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1. MOTIVATING EXAMPLE: EQUATIONS OF SECANT VARIETIES

Fix vector spaces Vi,..., V.

Segre embedding: P(V}) x --- x P(V,,)) CP(V1®---®V},)

For r > 1, let X(r, V) be the rth secant variety, i.e., the closure of the union of lines
through r distinct points of P(V}) x --- x P(V},).

Want to understand defining equations as dim(V;) vary and as d and r vary. Some known
results:

e r =1 (classical): the Segre embedding is cut out by equations of degree 2

e r = 2 (Raicu 2011): defined by equations of degree 3 (in char. 0)

e r =3 (Qi 2013): defined set-theoretically by equations of degree 4 (in char. 0)
e r =4 (Strassen 1983): need equations of degree 9
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May be impossible to get a complete picture given Strassen’s equations above. But here
is a workaround result:

Theorem 1.1 (Draisma-Kuttler (2011)). For each r, there is a constant d(r) so that X(r, V)
is set-theoretically defined by equations of degree at most d(r).
d(r) is independent of n and dim(V;), but may depend on the characteristic of the field.

Obvious conjecture:

Conjecture 1.2. For each r, there is a constant d(r) so that X(r, V) is ideal-theoretically
defined by equations of degree at most d(r).
d(r) is independent of n and dim(V;) and the characteristic of the field.

Draisma-Kuttler’s methods were “topological”: the key idea is to show that a certain G-
space (one that contains the limit of X(r, V) as n — oo and dim(V;) — 00) is topologically
noetherian when taking into account the G-action.

Need machinery to take into account scheme structures.

2. A-MODULES

Snowden introduced A-modules. This is a sequence of 3,,-equivariant functors &F,,: Vec*" —
Vec with transition maps

fn: 9:’”(‘/1, cey anl, Vn X Vn+1) — 9:n+1(‘/17 e Vn, Vn+1).

satisfying some compatibility conditions. This is a huge structure and A-modules form an
abelian category. There is a notion of finite generation: JF is finitely generated if it has
finitely many elements such that the smallest A-submodule containing them is F.
Translation: using the functoriality (i.e., linear maps V; — V/ plus the ¥,, actions plus the
transition maps, every element can be built from a finite collection of elements).
For fixed r, the assignment (Vi,...,V,) — k[3(r, V)] is a A-module where the transition
maps come from the natural inclusions

PWV)x- - xP(V,) xP(Vor1) CP(V)) x -+ x P(V,, ® Vj11).
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So for each i, (Vi,..., V) + Tor(k[X(r, V)], k) is a A-module where A = k[P(V®- - -®V},)].
Tor has a natural grading, and we have a result:

Theorem 2.1 (Sam-Snowden 2014). Fizi, j,r. The A-module (Vi, ..., V,) = Tori(k[X(r, V)], k),
18 finitely presented.

When ¢ = 1, this is the space of minimal equations of degree j. So to prove the result,
want to show that this vanishes for j > 0.

Example 2.2. The simplest example is ¢ = r = 1 and j = 2 (equations of the Segre
embedding):
Pick coordinates (z;, . ;,); the minimal equations defining this subvariety are of the form

Liy,..., = Liy,...,

. . . o . .y . . o .
le]k+17'~~7.7nx117---7lk7]k+17---7_];1 Zk?]k_‘_l?"?]';zwll ----- s Jk—+15--3In

if we range over k and allow permutations of the indices. These are obtained “by substitution
of indices” from the 2 x 2 determinant x; 1292 — 212221 Which defines the simplest Segre
embedding P! x P! c P3.

So Tor; (k[X(1, V)], k), is generated by any nonzero element of its value on (k? k?). [

Since Tor comes from homology of Koszul complex, this result follows from abstract result:

Theorem 2.3 (Sam—Snowden 2014). The category of A-modules is noetherian: subquotients
of finitely generated A-modules remain finitely generated.

A-modules are like a replacement for linear algebra, but really want to deal with mul-
tiplicative structures. There is a tensor product defined pointwise, can define A-algebras
(commutative, associative). The main example is (V4,...,V,) = k[P(V1 ® --- ® V,)]. The
following would imply the original conjecture.

Conjecture 2.4. Finitely generated A-algebras are noetherian.

3. TWISTED COMMUTATIVE ALGEBRAS

At present, conjecture is too hard. But there is an intermediate structure which should
offer insight.

Let Vec be the category of vector spaces over k

Intuitively, a twisted commutative algebra is a polynomial functor from Vec to com-
mutative k-algebras.

An endofunctor of Vec is polynomial if it is a subquotient of a direct sum of functors
V = V&4 (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial
functors.

This includes symmetric and exterior powers and Schur functors Sy (labeled by integer
partitions \):

Pol has a tensor structure: (F® G)(V) :=F(V) @ §(V).

A tca A is a commutative algebra in (Pol, ®), i.e., A ® A — A such that ...
An A-module is M with A ® M — M such that ...
M is f.g. if it is a quotient of A ® V for some finite length V' € Pol.



Example: Fix F. Set E — Sym(E ® F'). Call this tca Sym(F(1)).

Some definitions. Let A be a tca.

e A is noetherian if every finitely generated A-module is noetherian.

e A is weakly noetherian if A is noetherian as an A-module, i.e, every ideal is finitely
generated.

e A is topologically noetherian if “Spec(A)
chain of radical ideals stabilizes.
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is noetherian, i.e., every increasing

A is f.g. if it is a quotient of Sym(F) for a finite length functor F. Polynomial functors
have a degree, so we can say in which degree A is generated. Sym(F'(1)) is generated in
degree 1.

Conjecture 3.1. A finitely generated tca is noetherian.

Some results (in char. 0):
e Snowden 2010: tca’s generated in degree < 1 are noetherian.
e Eggermont 2014: tca’s generated in degree < 2 are topologically noetherian.
e Nagpal-Sam-Snowden 2015: Sym(F) is noetherian for F € {Sym?, A%}.
The next two steps should give insight into the general problem:
e Is Sym(A?) topologically noetherian?
e Is a tca generated in degree < 2 noetherian?
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