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Polynomials

Algebraic geometry is the study of polynomial functions.

Example

Polynomial functions on C2 are polynomials in two variables, like
x2 + 2xy + y + 1 or x3 + y5.

Polynomial functions on Cn are polynomials in
n variables x1, x2, . . . , xn.
(xi is the function which measures the ith
coordinate of a point in Cn.)
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Algebraic varieties

Given n-variable polynomials f1, f2, f3, . . . , the zero set (algebraic
variety) is the common solutions, i.e., all (z1, . . . , zn) such that

f1(z1, . . . , zn) = f2(z1, . . . , zn) = · · · = 0.

Theorem (Hilbert? 1890)

An algebraic variety has a description using finitely many polynomials.

Theorem (Eisenbud–Evans 1973)

In fact, only need n polynomials for description.
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Implicitization problem

Algebraic varieties can be given by parametrizations:

Let X ⊂ C3 be the set of points of the
form (t, t2, t3) (the rational normal cubic).

Alternatively, X is the zero set of
x2 − y , xy − z , xz − y2.

Generally, we might be given a polynomial map Cm → Cn.
Implicitization problem: describe the image as a zero set.
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Ideals

An ideal is a collection of polynomials closed
under addition and outside multiplication.

Dedekind

Theorem (Hilbert basis theorem 1890)

Every ideal is finitely generated.

Ideal membership problem: How do you determine if g is in the
ideal generated by f1, . . . , fr?
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One-variable: long division

In one variable case, all ideals are generated by one

polynomial.

The ideal membership problem reduces to long division and
checking if the remainder is 0:

Euclid

Example

Dividing x3 + x2 − 1 by x − 1 gives remainder of 1:

x3 + x2 − 1 = (x2 + 2x + 2)(x − 1) + 1

So x3 + x2 − 1 is not in the ideal generated by x − 1.
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Term orders

Macaulay

Long division works in one variable because we
know what the “biggest” term in a univariate
polynomial is.

But what about two variables? What is the
biggest term of x2 + xy + y2?

An option: compare terms by degree and then by dictionary order.
(First compare the exponent of x1; if they’re the same, move on to the exponent of x2, etc.)

In the example above, x2 is the biggest term (“leading term”).
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Division algorithm

Let f1, . . . , fr be a set of generators for an ideal I .
We want to test if g is in I .

Check if the leading term of g is divisible by the
leading term of some fi .

If so, subtract a suitable multiple of fi from g to get
a polynomial with smaller leading term.

Example

If g = x3 + xy2 and f = x2 + xy + y2, then subtract xf from g

to cancel the x3 term.

Then repeat: when you can’t proceed, you get a remainder. If
the remainder is 0, then g is in the ideal.
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Potential problem with division algorithm

Problem: g might be in the ideal but still have nonzero remainder.

Example

f1 = x3 + xy2 and f2 = x3 + x2y + y3.
Then g = xy3 − y4 is in the ideal

g = (x + 2y)f1 + (−x − y)f2

but g is its own remainder: leading term xy3 isn’t divisible by x3.

Buchberger

A Gröbner basis is a generating set with the
property that the division algorithm always
works.
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Gröbner bases

How to construct a Gröbner basis:

If the division algorithm fails for g , then add
the remainder of g to the generating set.

Repeat: if no such g exists after a finite
number of steps, the result is a Gröbner basis. Gordon

This algorithm always terminates because of Dickson’s lemma:

Lemma (Dickson)

Given a list of monomials m1,m2, . . . , you can always find two

indices i < j so that mi divides mj .
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Implicitization problem, revisited

Recall our rational normal cubic is the set of points (t, t2, t3).

Introduce new variables x , y , z and consider ideal generated by

x − t, y − t2, z − t3.

Compute Gröbner basis with ordering t < x < y < z and you get:

y3 − z2, xz − y2, xy − z , x2 − y , t − x

The polynomials that don’t use t give zero set description of
rational normal cubic.
(y3 − z2 = −y(xz − y3) + z(xy − z) is redundant)
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My research

I’ve recently been interested in algebraic structures that arise in
“representation stability” and “equivariant noetherianity”.

Noether

A common theme is to identify new algebraic structures that
govern existing mathematical objects and to study their properties
to get new information.
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My research

I’m studying analogues of Hilbert’s basis
theorem and Gröbner bases for new algebraic
structures which give finite generation
statements for objects such as:

• Cohomology of configuration spaces

• Homology of congruence subgroups

• Syzygies of Segre varieties

Our work solved the Lannes–Schwartz artinian conjecture in
algebraic topology which was open for 25 years.
(Recently featured in Séminaire Bourbaki)
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Some directions

Here are two sample questions we still can’t answer.

Question

Fix r . Is there a constant d(r) so that the ideal of polynomials
vanishing on the tensors of (border) rank ≤ r is generated in
degree ≤ d(r)?

Question

Can the homology of the Torelli group of a genus g surface be
described in terms of the homology of lower genus Torelli groups
for g ≫ 0?
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