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Matrices

Fix vector spaces V and W and let X = V ⊗W .
For r ≥ 0, let Xr be the set of matrices of rank ≤ r .

Some facts:

• The ideal I (Xr ) of Xr is generated by equations of degree
r + 1.

• Xr is the r th secant variety of X1

• In char. 0, the minimal free resolution I (Xr ) is completely
known (Lascoux)

• Similar results for
∧2 V and Sym2(V ) (free resolution due to

Jozefiak–Pragacz–Weyman)
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Why free resolutions?

I (Xr ) is generated by all minors of size r + 1; next term in
resolution tells you what relations they satisfy (all come from
Laplace expansion). Either duplicate a row and expand:

0 = det





x1,1 x1,2 x1,3
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3





= x1,1 det

(

x1,2 x1,3
x2,2 x2,3

)

− x1,2 det

(

x1,1 x1,3
x2,1 x2,3

)

+ x1,3 det

(

x1,1 x1,2
x2,1 x2,2

)

or compare column and row expansion (example omitted).

The rest encodes higher-order relations amongst determinants, so
are basic properties of linear algebra.

Unpredicted fact: via Koszul duality, free resolutions are
representations of classical Lie superalgebras gl(m|n) and pe(n)
(Akin–Weyman, Pragacz–Weyman, Sam)
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X1 is an example of cone over G/P ∼= Pn × Pm embedded in irrep
Vλ (G = SL× SL). The other examples were second Veronese of
Pn and Gr(2, n).

So what about general G/P?

Have uniform result: I (G/P) always generated by quadrics.
But seems to be unreasonable to hope for complete calculation of
free resolution.

Analogs of Xr? What are the degrees of equations of secant
varieties of G/P? Based on matrix example, might conjecture
minimal equations have degree r + 1.

[Wrong: Landsberg–Weyman show ideal of second secant of spinor
variety of Spin(14) is generated by quartics.]
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Secants of Segre products of projective space

Fix vector spaces V1, . . . ,Vn.
Segre embedding: P(V1)× · · · × P(Vn) ⊂ P(V1 ⊗ · · · ⊗ Vn)

Want to understand defining equations of r th secant variety as
dim(Vi ) vary and as d and r vary. Some known results:

• r = 1 (classical): the Segre embedding is cut out by equations
of degree 2

• r = 2 (Raicu 2010): defined by equations of degree 3 (char. 0)

• r = 3 (Qi 2013): defined set-theoretically by equations of
degree 4 (in char. 0)

• r = 4 (Strassen 1983): need equations of degree 9

• ...

May be impossible to get a complete picture.
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Theorem (Draisma–Kuttler 2011)

Fix r . There is a constant d(r) so that the rth secant variety of a
Segre embedding of projective spaces is set-theoretically defined by
equations of degree ≤ d(r).

“Bounded rank tensors are defined in bounded degree”

The main point: it doesn’t matter how many projective spaces we
take or what their dimensions are – we can find d(r) that works for
all of them!
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Questions for rest of the talk:

• Is there a scheme/ideal-theoretic version of this result?

• Bounds on degree of Gröbner bases?

• What about a statement for higher syzygies in free resolution?

• Other families of G/P? Like Veronese, or Grassmannians, or
spinor varieties...
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Infinite-dimensional tensors

First step: given r , it suffices to work with projective spaces of
some dim. n − 1 (depending only on r).
Fix vector space V of dim. n and functional ϕ : V → k. Define

V⊗p → V⊗(p−1)

v1 ⊗ · · · ⊗ vp 7→ ϕ(vp)v1 ⊗ · · · ⊗ vp−1.

Set V⊗∞ = lim
←−p

V⊗p.

Two subvarieties of interest in V⊗p:
X≤r
p : r th secant variety of Segre

Y≤r
p : flattening variety — tensors such that all flattenings (into

matrices) have rank ≤ r

Set X≤r
∞ = lim

←−p
X≤r
p and Y≤r

∞ = lim
←−p

Y≤r
p .

Then X≤r
∞ ⊆ Y≤r

∞ .
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Some symmetries

Gp := Sp ⋉ GL(V )p acts on V⊗p and preserves X≤r
p and Y≤r

p .

There are embeddings Gp ⊂ Gp+1 compatible with our inverse
system, so G∞ =

⋃

p Gp acts on V⊗∞ and preserves X≤r
∞ and Y≤r

∞ .

Theorem (Draisma–Kuttler)

Y≤r
∞ ⊂ V⊗∞ is cut out by finitely many G∞-orbits of polynomials

(certain determinants of size r + 1).
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Noetherian up to symmetry

Let Π be a monoid acting on a topological space X .
X is Π-Noetherian if every descending chain of Π-stable closed
subsets X0 ⊇ X1 ⊇ X2 ⊇ · · · eventually stabilizes.

If X is a Π-Noetherian variety, then every Π-stable subvariety is cut
out set-theoretically by finitely many Π-orbits of equations.

Theorem (Draisma–Kuttler)

Y≤r
∞ is G∞-Noetherian.

Corollary

X≤r
∞ ⊂ V⊗∞ is cut out set-theoretically by finitely many G∞-orbits

of equations. In particular, there is a finite bound d(r) on their
degrees.

Pick v with ϕ(v) = 1; gives embedding V⊗p ⊂ V⊗∞. Use this to
transfer result on bound d(r) to X≤r

p .
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Shortcomings

The groups Gp and G∞ are not large enough to give ideal-theoretic
statements, even for the Segre!

Intuitively, the problem is that the number of Gp-representations in
the degree 2 part of the ideal of the Segre increases with p:

I2 ⊂ Sym2(V1 ⊗ · · · ⊗ Vn) is sum of F1(V1)⊗ · · · ⊗ Fn(Vn) where

• each Fi is either
∧2 or Sym2,

• at least one Fi is
∧2,

•
∧2 appears an even number of times.

This isn’t a proof, but Draisma–Kuttler give a rigorous argument.
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Equations of Segre embeddings

How to find larger group/structure?
Look to Segre embeddings for motivation.

The simplest Segre embedding:

P1 × P1 ⊂ P3

cut out by single determinant equation x11x22 − x12x21.

More convenient to write this as

P(V1)× P(V2) ⊂ P(V1 ⊗ V2)

where dim(V1) = dim(V2) = 2.
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Two ways to get equations from smaller Segres:

• Flattening (reduce number of projective spaces):

P(V1)× · · · × P(Vn)× P(Vn+1) ⊂ P(V1)× · · · × P(Vn ⊗ Vn+1)

⊂ P(V1 ⊗ · · · ⊗ (Vn ⊗ Vn+1))

(can be done in many ways)

• Functoriality (reduce dimensions of projective spaces). Given
Vi → V ′

i , have

P(V1)× · · · × P(Vn) //

��

P(V1 ⊗ · · · ⊗ Vn)

��

P(V ′
1)× · · · × P(V ′

n) // P(V ′
1 ⊗ · · · ⊗ V ′

n)

In both cases, can pullback equations.
All equations can be generated from the 2× 2 determinant using
these operations.
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∆-modules (Snowden 2010)

∆-modules axiomatize these two operations (flattening and
functoriality). We define them shortly.

The previous discussion can be summarized as: the equations of
the Segre embedding is a principal ∆-module (i.e., generated by 1
element)

∆-modules apply to other situations:

• Any family of varieties closed under flattening and
functoriality (∆-varieties) fit in the framework. The set of
∆-varieties is closed under join and taking tangents (so
includes higher secants and tangential varieties of Segres)

• They extend beyond equations to arbitrary order syzygies
(e.g., higher Tor groups of Segre embeddings)
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Fix a field k. Let Vec∆ be the following category:

• Objects are pairs (I , {Vi}i∈I ), I a finite set and Vi

finite-dimensional vector spaces.

• A morphism (I , {Vi})→ (J, {Wj}) is a surjection f : J → I
together with linear maps Vi →

⊗

j∈f −1(i)Wj .

Intuition: the surjection f encodes flattenings and the linear maps
encode functoriality.

Definition

A ∆-module is a polynomial functor Vec∆ → Vec.

(Polynomial means that morphisms transform like polynomial
functions.)

∆-modules form an abelian category, all operations calculated
pointwise
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Examples of ∆-modules

• Tautological example: (I , {Vi}) 7→
⊗

i∈I Vi

• Ambient space: R : (I , {Vi}) 7→ Sym•(
⊗

i∈I Vi )

• Segre: S : (I , {Vi}) 7→
⊕

d≥0(
⊗

i∈I Sym
d(Vi ))

• Tor modules: Ti : (I , {Vi}) 7→ Tor
R(I ,{Vi})
i (k, S(I , {Vi})).

• coordinate rings of secants, tangents, ...

• Tor modules of secants, tangents, ...
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Finite generation

A ∆-module is a polynomial functor F : Vec∆ → Vec.

An element of F is x ∈ F (I , {Vi}) for some (I , {Vi}) ∈ Vec
∆.

The submodule of F generated by a collection of elements is the
smallest submodule containing all of them.

F is finitely generated if generated by finitely many elements.

Theorem (Sam–Snowden)

Tor modules of Segre embeddings are finitely generated
∆-modules.

Originally proven by Snowden in characteristic 0.

17 / 29



Noetherian property

F is Noetherian if every submodule is finitely generated.

Theorem (Sam–Snowden 2014)

Finitely generated ∆-modules are Noetherian. In particular, they
have resolutions by finitely generated projective ∆-modules.

The first part was partially proven by Snowden in characteristic 0.

So the following result is new, even in characteristic 0:

Theorem (Sam–Snowden)

Tor modules of Segre embeddings are finitely presented ∆-modules.

Idea: introduce Gröbner basis ideas and prove submodules of
finitely generated “free” ∆-modules have finite Gröbner bases.
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New commutative algebra

• Hilbert series: Use characters of the general linear group to
encode a ∆-module into a Hilbert series. We can show that
they are rational functions.

• Krull dimension: Gabriel defined Krull dimension for objects
in any Abelian category A: the zero object has Kdim −1. Let
A≤d be the subcategory of objects of Kdim ≤ d . An object
has Kdim ≤ d + 1 if its image in A/A≤d has finite length.
Can we compute this for ∆-modules? Is it connected to
combinatorial properties of Hilbert series?

• Regularity: Minimal projective resolutions are tricky to define
due to the action of general linear groups. 2 ways to fix this:

• work in char. 0 where representation theory is semisimple,
• modify the category so that group actions don’t appear

After fixing this, we can define Castelnuovo–Mumford
regularity. Is it finite?
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Lingering questions

• Fix r . Are the equations of the r th secant variety of the Segre
embedding a finitely generated ∆-module?

It can be shown that, for fixed d , the degree d equations form
a finitely generated ∆-module, so we are asking: is the ideal
defined by equations of bounded degree (stronger property
than provided by Draisma–Kuttler).

• How about the Tor modules? If we know that the equations
of the r th secant variety of the Segre are defined in bounded
degree, does this imply the same for all higher Tor modules?

For the Segre, this follows from the existence of a quadratic
Gröbner basis.

• Analogy: ∆-modules are like vector spaces and we really want
to study ∆-algebras like (I , {Vi}) 7→ Sym(

⊗

i∈I Vi ).
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Grassmannians

Similar result for Grassmannians:

Theorem (Draisma–Eggermont 2014)

Fix r . There is a constant d(r) so that the rth secant variety of
the Plücker embedding of the Grassmannian is set-theoretically
defined by equations of degree ≤ d(r).

However, we don’t have an analogous theory of ∆-modules for
Grassmannians.

This is already an issue for the Plücker embedding.
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Kasman–Pedings–Reiszl–Shiota consider two types of maps
between embedded Grassmannians:

• Functorial:
∧p V →

∧p V ′ from linear map V → V ′

• Dual:
∧p V ∼= (

∧n−p V )∗

Use these to generate equations.

They show that equation of Gr(2, 4) ⊂ P(
∧2 k4) generates enough

equations to set-theoretically define all Plücker embeddings.

However, Gr(2, 4) does not generate all Plücker equations!

Problem is that number of representations in Sym2(
∧p V ) grows

with p: it is a sum of Schur functors Sλ where λ = (2i , 12p−2i ) and
i ≡ p mod 2.
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Functorial maps send SλV to SλV
′, while dual maps give

complement of shape in (2n), i.e., Gr(2, 5) ∼= Gr(3, 5) does

7→

So
∧4p k4p = S14p(k

4p) ⊂ Sym2(
∧2p k4p) are not generated by

anything smaller, but they have a simple formula:

fp :=
∑

S⊂[4p], #S=2p, 1∈S

(−1)SxSx[4p]\S

Note that f1 is the equation of Gr(2, 4) ⊂ P5.

Question

Is there another operation on Grassmannians that generates fp
from smaller fi?
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∆-algebras

Recall we had an analogy: ∆-modules are like vector spaces and
we really want to study ∆-algebras like (I , {Vi}) 7→ Sym(

⊗

i∈I Vi ).

Formally, there is a tensor product on ∆-modules (defined
pointwise), and ∆-algebras are commutative algebras using this
tensor product.

Conjecture

Finitely generated ∆-algebras are Noetherian.

We don’t know how to approach this.
Twisted commutative algebras (defined next) are an intermediate
structure which seem to be a lot easier.
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Twisted commutative algebras

Twisted commutative algebras give a formalism for studying
algebras and modules with symmetry.
We will now restrict to characteristic 0.

A twisted commutative algebra (tca) is a polynomial functor A
from vector spaces to commutative k-algebras.

Example: Fix a vector space U and define A(V ) = Sym(U ⊗ V ).
This tca is denoted Sym(U〈1〉).
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Modules over a tca

• All data of tca is retained if we take V = k∞, and consider
A(k∞) with the action of GL(∞).

• A-modules M are A(k∞)-modules with compatible
GL(∞)-action.

• Notions of homomorphisms, injective, surjective, kernels,
cokernels, etc. make sense and naive definitions are correct.

• M is finitely generated if it has a surjection from
A(k∞)⊗W where W is a finite length representation of
GL(∞) (i.e., direct sum of finitely many Schur functors).

• M is Noetherian if every submodule is finitely generated. A
is Noetherian if every finitely generated module is Noetherian.
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Some motivations

Proposition (Sam–Snowden 2012)

The category of Sym(k〈1〉) = Sym(k∞)-modules is equivalent to
the category of FI-modules defined by Church–Ellenberg–Farb.

FI-modules are algebraic structures used to study sequences of
symmetric group representations.
Examples: (co)homology of arithmetic groups, configuration
spaces,Mg ,n, ...

Proposition (Sam–Snowden 2013)

The category of finite length Sym(Sym2(k∞)) (resp.
Sym(

∧2(k∞))) is equivalent to the category of finite length
representations of the infinite orthogonal (resp. symplectic) group
(studied by Olshanski’i, Penkov–Serganova, ...).
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Conjecture

Every finitely generated tca is noetherian.

A priori, there is a weaker notion of noetherian:

• A is weakly noetherian if every ideal of A is finitely generated

The previous conjecture is equivalent to

Conjecture

Every finitely generated tca is weakly noetherian.

Proof of equivalence: A is noetherian if and only if Sλ ⊗ A is
noetherian for all λ, and the latter is implied by
A⊗ Sym(k∞ ⊕

∧2 k∞) being weakly noetherian.
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A tca is bounded if the number of rows of λ of any Schur functor
appearing in its decomposition is bounded.
The study of bounded tca’s can be reduced to finitely generated
algebras, so they are all noetherian.

The tca’s Sym(F (k∞)) where F is a polynomial functor of degree
≤ 1 is bounded, and is unbounded otherwise.

Theorem (Nagpal–Sam–Snowden 2015)

The tca’s Sym(Sym2 k∞) and Sym(
∧2 k∞) are noetherian.

Concretely, for any λ, any submodule of Sλ(k
∞)⊗ Sym(Sym2 k∞)

is generated by finitely many Schur functors.

We don’t even know the analogous statement for Sym(Sym3 k∞).
A topological version: is there an infinite descending chain of
GL(∞)-equivariant subvarieties of Sym3 k∞?
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