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1. HEISENBERG GROUPS

For simplicity, work over complex numbers C.

• Let X be a g-dimensional abelian variety, (i.e., a projective variety with group struc-

ture.)

• Given x ∈ X , let tx : X → X be translation by x.

• Let L be an ample line bundle on X and K(L )= {x ∈ X | t∗xL
∼=L }.

Basic facts:

• There exist d1|d2| · · · |dg such that K(L )=Z/D×Z/D (Z/D =Z/d1 ×·· ·×Z/dg).

• There exists basis (xi1,...,i g
)i j∈Z/d j

of H0(X ;L ) such that K(L ) is generated by trans-

lations

σv : xi1,...,i g
7→ xi1+v1,...,i g+vg

and dilations

τv : xi1,...,i g
7→ ζ

v1

d1
· · ·ζ

vg

dg
xi1,...,i g

(ζd is a primitive dth root of unity).

K(L ) is the Heisenberg group for (X ,L ). Denote it by H(D). This basis is the Heisen-

berg normal form for (X ,L ) (note it depends only on D, so we can compare two different

X in the same space).

We will assume that (X ,L ) is indecomposable, i.e., not a direct product of lower-dimensional

polarized abelian varieties.

Examples:

(1) g = 2 and D = (3,3). Then (X ,L )= (Jac(C),3Θ) for a smooth genus 2 curve C.

L gives embedding X ⊂P8.

Let X2 be the moduli space of such (X ,L ).

(2) g = 3 and D = (2,2,2). Then (X ,L )= (Jac(C),2Θ) for a smooth genus 3 curve C.

L gives embedding K(X )⊂P7 where K(X )= X /{x ≃−x}.

We will assume C is not hyperelliptic (i.e., C is a plane quartic); this is equivalent

to K(X )⊂P7 being projectively normal.

Let X3 be the moduli space of such (X ,L ).

Theorem 1.1 (Beauville, Coble).

In case (1), there is a unique cubic hypersurface in P8 whose singular locus is X .

In case (2), there is a unique quartic hypersurface in P7 whose singular locus is K(X ).

We will only consider these two cases for this talk.
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2. MODULI SPACES

(The data of (X ,L ) can be encoded by a single equation, the Coble hypersurface.)

Get embeddings

X2 ⊂P(Sym3(C9)) X3 ⊂P(Sym4(C8)).

(Can do better: by uniqueness, Coble hypersurface is invariant under Heisenberg group —

update last line instead of rewriting):

X2 ⊂P(Sym3(C9))H(3,3), X3 ⊂P(Sym4(C8))H(2,2,2).

A straightforward calculation shows that

dimP(Sym3(C9))H(3,3)
= 4, dimP(Sym4(C8))H(2,2,2)

= 14.

Also,

dimX2 = 3, dimX3 = 6.

So X2 ⊂P4 is a hypersurface (Burkhardt quartic).

Coble gave a set of cubic equations which set-theoretically define X3 ⊂P14.

Theorem 2.1 (Ren–S.–Schrader–Sturmfels). The prime ideal of X3 ⊂P14 is generated by 35

cubics and 35 quartics and its homogeneous coordinate ring is Gorenstein.

Proof. Use Macaulay2:

• We have a parametrization of X3 (to be explained) and use this to find the quartics.

• Can show the result is Cohen–Macaulay by calculating Hilbert series before and

after cutting it by 7 random linear forms.

• Then use Jacobian criterion (i.e., show that there is a smooth point – can randomly

generate a point using parametrization – by calculating Jacobian matrix) to show it

is prime.

• Can read off Gorenstein from Hilbert series: Stanley showed that a Cohen–Macaulay

graded domain is Gorenstein if and only if the numerator of its Hilbert series is

palindromic. �

3. HYPERPLANE ARRANGEMENTS

Lift H(2,2,2)⊂PGL7 to H̃(2,2,2)⊂GL8. Then

N(H̃(2,2,2))/H̃(2,2,2)∼=Sp6(F2).

(N denotes “normalizer”, Sp denotes symplectic group). This is almost a reflection group:

Sp6(F2)×Z/2∼=W(E7)

(Weyl group of type E7).

There is a configuration of 63 hyperplanes (details omitted) in a hermitian space h = C7

whose reflections generate the finite group W(E7).

For every collection of 7 mutually orthogonal hyperplanes, take product of their linear

forms. The subspace spanned by all of them is 15-dimensional, and is W(E7)-equivariantly

isomorphic to Sym4(C8)H̃(2,2,2). Get rational map

P(h)=P6
99KP14

=P(Sym4(C8)H̃(2,2,2))
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whose image is X3. (proof omitted)

This gives desired parametrization, and can use it to find equations vanishing on X3.

(Alternatively, can think of P14 as embedded in larger space whose coordinates represent

all products of orthogonal linear forms and represent equations as binomials.)

4. FURTHER DIRECTIONS

There is a similar situation for X2. The relevant rational map is

P3
99KP4

=P(Sym3(C9)H̃(3,3)).

These have a common origin: slices of coregular representations, i.e., an action of a com-

plex Lie group on a representation with a polynomial ring of invariants.

This common origin suggests many more instances of Coble hypersurfaces for embeddings

of abelian varieties (into products of projective spaces and quadric hypersurfaces).
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