"Gröbner bases for twisted commutative algebras"
University of Michigan combinatorics seminar, April 4, 2014
Steven Sam (joint with Andrew Snowden)

1. Introduction: some motivating results

General theme: "Finding finiteness in new places" (Sample results:)
Theorem 1.1 (Church-Ellenberg-Farb-Nagpal). Let X be a compact connected orientable manifold. Define $C_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}$. For any $i \geq 0$ and field \mathbf{k}, the function

$$
n \mapsto \operatorname{dim}_{\mathbf{k}} \mathrm{H}^{i}\left(C_{n}(M) ; \mathbf{k}\right)
$$

agrees with a polynomial for $n \gg 0$. (Will realize as Hilbert polynomial.)
(Applications of comm. alg. ideas to other areas of math)

2. FI-MODULES

(To explain, need some formalism.)
Define category $F I_{d}$:

- objects are finite sets
- morphism $S \rightarrow T$ is an injection $f: S \rightarrow T$ and a function $T \backslash f(S) \rightarrow\{1, \ldots, d\}$.

Definition 2.1. $F I_{d}$-module M is a functor $F I_{d}$ to \mathbf{k}-vector spaces. This is an Abelian category (so usual notions of algebra make sense)

Morphism $\varphi: S \rightarrow T$ gives linear map $M(\varphi): M(S) \rightarrow M(T) . M$ is finitely generated if there are $m_{1} \in M\left(S_{1}\right), \ldots, m_{r} \in M\left(S_{r}\right)$ so that every element is

$$
c_{1} M\left(\varphi_{1}\right)\left(m_{1}\right)+\cdots+c_{r} M\left(\varphi_{r}\right)\left(m_{r}\right) \quad\left(c_{i} \in \mathbf{k}\right)
$$

Hilbert function of M is $h_{M}(n):=\operatorname{dim}_{\mathbf{k}} M(\{1, \ldots, n\})$.
(Note that $\operatorname{dim}_{\mathbf{k}} M(S)=\operatorname{dim}_{\mathbf{k}} M\left(S^{\prime}\right)$ whenever $|S|=\left|S^{\prime}\right|$)
Proposition 2.2. For $d=1$, if M is f.g., then $h_{M}(n)$ is a polynomial function for $n \gg 0$.
Example 2.3. S finite set, define $C_{S}(X)$ to be space of injective maps $S \rightarrow X$. Given $S \subseteq T$, get forgetful map $C_{T}(X) \rightarrow C_{S}(X)$ and hence $\mathrm{H}^{i}\left(C_{S}(X) ; \mathbf{k}\right) \rightarrow \mathrm{H}^{i}\left(C_{T}(X) ; \mathbf{k}\right)$ which forms $F I_{1^{-}}$ module. Note $C_{S}(X) \cong C_{|S|}(X)$. (Is it f.g.?)
Definition 2.4. Submodule $N \subseteq M$ is collection $N(S) \subseteq M(S)$ closed under all $M(\varphi)$.
To approach conf. space, can use spectral sequence for inclusion $C_{n}(X) \subset X^{n}$. The E_{2} page was described by Totaro and has structure of f.g. $F I_{1}$-modules. Going to E_{∞} page requires taking submodules and quotient modules.

Question: If M is f.g. $F I_{d}$-module, is the same true for $N \subseteq M$?
Yes. (S.-Snowden; CEFN for $d=1$)
For each n, define $F I_{d}$-module P_{n} by $P_{n}(S)=\mathbf{k}\left[\operatorname{Hom}_{F I_{d}}(\{1, \ldots, n\}, S)\right]$.
Lemma 2.5. Being f.g. is equivalent to being a quotient of a finite direct sum $P_{n_{1}} \oplus \cdots \oplus P_{n_{r}}$.
(So just need to answer question for the modules P_{n})
Note that $h_{P_{r}}(n)=\binom{n}{r} r!=n(n-1) \cdots(n-r+1)$.

3. Gröbner methods

Idea: monomials easier than polynomials. (Usual reduction is taking initial terms) Want to use leading terms of elements in $F I_{d}$. One desirable property:

$$
\begin{equation*}
\text { if } f<f^{\prime} \text { (morphisms) then } g f<g f^{\prime} \text { for all morphisms } g \tag{*}
\end{equation*}
$$

But consider $f, f^{\prime}:[2] \rightarrow[3]$ with $f(1)=1, f(2)=2$ and $f^{\prime}(1)=2, f^{\prime}(2)=1$ and $g, g^{\prime}:[3] \rightarrow[4]$ with $g(1)=1, g(2)=2, g(3)=3$ and $g^{\prime}(1)=2, g^{\prime}(2)=1, g^{\prime}(3)=3$. Then $g f=g^{\prime} f^{\prime}$ and $g^{\prime} f=g f^{\prime}$ so both $f>f^{\prime}$ and $f^{\prime}>f$ leads to a contradiction.

Fix: Remove the symmetric group actions.
Define category $O I_{d}$:

- objects are ordered finite sets
- morphism $S \rightarrow T$ is increasing injection $f: S \rightarrow T$ and function $T \backslash f(S) \rightarrow[d]$.

Define $O I_{d}$-modules, submodules, f.g. modules in same way. P_{n} are replaced by Q_{n} : $Q_{n}(S)=\mathbf{k}\left[\operatorname{Hom}_{O I_{d}}(\{1, \ldots, n\}, S)\right]$.

Have forgetful functor $\Phi: O I_{d} \rightarrow F I_{d}$
So given $F I_{d}$-module M, have pullback $\Phi^{*}(M)$ which is an $O I_{d}$-module.
Φ^{*} is exact, so $M \subseteq N$ implies $\Phi^{*}(M) \subseteq \Phi^{*}(N)$.
Proposition 3.1. M is f.g. $F I_{d}$-module if and only if $\Phi^{*}(M)$ is a f.g. $O I_{d}$-module.
Proof. M f.g. implies M is quotient of $P_{n_{1}} \oplus \cdots \oplus P_{n_{r}}$.
So $\Phi^{*}(M)$ is quotient of $\Phi^{*}\left(P_{n_{1}}\right) \oplus \cdots \oplus \Phi^{*}\left(P_{n_{r}}\right)$. Now use that $\Phi^{*}\left(P_{n}\right) \cong Q_{n}^{\oplus n!}$.
Other direction: $F I_{d}$ has more operators than $O I_{d}$.
(So it suffices to prove Q_{n} are Noetherian)
Definition 3.2. A monomial in Q_{n} is basis vector given by morphism $[n] \rightarrow S$.
$O I_{d}$-morphism $\{1, \ldots, n\} \rightarrow\{1, \ldots, r\}$ is identified with word in $\{*, 1, \ldots, d\}$ of length r where * appears n times.

Monomial submodule of Q_{n} is one generated by monomials.
Proposition 3.3. Monomial submodules of Q_{n} are f.g.
Proof. Submodule in Q_{n} generated by word w (basis element) is all other words that contain w as a subword. Get partial order on words: Higman's lemma implies there are no infinite antichains. For any monomial submodule, build sequence of monomials x_{1}, x_{2}, \ldots where x_{i} is minimal degree such that it is not generated by x_{1}, \ldots, x_{i-1}. This must be finite!

Ordering words lexicographically gives total ordering with crucial property (*) and allows us to define initial terms

$$
i n_{<}(f)=\max \{m \mid m \text { monomial with nonzero coeff in } f\} .
$$

and initial submodules

$$
i n_{<}(M)=\mathbf{k}\left\{i n_{<}(f) \mid f \in M\right\} .
$$

Standard arguments imply submodule N f.g. iff its initial submodule is f.g.:
Lemma 3.4. If $N \subseteq M$ and $i n_{<}(N)=i n_{<}(M)$, then $N=M$.

Proof. If not, pick $f \in M \backslash N$ with $i n_{<}(f)$ minimal. There exists $g \in N$ with $i n_{<}(g)=i n_{<}(f)$. Then $f-g \in M \backslash N$ and has smaller initial term.

Other uses of Gröbner methods:

- Dotsenko-Khoroshkin: shuffle operads
- Aschenbrenner-Hillar, Hillar-Sullivant: monoidal equivariant ideals in poly. rings

4. Further directions

- Analogy with commutative algebra further developed in S.-Snowden, "GL-equivariant modules over polynomial rings in infinitely many variables", arXiv:1206.2233.
- Can generalize by replacing $F I$ by linear version $V I\left(\mathbf{F}_{q}\right)$ or even $V I(R)$ - applications to cohomology of congruence subgroups of arithmetic groups, mapping class groups, etc.
- What is behavior of Hilbert function of f.g. $F I_{d}$-modules? Know that it is bounded by $p(n) d^{n}$ for polynomial p. Examples of $F I_{d}$-modules? one example: configuration spaces of disconnected manifolds (with d components).

Other approximate candidates: cohomology of (Fulton-MacPherson) compactifications of conf. spaces; cohomology of Deligne-Mumford compactification of $\mathscr{M}_{g, n}$

- Define category $F I^{(2)}$:
- Objects are finite sets
- morphism $S \rightarrow T$ is an injection $f: S \rightarrow T$ and a perfect matching on $T \backslash f(S)$. Do $F I^{(2)}$-modules have Noetherian property? This fails for $O I^{(2)}$-modules! When $\mathbf{Q} \subseteq \mathbf{k}, F I^{(2)}$-modules is a model for $\mathbf{O}(\infty)$-modules where $\mathbf{O}(\infty)=\cup_{n} \mathbf{O}(n)$.
- Use Kruskal tree theorem? (Homeomorphic embeddings of labeled rooted trees)
- Can use category of surjections to prove Δ-modules (in the sense of Snowden) are Noetherian (strengthens his previous results).

