Twisted commutative algebras
Stony Brook University algebraic geometry seminar, October 2, 2013
Steven Sam (joint with Andrew Snowden)

1. MOTIVATING EXAMPLE: DETERMINANTAL VARIETIES

o E F are k-vector spaces of dimensions e, f, assume e > f.
e X =Hom(E,F) affine space of linear maps E — F

e A =Sym(E ® F*) = coordinate ring of X.

e X (r) = subvariety of rank <r matrices

e A(r) = coordinate ring of X (r)

Problem: Calculate minimal free resolution F(r). of A(r) over A
Alternatively, calculate Torf‘(A(r),k) =F(r)os k.

Some history:

¢ Auslander-Buchsbaum (1957): A/I Cohen—Macaulay iff Tor}‘.‘(A/I ,k) =10 for all j >
codim V(1)

e Eagon—Northcott (1962): constructed F(f —1).. In particular, A(f — 1) is Cohen—
Macaulay.

o Eagon—Hochster (1971): showed A(r) is Cohen—Macaulay for all r.

o Kempf (1973): gave geometric construction of F(f — 1)..

Work on X x P(F') =: e. Have short exact sequence on P(F):
0—R—F&0py)—01)—0, (B=Qpz 1)

€ has subvariety Z = total space of #om(E,2Z). Its image under Z — ¢ LXis X(f-1).
Z is cut out by a section of #fom(E,0(1)) so get Koszul complex:
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=09 \E®O(-2)— 0, E®0O(-1) > O; — Oz — 0.

Check: Rin,6, =0 for i > 0.
So derived projection formula gives
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Tor(A(f - 1),k) = PH/ PEF); NE©O(~i - j)
j=0
_ )k ifi=0
| ANTIE® AN FreSym M F)t ifl<ise—f+1

Lascoux (1978) extended Kempf’s construction to calculate Torf(A(r),Q) for all r. We
replace P(F') with Grassmannian and need Borel-Weil-Bott theorem (hence restriction to
char. 0)

Main idea: X(r), A(r) are functorial in E,F. In particular, have action of GL(E) x GL(F).

Remarks:



(1) In general, Betti numbers depend on char., but not known in general. They are inde-
pendent of char. iff r = f — 3 or r = 0 (Eagon—Northcott, Akin—-Buchsbaum—Weyman,
Hashimoto)

(2) By functoriality, can replace E,F by vector bundles. This has geometric applications
to equations/syzygies of curves (e.g., Gruson—Lazarsfeld—Peskine, Schreyer)

2. TWISTED COMMUTATIVE ALGEBRAS

Guiding question: How does equivariance force simple behavior? Or how can we exploit
it in a useful way?

Work over field of char. 0.
Let Vec be the category of vector spaces
Intuitively, a twisted commutative algebra is a nice functor from Vec to commutative rings

An endofunctor of Vec is polynomial if it is a subquotient of a direct sum of functors
V — V&4 (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial
functors.

This includes symmetric and exterior powers and Schur functors S; (labeled by integer
partitions A):

There is a natural action of symmetric group Z; on V@4 and the multiplicity spaces are
functorial in V and called Schur functors (evaluated on V).

Pol has a tensor structure: (# @ 4)(V) :=F(V)oY4(V).

A tca o/ is a commutative algebra in (Pol,®), i.e., of ® o/ — of such that ...
An of-module is 4 with «f ® # — 4 such that ...
A is f.g. if it is a quotient of o ® V for some finite length V € Pol.

Examples:

(1) Fix F. Set E — Sym(E ® F'). Call this tca Sym(F'(1)).
(2) E — A(f —1), which is quotient of Sym(F'(1)).
(3) Fix d. Then E — coordinate ring of Grassmannian Gr(d,E). etc.

Set £(1) =max{r| A, #0} and (6 ,c; S)) = max#(A), so ¢ defined on Pol.
Fact: 0(F ®9) = 0(F) + ((9).
An object .4 of Pol is bounded if ¢(.#) < cc.

If o/ is bounded tca, and .4 is f.g. «/-module, then ./ is bounded.
If dimV = ¢(.4), have bijection

{<f-submodules of 4} = {GL(V)-invariant </ (V)-submodules of .#(V')}

Conclusion: if «f is a bounded tca and /(W) Noetherian for dimW = ¢(</), then f.g. of-
modules are Noetherian.

Example: Sym(F(1)) = (D=0 Sym?)®/ is bounded. (Sym? = Sy so £(Sym?) = 1)



3. SOME PROBLEMS

All tca’s generated in degree 1 are bounded.
tca’s generated in degree 2 can be unbounded, e.g.,

2
E — Sym(SymZ(E)) and E — Sym( /\(E)).
Problems:

(1) Is every f.g. Sym(A?)-module Noetherian?
(2) Does Sym(A2) have ascending chain condition for ideals? How about just for prime
ideals?

4. FI-MODULES

Given sequence of X, -representations (M,),, get element of Pol defined by
V—PWM,eV™ys,.
n

Schur-Weyl duality: this is an equivalence between Pol and sequences of Z,,-representations
(this is char. 0 phenomena)

® in Pol becomes induction product:

Z,
(MeN),= @ Inds’,; (M;RN,)

i+j=n
Let FI be category of finite sets with injections as morphisms. FI-module (introduced by

Church—Ellenberg—Farb) is a functor FI — Vec. Under Schur—Weyl duality, an FI-module
becomes a module over Sym(C(1)).

Example:

« Let X be a smooth manifold. Let X be configuration space of n ordered points on
X. For fixed i, (H(X™)) is an FI-module (induced by forgetful maps). (It is f.g. if X
is connected, oriented, dim at least 2 by Church)

e Fix g 2 2. M, = Deligne—-Mumford moduli of genus g curves with n marked points.
Then Hi(/%g,n) is an FI-module. (This is f.g. by Jimenez Rolland)

5. ANOTHER MOTIVATION: SEGRE EMBEDDINGS

PV x---xP(V;)cP(V1®---9V;)
Want to understand Tor as dim(V;) vary and as r varies
tca’s not suitable to allow r to vary

Snowden introduced A-modules. Roughly this is a sequence of Z,-equivariant functors
Py Vec™™ — Vec with maps
L@.n(‘fly (XS] Vn—I,Vn ® Vn+1) - gn+1(V1’ oo ,Vna Vn+1)-
For fixed i, {V1,...,V, — Tor?*(Segre,k) is a finitely generated A-module.
For fixed & and d > 0, (C% — Z,(CY,...,C%)), is a sequence of X, -reps. Under Schur—

Weyl duality, get object of Pol. It is a f.g. module over a bounded tca, and was used to prove
“rationality” of Hilbert series.



	1. Motivating example: determinantal varieties
	2. Twisted commutative algebras
	3. Some problems
	4. FI-modules
	5. Another motivation: Segre embeddings

