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Theme: Revisit classical algebraic geometry problems with computer algebra

1. HEISENBERG GROUPS
For simplicity, work over complex numbers C.

e Let X be a g-dimensional abelian variety, (i.e., a projective variety with group struc-
ture.)

e Given x€ X, let t,: X — X be translation by x.

e Let £ be an ample line bundle on X and K(&)={xeX |t £ = ZL]}.

Basic facts:

e There exist d1|dz|--|ds such that K(£)=7Z/D xZ/D (Z/D =Z/d1 x --- xZ/d z).

.....

lations

and dilations

({4 1s a primitive dth root of unity).

K(%) is the Heisenberg group for (X,.%). Denote it by H(D). This basis is the Heisen-
berg normal form for (X, %) (note it depends only on D, so we can compare two different
X in the same space).

We will assume that (X, %) is indecomposable, i.e., not a direct product of lower-dimensional
polarized abelian varieties.

Examples:

(1) g=2and D =(3,3). Then (X, .Z) = (Jac(C),30) for a smooth genus 2 curve C.
% gives embedding X c P8.
Let &2 be the moduli space of such (X, %).
(2) g=3and D =(2,2,2). Then (X, Z) = (Jac(C),20) for a smooth genus 3 curve C.
% gives embedding K(X) c P7 where K(X) = X/{x = —x}.
We will assume C is not hyperelliptic (i.e., C is a plane quartic); this is equivalent
to K(X) c P7 being projectively normal.
Let &3 be the moduli space of such (X, .%).
Theorem 1.1 (Beauville, Coble).
In case (1), there is a unique cubic hypersurface in P8 whose singular locus is X.
In case (2), there is a unique quartic hypersurface in P” whose singular locus is K(X).

We will only consider these two cases for this talk.
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2. MODULI SPACES

(The data of (X, %) can be encoded by a single equation, the Coble hypersurface.)
Get embeddings
X cP(Sym3(C?) %3 < P(Sym*(C?)).
(Can do better: by uniqueness, Coble hypersurface is invariant under Heisenberg group —
update last line instead of rewriting):

%, < P(Sym3(C)HGD) %; « P(Sym~(C8)H222,
A straightforward calculation shows that
dimP(Sym3(C)HB3 =4, dimP(Sym*(C8))7222 = 14,
Also,
dim%,=3, dim%3=6.
So 2, c P* is a hypersurface (Burkhardt quartic).

Coble gave a set of cubic equations which set-theoretically define X3 < P14,

Theorem 2.1 (Ren—S.—Schrader—Sturmfels). The prime ideal of Z3 < P1* is generated by 35
cubics and 35 quartics and its homogeneous coordinate ring is Gorenstein.

Proof. Use Macaulay?2:

o We have a parametrization of &3 (to be explained) and use this to find the quartics.

e Can show the result is Cohen—Macaulay by calculating Hilbert series before and
after cutting it by 7 random linear forms.

e Then use Jacobian criterion (i.e., show that there is a smooth point — can randomly
generate a point using parametrization — by calculating Jacobian matrix) to show it
is prime.

¢ Can read off Gorenstein from Hilbert series: Stanley showed that a Cohen—Macaulay
graded domain is Gorenstein if and only if the numerator of its Hilbert series is
palindromic. U

3. HYPERPLANE ARRANGEMENTS
Lift H(2,2,2) c PGL7 to H(2,2,2) c GLg. Then
N(H(2,2,2))/H(2,2,2) = Spg(Fa).
(N denotes “normalizer”, Sp denotes symplectic group). This is almost a reflection group:
Spe(F2) xZ/2= W (Eq)

(Weyl group of type Er).

There is a configuration of 63 hyperplanes (details omitted) in a hermitian space h = C”
whose reflections generate the finite group W(E7).

For every collection of 7 mutually orthogonal hyperplanes, take product of their linear
forms. The subspace spanned by all of them is 15-dimensional, and is W(E7)-equivariantly

isomorphic to Sym4(CS)ﬁ 2.22) Get rational map

P(h) = P® --» P14 = P(Sym*(C%)7*2?)



whose image is Z3. (proof omitted)

This gives desired parametrization, and can use it to find equations vanishing on Z3.
(Alternatively, can think of P!* as embedded in larger space whose coordinates represent
all products of orthogonal linear forms and represent equations as binomials.)

4. FURTHER DIRECTIONS

There is a similar situation for &5. The relevant rational map is
P? -5 P* = P(Sym3(C*)7®?),

These have a common origin: slices of coregular representations, i.e., an action of a com-
plex Lie group on a representation with a polynomial ring of invariants.

This common origin suggests many more instances of Coble hypersurfaces for embeddings
of abelian varieties (into products of projective spaces and quadric hypersurfaces).
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