Twisted commutative algebras Caltech algebraic geometry seminar, February 23, 2015 Steven Sam (joint with Andrew Snowden) ## 1. Motivating example: equations of secant varieties Fix vector spaces V_1, \ldots, V_n . Segre embedding: $\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n) \subset \mathbf{P}(V_1 \otimes \cdots \otimes V_n)$ For r > 1, let $\Sigma(r, \mathbf{V})$ be the rth secant variety, i.e., the closure of the union of lines through r distinct points of $\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n)$. Want to understand defining equations as $\dim(V_i)$ vary and as d and r vary. Some known results: - r=1 (classical): the Segre embedding is cut out by equations of degree 2 - r=2 (Raicu 2011): defined by equations of degree 3 (in char. 0) - r=3 (Qi 2013): defined set-theoretically by equations of degree 4 (in char. 0) - r=4 (Strassen 1983): need equations of degree 9 May be impossible to get a complete picture given Strassen's equations above. But here is a workaround result: **Theorem 1.1** (Draisma-Kuttler (2011)). For each r, there is a constant d(r) so that $\Sigma(r, \mathbf{V})$ is set-theoretically defined by equations of degree at most d(r). d(r) is independent of n and dim (V_i) , but may depend on the characteristic of the field. Obvious conjecture: Conjecture 1.2. For each r, there is a constant d(r) so that $\Sigma(r, \mathbf{V})$ is ideal-theoretically defined by equations of degree at most d(r). d(r) is independent of n and $\dim(V_i)$ and the characteristic of the field. Draisma–Kuttler's methods were "topological": the key idea is to show that a certain Gspace (one that contains the limit of $\Sigma(r, \mathbf{V})$ as $n \to \infty$ and $\dim(V_i) \to \infty$) is topologically noetherian when taking into account the G-action. Need machinery to take into account scheme structures. ## 2. Δ -modules Snowden introduced Δ -modules. This is a sequence of Σ_n -equivariant functors $\mathcal{F}_n \colon \operatorname{Vec}^{\times n} \to$ Vec with transition maps $$f_n: \mathcal{F}_n(V_1, \dots, V_{n-1}, V_n \otimes V_{n+1}) \to \mathcal{F}_{n+1}(V_1, \dots, V_n, V_{n+1}).$$ satisfying some compatibility conditions. This is a huge structure and Δ -modules form an abelian category. There is a notion of finite generation: \mathcal{F} is finitely generated if it has finitely many elements such that the smallest Δ -submodule containing them is \mathcal{F} . Translation: using the functoriality (i.e., linear maps $V_i \to V'_i$ plus the Σ_n actions plus the transition maps, every element can be built from a finite collection of elements). For fixed r, the assignment $(V_1, \ldots, V_n) \mapsto \mathbf{k}[\Sigma(r, \mathbf{V})]$ is a Δ -module where the transition maps come from the natural inclusions $$\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n) \times \mathbf{P}(V_{n+1}) \subset \mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_n \otimes V_{n+1}).$$ So for each $i, (V_1, \ldots, V_n) \mapsto \operatorname{Tor}_i^A(\mathbf{k}[\Sigma(r, \mathbf{V})], \mathbf{k})$ is a Δ -module where $A = \mathbf{k}[\mathbf{P}(V_1 \otimes \cdots \otimes V_n)]$. Tor has a natural grading, and we have a result: **Theorem 2.1** (Sam–Snowden 2014). Fix i, j, r. The Δ -module $(V_1, \ldots, V_n) \mapsto \operatorname{Tor}_i^A(\mathbf{k}[\Sigma(r, \mathbf{V})], \mathbf{k})_j$ is finitely presented. When i=1, this is the space of minimal equations of degree j. So to prove the result, want to show that this vanishes for $j \gg 0$. **Example 2.2.** The simplest example is i = r = 1 and j = 2 (equations of the Segre embedding): Pick coordinates $(x_{i_1,...,i_n})$; the minimal equations defining this subvariety are of the form $$x_{i_1,\dots,i_k,j_{k+1},\dots,j_n}x_{i'_1,\dots,i'_k,j'_{k+1},\dots,j'_n}-x_{i_1,\dots,i_k,j'_{k+1},\dots,j'_n}x_{i'_1,\dots,i'_k,j_{k+1},\dots,j_n}$$ if we range over k and allow permutations of the indices. These are obtained "by substitution of indices" from the 2×2 determinant $x_{1,1}x_{2,2} - x_{1,2}x_{2,1}$ which defines the simplest Segre embedding $\mathbf{P}^1 \times \mathbf{P}^1 \subset \mathbf{P}^3$. So $\operatorname{Tor}_1(\mathbf{k}[\Sigma(1,\mathbf{V})],\mathbf{k})_2$ is generated by any nonzero element of its value on $(\mathbf{k}^2,\mathbf{k}^2)$. Since Tor comes from homology of Koszul complex, this result follows from abstract result: **Theorem 2.3** (Sam–Snowden 2014). The category of Δ -modules is noetherian: subquotients of finitely generated Δ -modules remain finitely generated. Δ -modules are like a replacement for linear algebra, but really want to deal with multiplicative structures. There is a tensor product defined pointwise, can define Δ -algebras (commutative, associative). The main example is $(V_1, \ldots, V_n) \mapsto \mathbf{k}[\mathbf{P}(V_1 \otimes \cdots \otimes V_n)]$. The following would imply the original conjecture. Conjecture 2.4. Finitely generated Δ -algebras are noetherian. ## 3. Twisted commutative algebras At present, conjecture is too hard. But there is an intermediate structure which should offer insight. Let Vec be the category of vector spaces over \mathbf{k} Intuitively, a **twisted commutative algebra** is a polynomial functor from Vec to commutative **k**-algebras. An endofunctor of Vec is **polynomial** if it is a subquotient of a direct sum of functors $V \mapsto V^{\otimes d}$ (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial functors. This includes symmetric and exterior powers and Schur functors S_{λ} (labeled by integer partitions λ): Pol has a tensor structure: $(\mathfrak{F} \otimes \mathfrak{G})(V) := \mathfrak{F}(V) \otimes \mathfrak{G}(V)$. A tca \mathcal{A} is a commutative algebra in (Pol, \otimes) , i.e., $\mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ such that ... An \mathcal{A} -module is \mathcal{M} with $\mathcal{A} \otimes \mathcal{M} \to \mathcal{M}$ such that ... \mathcal{M} is f.g. if it is a quotient of $\mathcal{A} \otimes V$ for some finite length $V \in Pol$. Example: Fix F. Set $E \mapsto \operatorname{Sym}(E \otimes F)$. Call this tca $\operatorname{Sym}(F\langle 1 \rangle)$. Some definitions. Let \mathcal{A} be a tca. - \mathcal{A} is **noetherian** if every finitely generated \mathcal{A} -module is noetherian. - \mathcal{A} is **weakly noetherian** if \mathcal{A} is noetherian as an \mathcal{A} -module, i.e, every ideal is finitely generated. - \mathcal{A} is **topologically noetherian** if "Spec(\mathcal{A})" is noetherian, i.e., every increasing chain of radical ideals stabilizes. \mathcal{A} is f.g. if it is a quotient of $\operatorname{Sym}(\mathcal{F})$ for a finite length functor \mathcal{F} . Polynomial functors have a degree, so we can say in which degree \mathcal{A} is generated. $\operatorname{Sym}(F\langle 1 \rangle)$ is generated in degree 1. ## Conjecture 3.1. A finitely generated to a is noetherian. Some results (in char. 0): - Snowden 2010: tca's generated in degree ≤ 1 are noetherian. - Eggermont 2014: tca's generated in degree ≤ 2 are topologically noetherian. - Nagpal–Sam–Snowden 2015: Sym(\mathcal{F}) is noetherian for $\mathcal{F} \in \{\text{Sym}^2, \wedge^2\}$. The next two steps should give insight into the general problem: - Is $Sym(\wedge^3)$ topologically noetherian? - Is a tca generated in degree ≤ 2 noetherian?