Twisted commutative algebras

Caltech algebraic geometry seminar, February 23, 2015

Steven Sam (joint with Andrew Snowden)

1. Motivating example: equations of secant varieties

Fix vector spaces V_1, \ldots, V_n .

Segre embedding: $\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n) \subset \mathbf{P}(V_1 \otimes \cdots \otimes V_n)$

For r > 1, let $\Sigma(r, \mathbf{V})$ be the rth secant variety, i.e., the closure of the union of lines through r distinct points of $\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n)$.

Want to understand defining equations as $\dim(V_i)$ vary and as d and r vary. Some known results:

- r=1 (classical): the Segre embedding is cut out by equations of degree 2
- r=2 (Raicu 2011): defined by equations of degree 3 (in char. 0)
- r=3 (Qi 2013): defined set-theoretically by equations of degree 4 (in char. 0)
- r=4 (Strassen 1983): need equations of degree 9

May be impossible to get a complete picture given Strassen's equations above. But here is a workaround result:

Theorem 1.1 (Draisma-Kuttler (2011)). For each r, there is a constant d(r) so that $\Sigma(r, \mathbf{V})$ is set-theoretically defined by equations of degree at most d(r).

d(r) is independent of n and dim (V_i) , but may depend on the characteristic of the field.

Obvious conjecture:

Conjecture 1.2. For each r, there is a constant d(r) so that $\Sigma(r, \mathbf{V})$ is ideal-theoretically defined by equations of degree at most d(r).

d(r) is independent of n and $\dim(V_i)$ and the characteristic of the field.

Draisma–Kuttler's methods were "topological": the key idea is to show that a certain Gspace (one that contains the limit of $\Sigma(r, \mathbf{V})$ as $n \to \infty$ and $\dim(V_i) \to \infty$) is topologically noetherian when taking into account the G-action.

Need machinery to take into account scheme structures.

2. Δ -modules

Snowden introduced Δ -modules. This is a sequence of Σ_n -equivariant functors $\mathcal{F}_n \colon \operatorname{Vec}^{\times n} \to$ Vec with transition maps

$$f_n: \mathcal{F}_n(V_1, \dots, V_{n-1}, V_n \otimes V_{n+1}) \to \mathcal{F}_{n+1}(V_1, \dots, V_n, V_{n+1}).$$

satisfying some compatibility conditions. This is a huge structure and Δ -modules form an abelian category. There is a notion of finite generation: \mathcal{F} is finitely generated if it has finitely many elements such that the smallest Δ -submodule containing them is \mathcal{F} .

Translation: using the functoriality (i.e., linear maps $V_i \to V'_i$ plus the Σ_n actions plus the transition maps, every element can be built from a finite collection of elements).

For fixed r, the assignment $(V_1, \ldots, V_n) \mapsto \mathbf{k}[\Sigma(r, \mathbf{V})]$ is a Δ -module where the transition maps come from the natural inclusions

$$\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n) \times \mathbf{P}(V_{n+1}) \subset \mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n \otimes V_{n+1}).$$

So for each $i, (V_1, \ldots, V_n) \mapsto \operatorname{Tor}_i^A(\mathbf{k}[\Sigma(r, \mathbf{V})], \mathbf{k})$ is a Δ -module where $A = \mathbf{k}[\mathbf{P}(V_1 \otimes \cdots \otimes V_n)]$. Tor has a natural grading, and we have a result:

Theorem 2.1 (Sam–Snowden 2014). Fix i, j, r. The Δ -module $(V_1, \ldots, V_n) \mapsto \operatorname{Tor}_i^A(\mathbf{k}[\Sigma(r, \mathbf{V})], \mathbf{k})_j$ is finitely presented.

When i=1, this is the space of minimal equations of degree j. So to prove the result, want to show that this vanishes for $j \gg 0$.

Example 2.2. The simplest example is i = r = 1 and j = 2 (equations of the Segre embedding):

Pick coordinates $(x_{i_1,...,i_n})$; the minimal equations defining this subvariety are of the form

$$x_{i_1,\dots,i_k,j_{k+1},\dots,j_n}x_{i'_1,\dots,i'_k,j'_{k+1},\dots,j'_n}-x_{i_1,\dots,i_k,j'_{k+1},\dots,j'_n}x_{i'_1,\dots,i'_k,j_{k+1},\dots,j_n}$$

if we range over k and allow permutations of the indices. These are obtained "by substitution of indices" from the 2×2 determinant $x_{1,1}x_{2,2} - x_{1,2}x_{2,1}$ which defines the simplest Segre embedding $\mathbf{P}^1 \times \mathbf{P}^1 \subset \mathbf{P}^3$.

So $\operatorname{Tor}_1(\mathbf{k}[\Sigma(1,\mathbf{V})],\mathbf{k})_2$ is generated by any nonzero element of its value on $(\mathbf{k}^2,\mathbf{k}^2)$.

Since Tor comes from homology of Koszul complex, this result follows from abstract result:

Theorem 2.3 (Sam–Snowden 2014). The category of Δ -modules is noetherian: subquotients of finitely generated Δ -modules remain finitely generated.

 Δ -modules are like a replacement for linear algebra, but really want to deal with multiplicative structures. There is a tensor product defined pointwise, can define Δ -algebras (commutative, associative). The main example is $(V_1, \ldots, V_n) \mapsto \mathbf{k}[\mathbf{P}(V_1 \otimes \cdots \otimes V_n)]$. The following would imply the original conjecture.

Conjecture 2.4. Finitely generated Δ -algebras are noetherian.

3. Twisted commutative algebras

At present, conjecture is too hard. But there is an intermediate structure which should offer insight.

Let Vec be the category of vector spaces over \mathbf{k}

Intuitively, a **twisted commutative algebra** is a polynomial functor from Vec to commutative **k**-algebras.

An endofunctor of Vec is **polynomial** if it is a subquotient of a direct sum of functors $V \mapsto V^{\otimes d}$ (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial functors.

This includes symmetric and exterior powers and Schur functors S_{λ} (labeled by integer partitions λ):

Pol has a tensor structure: $(\mathfrak{F} \otimes \mathfrak{G})(V) := \mathfrak{F}(V) \otimes \mathfrak{G}(V)$.

A tca \mathcal{A} is a commutative algebra in (Pol, \otimes) , i.e., $\mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ such that ...

An \mathcal{A} -module is \mathcal{M} with $\mathcal{A} \otimes \mathcal{M} \to \mathcal{M}$ such that ...

 \mathcal{M} is f.g. if it is a quotient of $\mathcal{A} \otimes V$ for some finite length $V \in Pol$.

Example: Fix F. Set $E \mapsto \operatorname{Sym}(E \otimes F)$. Call this tca $\operatorname{Sym}(F\langle 1 \rangle)$.

Some definitions. Let \mathcal{A} be a tca.

- \mathcal{A} is **noetherian** if every finitely generated \mathcal{A} -module is noetherian.
- \mathcal{A} is **weakly noetherian** if \mathcal{A} is noetherian as an \mathcal{A} -module, i.e, every ideal is finitely generated.
- \mathcal{A} is **topologically noetherian** if "Spec(\mathcal{A})" is noetherian, i.e., every increasing chain of radical ideals stabilizes.

 \mathcal{A} is f.g. if it is a quotient of $\operatorname{Sym}(\mathcal{F})$ for a finite length functor \mathcal{F} . Polynomial functors have a degree, so we can say in which degree \mathcal{A} is generated. $\operatorname{Sym}(F\langle 1 \rangle)$ is generated in degree 1.

Conjecture 3.1. A finitely generated to a is noetherian.

Some results (in char. 0):

- Snowden 2010: tca's generated in degree ≤ 1 are noetherian.
- Eggermont 2014: tca's generated in degree ≤ 2 are topologically noetherian.
- Nagpal–Sam–Snowden 2015: Sym(\mathcal{F}) is noetherian for $\mathcal{F} \in \{\text{Sym}^2, \wedge^2\}$.

The next two steps should give insight into the general problem:

- Is $Sym(\wedge^3)$ topologically noetherian?
- Is a tca generated in degree ≤ 2 noetherian?