submodule of M falls into two categories: those that contain L and those that
do not. Define e′j = ej if j 6= i, and e′i = ei − 1. The submodules of dimension e which contain L
are in bijection with the submodules of dimension e′ in M/L, and hence is counted by pe′(M/L, q).

The submodules N of dimension e which do not contain L give rise to submodules (N + L)/L
of dimension e in M/L. The number of N ′ such that N ′ + L = N + L is qei , which can be
seen by picking a basis for Ni and N ′

i . Of course, not every submodule of dimension e in M/L
has a preimage of the form N + L where dim(N) = e. The problem lies with lines L′ ∈ Mj for
(j → i) ∈ Q1 which map isomorphically to L. So we have to subtract off their contributions (which
count submodules in M/(L + L′)), and adjust for overcounting, etc. This process will terminate
after a finite number of steps because Q is finite and acyclic. We omit the exact details, but the
point is that

pe(M, q) = pe′(M/L, q) + qeipe(M/L, q) − · · ·

where each term is a polynomial in q by induction on dim(M).

The first statement of Theorem 2.1 follows from the following proposition.

Proposition 2.4. For representations M and N of Q, we have XMXN = XM⊕N . Hence EQ is a
subalgebra of Q(u1, . . . , un) generated by {u1, . . . , un} ∪ {XM |M indecomposable}.

Proof. By the bilinearity of the Euler form, it is enough to show that

χ(Gr(g,M ⊕N)) =
∑

e+f=g

χ(Gr(e,M))χ(Gr(f ,N)). (2.2)

Let π : M ⊕N → N be the projection on the second factor, and define a map

ζ : Gr(g,M ⊕N) →
∐

e+f=g

(Gr(e,M)×Gr(f,N))

L 7→ (L ∩M,π(L))

This map is surjective since ζ(A⊕B) = (A,B). Now base change to Fq so that we can count the
sizes of the fibers. Define a map

F : HomQ(B,M/A) → ζ−1(A,B)

f 7→ Lf = {(m, b) ∈M ⊕B | f(b) = m+A}

First, this map is well-defined because π(Lf ) = B by construction, and Lf ∩ (M, 0) = A since
m+A = 0 if and only if m ∈ A. We can define an inverse of F as follows. For L ∈ ζ−1(A,B), define
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a map fL : B → M/A by fL(b) = m+A where m ∈ M satisfies (m, b) ∈ L. Since L ∩ (M, 0) = A,
this is of course independent of the choice of such an m, so fL is well-defined.

Since F is a bijection, we conclude that the fiber over (A,B) contains qd(B,M/A) points, where
d(B,M/A) = dimFq(HomQ(B,M/A)). This number d depends only on the isomorphism classes
of M/A and B. Let ϕ(X,M) be the number of submodules of A of M such that M/A ∼= X, and
let ψ(Y,N) be the number of submodules of N isomorphic to Y . These functions turn out to be
polynomials in q, but we can avoid using this fact. We know from the above discussion that

pg(M ⊕N, q) =
∑

X,Y

qd(Y,X)ϕ(X,M)ψ(Y,N).

Without the qd(Y,X), the right hand side counts the number of points of
∐

e+f=g(Gr(e,M) ×

Gr(f ,N)). So substituting q = 1 gives the desired equality (2.2) by Lemma 2.2.

By definition, the ui are cluster variables. The remaining work is to show that the variables
XM for M indecomposable can be obtained from the ui via the exchange relations (1.4). The plan
is as follows: first, we show that if M = Pi is a projective indecomposable, then XPi

is a cluster
variable. Second, we show that if XM is a cluster variable with M indecomposable, then Xτ−(M) is
also a cluster variable assuming that τ−(M) 6= 0, i.e., M is not injective. Since all indecomposables
are of the form (τ−)r(Pi) for some i and r by Theorem 1.5, this will finish the proof of the theorem.

First we prove some relations among the variables XM .

Proposition 2.5. For 1 ≤ i ≤ n,

uiXPi
= 1 +

(∏

i→j

XPj

)( ∏

k→i

uk
)

(2.3)

Proof. Fix a value of i. Let d = dim(Pi) and R = rad(Pi) be the radical of Pi, which in this case is
the unique maximal submodule

⊕
i→j Pj . So every proper submodule M of Pi is contained in R,

and we have

XPi
= u−1

i +
∑

e

χ(Gr(e,R))
n∏

k=1

u
−〈e,εk〉−〈εk,d−e〉
k , (2.4)

where the u−1
i term comes from Pi ⊆ Pi.

The dimension vector of R is d− εi because Pi/R = Si is the simple module concentrated at i.
Hence we also have the formula

XR =
∑

e

χ(Gr(e,R))
n∏

k=1

u
−〈e,εk〉−〈εk ,d−εi−e〉
k

=

(
ui
∏

k→i

u−1
k

)
∑

e

χ(Gr(e,R))

(
n∏

k=1

u
−〈e,εk〉−〈εk ,d−e〉
k

)
,

(2.5)

where the second equality follows from the fact that 〈εk, εi〉 is 1 if k = i, is −1 if (k → i) ∈ Q1, and
is 0 otherwise. Combining (2.4) and (2.5) gives

XPi
= u−1

i +

(
u−1
i

∏

k→i

uk

)
XR.

Now multiply by ui and use that XR =
∏

i→j XPj
, which follows from Proposition 2.4.
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Proposition 2.6. ForM a non-injective indecomposable representation of Q, we have XMXτ−(M) =
XB + 1 where B fits into an almost split exact sequence

0 →M
ι
−→ B

π
−→ τ−(M) → 0. (2.6)

Proof. Write N = τ−(M), and set m = dim(M) and n = dim(N). Let K = Fq. By Lemma 2.2,
we have

XM⊕N =

( ∑

L⊆M⊕N

n∏

i=1

u
−〈dim(L),εi〉−〈εi,m+n−dim(L)〉
i

)∣∣∣∣
q=1

where we interpret the term in parentheses as a polynomial in q. By Theorem 1.4, we have
〈n, εi〉+ 〈εi,m〉 = 0, so we can separate the term L = 0⊕N from the above sum to get

XM⊕N = 1 +

( ∑

L⊆M⊕N
L 6=0⊕N

n∏

i=1

u
−〈dim(L),εi〉−〈εi,m+n−dim(L)〉
i

)∣∣∣∣
q=1

. (2.7)

Now fix a dimension vector g and define a map

ζ : Gr(g,B) →
∐

e+f=g

Gr(e,M)×Gr(f,N)

L 7→ (ι−1(L), π(L))

We claim that ζ−1(0, N) is empty, and otherwise, the fibers are affine spaces.
For the first case, suppose L ∈ ζ−1(0, N). Then π(L) = N and ι−1(L) = 0, which means that

L ⊂ B maps isomorphically to N , which contradicts that the sequence (2.6) is not split.
So pick (A,C) 6= (0, N). If C 6= N , then the inclusion C → N is not a retraction since N is

indecomposable. So the fact that π is right almost split means that there is a section C → B of π.
Then we have a split exact sequence

0 → A→ B → C → 0,

and the proof of Proposition 2.4 shows that the fiber ζ−1(A,C) is in bijection with HomQ(C,M/A).
So now we assume that A 6= 0 and C = N . Again by Theorem 1.4, we have an isomorphism

Ext1Q(N,A)
∼= HomQ(A,M)∗,

which is nonzero since A 6= 0. Let E ∈ Ext1Q(N,A) be the extension corresponding to the inclusion
A → M in the above isomorphism. In this extension, the surjection µ : E → N is non-split, so
again since π is right almost split, we have a map ϕ : E → B such that µ = πϕ. Hence the following
diagram

0 // A //

��

E
µ

//

ϕ

��

N //

1N
��

0

0 // M
ι

// B
π

// N // 0

commutes. Now if ϕ(e) = 0 for e ∈ E, then µ(e) = 0, so e ∈ A. Since ι(e) = ϕ(e) = 0, we conclude
that e = 0 since ι is injective. Thus ϕ is injective, so E ∈ ζ−1(A,N).

Fixing the above notation, we define a map

F : HomQ(N,M/A) → ζ−1(A,N)

f 7→ Ef = {ι(m) + ϕ(e) | m ∈M, e ∈ E, fµ(e) = m+A}.
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Since πι = 0 and πϕ = µ, it is immediate that π(Ef ) = µ(E) = N . Similarly, if ι−1(ϕ(e)) 6= ∅,
then µ(e) = πϕ(e) ∈ πι(M) = 0, so ι(m) + ϕ(e) ∈ Ef is in the image of ι if and only if e = 0 and
m ∈ A. Hence ι−1(Ef ) = A, and F is well-defined.

We define an inverse to F as follows: for D ∈ ζ−1(A,N), define a function fD by fD(n) = m+A
for some m such that ι(m) + ϕ(e) ∈ D with µ(e) = n. If µ(e′) = n and ι(m′) + ϕ(e′) ∈ D, then
e − e′ ∈ A, and since ι(m−m′) + ϕ(e − e′) ∈ D, we conclude that m −m′ ∈ A since ι−1(D) = A
and ϕ is injective. So fD(n) is independent of the choice of m made.

The reader can verify that these maps are indeed inverse to one another. As in the proof of
Proposition 2.4, we can show using ζ and (2.7) that 1 +XB = XM⊕N , which is equal to XMXN

by Proposition 2.4.

Corollary 2.7. If M = (τ−)r(Pi) 6= 0, then XM is a cluster variable.

Proof. Without loss of generality, assume that the vertices of Q0 are ordered in such a way that 1
is a sink of Q, and for i > 1, i is a sink of µi−1 · · ·µ2µ1(Q). We prove the corollary by induction on
r, and then induction on the ordering of the vertices. First suppose r = 0.

Mutating at 1, we have an exchange relation

u1u
′
1 = 1 +

∏

k→1

uk.

Comparing with (2.3), we see that u′1 = XP1
since 1 is a sink, and we replace u1 by XP1

in µ1(Q).
Now for i > 1, we have that i is a sink of Q′ = µi−1 · · ·µ1(Q). All arrows k → i in Q′ satisfy either
(k → i) ∈ Q1 or (i → k) ∈ Q1, where k < i in the second case since Q is a tree. So by induction,
we may suppose that for k < i, the vertex k is labeled with XPk

. Then applying the mutation µi
to Q′, we get the exchange relation

uiu
′
i = 1 +

( ∏

(i→j)∈Q1

XPj

)( ∏

(k→i)∈Q1

uk
)
,

so again by (2.3), we have u′i = XPi
. Note that Q = µnµn−1 · · · µ1(Q) since we have flipped every

arrow exactly twice.
Now suppose that r > 0. By induction on r, we may assume that i ∈ Q0 is labeled with

(τ−)r−1(Pi). Now the remainder of the proof follows just as above using Proposition 2.6 and
Theorem 1.6.
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