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Matrices

Fix vector spaces V and W and let X =V @ W.
For r > 0, let X, be the set of matrices of rank < r.

Some facts:
e The ideal /(X;) of X, is generated by equations of degree
r+1.
e X, is the rth secant variety of X;

e In char. 0, the minimal free resolution /(X;) is completely
known (Lascoux)

o Similar results for A2 V and Sym?(V) (free resolution due to
Jozefiak—Pragacz-Weyman)



Why free resolutions?

I(X;) is generated by all minors of size r + 1; next term in
resolution tells you what relations they satisfy (all come from
Laplace expansion). Either duplicate a row and expand:

X1,1 X12 X13
0 = det X1,1 X122 X13

X2,1 X22 X273

X X X X X X
=X1,1 det 1,2 13) - X1,2 det 11 13 + x1,3 det 11 1.2
X22 X23 X2,1 X233 X2,1 X222
or compare column and row expansion (example omitted).

The rest encodes higher-order relations amongst determinants, so
are basic properties of linear algebra.

Unpredicted fact: via Koszul duality, free resolutions are
representations of classical Lie superalgebras gl(m|n) and pe(n)
(Akin—Weyman, Pragacz-Weyman, Sam)



X1 is an example of cone over G/P = P" x P™ embedded in irrep

V) (G = SL x SL). The other examples were second Veronese of
P" and Gr(2, n).

So what about general G/P?

Have uniform result: /(G/P) always generated by quadrics.
But seems to be unreasonable to hope for complete calculation of
free resolution.

Analogs of X,? What are the degrees of equations of secant
varieties of G/P? Based on matrix example, might conjecture
minimal equations have degree r + 1.

[Wrong: Landsberg—Weyman show ideal of second secant of spinor
variety of Spin(14) is generated by quartics.]

29



Secants of Segre products of projective space

Fix vector spaces Vi,..., V,.
Segre embedding: P(V4) X --- x P(V,) CP(V1 ® ---® V},)

Want to understand defining equations of rth secant variety as
dim(V;) vary and as d and r vary. Some known results:

e r =1 (classical): the Segre embedding is cut out by equations
of degree 2
e r =2 (Raicu 2010): defined by equations of degree 3 (char. 0)

e r =3 (Qi 2013): defined set-theoretically by equations of
degree 4 (in char. 0)

e r =4 (Strassen 1983): need equations of degree 9

May be impossible to get a complete picture.

5/29



Theorem (Draisma—Kuttler 2011)

Fix r. There is a constant d(r) so that the rth secant variety of a
Segre embedding of projective spaces is set-theoretically defined by
equations of degree < d(r).

“Bounded rank tensors are defined in bounded degree”

The main point: it doesn’t matter how many projective spaces we
take or what their dimensions are — we can find d(r) that works for
all of them!

6
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Questions for rest of the talk:

e Is there a scheme/ideal-theoretic version of this result?
e Bounds on degree of Grobner bases?
e What about a statement for higher syzygies in free resolution?

e Other families of G/P? Like Veronese, or Grassmannians, or
spinor varieties...
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Infinite-dimensional tensors

First step: given r, it suffices to work with projective spaces of
some dim. n — 1 (depending only on r).
Fix vector space V of dim. n and functional ¢: V — k. Define

Vi@ @ Vp = o(Vp)Vi @ - ® Vpt.

Koo _ |; ®p
Set V I|<_mpV )

Two subvarieties of interest in V®P:

XPS': rth secant variety of Segre

Ypﬁr: flattening variety — tensors such that all flattenings (into
matrices) have rank < r

<r7 < <r7 <r

Then XO%’ - YOO



Some symmetries

Gp := Sp X GL(V)P acts on V®P and preserves XPS’ and ngr.

There are embeddings G, C Gp41 compatible with our inverse
system, so Go = [, Gp acts on V¥ and preserves XS and YE"

Theorem (Draisma—Kuttler)

YSr C VO s cut out by finitely many Gu.-orbits of polynomials
(certain determinants of size r +1).



Noetherian up to symmetry

Let 1 be a monoid acting on a topological space X.
X is MN-Noetherian if every descending chain of [-stable closed
subsets Xp 2 X1 2 Xp D - -+ eventually stabilizes.

If X is a M-Noetherian variety, then every [-stable subvariety is cut
out set-theoretically by finitely many [N-orbits of equations.
Theorem (Draisma—Kuttler)

YS' is Goo-Noetherian.

Corollary

XS C VO s cut out set-theoretically by finitely many Gu.-orbits
of equations. In particular, there is a finite bound d(r) on their
degrees.

Pick v with ¢(v) = 1; gives embedding V&P C V®>_ Use this to
transfer result on bound d(r) to X5".
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Shortcomings

The groups G, and G, are not large enough to give ideal-theoretic
statements, even for the Segre!

Intuitively, the problem is that the number of G,-representations in
the degree 2 part of the ideal of the Segre increases with p:

b C Sym* (V41 ®@---® V,) is sum of Fi (V1) ® --- @ Fy(V,) where
e each F; is either /\2 or Sym?,
e at least one F; is \?,

° /\2 appears an even number of times.

This isn't a proof, but Draisma—Kuttler give a rigorous argument.
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Equations of Segre embeddings

How to find larger group/structure?
Look to Segre embeddings for motivation.

The simplest Segre embedding:
P! x P! c P3
cut out by single determinant equation x31x22 — x12X21.

More convenient to write this as
P(V1) x P(V,) C P(V1 ® V7))

where dim(Vq) = dim(V,) = 2.
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Two ways to get equations from smaller Segres:

e Flattening (reduce number of projective spaces):

P(Vl) X o0 X P(\/,,) X P(VnJrl) C P(Vl) X oo X P(Vn® Vn+1)
C P(V1®"'®(Vn® vn+1))

(can be done in many ways)

e Functoriality (reduce dimensions of projective spaces). Given
Vi — V/, have

P(Vl)x...xP(Vn)—>P(V1®...®\/n)
| |
| |
Y Y

P(V])x -+ xP(V)) —P(V{®---@ V)

In both cases, can pullback equations.
All equations can be generated from the 2 x 2 determinant using
these operations.
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A-modules (Snowden 2010)

A-modules axiomatize these two operations (flattening and
functoriality). We define them shortly.

The previous discussion can be summarized as: the equations of
the Segre embedding is a principal A-module (i.e., generated by 1
element)

A-modules apply to other situations:

e Any family of varieties closed under flattening and
functoriality (A-varieties) fit in the framework. The set of
A-varieties is closed under join and taking tangents (so
includes higher secants and tangential varieties of Segres)

e They extend beyond equations to arbitrary order syzygies
(e.g., higher Tor groups of Segre embeddings)
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Fix a field k. Let Vec® be the following category:

e Objects are pairs (/,{V;}ics), | a finite set and V;
finite-dimensional vector spaces.

e A morphism (/,{V;}) = (J,{W;}) is a surjection f: J — |
together with linear maps V; — ®_]€f i Wi

Intuition: the surjection f encodes flattenings and the linear maps

encode functoriality.

Definition
A A-module is a polynomial functor Vec® — Vec.

(Polynomial means that morphisms transform like polynomial
functions.)

A-modules form an abelian category, all operations calculated
pointwise
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Examples of A-modules

Tautological example: (/,{V;}) = Qi Vi

Ambient space: R: (/,{V;}) — Sym*(®);c, Vi)

Segre: S: (I,{Vi}) — @ng(@ie/ Symd(\/,-))

Tor modules: T;: (1,{V;}) — Tork"Vi (ke S(1,{Vi})).
coordinate rings of secants, tangents, ...

Tor modules of secants, tangents, ...
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Finite generation

A A-module is a polynomial functor F: Vec® — Vec.
An element of F is x € F(I,{V;}) for some (/,{V;}) € Vec?.

The submodule of F generated by a collection of elements is the
smallest submodule containing all of them.
F is finitely generated if generated by finitely many elements.

Theorem (Sam-Snowden)

Tor modules of Segre embeddings are finitely generated
A-modules.

Originally proven by Snowden in characteristic 0.
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Noetherian property

F is Noetherian if every submodule is finitely generated.

Theorem (Sam—Snowden 2014)

Finitely generated A-modules are Noetherian. In particular, they
have resolutions by finitely generated projective A-modules.

The first part was partially proven by Snowden in characteristic 0.

So the following result is new, even in characteristic 0:

Theorem (Sam-Snowden)

Tor modules of Segre embeddings are finitely presented A-modules.

Idea: introduce Grobner basis ideas and prove submodules of
finitely generated “free” A-modules have finite Grobner bases.
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New commutative algebra

e Hilbert series: Use characters of the general linear group to
encode a A-module into a Hilbert series. We can show that
they are rational functions.

e Krull dimension: Gabriel defined Krull dimension for objects
in any Abelian category A: the zero object has Kdim —1. Let
A= be the subcategory of objects of Kdim < d. An object
has Kdim < d + 1 if its image in .A/A=? has finite length.
Can we compute this for A-modules? Is it connected to
combinatorial properties of Hilbert series?

¢ Regularity: Minimal projective resolutions are tricky to define
due to the action of general linear groups. 2 ways to fix this:

e work in char. 0 where representation theory is semisimple,
e modify the category so that group actions don't appear

After fixing this, we can define Castelnuovo—Mumford
regularity. Is it finite?
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Lingering questions

e Fix r. Are the equations of the rth secant variety of the Segre
embedding a finitely generated A-module?

It can be shown that, for fixed d, the degree d equations form
a finitely generated A-module, so we are asking: is the ideal
defined by equations of bounded degree (stronger property
than provided by Draisma—Kuttler).

e How about the Tor modules? If we know that the equations
of the rth secant variety of the Segre are defined in bounded
degree, does this imply the same for all higher Tor modules?

For the Segre, this follows from the existence of a quadratic
Grobner basis.

e Analogy: A-modules are like vector spaces and we really want
to study A-algebras like (1,{V;}) — Sym(Qic; Vi)
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Grassmannians

Similar result for Grassmannians:
Theorem (Draisma—Eggermont 2014)

Fix r. There is a constant d(r) so that the rth secant variety of
the Pliicker embedding of the Grassmannian is set-theoretically
defined by equations of degree < d(r).

However, we don't have an analogous theory of A-modules for
Grassmannians.

This is already an issue for the Pliicker embedding.
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Kasman—Pedings—ReiszI-Shiota consider two types of maps
between embedded Grassmannians:

e Functorial: APV — APV’ from linear map V — V’
e Dual: APV (A" PV)*
Use these to generate equations.

They show that equation of Gr(2,4) C P(/\?k*) generates enough
equations to set-theoretically define all Pliicker embeddings.

However, Gr(2,4) does not generate all Pliicker equations!
Problem is that number of representations in Sym?(AP V) grows

with p: it is a sum of Schur functors Sy where A\ = (2/,12P=2/) and
i=p mod 2.



Functorial maps send S,V to S\ V’, while dual maps give
complement of shape in (2"), i.e., Gr(2,5) = Gr(3,5) does

i

So A" k* = Sy4,(k*?)  Sym?(\?” k*?) are not generated by
anything smaller, but they have a simple formula:

fo 1= D T
Scl4p], #5=2p, 1€S

Note that f; is the equation of Gr(2,4) C P®.

Question

Is there another operation on Grassmannians that generates f,
from smaller f; 7
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A-algebras

Recall we had an analogy: A-modules are like vector spaces and
we really want to study A-algebras like (/,{V;}) — Sym(®&);c; V).

Formally, there is a tensor product on A-modules (defined
pointwise), and A-algebras are commutative algebras using this
tensor product.

Conjecture

Finitely generated A-algebras are Noetherian.

We don’t know how to approach this.
Twisted commutative algebras (defined next) are an intermediate
structure which seem to be a lot easier.
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Twisted commutative algebras

Twisted commutative algebras give a formalism for studying
algebras and modules with symmetry.
We will now restrict to characteristic 0.

A twisted commutative algebra (tca) is a polynomial functor A
from vector spaces to commutative k-algebras.

Example: Fix a vector space U and define A(V) = Sym(U & V).
This tca is denoted Sym(U(1)).

25
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Modules over a tca

All data of tca is retained if we take V = k®°, and consider
A(k>) with the action of GL(c0).

A-modules M are A(k>°)-modules with compatible
GL(00)-action.

Notions of homomorphisms, injective, surjective, kernels,
cokernels, etc. make sense and naive definitions are correct.

M is finitely generated if it has a surjection from
A(k>®) ® W where W is a finite length representation of
GL(o0) (i.e., direct sum of finitely many Schur functors).

M is Noetherian if every submodule is finitely generated. A

is Noetherian if every finitely generated module is Noetherian.

26
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Some motivations

Proposition (Sam—Snowden 2012)

The category of Sym(k(1)) = Sym(k®)-modules is equivalent to
the category of FI-modules defined by Church—Ellenberg—Farb.

Fl-modules are algebraic structures used to study sequences of
symmetric group representations.

Examples: (co)homology of arithmetic groups, configuration
spaces, Mg n, ...

Proposition (Sam—Snowden 2013)

The category of finite length Sym(Sym?(k>)) (resp.
Sym(A\?(k™))) is equivalent to the category of finite length
representations of the infinite orthogonal (resp. symplectic) group
(studied by Olshanski’i, Penkov—Serganova, ...).
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Conjecture

Every finitely generated tca is noetherian.

A priori, there is a weaker notion of noetherian:

e A is weakly noetherian if every ideal of A is finitely generated
The previous conjecture is equivalent to
Conjecture

Every finitely generated tca is weakly noetherian.
Proof of equivalence: A is noetherian if and only if S) ® A is

noetherian for all A, and the latter is implied by
A® Sym(k® @ A\? k™) being weakly noetherian.
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A tca is bounded if the number of rows of A of any Schur functor
appearing in its decomposition is bounded.

The study of bounded tca's can be reduced to finitely generated
algebras, so they are all noetherian.

The tca’s Sym(F(k>)) where F is a polynomial functor of degree
< 1 is bounded, and is unbounded otherwise.

Theorem (Nagpal-Sam-Snowden 2015)

The tca’s Sym(Sym? k) and Sym(/\? k™) are noetherian.
Concretely, for any ), any submodule of Sy(k>) ® Sym(Sym? k™)

is generated by finitely many Schur functors.

We don’t even know the analogous statement for Sym(Sym3 k).
A topological version: is there an infinite descending chain of
GL(o0)-equivariant subvarieties of Sym? k>?
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